
A Functional Solution for Goal-oriented Policy Refinement1

Javier Rubio-Loyola1, Joan Serrat1, Marinos Charalambides2, Paris Flegkas2,
George Pavlou2

1Universitat Politècnica de Catalunya, 2University of Surrey
1{jrloyola, serrat}@tsc.upc.edu, 2{M.Charalambides, P.Flegkas, G.Pavlou}@eim.surrey.ac.uk

This work was carried out in the context of the FP6 IST
EMANICS Network of Excellence (IST-026854)

Abstract

Policy refinement is a key but still unsolved area of
policy based management. Goal oriented requirements
engineering methodologies have been suggested as a
prominent alternative to address policy refinement.
Practical approaches that capture the administrative
requirements and enable systematic policy refinement
are still missing although such integrated solutions are
rather convenient to make policy-based management
systems really useful. In this paper we present a
functional solution for goal oriented policy refinement
grounded in linear temporal logic and reactive systems
analysis techniques. We describe the technical
foundations and demonstrate how these were used to
develop an integrated solution for policy refinement,
focusing on the details of the implemented prototype.
Our policy analysis techniques that enable systematic
policy refinement are demonstrated through a scenario
applied to the domain of QoS Management for
Differentiated Services (DiffServ) networks.

1. Introduction

Policy refinement is meant to derive lower-level
policies from higher level ones so these more specific
policies are better suited for use in specific
environments. The goal-oriented policy refinement
framework proposed in [1] is a promising methodology
to address the policy refinement paradigm. This
methodology has opened a window for research into
different analysis techniques in favor of policy
refinement. The authors propose to elaborate goal
graphs by decomposing high-level goals into refined
ones from which additional processes may be applied
to abstract the necessary policy information aimed at
fulfilling the refined goals.

Current solutions in the area of requirements
engineering provide support for both, formalizing
large-scale requirements documentation, and goal
elaboration support [2]. The goal elaboration method
proposed in [1] is the KAOS methodology [3]. While
KAOS provides support to document and elaborate goal
graphs, it does not provide support to relate managed
objects’ behavior to goal fulfillment finding.
Moreover, in order to systematically refine policies
from goal-oriented high-level directives, these
limitations must be addressed efficiently.

In our previous work [4], we demonstrated how
linear temporal logic and model checking verification
could be used as the analysis techniques for the goal-
based policy refinement methodology proposed in [1].
We described a generic procedure to obtain system
trace executions aimed at fulfilling lower-level goals.
From system trace executions, the managed entities,
conditions and actions (i.e. policy fields) necessary to
fulfill administrative guidelines may be abstracted. In
this paper we move one step ahead towards the
materialization of the policy refinement paradigm
following this approach.

This paper discusses the critical nature of providing
a functional solution for generating policies, from
abstract requirements, reflecting system behavior. We
present a functional solution that provides support to
document system behaviour, to elaborate goal-graphs,
and to refine policies in a goal-oriented fashion. This
paper provides several novel contributions with respect
to our previous work [4]. We describe the nature of the
novel technical foundations of our solution and
demonstrate how these were used in our
implementation. We establish the formal procedures
and the necessary mechanisms to realize a goal-
oriented policy refinement solution. In addition, we
present the execution of a refinement scenario applied
to the domain of DiffServ QoS Management.

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

The rest of the paper is organized as follows:
Section 2 describes the technical foundations. Section
3 details the goal-oriented framework in which our
solution relies. Section 4 describes our prototype
implementation. Section 5 describes a scenario and
Section 6 its execution. Relevant issues and future
work are discussed in Section 7. Related work and
Conclusions are provided in Sections 8 and 9.

2. Technical Foundations

In this section we describe the technical
foundations, highlighting the relevant issues with
respect to the processes incorporated in our solution.

2.1. KAOS goal elaboration methodology

KAOS [3] is a formal approach for elaborating goals
grounded in Temporal Logic [5]. It represents goals as
temporal logic rules and uses refinement patterns to
decompose high-level goals into sets of sub-goals that
logically entail the original ones. KAOS considers goal
management based on the Temporal Prescription (TP)
of goals, e.g. Achieve, Cease, Maintain and Avoid.
While Achieve and Cease goals obey to system
behaviors that require some target property to be
eventually satisfied or denied respectively, Maintain
and Avoid goals restrict behaviors in that they require
some target property to be permanently satisfied or
denied respectively. In addition to managing goals with
respect to their TPs, KAOS provides support to guide
their refinements by re-using domain-independent
refinement patterns (RP) [3]. These patterns have been
included in a set of libraries that have been previously
proved to be correct. The libraries are grouped by the
Temporal Prescription of the high-level goals.

Table 1 presents two KAOS Refinement Patterns
(RPs) that represent different ways to decompose the
high-level Achieve goal P R, into their respective
sub goals. In addition to the classical logical operators,
in this paper we use the classical temporal operators;
eventually in the future, always in the future, U
always in the future until and W always in the future
unless, next state. The high-level goal P R must
be interpreted as “If P then eventually R in the future”.

Table 1. Two refinement patterns for P R Achieve goal
RP Subgoals

RP1 P Q Q R
RP2 P ∧ P1 R1 P ∧ P2 R2 (P1 ∨ P2)

 R1 ∨ R2 R

The refinement pattern RP1 in Table 1 for instance,
defines a milestone-driven tactic where an intermediate
state satisfying Q must first be reached, from which a

final state satisfying R must be reached. The
refinement pattern RP2 proposes decomposition by
cases meaning that either satisfying R1 or R2 suffices
to satisfy R.

