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Abstract 

Policy refinement is a key but still unsolved area of 
policy based management. Goal oriented requirements 
engineering methodologies have been suggested as a 
prominent alternative to address policy refinement. 
Practical approaches that capture the administrative 
requirements and enable systematic policy refinement 
are still missing although such integrated solutions are 
rather convenient to make policy-based management 
systems really useful. In this paper we present a 
functional solution for goal oriented policy refinement 
grounded in linear temporal logic and reactive systems 
analysis techniques. We describe the technical 
foundations and demonstrate how these were used to 
develop an integrated solution for policy refinement, 
focusing on the details of the implemented prototype. 
Our policy analysis techniques that enable systematic 
policy refinement are demonstrated through a scenario 
applied to the domain of QoS Management for 
Differentiated Services (DiffServ) networks. 

1. Introduction 

Policy refinement is meant to derive lower-level 
policies from higher level ones so these more specific 
policies are better suited for use in specific 
environments. The goal-oriented policy refinement 
framework proposed in [1] is a promising methodology 
to address the policy refinement paradigm. This 
methodology has opened a window for research into 
different analysis techniques in favor of policy 
refinement. The authors propose to elaborate goal 
graphs by decomposing high-level goals into refined 
ones from which additional processes may be applied 
to abstract the necessary policy information aimed at 
fulfilling the refined goals.  

Current solutions in the area of requirements 
engineering provide support for both, formalizing 
large-scale requirements documentation, and goal 
elaboration support [2]. The goal elaboration method 
proposed in [1] is the KAOS methodology [3]. While 
KAOS provides support to document and elaborate goal 
graphs, it does not provide support to relate managed 
objects’ behavior to goal fulfillment finding. 
Moreover, in order to systematically refine policies 
from goal-oriented high-level directives, these 
limitations must be addressed efficiently.  

In our previous work [4], we demonstrated how 
linear temporal logic and model checking verification 
could be used as the analysis techniques for the goal-
based policy refinement methodology proposed in [1]. 
We described a generic procedure to obtain system 
trace executions aimed at fulfilling lower-level goals. 
From system trace executions, the managed entities, 
conditions and actions (i.e. policy fields) necessary to 
fulfill administrative guidelines may be abstracted. In 
this paper we move one step ahead towards the 
materialization of the policy refinement paradigm 
following this approach.  

This paper discusses the critical nature of providing 
a functional solution for generating policies, from 
abstract requirements, reflecting system behavior. We 
present a functional solution that provides support to 
document system behaviour, to elaborate goal-graphs, 
and to refine policies in a goal-oriented fashion. This 
paper provides several novel contributions with respect 
to our previous work [4]. We describe the nature of the 
novel technical foundations of our solution and 
demonstrate how these were used in our 
implementation. We establish the formal procedures 
and the necessary mechanisms to realize a goal-
oriented policy refinement solution. In addition, we 
present the execution of a refinement scenario applied 
to the domain of DiffServ QoS Management. 
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The rest of the paper is organized as follows: 
Section 2 describes the technical foundations. Section 
3 details the goal-oriented framework in which our 
solution relies. Section 4 describes our prototype 
implementation. Section 5 describes a scenario and 
Section 6 its execution. Relevant issues and future 
work are discussed in Section 7. Related work and 
Conclusions are provided in Sections 8 and 9. 

2. Technical Foundations 

In this section we describe the technical 
foundations, highlighting the relevant issues with 
respect to the processes incorporated in our solution.  

2.1. KAOS goal elaboration methodology 

KAOS [3] is a formal approach for elaborating goals 
grounded in Temporal Logic [5]. It represents goals as 
temporal logic rules and uses refinement patterns to 
decompose high-level goals into sets of sub-goals that 
logically entail the original ones. KAOS considers goal 
management based on the Temporal Prescription (TP) 
of goals, e.g. Achieve, Cease, Maintain and Avoid.
While Achieve and Cease goals obey to system 
behaviors that require some target property to be 
eventually satisfied or denied respectively, Maintain
and Avoid goals restrict behaviors in that they require 
some target property to be permanently satisfied or 
denied respectively. In addition to managing goals with 
respect to their TPs, KAOS provides support to guide 
their refinements by re-using domain-independent 
refinement patterns (RP) [3]. These patterns have been 
included in a set of libraries that have been previously 
proved to be correct. The libraries are grouped by the 
Temporal Prescription of the high-level goals. 

Table 1 presents two KAOS Refinement Patterns 
(RPs) that represent different ways to decompose the 
high-level Achieve goal P R, into their respective 
sub goals. In addition to the classical logical operators, 
in this paper we use the classical temporal operators; 
eventually in the future,  always in the future, U
always in the future until and W always in the future 
unless,  next state. The high-level goal P R must 
be interpreted as “If P then eventually R in the future”.  

