

Context-Driven Self-Configuration of Mobile Ad Hoc Networks

Apostolos Malatras and George Pavlou

Centre for Communications Systems Research, Department of Electronic Engineering,
University of Surrey, UK

{a.malatras, g.pavlou}@surrey.ac.uk

Abstract. We present the design and implementation of a working prototype system that enables
self-configuration in mobile ad hoc networks (MANETs) by exploiting context awareness and
cross-layer design principles. The driving force behind the proposed system is to allow for self-
configuration of MANETs by enabling them to be adaptive to varying conditions. Emphasis is
placed on describing the requirements and specifications of the supporting platform’s functionality.
We propose the distributed management of the MANET through a proactively constructed body of
nodes in order to cope with the inherently dynamic nature of MANETs. We present our work on
deploying the designed system on our experimental MANET testbed and provide results of its
performance based on extended testing.

1 Introduction
The concept of mobile ad hoc networks (MANETs) has brought a new paradigm in
communication networks and acts as an enabler for pervasive computing and
communication environments. In ad hoc networks, the mobile nodes (MNs) are free to
move randomly and organize themselves arbitrarily; thus, the network’s wireless topology
may change rapidly and unpredictably. Conventional wireless networks require some
form of fixed network infrastructure (i.e. the core network) and centralized administration
for their operation. In contrast, since MANETs are self-creating, individual MNs are
responsible for dynamically discovering other nodes they can communicate with. This
way of dynamically creating a network often requires the ability to rapidly create, deploy
and manage services and protocols in response to user demands and surrounding
conditions in an equally dynamic manner.
We assert that this highly dynamic environment can benefit from the emerging context-
driven autonomic communications paradigm. There has been no proper previous research
on deploying autonomic communication solutions in MANETs, but such aspect is
important due to their inherent nature. As such, autonomic communication principles can
assist in the self-management of MANETs and enable network self-configuration and
optimization by utilizing context information. The latter can be used to establish the need
for automatic changes (self-configuration) in accordance to high-level pre-existing rules.
Context-information can be used to trigger cross-layer changes (network and application
configurations) according to predefined rules, leading to autonomic decision-making.
This paper provides conceptual and practical design, implementation and deployment
issues regarding a middleware platform used for the self-configuration of MANETs. The
structure of the paper is as follows. After this brief introduction, Section 2 reviews basic
autonomic communication and computing principles, including pointers to related work.

Section 3 gives an overview of the proposed system’s design and architecture providing
justification for our choices. Details on the implementation of the platform and its
deployment on our experimental MANET testbed is the subject of Section 4, where the
results of our practical experimentation are also presented. Finally, Section 5 concludes
the paper and discusses future research directions.

2 Autonomic Communications Principles and Related Work
Autonomic computing emerged as an initiative by IBM and has generated a very active
research stream bringing together interdisciplinary domains. Autonomic computing refers
to the self-managed operation of computing systems and networks, without the need for
administrators but with high-level objectives dictating the system’s functionality. The
IBM autonomic computing blueprint [1] defines four distinct concepts behind autonomy,
namely self-configuration, self-optimization, self-healing and self-protection [2]. The
building block of all autonomic solutions is an autonomic element. This refers to the
collection of one or more managed elements that are handled by an autonomic manager.
The latter monitors the state of the elements, analyzes it and acting upon high-level
objectives (typically defined as policies) imposes the execution of configuration changes
on the managed elements. This process is repetitive [2], [3].
Most autonomic computing platforms are targeted to systems with sufficient resources
that are relatively stable [1], [4], and [5]. The application of autonomic principles on
MANETs has not been adequately researched. In [10] we presented our initial approach
and results on self-configuring and optimizing MANETs. In [6] a policy-based network
management system for MANETs is proposed but the hierarchical approach adopted
assumes the existence of several “thick” nodes in the network, which may not always be
the case.
Programmability is a very important aspect of autonomic systems, especially in ad hoc
networks given the multitude of potential solutions for routing, quality of service support
and other application services. Programmability can be achieved through a variety of
means. Active control packets may carry code to be evaluated in routers and this approach
has been used for active routing in ad hoc networks [7]. Mobile agents may be used in full
mobility scenarios, carrying code and state to manipulate different MNs, or in a
constrained mobility mode [8] as a more flexible means for the management by delegation
approach [9]; in the latter, code is uploaded and executed in MNs through “elastic
management agents”, augmenting the node functionality. Programmability is also possible
through the provision of suitable management interfaces that allow code to be uploaded to
MNs and activated in a controllable fashion. In our recent work [11] we proposed a
programmable middleware capable of dynamically deploying services and protocols in ad
hoc networks.