Relevant to our analysis is the temporal prescription
of goals and their relationship. For example, Figure 1
shows the decomposition of an Achieve goal G1. The
left part of Fig. 1 shows the syntactical representation
of the decomposition while the right part shows the
formal temporal representation (see Formal Expression
pointers). The high-level goal G1 is refined into sub
goals G11 and G12 with the refinement pattern RP1 (see
Refinement Pattern instantiation in Fig.1). For this
refinement, KAOS methodology considers the temporal
prescription of the high-level goal G1 (TP1) and that of
its refinements (TP11 and TP12). For instance, the
temporal prescription of G1, formally expressed as
P R, identifies that “if property P holds at some point,
then property R would eventually hold in the future”.
Similar expressions may be expressed for the temporal
prescriptions TP11 and TP12 of G11 and G12 respectively.

P Q

P R

Q R

RP1

G11

G1

G12

TR1

TP11 : TP12 :

TP1:

Gx High-level goal x
Gxy Refinement y of high-level goal x
RPz Refinement Pattern z
TPw Temporal Prescription of goal w
TRv Temporal Relationship of Gv’s refinements

Refinement

Refinement
Pattern

instantiation

Formal expression
Formal expression

Formal
expression

Figure 1: KAOS temporal considerations amongst goals

Central to our study is the intrinsic Temporal
Relationship (TR1) between the sub goals G11 and G12.
The intrinsic TR1 states that “if property P holds at some
point, an intermediate property Q must hold in advance from
which a final state satisfying property R must eventually be
reached”. Hence, satisfying G11 and G12, committing to
TR1, suffices to satisfy G1.

2.2. Design patterns for finite-state verification

In terms of finite-state verification, a specification
pattern is a generalized description of a commonly
occurring requirement on state/event sequences in a
system execution [6]. Pivotal in our analysis is the
representation of verification properties to characterize
goal fulfillment. While the refinement patterns used to
elaborate goals describe the “requirements” for a
system (e.g. both G11 and G12 must be fulfilled so that
G1 is fulfilled in Fig. 1), the patterns described in this
section deal with the translation of “particular” aspects

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

of such requirements (e.g. G11 is achieved
“before/after” G12) into formal specifications suitable
for finite state verification tools (e.g., model checking).

In the upper part of Figure 2 we show the
classification of the design patterns for finite-state
verification in two major groups: Occurrence and Order.

On the one hand, the Occurrence patterns are used
to represent the following situations: states/events to
occur or not to occur (Existence and Absence pattern),
states/events to occur throughout a scope (Universality
pattern), or state/event occurs k times within a scope
(Bounded Existence pattern).

On the other hand, Order patters are applied to
represent constraints in the order of states/events
(Response pattern), or to specify that a given state/event
P to be always preceded by a state/event Q within a
scope (e.g. the Precedence pattern).

All these patterns for finite-state verification have a
scope – the extent of system execution over which the
pattern must hold. The lower part of Fig. 2 shows a
classification of five scope types: Global (the entire
system execution), Before (the execution up to a given
state/event), After (the execution after a given
state/event), Between (any part of the execution from
one given state/event to another state/event) and After-
until (like between but the designated part of the
execution continues even if the second state/event does
not occur).

Patterns dealing with Occurrence

Property Patterns

Absence Universality Existence Precedence Response

Patterns dealing with Order

Global

Before Q

After Q

Between Q and R

After Q until R

State/event sequence Q R Q Q R Q

Pattern
Scopes

Bounded
Existence

Figure 2: Property pattern mappings and pattern scopes

Broadly speaking, we can say that any reactive
system requirement can be mapped to their respective
pattern/scope. Consider the requirements R1 and R2:
R1 - “Goal G12 is fulfilled after Goal G11”
R2 - “Goal G12 is not fulfilled after Goal G11”
(R2 is the opposite requirement of R1)

The requirement R1 corresponds to an Existence-based
property pattern since the initial condition demands
such condition to occur (i.e. Goal G12 is fulfilled).
Additionally, R1 clearly prescribes the After scope (i.e.
the initial condition must hold after G11). The
requirement R2 instead corresponds to an Absence-

based pattern since the initial condition demands such
condition not to occur (i.e. Goal G12 is not fulfilled). R2
also prescribes the After scope.

The requirements for reactive systems and their
representation into different temporal logics have been
the subject of research for some time. It is possible to
classify them in databases [6] as to find the logic
formula representation of any requirement
systematically. Consider the database shown in Table 2
including two entries of patterns/scope and their Linear
Temporal Logic (LTL) representation.

Table 2. Two property pattern/scope and LTL representation
Id Pattern Scope LTL representation

PP1 Existence After (¬ Antecedent)| (Antecedent& Consequence))

PP2 Absence After (Consequence (¬ Antecedent))

Instantiating PP1 and PP2 of Table 2 with the
information of our requirements R1 and R2, we may
find their LTL formula representation. Considering G11
and G12 as the Antecedent and Consequence
conditions, the formula “ (¬ G11)| (G11& G12))” may
represent the requirement “G12 is fulfilled after G11” and
the formula “ (G12 (¬ G11))” may represent the
requirement “G12 is not be fulfilled after G11”.