Table 1. Two refinement patterns for P R Achieve goal 
RP Subgoals 

RP1 P Q                    Q R
RP2 P ∧ P1 R1    P ∧ P2 R2          (P1 ∨ P2) 

                                                         R1 ∨ R2 R

The refinement pattern RP1 in Table 1 for instance, 
defines a milestone-driven tactic where an intermediate 
state satisfying Q must first be reached, from which a 

final state satisfying R must be reached. The 
refinement pattern RP2 proposes decomposition by 
cases meaning that either satisfying R1 or R2 suffices 
to satisfy R.

Relevant to our analysis is the temporal prescription 
of goals and their relationship. For example, Figure 1 
shows the decomposition of an Achieve goal G1. The 
left part of Fig. 1 shows the syntactical representation 
of the decomposition while the right part shows the 
formal temporal representation (see Formal Expression 
pointers). The high-level goal G1 is refined into sub 
goals G11 and G12 with the refinement pattern RP1 (see 
Refinement Pattern instantiation in Fig.1). For this 
refinement, KAOS methodology considers the temporal 
prescription of the high-level goal G1 (TP1) and that of 
its refinements (TP11 and TP12). For instance, the 
temporal prescription of G1, formally expressed as 
P R, identifies that “if property P holds at some point, 
then property R would eventually hold in the future”.
Similar expressions may be expressed for the temporal 
prescriptions TP11 and TP12 of G11 and G12 respectively.  

P  Q

P  R

Q  R

RP1

G11

G1

G12

TR1

TP11 : TP12 :

TP1:

Gx High-level goal x
Gxy Refinement y of high-level goal x
RPz Refinement Pattern z
TPw Temporal Prescription of goal w
TRv Temporal Relationship of Gv’s refinements

Refinement

Refinement
Pattern 

instantiation

Formal expression
Formal expression

Formal 
expression

Figure 1: KAOS temporal considerations amongst goals 

Central to our study is the intrinsic Temporal 
Relationship (TR1) between the sub goals G11 and G12.
The intrinsic TR1 states that “if property P holds at some 
point, an intermediate property Q must hold in advance from 
which a final state satisfying property R must eventually be 
reached”. Hence, satisfying G11 and G12, committing to 
TR1, suffices to satisfy G1.

2.2. Design patterns for finite-state verification 

In terms of finite-state verification, a specification 
pattern is a generalized description of a commonly 
occurring requirement on state/event sequences in a 
system execution [6]. Pivotal in our analysis is the 
representation of verification properties to characterize 
goal fulfillment. While the refinement patterns used to 
elaborate goals describe the “requirements” for a 
system (e.g. both G11 and G12 must be fulfilled so that 
G1 is fulfilled in Fig. 1), the patterns described in this 
section deal with the translation of “particular” aspects 
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of such requirements (e.g. G11 is achieved 
“before/after” G12) into formal specifications suitable 
for finite state verification tools (e.g., model checking).  

In the upper part of Figure 2 we show the 
classification of the design patterns for finite-state 
verification in two major groups: Occurrence and Order.

On the one hand, the Occurrence patterns are used 
to represent the following situations: states/events to 
occur or not to occur (Existence and Absence pattern), 
states/events to occur throughout a scope (Universality
pattern), or state/event occurs k times within a scope 
(Bounded Existence pattern).  

On the other hand, Order patters are applied to 
represent constraints in the order of states/events 
(Response pattern), or to specify that a given state/event 
P to be always preceded by a state/event Q within a 
scope (e.g. the Precedence pattern). 

All these patterns for finite-state verification have a 
scope – the extent of system execution over which the 
pattern must hold. The lower part of Fig. 2 shows a 
classification of five scope types: Global (the entire 
system execution), Before (the execution up to a given 
state/event), After (the execution after a given 
state/event), Between (any part of the execution from 
one given state/event to another state/event) and After-
until (like between but the designated part of the 
execution continues even if the second state/event does 
not occur). 

Patterns dealing with Occurrence

Property Patterns

Absence Universality Existence Precedence Response

Patterns dealing with Order

Global

Before Q

After Q

Between Q and R

After Q until R

State/event sequence Q R Q Q R Q

Pattern
Scopes

Bounded
Existence

Figure 2: Property pattern mappings and pattern scopes

Broadly speaking, we can say that any reactive 
system requirement can be mapped to their respective 
pattern/scope. Consider the requirements R1 and R2:
R1 - “Goal G12 is fulfilled after Goal G11”
R2 - “Goal G12 is not fulfilled after Goal G11”
(R2 is the opposite requirement of R1)

The requirement R1 corresponds to an Existence-based 
property pattern since the initial condition demands 
such condition to occur (i.e. Goal G12 is fulfilled). 
Additionally, R1 clearly prescribes the After scope (i.e. 
the initial condition must hold after G11). The 
requirement R2 instead corresponds to an Absence-

based pattern since the initial condition demands such 
condition not to occur (i.e. Goal G12 is not fulfilled). R2
also prescribes the After scope.  

The requirements for reactive systems and their 
representation into different temporal logics have been 
the subject of research for some time. It is possible to 
classify them in databases [6] as to find the logic 
formula representation of any requirement 
systematically. Consider the database shown in Table 2 
including two entries of patterns/scope and their Linear 
Temporal Logic (LTL) representation. 