3 System design and Architecture
We propose the deployment of a lightweight, context-aware middleware platform on
every MN of a MANET and a distributed management approach based on the existence of

an adaptive set of nodes called Management Body (MB). The middleware platform is
responsible for monitoring the individual MN context individually and the context of the
MANET as a whole. Context information is handled locally at each MN and aggregated
information is passed to the management body of the MANET. The latter reaches
management decisions based on this aggregated context and in accordance with
predefined rules. The corresponding configuration changes are autonomously deployed on
the MNs through software plugins that carry the desired functionality.

3.1 A Hybrid Approach to MANET Management
There exist two diverse approaches regarding the management approach to be deployed in
a MANET. In the hierarchical approach the MANET is grouped into clusters, each
electing a local leader or cluster head (CH). The CHs act in cooperation and elect a global
leader or network head (NH) that is responsible for deciding on key management issues.
This approach bears similarities to the one undertaken by routing protocols such as OSPF
and scales well, limiting the MN interactions within a cluster or among CHs. Moreover, it
allows operation in a controlled distributed fashion, where decisions are taken not only by
the NH but through cooperation and “voting” among the CHs. A diametrically different
approach is a fully distributed one, in which all the nodes are deemed as equal and
determine collectively any management decisions to be taken. This approach requires
more complex cooperation protocols and may not scale for large networks with many
MNs. On the other hand the hierarchical approach suffers from the existence of single
points of failure, i.e. the CHs. In case a CH leaves the MANET or moves to a different
location (and thus changes cluster), the clustering process will have to be re-initiated, an
option not suitable for dynamically formed MANETs.
We chose to use a hybrid approach for our management scheme. Our approach resembles
the hierarchical approach by dividing the MANET in clusters; a collaborative
Management Body of MNs replaces the CH. The MB has collectively the functionality of
the CH but does not suffer from single node movements as these are mitigated from
interactions with the other MNs forming the MB. In a similar fashion, a collaborative
body comprising selected nodes from the management body replaces the network head
(Figure 1). The management decisions are taken collaboratively by the MNs assigned to
the management body. Our scheme is inspired from the formation of virtual backbones in
MANET routing protocols and service provisioning. The idea of using a virtual backbone
to serve as a management entity in a MANET is not new. There have been several
approaches in the literature that have considered similar schemes [12], [13], [14].
We chose this hybrid approach due to the fact that neither of the existing approaches suits
the MANET features completely. The hierarchical approach does not perform well when
node mobility is involved and is thus applicable to longer-term, relatively stable
MANETs. In contrast, the fully distributed approach is very demanding as far as message
exchanges are concerned and can be applied to small MANETs with few nodes. The
combined approach we chose has the following benefits. The management decisions are
devised by a number of nodes in the MANET and not by a single one. This distributes the
load across the MANET, which is necessary for both resource conservation and reliability

& robustness reasons (i.e. avoiding single points of failure). The hierarchical features of
this scheme allow for the deployment of a uniform management approach over the
MANET as desired. The MBs are constructed so as to be relatively stable, while there is
support for nodes leaving the MB. The MB is reconstructed only if a significant amount
of MNs that comprise it leave. This ensures the avoidance of dangerous situations, with
any node potentially triggering the MB formation process unnecessarily. We realise the
overhead imposed on the MANET from the cooperative management architecture but we
consider this a fair trade-off given the robustness achieved.