Following this approach we may use combinations
of patterns/scopes to formulate requirements that
specify “particular” aspects of system executions.
Moreover, this approach enables us to represent those
requirements into formal specifications suitable for use
with automated verification tools like model checking.

2.3. Introducing Translation Primitives

In our previous work [4], we demonstrated that
finite-state verification properties could be used to
characterize goal fulfillment. We also demonstrated
that, by using verification properties, automatic tools
may provide system trace executions that would make
goals be fulfilled. Nevertheless, we are still missing the
appropriate mechanisms to abstract policies from
system trace executions in a systematic manner. To
tackle this, we introduce the concept of Translation
Primitives.

Translation Primitives are used to abstract policies
from system trace executions. These primitives take
advantage from the fact that the system trace
executions indicate the pre- and post-conditions, and
the actions taken by the involved managed objects.

The first step towards the application of the
Translation Primitives is the identification of transition
plans. A transition plan is a sub-section of a system
trace execution consisting of the following elements:

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

• A pre-condition in a managed entity S (PSi)
• A state transition TSi,Si+1 in the managed entity S
• A state transition TQi,Qi+1 in the managed entity Q

as a result of transition TSi,Si+1

The transition plan TP demonstrated in the left part
of Figure 3 is represented as TP=[PSi1,TSi,Si+1 =>
PQi1,TQi,Qi+1]. Given that S and Q are two different
managed objects, TP prescribes that on the occurrence
of PSi1 in the managed object S, preceding the
transition TSi,Si+1, the managed object Q must enforce
the transition TQi,Qi+1. Considering that the transition
TQi,Qi+1 is policy-controlled (i.e. policy-enforceable),
the Transition Primitives shown in the right part of
Figure 3 enable us to encode the above information
into Obligation policies [7] in a systematic manner.

state Si

state Si + 1

Pre-condition
PSi1

Transition
TSi,Si+1

state Qi

state Qi + 1

Precondition
PQi1=TSi,Si+1

Policy enforceable
Transition TQi,Qi+1

event1 entity1

action1 entity2

policy {
event {event1}
subject {entity1}
target {entity2}
action {action1}

}

policy Qi_enforced{
event {TSi,Si+1}
subject {S}
target {Q}
action {TQi,Qi+1}

}

Translation
Primitives

Instantition
for TQi,Qi+1

transition plan
TP=[PSi1,TSi,Si+1 PQi1,TQi,Qi+1]

Mapping to
Policy fields

Figure 3: Transition plan and translation primitives

In the Translation Primitives, managed entities are
mapped to subjects and targets. Transitions correspond
to policy actions that can be anything between a single
function call or entire scripts executed on a target. We
consider an event to have happened, when an event
notification has been received (e.g. a signal expressing
an action, a change of an attribute i.e. a transition, etc.),
and the conditions (if any) yield true. Here, we
consider an unconditional execution of an action in
response to an event. In the bottom of the right part of
Figure 3, the Translation Primitives are instantiated for
the policy enforcement corresponding to the
enforceable transition TQi,Qi+1. The entities responsible
for the triggering event, the target of the action and the
triggering event are also specified.

The approach of abstracting policy fields from
system executions is similar to the translation patterns
presented in [8]. The authors generate policies

automatically from process specifications. Here, we
specialise these patterns to system trace executions.

3. Goal-oriented Policy Refinement
Framework

Our solution follows the goal-based approach to
policy refinement initially proposed in [1], making use
of linear temporal logic and model checking
verification as policy analysis techniques [4]. In this
section we describe the overall policy refinement
framework of our solution (Figure 4) based on two
functionalities: Goal Management tasks and Policy
Refinement mechanisms.

Operator experts Operator consultants

•Class diagrams
•Collaboration diagrams
•State charts
•Sequence diagrams

Step1: Goal
Elaboration

Goal graph
library

System behavior
documentation

Document
system
behavior

Object Distribution
documentation

Populate and update
object distribution

Step 4:
Requirements
Formulation

Step 5:
Get system

behavior

Step 6: Apply
Translation
Primitives

Step 7:Encode
Deployable

policies

Store
Deployable

policies

Step 3: Request for
Policy Refinement

Step2:
Goal
Selection

Applicability
constraints

Applicability
constraints

SLAs

Formulate applicability
constraints

Policy
Refinement
Mechanisms

Selected
goalsGoal

Management

Figure 4: Overall policy refinement framework

3.1 Goal management tasks

The goal management tasks are the Goal
Elaboration and Goal Selection (see Steps 1 and 2 in
Fig. 4). These tasks are operator-directed. This is by no
means a drawback of the framework considering that
policy refinement is in general an off-line process. In
order to better understand this section, the reader may
have in mind the KAOS goal elaboration process
introduced in Section 2.1.

During the Goal Elaboration process (see step 1 in
Fig.4), the operator expert documents and classifies
KAOS goal-graph structures and stores them into a goal-
graph library. The expert makes use of refinement
patterns (like RP1 in Fig 1) to decompose goals into
sub-goals that logically entail the original ones.

For example in Figure 1 we showed a goal graph
with a single hierarchy (G1 is refined into G11 and G12),
nevertheless, typical/practical goal graphs are multi-
hierarchy structured (as we will see later). Since the
refinement patterns have been proved to be correct,
structures following the KAOS methodology are
considered logically consistent.