Table 2. Two property pattern/scope and LTL representation 
Id Pattern Scope LTL representation 

PP1 Existence After ( ¬ Antecedent)| (Antecedent& Consequence))

PP2 Absence After ( Consequence ( ¬  Antecedent)) 

Instantiating PP1 and PP2 of Table 2 with the 
information of our requirements R1 and R2, we may 
find their LTL formula representation. Considering G11
and G12 as the Antecedent and Consequence 
conditions, the formula “ (¬ G11)| (G11& G12))” may 
represent the requirement “G12 is fulfilled after G11” and 
the formula “ (G12 ( ¬ G11))” may represent the 
requirement “G12 is not be fulfilled after G11”.

Following this approach we may use combinations 
of patterns/scopes to formulate requirements that 
specify “particular” aspects of system executions. 
Moreover, this approach enables us to represent those 
requirements into formal specifications suitable for use 
with automated verification tools like model checking. 

2.3. Introducing Translation Primitives  

In our previous work [4], we demonstrated that 
finite-state verification properties could be used to 
characterize goal fulfillment. We also demonstrated 
that, by using verification properties, automatic tools 
may provide system trace executions that would make 
goals be fulfilled. Nevertheless, we are still missing the 
appropriate mechanisms to abstract policies from 
system trace executions in a systematic manner. To 
tackle this, we introduce the concept of Translation 
Primitives.  

Translation Primitives are used to abstract policies 
from system trace executions. These primitives take 
advantage from the fact that the system trace 
executions indicate the pre- and post-conditions, and 
the actions taken by the involved managed objects.  

The first step towards the application of the 
Translation Primitives is the identification of transition 
plans. A transition plan is a sub-section of a system 
trace execution consisting of the following elements: 
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• A pre-condition in a managed entity S (PSi)
• A state transition TSi,Si+1 in the managed entity S
• A state transition TQi,Qi+1 in the managed entity Q

as a result of transition TSi,Si+1

The transition plan TP demonstrated in the left part 
of Figure 3 is represented as TP=[PSi1,TSi,Si+1 => 
PQi1,TQi,Qi+1]. Given that S and Q are two different 
managed objects, TP prescribes that on the occurrence 
of PSi1 in the managed object S, preceding the 
transition TSi,Si+1, the managed object Q must enforce 
the transition TQi,Qi+1. Considering that the transition 
TQi,Qi+1 is policy-controlled (i.e. policy-enforceable), 
the Transition Primitives shown in the right part of 
Figure 3 enable us to encode the above information 
into Obligation policies [7] in a systematic manner. 

state Si

state Si + 1

Pre-condition
PSi1

Transition
TSi,Si+1

state Qi

state Qi + 1

Precondition
PQi1=TSi,Si+1

Policy enforceable
Transition TQi,Qi+1 

event1 entity1

action1 entity2

policy {
event {event1}
subject {entity1}
target {entity2}
action {action1}

}

policy Qi_enforced{
event {TSi,Si+1}
subject {S}
target {Q}
action {TQi,Qi+1}

}

Translation
Primitives

Instantition
for TQi,Qi+1 

transition plan
TP=[PSi1,TSi,Si+1 PQi1,TQi,Qi+1]

Mapping to
Policy fields

Figure 3: Transition plan and translation primitives 

In the Translation Primitives, managed entities are 
mapped to subjects and targets. Transitions correspond 
to policy actions that can be anything between a single 
function call or entire scripts executed on a target. We 
consider an event to have happened, when an event 
notification has been received (e.g. a signal expressing 
an action, a change of an attribute i.e. a transition, etc.), 
and the conditions (if any) yield true. Here, we 
consider an unconditional execution of an action in 
response to an event. In the bottom of the right part of 
Figure 3, the Translation Primitives are instantiated for 
the policy enforcement corresponding to the 
enforceable transition TQi,Qi+1. The entities responsible 
for the triggering event, the target of the action and the 
triggering event are also specified.  

The approach of abstracting policy fields from 
system executions is similar to the translation patterns
presented in [8]. The authors generate policies 

automatically from process specifications. Here, we 
specialise these patterns to system trace executions. 

3. Goal-oriented Policy Refinement 
Framework 

Our solution follows the goal-based approach to 
policy refinement initially proposed in [1], making use 
of linear temporal logic and model checking 
verification as policy analysis techniques [4]. In this 
section we describe the overall policy refinement 
framework of our solution (Figure 4) based on two 
functionalities: Goal Management tasks and Policy 
Refinement mechanisms.  