Fig. 1 Hybrid approach to MANET management

The virtual backbone used in MANETs is usually constructed as the Minimum Connected
Dominating Set (MCDS) of the MANET graph. Unfortunately, the construction of an
MCDS for a connected graph is an NP-Complete problem. There are two ways to face this
problem, namely using an approximation algorithm or making use of a heuristic to reduce
the problem into one solved in polynomial time. We chose to undertake the heuristic
approach when creating the MB. Apart from that, and in favour of simplicity and
timeliness, we opted towards establishing any CDS and not the minimum one. We use
two heuristics to discover the CDS, the computational capabilities of the MNs (the most
resourceful nodes) and their prospective, relative location stability (the nodes that are less
likely to affect the network topology and thus do not lead to frequent MB re-formations).
The nodes that will be part of the MB should therefore have sufficient resources to handle
the additional requirements, such as communicating with other MB-members to reach to
management decisions. The nodes forming the MB are collectively the set of nodes with
the highest computational resources in the MANET. Every node is calculating a value that

denotes its capability to become a member of the MB. The value of this property is then
used in the selection process for the dominating set.
Our proposed capability function (CF) exploits the following attributes: memory
requirements (MEM), processing power (PP), battery power (BP), mobility ratio (MR)
and current load (CL). These 5 variables need to be combined in a single equation, the
Capability Function (CF). MEM, PP and BP are obviously proportional to CF while MR
and CL are inversely proportional. By assigning weights to these variables in accordance
to their significance, we have the initial CF equation (1).

() () ()
() ())()(

)()()()(
54

321

xCLwxMRw
xBPwxPPwxMEMwxCF

×××
×××××

= (1)

where, ∑ , and x is the MN.
=

=
5

1

1
i

iw

The main requirement for the CF is to lead to comparable results among MNs. For this
reason the various attributes must be demoted in common range values. Space limitations
do not allow us to delve into more details on how to achieve this. Equation 1 is used to
derive a value for every MN that is proportional to its capability of being part of the MB.
Obviously, one should not expect the MANET topology to be known. Distributed
approaches to construct the MB are thus adopted. The distributed construction of CDS has
been intensely researched [12], [13], and [14]. We decided to take a similar approach.
Details of the algorithm we have used to derive the CDS of the MANET are not presented
due to space limitations. Our approach is based on building a relatively stable CDS with
the “thickest” nodes according to the CF mentioned, but also takes into consideration the
need for maintenance of the CDS due to the inherently unstable MANET nature.

3.2 Context Management
Autonomic communications solutions currently available have focused on monitoring
device specific characteristics and network conditions in order to infer configuration
adjustments on the devices or the network as whole. We differentiate our approach by
extending the sensed environment to also consider user-specific information (i.e. user
profiles and user explicit information) that can have an effect on the underlying network,
as well as physical environment attributes with the same property (i.e. device location and
vicinity information). Cross-layer context gathering is the basis of our middleware
platform that exploits this information in order to allow for MANET self-configuration.
The collection of context from the surroundings of the mobile nodes is handled by a series
of interfaces that communicate with the available sensors, constituting the monitoring
component of our platform. We consider the term context in a generic fashion,
incorporating both computational and physical resources.
Each MN is responsible for collecting its own context information and processing it to
higher-level context information that has an impact on the management plane of the
MANET. For example a MN might collect its current location and monitor this through a
GPS receiver installed on it, but this information is not useful for the MB. Useful
information for the MB would be the mobility prediction for each MN, since having this

can be used for proactive configuration changes, as it will be shown in Section 4. Other
higher-level context information can refer to QoS requirements, security requirements and
prospective network load. This set of elaborate context information is in effect aggregated
from simpler context information. The advantages of this approach are obvious. By
aggregating the context information available to a MN to a set of “advanced” contexts that
are passed to the MB, less control load is imposed on the MANET in terms of traffic. It
also distributes the processing and storage load of handling all the context information
among the MNs of the MANET. The alternative would be to pass all this information to
the MB, which would then be responsible for processing it, storing it and infer
configuration changes based on it. The set of advanced MN contexts that are passed
around from MNs to the MB are predefined and their processing occurs using the
functionality of our middleware platform as described later.

Fig. 2 Mobile node mobility context as derived from simpler contexts

Figure 2 presents an example of how the aggregated context of MN mobility can be
derived from simpler contexts collected from device sensors. The analysis of elaborate
contexts to simpler ones is based on the sensors used, while it should also be noted that
semantic metadata information and algorithmic functions describe the way this analysis
occurs in a human-understandable and a formal way respectively (e.g. in the example of
Figure 2, the MN mobility is more dependent on the movement metrics rather than the
user specific information since we deem the former as more credible). We represent the
context using an XML-based model that takes all this information into account and allows
hits lightweight processing, specific details though lie outside the scope of this paper.