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

In the Goal Selection (see step 2 in Fig.4) the
operator consultant chooses from the goal-graph
library, the goal strategies that better commit with his
directives.

The gap between Goal Management and Policy
Refinement Mechanisms is filled with the Request for
Policy Refinement (Step 3 in Fig 4). It is activated by
the consultant after goal selection.

3.2 Policy refinement mechanisms

The policy refinement mechanisms are the
Requirements Formulation, Get System Behavior,
Apply Translation Primitives and Encode/store
Deployable Policies (see Steps 4~7 in Fig. 4). All these
are carried out in an automatic manner after a Request
for Policy Refinement is submitted. To better
understand this section, in addition to the temporal
foundations of KAOS (Section 2.1), the reader may have
in mind the patterns for finite-state verification and the
concept of Translation Primitives introduced in in
Sections 2.2 and 2.3 respectively.

The Requirements Formulation mechanism
produces the LTL formulae that characterize goal
fulfillment. For this it initially abstracts the
requirements of the goal selection, and then applies
patterns for finite-state verification to produce LTL
formulae characterizing these requirements.

In order to abstract the requirements, this
mechanism must consider the temporal prescription,
the refinement patterns and the temporal relationships
amongst the goal selection. For example, having the
consultant chosen to satisfy the goal G1 shown in
Figure 1, this mechanism may abstract the Temporal
Relationship requirement: TR_G1 = “G12 must be

achieved after G11“.
For this requirement, this mechanism may apply the

finite-state verification pattern PP1 (see Table 2) to
abstract the LTL representation. The application of PP2
may represent the opposite to TR_G1. Hence,
instantiating PP1 and PP2 by plugging in the information
relevant to TR_G1, this process may abstract the
following LTL formulae f1 and f1‘.
PP1[TR_G1] = (¬ G11)|<>(G11&<>G12)) …….... f1

PP2[TR_G1] = (G12 (¬ G11)) …………….... f1’
f1 represents the requirement “G12 must be achieved after
G11” and f1‘ the requirement “G12 must not be achieved
after G11”.

The Get System Behavior mechanism coordinates
the system trace executions acquisition. For this, we
rely on the automated support provided by the SPIN
model checker [9], specifically in its ability to produce
system trace executions reports. With this regard, in
our previous work [4], we demonstrated that by
providing opposite LTL requirements, model checking

engines would generate system trace executions
committing to the original LTL requirement. Given
that the Requirements Formulation mechanism (earlier
explained) produces LTL requirements formulae
characterizing goal fulfillment (e.g. f1), this mechanism
should make use of the opposite characterization of
goal fulfillment (e.g. f1’) as to produce system trace
executions fulfilling G11 and G12, and consequently the
higher-level goal G1.

The Apply Translation Primitives mechanism (step
6 in Fig. 4) abstracts the policy fields from the system
trace executions produced by the Get System Behavior
mechanism. Typical reports of system trace executions
may include more than one transition plan. Hence, this
mechanism should first abstract all of these transition
plans and then apply Transition Primitives to them.

Finally, the Encode Deployable Policies step takes
as input the information described above and the object
distribution in order to encode deployable policies. In
this paper we have considered the Ponder specification
language [7].

4. Goal-oriented Policy Refinement
Implementation

This section describes our overall implementation
and is divided in two sub-sections: Goal Management
and Policy Refinement Mechanisms components. Our
functional implementation is demonstrated in Figures
5a and 5b. They show the relevant components
interactions and the class diagram of our solution. This
implementation prototype logically entails the
framework described in the last section.

4.1 Goal management components

The Goal Management components in our
implementation are the Objectiver package and the
Goal Manager. These two components materialize the
Goal Management tasks described in Section 3.1.

The Objectiver package integrates Objectiver [2],
a Requirements Engineering tool that successfully
manages large-scale goals, supporting the KAOS
methodology. In our solution, Objectiver enables the
operator expert to elaborate and document goal graphs.
In this sense, it is the support for the Goal Elaboration
step of the refinement process (elaborateGoals
interaction in Fig. 5a). Objectiver provides visual
support to manage the goals and we use this capability
not only to elaborate goals but also to guide the
operator consultant throughout the Goal Selection step
of the policy refinement process (selectGoals
interaction in Fig 5a). Relevant to our implementation

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

are the Objectiver APIs that have enabled us to use it
as a server within our framework.

Operator
Expert

: Operator
Consultant

Goal
Manager

Behaviour
Manager

Requirements
Manager

Search
Manager

Policy
Encoder

InventoryObjectiver
Package

3: startPolicyRefinement(RPR[])

1: elaborateGoals

2: selectGoals

4: getObjectiverData
5: formulateRequirements(GoalMetaData_List)

6: searchPolicyFields(LTL[])

7: getPromelaCode

8: encodePolcies

9: getObjectDetails

10: storePolicy

Figure 5a: Relevant interactions of our solution

BehaviourManager

InventoryMgr

Objectiver

PolicyEncoder

i_SearchMgr i_Inventory

i_PolicyEncoder

RequiremetsMgr

SearchManager

i_RequirementsMgr

i_BehaviourMgr

i_Objectiver

GoalManager

i_GoalManager

Figure 5b: Class diagram of our solution

Goal Manager: This component handles with the
Requests for Policy Refinement (RPRs). When a RPR is
submitted, the Goal Manager gets from the Objectiver
package, the goal entities (Goal) that are influenced by
the goal selection. For each Goal entity, this
component deduces the following information:
• Temporal prescription of the goal, eg. Achieve, etc
• Refined goal sons (not for lowest-level goals)
• Refinement pattern used for the lower level goals

(not for lowest-level goals)
The Goal Manager implements Objectiver APIs to

allow iterative queries to it. In addition, our current
implementation has been designed to process many
RPRs for large-scale refinements.