Operator experts Operator consultants

•Class diagrams
•Collaboration diagrams
•State charts
•Sequence diagrams

Step1: Goal
Elaboration

Goal graph
library

System behavior
documentation

Document
system
behavior

Object Distribution
documentation

Populate and update
object distribution

Step 4: 
Requirements
Formulation

Step 5:
Get system

behavior

Step 6: Apply
Translation
Primitives

Step 7:Encode
Deployable

policies

Store
Deployable

policies

Step 3: Request for 
Policy Refinement

Step2: 
Goal
Selection

Applicability
constraints

Applicability
constraints

SLAs

Formulate applicability
constraints

Policy
Refinement
Mechanisms

Selected
goalsGoal

Management

Figure 4: Overall policy refinement framework

3.1 Goal management tasks 

The goal management tasks are the Goal 
Elaboration and Goal Selection (see Steps 1 and 2 in 
Fig. 4). These tasks are operator-directed. This is by no 
means a drawback of the framework considering that 
policy refinement is in general an off-line process. In 
order to better understand this section, the reader may 
have in mind the KAOS goal elaboration process 
introduced in Section 2.1. 

During the Goal Elaboration process (see step 1 in 
Fig.4), the operator expert documents and classifies 
KAOS goal-graph structures and stores them into a goal-
graph library. The expert makes use of refinement 
patterns (like RP1 in Fig 1) to decompose goals into 
sub-goals that logically entail the original ones.  

For example in Figure 1 we showed a goal graph 
with a single hierarchy (G1 is refined into G11 and G12), 
nevertheless, typical/practical goal graphs are multi-
hierarchy structured (as we will see later). Since the 
refinement patterns have been proved to be correct, 
structures following the KAOS methodology are 
considered logically consistent. 
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In the Goal Selection (see step 2 in Fig.4) the 
operator consultant chooses from the goal-graph 
library, the goal strategies that better commit with his 
directives.  

The gap between Goal Management and Policy 
Refinement Mechanisms is filled with the Request for 
Policy Refinement (Step 3 in Fig 4). It is activated by 
the consultant after goal selection. 

3.2 Policy refinement mechanisms 

The policy refinement mechanisms are the 
Requirements Formulation, Get System Behavior, 
Apply Translation Primitives and Encode/store 
Deployable Policies (see Steps 4~7 in Fig. 4). All these 
are carried out in an automatic manner after a Request 
for Policy Refinement is submitted. To better 
understand this section, in addition to the temporal 
foundations of KAOS (Section 2.1), the reader may have 
in mind the patterns for finite-state verification and the 
concept of Translation Primitives introduced in in 
Sections 2.2 and 2.3 respectively. 

The Requirements Formulation mechanism 
produces the LTL formulae that characterize goal 
fulfillment. For this it initially abstracts the 
requirements of the goal selection, and then applies 
patterns for finite-state verification to produce LTL 
formulae characterizing these requirements. 

In order to abstract the requirements, this 
mechanism must consider the temporal prescription, 
the refinement patterns and the temporal relationships 
amongst the goal selection. For example, having the 
consultant chosen to satisfy the goal G1 shown in 
Figure 1, this mechanism may abstract the Temporal 
Relationship requirement: TR_G1 = “G12 must be 

achieved after G11“.
For this requirement, this mechanism may apply the 

finite-state verification pattern PP1 (see Table 2) to 
abstract the LTL representation. The application of PP2
may represent the opposite to TR_G1. Hence, 
instantiating PP1 and PP2 by plugging in the information 
relevant to TR_G1, this process may abstract the 
following LTL formulae f1 and f1‘. 
PP1[TR_G1] =  ( ¬ G11)|<>(G11&<>G12)) ……....  f1

PP2[TR_G1] = (G12 ( ¬ G11)) ……………....  f1’
f1 represents the requirement “G12 must be achieved after 
G11” and  f1‘  the requirement “G12 must not be achieved 
after G11”.

The Get System Behavior mechanism coordinates 
the system trace executions acquisition. For this, we 
rely on the automated support provided by the SPIN
model checker [9], specifically in its ability to produce 
system trace executions reports. With this regard, in 
our previous work [4], we demonstrated that by 
providing opposite LTL requirements, model checking 

engines would generate system trace executions 
committing to the original LTL requirement. Given 
that the Requirements Formulation mechanism (earlier 
explained) produces LTL requirements formulae 
characterizing goal fulfillment (e.g. f1), this mechanism 
should make use of the opposite characterization of 
goal fulfillment (e.g. f1’) as to produce system trace 
executions fulfilling G11 and G12, and consequently the 
higher-level goal G1.

The Apply Translation Primitives mechanism (step 
6 in Fig. 4) abstracts the policy fields from the system 
trace executions produced by the Get System Behavior 
mechanism. Typical reports of system trace executions 
may include more than one transition plan. Hence, this 
mechanism should first abstract all of these transition 
plans and then apply Transition Primitives to them. 

Finally, the Encode Deployable Policies step takes 
as input the information described above and the object 
distribution in order to encode deployable policies. In 
this paper we have considered the Ponder specification 
language [7]. 

4. Goal-oriented Policy Refinement 
Implementation 

This section describes our overall implementation 
and is divided in two sub-sections: Goal Management 
and Policy Refinement Mechanisms components. Our 
functional implementation is demonstrated in Figures 
5a and 5b. They show the relevant components 
interactions and the class diagram of our solution. This 
implementation prototype logically entails the 
framework described in the last section.  