3.3 MANET self-configuration
The proposed middleware platform builds on the aggregated context information that is
collected from all nodes to reach to management decisions for the MANET as a whole.

These decisions are then implemented as (re-) configuration changes. Only this context
information is transported across the MANET, limiting thus the traffic requirements. It
also relieves the MB from a series of resource- and time-consuming processing
operations, which are handled individually by every node, distributing thus the processing
load. We have already mentioned that the set of aggregated context information is
prespecified. The same stands for the rules that are used to establish the need for
configuration changes in the MANET. The MNs forming the MB of the MANET know
these rules in the form of policies. When certain preconditions are met, the rules are
activated and the corresponding configuration changes are deployed on the MNs. One
such example that will be elaborated in the next section is monitoring MN mobility. When
the relative mobility of the MNs is changing, it might be beneficial to change the routing
protocol used in the MANET. These rules in our platform are currently static and
predefined. We are working towards a more dynamic and adaptive scheme based on
higher-level policies, so as to increase the degree of autonomy of our system.
The configuration changes are deployed on the MANET through software plugins that
carry the corresponding functionality. These plugins can be any software module, from a
simple set of commands, e.g. a script, to complex applications, as long as they conform to
the defined interface. All plugins should conform to standard interfaces regarding
activation, deactivation and reconfiguration.
One question that arises is how the MB members collaboratively monitor and act upon the
aggregated context of all MNs. For each aggregated context there is a function used to
calculate its value as far as the related rule is concerned. Every MB member calculates
this value collectively for the MNs it dominates and floods this information within the
MB. At the end of this process every member of the MB will have a MANET-wide
understanding of the rule-specific value for every aggregated context. In the previous
example, relative mobility is the rule variable for routing protocol selection. Every MB
member calculates its relative mobility to that of the MNs it dominates, floods this
information to the rest of the MB members and receives relevant information from them.
The new values it receives are used to update its relative mobility so as to include those of
the rest of the nodes in the MANET.
This MANET-wide value for every aggregated context is compared against the rules in
the MB nodes to establish if the need for a configuration change occurs. If so, then the
appropriate action is passed from every MB member to the nodes it manages through a
particular plugin. The fact that all MB members have the same values for the context and
the same predefined rules ensure that the same action, if any, will be employed on the
MANET, achieving a uniform self-configuration scheme.

3.4 Middleware Architecture
Figure 3 depicts the proposed system’s architecture from a high-level perspective. This
middleware platform is installed on every MN of the MANET, empowering it with the
necessary functionality. As it will be seen at the experimentation phase, the architecture
proposed is relatively lightweight. We will describe the platform and provide justification
for our design choices regarding monitoring, context handling and self-configuration.

Context Monitoring
The sensed environment is accessed by means of sensors. These sensors are diverse in the
way they provide the sensed information to whoever needs it. We designed a generic
interface for that purpose, the Sensor Communication Interface (SCI), to which all
communication protocols with the sensors conform. Every device is equipped with the
SCIs for the sensors it carries and we consider them supplied as software modules
bundled with the sensors. Realizing that a device might require accessing a sensor for the
first time (i.e. a new positioning device) and does not have the particular SCI, we have
implemented the SCI Manager. This is responsible for advertising the SCIs the device
holds and discovering and retrieving SCIs from other MNs by communicating with their
respective SCI Managers.