4.2 Policy refinement mechanisms components

Here, we describe the implementation of the Policy
Refinement Mechanisms described earlier. These are
implemented by the Requirements Manager, Search
Manager and Policy Encoder. Additional support
components, are described as well.

Requirements Manager: This component
implements the Requirements Formulation mechanism.
It processes the goal-related information abstracted by
the Goal Manager and produces the LTL formulae that
characterize goal fulfillment. It internally implements a
database of patterns for finite-state verification. This
approach allows producing LTL formulae from specific
requirements systematically. The overall procedure
followed for every RPR is as follows:
Input: GoalMetaData_List object =[Goal1,..,Goalu]
Procedure:
• Find the highest-level goal “GoalHG“ from

[Goal1,...,Goalu]

• Find the lowest-level goals LLGoal that make
GoalHG be fulfilled:

LLGoal = [GoalL1,...,GoalLv]

• Find a set of temporal relationships TR amongst
the lowest-level goals:

TR[LLGoal] = [TR1,...,TRw]

• Formalise a set of requirements R (i.e. temporal
requirements) with the temporal relationships
TR[LLGoal] and Temporal Prescription (TP) of
the lowest-level goals LLGoal[]

R [TR[LLGoal],TP[LLGoal[]]=[R1,...,Rx]
• Deduce a set of property patterns PP: for each

requirement, identify a pattern/scope property
pattern that matches the requirement (the amount
of PP-property patterns does not necessarily have
to match with the amount of requirements)

PP[R1,...,Rx]= [PPR1,...,PPRy]

• For the set of property patterns PP, identify the
opposite pattern PP’

PP’[PP]= [PP’R1,...,PP’Ry]

• Instantiate each opposite requirement with the
requirement values and get a set of LTL formulae:

LTL[PP’] = [ltl1,...,ltly]

• Merge all ltl formulae into a single LTL formula
making use of logic connectors

Output: A LTL formulae characterising goal fulfilment.

Search Manager: This component implements the
Get system behavior and Apply Translation Primitives
mechanisms. It implements a SPIN model checker to
acquire the system trace executions from the behavior
specification documentation. After this, the Search
Manager applies Translation Primitives to abstract the
different policy fields systematically. The overall
procedure followed for every RPR is as follows:
Input: A LTL formula characterizing goal fulfillment.
Procedure:
• Produce a system trace execution K from the LTL

formula and the PROMELA code provided by the
Behavior Manager (described later).

• Identify a set of decision-based (i.e. enforceable)
transitions T[K]=[T1,...,Tu].

• For (i = 1 to i=u):

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

Find the precondition event of Ti = eventTi
Find the managed object MO issuing eventTi
MO(eventTi) = subjectTi
Find the managed object MO executing the
enforceable transition Ti
MO(Ti)= targetTi.
Find the action A that represents the
enforceable transition Ti
A(Ti) = actionTi

Create a recipient PFTi for policy fields
PFTi = [eventTi, subjectTi, targetTi,
actionTi]

Output: Instances of policy fields PF=[PFTi ,…, PFTu]

The Policy Editor implements the Encode
Deployable Policies process of the overall policy
refinement process. It follows the syntax of the Ponder
specification language [7] and includes in its internal
architecture, a Ponder Policy Editor and compiler
(slightly modified to automate the compilation
process).

Behavior Manager: This component is a support
component that manages the documentation of the
system behavior. Its functions are to provide
information related to the system behavior
specification, translation of behavior specification from
UML models into PROMELA (input language of SPIN).
The Behavior Manager implements the libraries
provided by HUGO [10]. HUGO is a UML model
translator that allows translating models with active
classes, state machines, collaborations and interactions,
into code for SPIN and other off-the-shelf tools.

The Inventory Manager provides support for the
Object Distribution documentation supporting activity
of the policy refinement process. The actual managed
objects should be classified following a domain-
dependent logical representation. A well-defined
structure of this information is necessary to automate
the policy refinement mechanisms. The Inventory
component implements a database for the administrator
expert to document this information and make it
available for other components of our implementation,
e.g. the Policy Encoder.

5. Application Scenario

5.1 Application domain

Here we present a refinement that relies on the
framework developed in the EU IST TEQUILA project
[11]. TEQUILA provides a policy-based functional
architecture for supporting QoS in IP DiffServ
networks. Due to space limitations, we limit ourselves
to the resource management aspects, realized through

the Dynamic Resource Management (DRsM) and the
Network Dimensioning (ND) modules.

ND is a centralized off-line component responsible
for mapping traffic requirements to physical network
resources, and for setting provisioning directives to
accommodate the predicted demand. ND directives are
calculated based on estimations and are treated as
“nominal” values. The dynamic resource management
functions are deployed to the DRsM components.