4.1 Goal management components 

The Goal Management components in our 
implementation are the Objectiver package and the 
Goal Manager. These two components materialize the 
Goal Management tasks described in Section 3.1.  

The Objectiver package integrates Objectiver [2], 
a Requirements Engineering tool that successfully 
manages large-scale goals, supporting the KAOS
methodology. In our solution, Objectiver enables the 
operator expert to elaborate and document goal graphs. 
In this sense, it is the support for the Goal Elaboration
step of the refinement process (elaborateGoals
interaction in Fig. 5a). Objectiver provides visual 
support to manage the goals and we use this capability 
not only to elaborate goals but also to guide the 
operator consultant throughout the Goal Selection step 
of the policy refinement process (selectGoals
interaction in Fig 5a). Relevant to our implementation 
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are the Objectiver APIs that have enabled us to use it 
as a server within our framework.  

Operator
Expert

: Operator
Consultant

Goal
Manager

Behaviour
Manager

Requirements
Manager

Search
Manager

Policy
Encoder

InventoryObjectiver
Package

3: startPolicyRefinement(RPR[])

1: elaborateGoals

2: selectGoals

4: getObjectiverData
5: formulateRequirements(GoalMetaData_List)

6: searchPolicyFields(LTL[])

7: getPromelaCode

8: encodePolcies

9: getObjectDetails

10: storePolicy

Figure 5a: Relevant interactions of our solution 

BehaviourManager

InventoryMgr

Objectiver

PolicyEncoder

i_SearchMgr i_Inventory

i_PolicyEncoder

RequiremetsMgr

SearchManager

i_RequirementsMgr

i_BehaviourMgr

i_Objectiver

GoalManager

i_GoalManager

Figure 5b: Class diagram of our solution

Goal Manager: This component handles with the 
Requests for Policy Refinement (RPRs). When a RPR is 
submitted, the Goal Manager gets from the Objectiver 
package, the goal entities (Goal) that are influenced by 
the goal selection. For each Goal entity, this 
component deduces the following information: 
• Temporal prescription of the goal, eg. Achieve, etc 
• Refined goal sons (not for lowest-level goals) 
• Refinement pattern used for the lower level goals 

(not for lowest-level goals) 
The Goal Manager implements Objectiver APIs to 

allow iterative queries to it. In addition, our current 
implementation has been designed to process many 
RPRs for large-scale refinements.  

4.2 Policy refinement mechanisms components 

Here, we describe the implementation of the Policy 
Refinement Mechanisms described earlier. These are 
implemented by the Requirements Manager, Search 
Manager and Policy Encoder. Additional support 
components, are described as well.  

Requirements Manager: This component 
implements the Requirements Formulation mechanism. 
It processes the goal-related information abstracted by 
the Goal Manager and produces the LTL formulae that 
characterize goal fulfillment. It internally implements a 
database of patterns for finite-state verification. This 
approach allows producing LTL formulae from specific 
requirements systematically. The overall procedure 
followed for every RPR is as follows: 
Input: GoalMetaData_List object =[Goal1,..,Goalu]
Procedure:
• Find the highest-level goal “GoalHG“ from 

[Goal1,...,Goalu]

• Find the lowest-level goals LLGoal that make 
GoalHG be fulfilled: 

LLGoal = [GoalL1,...,GoalLv]

• Find a set of temporal relationships TR amongst 
the lowest-level goals:  

TR[LLGoal] = [TR1,...,TRw]

• Formalise a set of requirements R (i.e. temporal 
requirements) with the temporal relationships 
TR[LLGoal] and Temporal Prescription (TP) of 
the lowest-level goals LLGoal[] 

R [TR[LLGoal],TP[LLGoal[]]=[R1,...,Rx]
• Deduce a set of property patterns PP: for each 

requirement, identify a pattern/scope property 
pattern that matches the requirement (the amount 
of PP-property patterns does not necessarily have 
to match with the amount of requirements) 

PP[R1,...,Rx]= [PPR1,...,PPRy]

• For the set of property patterns PP, identify the 
opposite pattern PP’

PP’[PP]= [PP’R1,...,PP’Ry]

• Instantiate each opposite requirement with the 
requirement values and get a set of LTL formulae: 

LTL[PP’] = [ltl1,...,ltly]

• Merge all ltl formulae into a single LTL formula 
making use of logic connectors

Output: A LTL formulae characterising goal fulfilment.

Search Manager: This component implements the 
Get system behavior and Apply Translation Primitives
mechanisms. It implements a SPIN model checker to 
acquire the system trace executions from the behavior 
specification documentation. After this, the Search 
Manager applies Translation Primitives to abstract the 
different policy fields systematically. The overall 
procedure followed for every RPR is as follows: 
Input: A LTL formula characterizing goal fulfillment. 
Procedure:
• Produce a system trace execution K from the LTL

formula and the PROMELA code provided by the 
Behavior Manager (described later).  