Fig. 3 Higher-level context-aware middleware architecture

Sensors do not produce context information but raw data that has to be translated into

meaningful information i.e. context. For this reason semantics regarding the data the
sensors produce are included in the various SCIs so that the raw data gains some semantic
meaning before it is passed to the Context Processor. The Context Collector is responsible
for this task. Another task that this module is in charge of is the pruning of the abundant
context information. Sensors produce a plethora of data that are not all useful. For
example GPS receivers inform for every single location change, even in the scale of some
meters. This amount of detail might not be needed to be collected. The Context Collector
retains custom filters for each context collected that states which changes in values are
deemed significant to be stored and which should be discarded.
Context Handling
The Context Processor and the Context Handler are the two modules that collectively
manage locally the context information for a MN. The former is responsible for modelling
the primitive context information collected from the sensors to the generic context model
we have devised. Semantic information is tagged to the context in order to allow for
semantic operations to be performed. The Context Collector comprises 3 entities, namely
the Processing Interfaces, the Context Modeller and the Semantic Handler. The
Processing Interfaces entity is used to provide different interfaces for the handling of
various data types provided by sensors. One sensor might for example produce binary
data and another scalar. This entity provides the generic feature for the platform to be able
to respond to every possible input. The Context Modeller then is instantiated with its main
activity being the translation of the simple data to the model representation proposed. The
Semantic Handler enriches the semantics of the context, with metadata more specific to
the uses of the platform. The sensors provide some metadata about their collected data to
give an understanding of what they are monitoring. For example a GPS might yield that it
is collecting MN location through a “location” value. The Semantic Handler builds on this
and provides more semantics like “latitude-longitude/positioning” etc. The purpose of this
is to ensure that the platform is not explicitly bundled with sensors, i.e. the “location”
metadata but it is rather bundled with the general notion described by more than one
words. The Context Processor stores context information in the local data store created for
this reason.
The Context Handler is responsible for the task described earlier: collecting simple
contexts and aggregating them to higher-lever contexts that are going to be sent to the
MB. To do that in a generic fashion it exploits Context Handlers and Aggregated Context
Modelling. These two entities collaborate with the Semantic Handling entity to infer
useful knowledge on the aggregated context. The modelling of this higher-level context is
based on predefined models that are hard-coded on the platform. The platform is open
enough though to support new aggregated context models that may be required from the
MB. The MB might decide for example upon using a context of MN QoS requirements.
The MNs are not aware of the model to be followed to infer this context from simpler
contexts. The MB members then transfer the model properties to the MNs and acting upon
it the MNs respond to the MB with the desired QoS requirements context.
Self-Configuration
We consider that the functionality the MNs, regardless of the heterogeneity of the

available platforms, is manipulated and altered through software plugins. For instance, a
routing protocol used by mobile nodes, is as far as our platform is concerned a loadable
plugin that has open interfaces to allow its activation, de-activation or reconfiguration
according to management demands. The self-configuration aspects of our context-driven
middleware platform are thus implemented through the use of these software plugins that
can be implemented simple scripts or Java, C/C++ or any other programming language
objects in our experimental prototype.
Self-configuration is handled through the MN State Manager module. The main
responsibility of this module is to collect and advertise the aggregated context information
to the MB. Communication with the MB (through XML-RPC as will be elaborated later)
is handled by the State Manager, as is communication with other MNs. Hard-coded into
this module are the general Context-Driven Management Rules that are used by the MB to
examine if necessary conditions are met and configuration changes are necessary. The
Local Status Monitor has the obvious functionality of retaining and making available the
information on the current local status of a MN. The Configuration Enforcer receives
“orders” from the MB regarding configuration changes through software plugins. When
such “orders” are given, the Configuration Enforcer imposes them on the platform by
acquiring the required plugin if it does not have it and activating it.
The plugins are considered to be owned by at least some nodes of the MANET, since we
cannot consider them being generated at runtime. For example, if the plugin is a routing
protocol like the case study in Section 4, this must exist in some of the MANET nodes.
The nodes that have the required plugin are informed by the MB to distribute it within the
MANET by means of efficient flooding to their neighbours and so forth. The flooding is
efficient in two ways: i) the receiving MN is first queried to establish it does not have the
plugin already and ii) the plugin is flooded only to MNs that share the same platform with
the owner of the plugin (this is necessary for heterogeneous environments with multiple
platform configurations, such as our experimental testbed).

4 Usage scenario and testbed evaluation
For purposes of validation and experimentation we have implemented the proposed
programmable middleware platform and deployed it in our experimental testbed. After
reviewing the specific implementation details, we present the results obtained when
testing our implementation in the testbed.