DRsM has distributed functionality, with an
instance operating in every router. It optimizes network
performance in terms of resource utilization, while
meeting at the same time, QoS traffic constraints.
DRsM opts for dynamic functions that manage
network resources (DiffServ Per-Hop-Behaviors-
PHBs) following the guidelines provided by ND. ND
defines minimum (NDmin) and maximum (NDmax)
allocation values per-PHB. These values define the
dynamic range (dynamic range=NDmax-NDmin) within
which the DRsM calculates the actual allocation.
While policies extend the hard-wired logic for ND and
provide the administrator with strategies in performing
network dimensioning, a policy-based approach for
DRsM can allow for a fully flexible manner in
allocating network resources. DRsM policies provide
the flexibility to dynamically introduce logic and
directives for tracking the utilization of a PHB and to
ensure that the bandwidth allocated to the PHB is in
accordance with the required one which is determined
from the observed utilization. DRsM comprises two
components; Monitoring and DRsM Main component.
While the former is responsible for monitoring relevant
links, issuing alarms upon upper or lower threshold
crossings and calculating new thresholds, the DRsM
Main component is responsible for the calculation of
the required bandwidth (BW) and the handling of
excess/over-provisioned BW, due to threshold crossing
alarms.

5.2 Scenario description

The consultant has envisaged necessary to optimise
resource allocation for two critical links (LC1, LC2).
For these links he wants to set up specific conditions
on when to trigger upper-threshold alerts and how new
BW allocations are to be calculated as a consequence
of upper-threshold crossings. For EF traffic, he wants
to set up the following directives:

1. If the current load exceeds an upper threshold, the
DRsM must increase the BW allocation and the
thresholds (upper and lower) 20% of the dynamic
range if the current load is below 60% of the dynamic
range.

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

2. Contrary, if the current load is above 60% of the
dynamic range, the increments described above must
be in rates of the 10% of the dynamic range.

3. Additionally he wants the BW increased to this PHB
to be deducted from the one allocated to AF traffic and
that spare capacity be split equally amongst PHBs.

6. Scenario Execution

6.1 Scenario execution preconditions

Besides the population of the object distribution, the
scenario preconditions are the documentations for
system specification and the DRsM goal graphs.

Regarding the system specification documentation,
we have modeled the traffic engineering dynamic
resource management part of TEQUILA using standard
off-the-shelf tools which UML models are direct inputs
for the Behavior Manager component.

With regard to the goal elaboration process, we
have elaborated the goal graph for the DRsM
component making use of the Objectiver GUI attached
to our solution. In Figure 6 we show a fragment of the
goal-graph for this scenario. The procedure to
elaborate KAOS goal-graphs is described in [12].

DRsM CONFIGURED

MONITORING DIRECTIVES
CONFIGURED

DRsM MAIN COMPONENT
CONFIGURED

NOTE 1:
Milestone-driven
refinement for DRsM
CONFIGURED
achieve Goal

ALARM
RAISED

PROCESSING

REQUIRED
BANDWIDTH

CALCULATION

UPPER THRESHOLD
PROCESSING

THRESHOLDS
CONFIGURED

LOWER THRESHOLD
PROCESSING

INCREASING
LOWER

THRESHOLD

DECREASING
LOWER

THRESHOLD

LWR THR
INCSRD ABS

VALUE

LWR THR
INCSRD REL

VALUE

LWR THR
INCSRD ALG

VALUE

LWR THR
DECSRD ABS

VALUE

LWR THR
DECSRD REL

VALUE

LWR THR
DECSRD ALG

VALUE

INCREASING
UPPER

THRESHOLD

DECREASING
UPPER

THRESHOLD

UPPR THR
INCSRD ABS

VALUE

UPPR THR
INCSRD REL

VALUE

UPPR THR
INCSRD ALG

VALUE

UPPR THR
DECSRD ABS

VALUE

UPPR THR
DECSRD REL

VALUE

UPPR THR
DECSRD ALG

VALUE

BW REQUIRED
INCREASED

BW REQ
INCRSD ABS

VALUE
BW REQ

INCRSD REL
VALUE

BW REQ
INCRSD ALG

VALUE

BW REQUIRED
DECREASED

BW REQ
DECRSD ABS

VALUE
BW REQ

DECRSD REL
VALUE

BW REQ
DECRSD ALG

VALUE

NOTE 2: Milestone-
driven for Achieve
sub-goal ALARM
RAISED
PROCESSING

NOTE 3: Case-driven
refinements for
Achieve
Goal INCREASING
LOWER THRESHOLD

Figure 6. Partial representation of DRsM goal graph

The goal-graph provides the consultant with
available refinements for the DRsMConfigured
Achieve goal. The first refinement (Note 1 in Fig. 6)
suggests a milestone-driven pattern as to refine
Monitoring and DRsM Main Component directives.
Subsequently, these goals are refined into other
strategies towards the lowest-level goals. For example,
for the ALARM RAISED PROCESSING goal, the graph
suggests a new milestone-driven pattern (Note 2 in Fig.

6) to refine three sub-goals aimed at processing
lower/upper threshold crossings (LOWER THRESHOLD

PROCESSING and UPPER THRESHOLD PROCESSING) and
configure the new thresholds previously processed
(THRESHOLDS CONFIGURED). Further, case-driven patterns
are used to refine these into lowest-level ones that
represent the different alternatives suggested to the
administrator. For example, the INCREASING LOWER

THRESHOLD is refined into three strategies using case-
driven refinements (Note 3 in Fig. 6) as suggesting
different options to increase thresholds: by absolute,
relative or algorithmic values.