• Identify a set of decision-based (i.e. enforceable) 
transitions T[K]=[T1,...,Tu].

• For (i = 1 to i=u ):
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Find the precondition event of Ti = eventTi
Find the managed object MO issuing eventTi
MO(eventTi) = subjectTi
Find the managed object MO executing the 
enforceable transition Ti
MO(Ti)= targetTi.
Find the action A that represents the 
enforceable transition Ti
A(Ti) = actionTi

Create a recipient PFTi for policy fields 
PFTi = [eventTi, subjectTi, targetTi,
actionTi]

Output: Instances of policy fields PF=[PFTi ,…,  PFTu]

The Policy Editor implements the Encode 
Deployable Policies process of the overall policy 
refinement process. It follows the syntax of the Ponder 
specification language [7] and includes in its internal 
architecture, a Ponder Policy Editor and compiler 
(slightly modified to automate the compilation 
process).

Behavior Manager: This component is a support 
component that manages the documentation of the 
system behavior. Its functions are to provide 
information related to the system behavior 
specification, translation of behavior specification from 
UML models into PROMELA (input language of SPIN).
The Behavior Manager implements the libraries 
provided by HUGO [10]. HUGO is a UML model 
translator that allows translating models with active 
classes, state machines, collaborations and interactions, 
into code for SPIN and other off-the-shelf tools.  

The Inventory Manager provides support for the 
Object Distribution documentation supporting activity 
of the policy refinement process. The actual managed 
objects should be classified following a domain-
dependent logical representation. A well-defined 
structure of this information is necessary to automate 
the policy refinement mechanisms. The Inventory 
component implements a database for the administrator 
expert to document this information and make it 
available for other components of our implementation, 
e.g. the Policy Encoder.  

5. Application Scenario 

5.1 Application domain 

Here we present a refinement that relies on the 
framework developed in the EU IST TEQUILA project 
[11]. TEQUILA provides a policy-based functional 
architecture for supporting QoS in IP DiffServ 
networks. Due to space limitations, we limit ourselves 
to the resource management aspects, realized through 

the Dynamic Resource Management (DRsM) and the 
Network Dimensioning (ND) modules. 

ND is a centralized off-line component responsible 
for mapping traffic requirements to physical network 
resources, and for setting provisioning directives to 
accommodate the predicted demand. ND directives are 
calculated based on estimations and are treated as 
“nominal” values. The dynamic resource management 
functions are deployed to the DRsM components. 

DRsM has distributed functionality, with an 
instance operating in every router. It optimizes network 
performance in terms of resource utilization, while 
meeting at the same time, QoS traffic constraints. 
DRsM opts for dynamic functions that manage 
network resources (DiffServ Per-Hop-Behaviors- 
PHBs) following the guidelines provided by ND. ND 
defines minimum (NDmin) and maximum (NDmax)
allocation values per-PHB. These values define the 
dynamic range (dynamic range=NDmax-NDmin) within 
which the DRsM calculates the actual allocation. 
While policies extend the hard-wired logic for ND and 
provide the administrator with strategies in performing 
network dimensioning, a policy-based approach for 
DRsM can allow for a fully flexible manner in 
allocating network resources. DRsM policies provide 
the flexibility to dynamically introduce logic and 
directives for tracking the utilization of a PHB and to 
ensure that the bandwidth allocated to the PHB is in 
accordance with the required one which is determined 
from the observed utilization. DRsM comprises two 
components; Monitoring and DRsM Main component. 
While the former is responsible for monitoring relevant 
links, issuing alarms upon upper or lower threshold 
crossings and calculating new thresholds, the DRsM 
Main component is responsible for the calculation of 
the required bandwidth (BW) and the handling of 
excess/over-provisioned BW, due to threshold crossing 
alarms. 

5.2 Scenario description 

The consultant has envisaged necessary to optimise 
resource allocation for two critical links (LC1, LC2). 
For these links he wants to set up specific conditions 
on when to trigger upper-threshold alerts and how new 
BW allocations are to be calculated as a consequence 
of upper-threshold crossings. For EF traffic, he wants 
to set up the following directives: 

1. If the current load exceeds an upper threshold, the 
DRsM must increase the BW allocation and the 
thresholds (upper and lower) 20% of the dynamic 
range if the current load is below 60% of the dynamic 
range. 
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2. Contrary, if the current load is above 60% of the 
dynamic range, the increments described above must 
be in rates of the 10% of the dynamic range. 

3. Additionally he wants the BW increased to this PHB 
to be deducted from the one allocated to AF traffic and 
that spare capacity be split equally amongst PHBs. 

6. Scenario Execution 

6.1 Scenario execution preconditions 

Besides the population of the object distribution, the 
scenario preconditions are the documentations for 
system specification and the DRsM goal graphs.  

Regarding the system specification documentation, 
we have modeled the traffic engineering dynamic 
resource management part of TEQUILA using standard 
off-the-shelf tools which UML models are direct inputs 
for the Behavior Manager component. 