4.1 Testbed Configuration and Platform Implementation
To test the platform’s performance and efficiency and also examine its operation in a real
environment, we deployed it in our experimental MANET testbed that comprises 2
laptops and 4 PDAs (see Table 1 for configuration details). The testbed is a 6-hop
MANET and is considered as a relatively reliable environment so that the results can be
extrapolated and general conclusions can be drawn.
The platform is implemented using the Java 2 Micro Edition (J2ME). This version
requires a much smaller memory footprint than the standard or enterprise edition, while at

the same time it is optimized for the processing power and I/O capabilities of small
mobile devices. We also used the Connected Device Configuration (CDC) framework
instead of the limited one (CLDC), as the latter lacks support for required advanced
operations. We chose to use Java because of its ubiquity and platform independence. Our
platform caters also for both Java and C/C++-based plugins. The use of Java requires
MNs to have the Java Runtime Environment (JRE) installed. Although this is relatively
memory-hungry, our hands-on experience confirms that even the resource-poor PDAs can
comfortably support the execution of the JRE.

Table 1 Testbed hardware configuration

Platform Configuration Attribute Description
Processor 400 MHz Intel XScale
Memory 48 MB ROM, 128 MB RAM
Operating System Familiar Linux 2.4.19 PDA

Wireless interfaces Integrated wireless LAN 802.11b
Processor 1,7 GHz Intel Centrino
Memory 512 MB RAM
Operating System Debian Linux 2.6.3 Laptop

Wireless interfaces Integrated wireless LAN 802.11 a/b/g
The communication between MNs uses the lightweight XML-RPC protocol [17]. XML-
RPC is a subset of the Simple Object Access Protocol (SOAP) with only basic
functionality enabled. It allows software running on different operating systems and
hardware architectures to communicate through remote procedure calls (RPCs). XML-
RPC uses the HTTP protocol as transport and XML encodings for the RPC protocol itself.
We chose an XML-based approach because we also use XML to represent contextual data
collected by MNs. We could have possibly chosen Web Services, but this approach would
have certainly been more heavyweight. In addition, Web Services, in the same fashion
with distributed object technologies such as CORBA, necessitate object advertisement and
discovery functionality, which is not required in our platform that relies on simple
message passing modelled through RPCs. Given our recent performance evaluation of
XML-RPC and other management approaches [16], we believe that XML-RPC provides a
useful blend of functionality and performance.
Trivial FTP (TFTP) [18] was used for the distribution of the plugins. It is less complex
than FTP and consumes less network resources. TFTP has no password-based user
authentication, which saves both time and traffic in a trusted environment; as already
mentioned, security in an ad hoc environment is an important issue but is outside the
scope of the current work. In addition, TFTP uses only one connection, contrary to FTP
that requires two connections, one for control and one for data traffic.

4.2 Autonomic routing protocol selection
The scenario we chose to test on our experimental testbed includes the dynamic change of
the routing protocol used in the MANET. MANET routing protocol performance is

dependent on the stability of the network itself. Reactive routing protocols are better
suited for very volatile network topologies, while proactive approaches for more static
MANETs. The scenario implemented was that of the dynamic routing protocol change
according to contextual information regarding the mobility of MNs. MNs use initially the
reactive AODV routing protocol [19] for their ad hoc communication over 802.11b, while
at some point indicated by the change in the mobility pattern they switch to the proactive
OLSR protocol [20] as the network becomes close to stationary. This decision is derived
and imposed by the MB. Both these routing protocols are realized as C-based user space
daemons. Practical problems during this experiments included wireless link interference
given that the wireless interfaces were in a confined space. In addition, since testing for
various network topologies was necessary, we used a MAC address filter tool to emulate
broken links or unreachable destinations.
The scenario serves the purpose of presenting both the self-configuration and self-
optimizing aspects of the platform, as well as the platform functionality. The self-
configuration aspect is apparent from the scenario itself, while in this case the self-
optimizing aspects refer to the fact that by changing the network protocol we achieve
better performance of the MANET by means of bandwidth consumption (proactive and
reactive routing protocols consume different amount of bandwidth and work better in
different network states).
We experimented with many different topologies, routing protocols and other plugins to
get a concrete understanding of the platform’s operation. In the following subsections we
present experimental results regarding the routing protocol switch scenario for three
different yet representative network topologies: star, random and line. The star topology
models a centralized approach, with the MB conveniently located in the centre and
comprised of one node, having a 1-hop distance from other nodes. The line topology is
the one that performs worse than the others, and models a sparse MANET with 6-hop
diameter (the MB in this case is comprised of 4 nodes in a total of 6). The random
topology models a middle-ground situation between the previous topologies and models
the most common case real-world scenario (2 nodes form the MB). Although we have
implemented context processing and dissemination in our platform, getting mobility
information requires sensors MNs such as accelerometers, GPS support, etc. Given the
practical difficulty of sensing real mobility changes, we chose to generate them
artificially, through pre-specified timers and mockup context information. As we were
mostly interested to assess the performance in terms of the plugin dissemination and
activation, this approach is adequate. We plan though to focus on context-based
performance issues in future work. Finally, it is essential to emphasize that the results
have derived by a number of identical experiments and mean values are presented. Table
2 presents the results regarding the three described topologies as far as incurred traffic is
concerned and convergence time.
Results from testbed measurements prove first of all that the platform functions properly,
since the routing protocol dynamic change performs smoothly and in accordance with the
network mobility, while the situation can revert to the original configuration if the
necessary conditions are met. The platform as evaluated in our testbed seems to fulfil its