6.2 Scenario execution details

Request for Policy Refinement submission. The
consultant selects the strategies that better commit with
his directives: BW allocation and thresholds need to be
increased by relative values for EF traffic and the same
relative value to be deducted from the AF PHB.
Besides, the administrator opts to allocate any extra
BW equally between the PHBs. For this, the consultant
submits the following RPR through i_GoalMgr:

Selected goals [1]: G1: LWR THR INCRSD REL VALUE, G2:
UPPR THR INCRSD REL VALUE, G3: THRESHOLDS CONFIGURED,
G4: BW REQ INCRSD REL VAL (EF Allocation increase), G5: BW
REQ DECRSD REL VAL (AF allocation decrease), G6: SPARE
CAP EQ SPLIT, G7: LINK CONFIGURED
GoalAttributes[1]: G1: 0.20 * dynRange(EF,LC1,LC2), G2:
0.20 * dynRange(EF, LC1, LC2), G3: null, G4: 0.20 * dynRange (EF,
LC1, LC2), G5: (0.20 * dynRange(EF), LC1, LC2), G6: null, G7: null
Constraint[1]:utilValue < 0.60*dynRange(EF,LC1,LC2)
(current load of LC1/LC2 below 60% of the dynamic range)
GoalAttributes[2]: G1: 0.10 * dynRange(EF,LC1, LC2), G2:
0.10* dynRange(EF, LC1, LC2), G3: null, G4: 0.10 * dynRange (EF,
LC1, LC2), G5: (0.10 * dynRange(EF), LC1, LC2), G6: null, G7: null
Constraint[2]:utilValue> 0.60*dynRange(EF,LC1,LC2)
(current load of LC1/LC2 above 60% of the dynamic range).

Component executions. Initially, the Goal
Manager processes the above RPR and interacts with
the Objectiver package to abstract the details of the
goal selection. In our scenario the Goal Manager has
abstracted the temporal prescription and temporal
association out 43 Goal instances.

The Requirements Manager initially abstracts the
temporal relationships amongst the lowest-level goals
out of the 43 Goal instances. Following on with this, it
produces the correct LTL requirements by instantiating
the formulae that specializes the temporal relationships
amongst the lowest-level goals. Figure 7 shows a
fragment of the objects produced in run-time by the
Requirements Manager during the execution of our
scenario. The most relevant here is the formal
definition of the LTL formulae included in the Formal
Definition field of the structure (bottom part of Fig.

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

7). Additionally, the structure includes identifiers for
the LTL formulae arguments.

Figure 7: Fragments of ReqMgr output

The Search Manager produces the system trace
executions and applies the Translation Primitives to
abstract the policy fields. The left part of Figure 8
shows the visual representation of a fragment of the
system trace execution corresponding to one of the
threshold-related directives of our scenario (upper
threshold crossing). On the right part of Fig. 8 we show
the result of the application of the Translation
Primitives and the Search Manager algorithms, to the
system trace execution shown in the left part.

461
DRsMPMA : 7

22
Monitor:10

136

151
139

153
163

461
471

474
481

165
172

491

494
501

514
521

511

524
205
207
214
219

Pointer to upprThr
crossing

Pointer to enforceable
incThUpprRel

Pointer to
alarmRaised

Managed
Objects

Pointer to reception
of alarmRaised event

Translation Primitives
application

Figure 8: System trace execution and SearchMgr output

The Policy Encoder finally encodes, compiles and
stores the policies after receiving the policy fields and
the administrative constraints. We have populated the
Inventory component with a basic object distribution
ad-hoc to our scenario, nevertheless the mechanisms
and the principle to automatically deploy policies from
policy fields, have been preserved. Figure 9 shows two
out of the 12 policies refined in our scenario. The
over_DR_UpprThsLC1 policy commits to the administrative
directive given to increase the upperThreshold (10% of
the dynamic range) when the bandwidth utilization is
higher than 60% of the dynamic range in LC1. The
under_DR_UpprThsLC1 policy differs to the former in the
value for the increase (20% of the dynamic range)
when the bandwidth utilization is lower than 60% of
the dynamic range.

Figure 9: Sub set of the refined policies of our scenario

7. Discussion and Future Work

Regarding system behaviour, we have considered
unconditional executions of actions in response to
events, considering that all states and transitions are
permissible. Future work will be directed to consider
non permissible states and their relationships with
Maintain/Avoid goals.

So far we have considered situations when just one
execution trace is produced. Moreover, considering the
generation of multiple traces may allow analysis to
choose between different transition plans, possibly for
different conditions and hence different policies.

Having in mind that the policy refinement process is
carried out taking into account system behavior
modelling, future research will be directed to measure
and analyse the impact of administrative guidelines on
the performance of the managed systems. This is a
challenging issue that is fully domain-dependent. It
may possibly imply to adapt other mechanisms to
relate system performance with goal specialisation.

System specification is a critical issue. Although
SPIN does not build the entire state space to find system
execution traces, we have envisaged necessary to
introduce additional specification management
procedures in order to avoid the state explosion
problem for very large-scale systems.