With regard to the goal elaboration process, we 
have elaborated the goal graph for the DRsM 
component making use of the Objectiver GUI attached 
to our solution. In Figure 6 we show a fragment of the 
goal-graph for this scenario. The procedure to 
elaborate KAOS goal-graphs is described in [12]. 
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Figure 6. Partial representation of DRsM goal graph 

The goal-graph provides the consultant with 
available refinements for the DRsMConfigured
Achieve goal. The first refinement (Note 1 in Fig. 6) 
suggests a milestone-driven pattern as to refine 
Monitoring and DRsM Main Component directives. 
Subsequently, these goals are refined into other 
strategies towards the lowest-level goals. For example, 
for the ALARM RAISED PROCESSING goal, the graph 
suggests a new milestone-driven pattern (Note 2 in Fig. 

6) to refine three sub-goals aimed at processing 
lower/upper threshold crossings (LOWER THRESHOLD 

PROCESSING and UPPER THRESHOLD PROCESSING) and 
configure the new thresholds previously processed 
(THRESHOLDS CONFIGURED). Further, case-driven patterns 
are used to refine these into lowest-level ones that 
represent the different alternatives suggested to the 
administrator. For example, the INCREASING LOWER 

THRESHOLD is refined into three strategies using case-
driven refinements (Note 3 in Fig. 6) as suggesting 
different options to increase thresholds: by absolute, 
relative or algorithmic values. 

6.2 Scenario execution details 

Request for Policy Refinement submission. The 
consultant selects the strategies that better commit with 
his directives: BW allocation and thresholds need to be 
increased by relative values for EF traffic and the same 
relative value to be deducted from the AF PHB. 
Besides, the administrator opts to allocate any extra 
BW equally between the PHBs. For this, the consultant 
submits the following RPR through i_GoalMgr:

Selected goals [1]: G1: LWR THR INCRSD REL VALUE, G2: 
UPPR THR INCRSD REL VALUE, G3: THRESHOLDS CONFIGURED, 
G4: BW REQ INCRSD REL VAL (EF Allocation increase), G5: BW 
REQ DECRSD REL VAL (AF allocation decrease), G6: SPARE 
CAP EQ SPLIT, G7: LINK CONFIGURED
GoalAttributes[1]: G1: 0.20 * dynRange(EF,LC1,LC2), G2: 
0.20 * dynRange(EF, LC1, LC2), G3: null, G4: 0.20 * dynRange ( EF, 
LC1, LC2), G5: (0.20 * dynRange( EF ), LC1, LC2), G6: null, G7: null 
Constraint[1]:utilValue < 0.60*dynRange(EF,LC1,LC2)
(current load of LC1/LC2 below 60% of the dynamic range)
GoalAttributes[2]: G1: 0.10 * dynRange(EF,LC1, LC2), G2: 
0.10* dynRange(EF, LC1, LC2), G3: null, G4: 0.10 * dynRange ( EF, 
LC1, LC2), G5: (0.10 * dynRange( EF ), LC1, LC2), G6: null, G7: null 
Constraint[2]:utilValue> 0.60*dynRange(EF,LC1,LC2)
(current load of LC1/LC2 above 60% of the dynamic range).

Component executions. Initially, the Goal 
Manager processes the above RPR and interacts with 
the Objectiver package to abstract the details of the 
goal selection. In our scenario the Goal Manager has 
abstracted the temporal prescription and temporal 
association out 43 Goal instances.  

The Requirements Manager initially abstracts the 
temporal relationships amongst the lowest-level goals 
out of the 43 Goal instances. Following on with this, it 
produces the correct LTL requirements by instantiating 
the formulae that specializes the temporal relationships 
amongst the lowest-level goals. Figure 7 shows a 
fragment of the objects produced in run-time by the 
Requirements Manager during the execution of our 
scenario. The most relevant here is the formal 
definition of the LTL formulae included in the Formal
Definition field of the structure (bottom part of Fig. 
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7). Additionally, the structure includes identifiers for 
the LTL formulae arguments.  

Figure 7: Fragments of ReqMgr output

The Search Manager produces the system trace 
executions and applies the Translation Primitives to 
abstract the policy fields. The left part of Figure 8 
shows the visual representation of a fragment of the 
system trace execution corresponding to one of the 
threshold-related directives of our scenario (upper 
threshold crossing). On the right part of Fig. 8 we show 
the result of the application of the Translation 
Primitives and the Search Manager algorithms, to the 
system trace execution shown in the left part.  