goal as being lightweight and deployable on devices with limited resources, such as
PDAs. The time needed for the initialization of the base functionality is 26 msec for the
laptops and 741 msec for the PDAs, while the memory utilization was 3788 bytes and
4208 bytes respectively. The differences in time are attributed to the significantly different
processing capabilities, while memory consumption is almost identical, which was
expected since the platform is the same for both configurations.

Table 2 Experimental testbed results under various MANET topologies

Star Topology
Time required for convergence: 41.96 sec

Routing related traffic: 7736 bytes
Inter-MN traffic: 41742 bytes

TFTP traffic: 1064880 bytes

The MB is formed of 1 node, solely A

Line Topology
Time required for convergence: 47.94 sec

Routing related traffic: 14332 bytes

Inter-MN traffic: 83145 bytes

TFTP traffic: 1530924 bytes

The MB is formed of 4 nodes, C, B, D, E

Random Topology
Time required for convergence: 44.43 sec

Routing related traffic: 12068 bytes

Inter-MN traffic: 51491 bytes

TFTP traffic: 1366896 bytes

 The MB is formed of 2 nodes, A and B

The other parameters of the testbed experimentation prove the efficiency of the platform.
From the moment the management body identifies the need to alter the routing protocol,
up until the activation of the new routing protocol the time required is at acceptable levels,
being dependent on the size of the routing plugin and the network size. The OLSR routing
plugin has a size of 450 KB for the laptops and 98,1 KB for the PDAs. The convergence
time required for the alignment of nodes capabilities depends on the distributed plugin. In

our test case the plugin size is significant, and thus requires considerable time for its
deployment throughout the network. The measured time takes into account the fact the
wireless links are not stable throughout the experiment due to interference reasons. In a
number of experiments, link breakages occurred without any external intervention, and we
attribute these to the inter-MN interference. Given these link breakages, the time
measured in our experiments includes the additional latency introduced for route
reconstruction.
Another important observation is the fact that the inter-MN traffic is rather limited with a
maximum of 83145 bytes for the line topology, which is attributed to the fact that this is
the sparsest one and the MB is composed of many nodes due to the specific node location.
Even so, the inter-MN traffic is not large enough to make our hybrid management
approach inapplicable. The inter-MN traffic includes the traffic required to construct and
maintain the MB, the aggregated context advertisements from the MNs to the MB and
other platform specific MN calls. Regarding the TFTP traffic this includes the transfer of
the routing protocol plugin to the MNs that do not have it. This noteworthy traffic size is
justified if one considers the significant size of the plugin and the fact that two versions
are disseminated in the MANET (laptop and PDA versions).