Even when policy refinement is an off-line process,
real systems may need refinements of thousands of
policies. Experimental results show that the overhead
introduced by our solution is not considerable in
comparison with the policy storage time. For example,
the 12 policies in our scenario were refined in less than
two seconds. The storing of a policy takes in average
800ms, anyhow these comparisons are merely
indicative of the feasibility of the solution.

8. Related Work

To the best of our knowledge, at the time of this
publication, there is no evidence of any complete
functional solution for goal-oriented policy refinement.
Moreover, functional solutions for policy refinement

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

are rather scarce. POWER [13] is one of the few policy
refinement approaches hitherto implemented. It is a
tool that enables administrator consultants to refine
policies from pre-defined templates tailored for
specific use. Our functional solution is a goal-oriented
approach in which the consultant selects the goals that
better satisfy his needs, having the possibility to
formulate any combination of goals as required, with
no pre-definition of policy template choices.

Reference [1] proposes to transform both, policy
and system behavior specifications into a formal
notation based on Event Calculus (EC). Abductive
reasoning is used to derive strategies that would
achieve high-level goals. From these strategies,
policies are encoded. The EC-based approach and our
framework differ in the way system behavior is
analyzed and in the way policy information is
abstracted. While EC and abduction is used in the
former to infer the sequences of actions that achieve
particular goals, our approach goes through automated
state exploration to obtain system trace executions that
fulfils lower-lever goals. The EC-based approach does
not address explicit temporal execution of goals [12]
whilst this is one of the pillars of our approach; system
trace executions are obtained from finite state
verification properties considering not only such
temporal relationships but the temporal prescription of
the goals. We encode policies systematically using a
set of Translation Primitives applied to system
execution traces while in the EC-based approach these
are encoded using the generated strategies.

9. Conclusions

We have presented a functional solution for goal-
oriented policy refinement grounded linear temporal
logic and reactive systems analysis techniques. We
have used KAOS methodology [3] and the goal-based
approach to policy refinement introduced [1]. We have
presented the technical foundations of our approach
and demonstrated how these were used in our
implementation prototype.

First of all, we have presented a formal and
automated approach to abstract temporal logic (LTL)
formulae characterizing goal fulfillment. In this sense,
we described how, the temporal logic foundations of
goals elaborated through the KAOS methodology, must
be linked to patterns for finite-state verification
properties, in favor of policy refinement.

Secondly, we have presented a formal and practical
approach to abstract policies from system trace
executions obtained through automated reactive
systems analysis tools (i.e. model checking). This
approach has been specialized in a set of Translation

Primitives whose feasibility to refine policies in a
systematic manner has been demonstrated in the paper.

Another contribution of this work has been the
identification and formalization of the technical
foundations mentioned above in favor of policy
refinement. Additionally, we show how these
foundations are integrated into a functional
environment and demonstrate its application in the
field of DiffServ QoS Management.

As far as it is reflected in the literature, policy
refinement is at its initial stage. In this sense, we hope
that our functional solution may contribute to solve the
policy refinement problem.

Acknowledgments
We thank Christophe Ponsard and Philippe Massonet
for their support with Objectiver APIs.

10. References
[1] A.K. Bandara, E.C. Lupu, J. Moffett, A. Russo; "A goal-
based approach to policy refinement" IEEE Intl. Workshop
on Policies for Distributed Systems and Networks, 2004
[2] E. Delor, R. Darimont, A. Rifaut. “Software quality starts
with the modelling of goal-oriented requirements”. Intl.
Conference of Software & Systems Engineering, 2003
[3] R. Darimont and A. van Lamsweerde, "Formal
refinement patterns for goal-driven requirements
elaboration," Symp. on Found. of Soft. Eng. (FSE) 1996
[4] J. Rubio-Loyola, J. Serrat, M.Charalambides, P. Flegkas,
G. Pavlou, A. Lluch. “Using linear temporal model checking
for goal-oriented policy refinement frameworks” IEEE
International Workshop on Policies for Distributed Systems
and Networks Stockholm, Sweden June 6-8, 2005
[5] Z. Manna, A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springr-Verlag, 1992
[6] M. B. Dwyer, G. S. Avrunin and J. C. Corbett. “Property
specification patterns for finite-state verification” Workshop
on Formal Methods in Software Practice 1998
[7] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M.
Sloman. "Tools for doamin-based policy management of
distributed systems", NOMS, Friorence, Italy, 2002
[8] Danciu, V., Kempter, B., “From processes to policies–
concepts for large scale policy generation”, IEEE/IFIP
NOMS 2004
[9] G. Holzmann. The SPIN Model Checker: Primer
Reference Manual. A. Wesley. ISBN 0-321-22862-6. 2004
[10] M. Balser, S. Bäumler, A. Knapp, W. Reif, and A.
Thums. “Interactive verification of UML state machines”.
Intl. Conference on Formal Engineering Methods 2004
[11] P. Trimintzios et al. "A management and control
architecture for Providing IP Differentiated Services in
MPLS-based Networks,". IEEE Comms Magazine, 2001.
[12] A. Bandara et al. ”Policy Refinement for DiffServ
Quality of Service Management” Int. Symposium on
Integrated Network Management (IM) France, May 2005.
[13] M. Casassa, A. Baldwin, C. Goh. “POWER prototype:
towards integrated policy-based management” IEEE/IFIP
NOMS 2000

Proceedings of the Seventh IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'06)
0-7695-2598-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