461
DRsMPMA : 7

22
Monitor:10

136

151
139

153
163

461
471

474
481

165
172

491

494
501

514
521

511

524
205
207
214
219

Pointer to upprThr
crossing

Pointer to enforceable
incThUpprRel

Pointer to
alarmRaised

Managed
Objects

Pointer to reception
of alarmRaised event

Translation Primitives
application

Figure 8: System trace execution and SearchMgr output

The Policy Encoder finally encodes, compiles and 
stores the policies after receiving the policy fields and 
the administrative constraints. We have populated the 
Inventory component with a basic object distribution 
ad-hoc to our scenario, nevertheless the mechanisms 
and the principle to automatically deploy policies from 
policy fields, have been preserved. Figure 9 shows two 
out of the 12 policies refined in our scenario. The 
over_DR_UpprThsLC1 policy commits to the administrative 
directive given to increase the upperThreshold (10% of 
the dynamic range) when the bandwidth utilization is 
higher than 60% of the dynamic range in LC1. The 
under_DR_UpprThsLC1 policy differs to the former in the 
value for the increase (20% of the dynamic range) 
when the bandwidth utilization is lower than 60% of 
the dynamic range.  

Figure 9: Sub set of the refined policies of our scenario

7. Discussion and Future Work 

Regarding system behaviour, we have considered 
unconditional executions of actions in response to 
events, considering that all states and transitions are 
permissible. Future work will be directed to consider 
non permissible states and their relationships with 
Maintain/Avoid goals.  

So far we have considered situations when just one 
execution trace is produced. Moreover, considering the 
generation of multiple traces may allow analysis to 
choose between different transition plans, possibly for 
different conditions and hence different policies.  

Having in mind that the policy refinement process is 
carried out taking into account system behavior 
modelling, future research will be directed to measure 
and analyse the impact of administrative guidelines on 
the performance of the managed systems. This is a 
challenging issue that is fully domain-dependent. It 
may possibly imply to adapt other mechanisms to 
relate system performance with goal specialisation. 

System specification is a critical issue. Although 
SPIN does not build the entire state space to find system 
execution traces, we have envisaged necessary to 
introduce additional specification management 
procedures in order to avoid the state explosion 
problem for very large-scale systems. 

Even when policy refinement is an off-line process, 
real systems may need refinements of thousands of 
policies. Experimental results show that the overhead 
introduced by our solution is not considerable in 
comparison with the policy storage time. For example, 
the 12 policies in our scenario were refined in less than 
two seconds. The storing of a policy takes in average 
800ms, anyhow these comparisons are merely 
indicative of the feasibility of the solution. 

8. Related Work 

To the best of our knowledge, at the time of this 
publication, there is no evidence of any complete 
functional solution for goal-oriented policy refinement. 
Moreover, functional solutions for policy refinement 
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are rather scarce. POWER [13] is one of the few policy 
refinement approaches hitherto implemented. It is a 
tool that enables administrator consultants to refine 
policies from pre-defined templates tailored for 
specific use.  Our functional solution is a goal-oriented 
approach in which the consultant selects the goals that 
better satisfy his needs, having the possibility to 
formulate any combination of goals as required, with 
no pre-definition of policy template choices. 

Reference [1] proposes to transform both, policy 
and system behavior specifications into a formal 
notation based on Event Calculus (EC). Abductive 
reasoning is used to derive strategies that would 
achieve high-level goals. From these strategies, 
policies are encoded. The EC-based approach and our 
framework differ in the way system behavior is 
analyzed and in the way policy information is 
abstracted. While EC and abduction is used in the 
former to infer the sequences of actions that achieve 
particular goals, our approach goes through automated 
state exploration to obtain system trace executions that 
fulfils lower-lever goals. The EC-based approach does 
not address explicit temporal execution of goals [12] 
whilst this is one of the pillars of our approach; system 
trace executions are obtained from finite state 
verification properties considering not only such 
temporal relationships but the temporal prescription of 
the goals. We encode policies systematically using a 
set of Translation Primitives applied to system 
execution traces while in the EC-based approach these 
are encoded using the generated strategies.  

9. Conclusions 

We have presented a functional solution for goal-
oriented policy refinement grounded linear temporal 
logic and reactive systems analysis techniques. We 
have used KAOS methodology [3] and the goal-based 
approach to policy refinement introduced [1]. We have 
presented the technical foundations of our approach 
and demonstrated how these were used in our 
implementation prototype.  

First of all, we have presented a formal and 
automated approach to abstract temporal logic (LTL)
formulae characterizing goal fulfillment. In this sense, 
we described how, the temporal logic foundations of 
goals elaborated through the KAOS methodology, must 
be linked to patterns for finite-state verification 
properties, in favor of policy refinement. 

Secondly, we have presented a formal and practical 
approach to abstract policies from system trace 
executions obtained through automated reactive 
systems analysis tools (i.e. model checking). This 
approach has been specialized in a set of Translation 

Primitives whose feasibility to refine policies in a 
systematic manner has been demonstrated in the paper. 

Another contribution of this work has been the 
identification and formalization of the technical 
foundations mentioned above in favor of policy 
refinement. Additionally, we show how these 
foundations are integrated into a functional 
environment and demonstrate its application in the 
field of DiffServ QoS Management.  

As far as it is reflected in the literature, policy 
refinement is at its initial stage. In this sense, we hope 
that our functional solution may contribute to solve the 
policy refinement problem.  
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