5 Conclusions
We presented the foundations and major design principles of a context-aware,
programmable middleware platform that enables self-configuration in MANETs. The
platform has been implemented and successfully deployed on our experimental testbed,
with encouraging initial results. Our future work focuses on further expanding the
architecture to take into account more elaborate management policies that conform and
adapt to the dynamic nature of the MANETs. We have limited our experimental
evaluation of the platform to include only results from actual deployment on our testbed.
We plan though to test its performance, scalability and its effect on MANET optimization
using also simulation tools, complementing those MANET simulations with real-world
practical experiments as suggested in [15]. Understanding the major security implications
that may arise from the deployment of software modules on mobile nodes, we plan to
expand our framework to incorporate advanced security mechanisms using possibly
“sandbox” techniques for controlled execution in a failsafe environment and authenticated
remote activation of software modules.

6 References
[1] Haas, R., Droz, P. and Stiller, B., “Autonomic service deployment in networks”, IBM

Systems Journal, Vol. 42, No 1, 2003
[2] Kephart, J.O. and Chess, D.M., “The Vision of Autonomic Computing”, IEEE

Computer, January 2003
[3] Ganek, A. G. and Corbi, T.A., “The dawning of the autonomic computing era”, IBM

Systems Journal, Vol. 42, No 1, 2003

[4] Crawford, C.H. and Dan, A., “eModel: Addressing the Need or a Flexible Modeling
Framework in Autonomic Computing”, 10th IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunications Systems
(MASCOTS02), October 2002

[5] Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S. and Rao, S.,
“AUTONOMIA: An Autonomic Computing Environment”, IEEE International
Conference on Performance, Computing and Communications, April 2003

[6] Chadha, R., Cheng, H., Cheng, Y.-H., Chiang, J., Ghetie, A., Levin, G., and Tanna,
H., “Policy-based mobile as hoc network management”, 5th IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY04), 2004

[7] C. Tschudin, H. Lundgren, H. Gulbrandsen, “Active Routing for Ad hoc Networks”,
IEEE Communications, Vol. 38, No. 4, April 2000.

[8] C. Bohoris, A. Liotta, G. Pavlou, “Evaluation of Constrained Mobility for
Programmability in Network Management”, 11th IEEE/IFIP Int. Workshop on
Distributed Systems: Operations and Management (DSOM’00), December 2000.

[9] G. Goldszmidt, Y. Yemini, “Evaluating Management Decisions via Delegation”,
Proc. of IEEE Integrated Network Management III, pp. 247-257, Elsevier, 1993.

[10] A. Malatras, G. Pavlou S. Gouveris, S. Sivavakeesar and V. Karakoidas, “Self
Configuring and Optimizing Mobile Ad Hoc Networks”, to appear as a short paper
in the Proceedings of the IEEE International Conference on Autonomic Computing
(ICAC 2005), June 2005

[11] S. Gouveris, S. Sivavakeesar, G. Pavlou and A. Malatras, “Programmable
Middleware for the Dynamic Deployment of Services and Protocols in Ad Hoc
Networks”, to appear in the Proceedings of the IEEE/IFIP Integrated Management
Symposium (IM 2005), May 2005

[12] P.-J. Wan, K. M. Alzoubi and O. Frieder, “Distributed construction of connected
dominating set in wireless ad hoc networks”, IEEE Infocom 2002

[13] R. Friedman, M. Gradinariu and G. Simon, “Locating cache proxies in MANETs”,
ACM MobiHoc 2004

[14] U. Kozat and L. Tassiulas, “Network layer support for service discovery in mobile ad
hoc networks”, IEEE Infocom 2003

[15] Tschudin, C., Gunningber, P., Lundgren, H., Nordstrom, E., “Lessons from
experimental MANET research”, Ad Hoc Networks, Vol. 3, Issue 2, pp.221-233,
March 2005, Elsevier, 2005

[16] G. Pavlou, P. Flegkas, S. Gouveris, A. Liotta, On Management Technologies and the
Potential of Web Services, IEEE Communications, special issue on XML-based
Management of Networks and Services, Vol. 42, No. 7, pp. 58-66, IEEE, July 2004.

[17] XML-RPC specifications web site, http://www.xmlrpc.com/spec, accessed April 2005
[18] K. Sollins, The TFTP Protocol, IETF RFC 1350, July 1992
[19] C. E. Perkins, E. M. Belding-Royer, and S.R. Das, Ad hoc On-Demand Distance

Vector (AODV) Routing, draft-ietf-manet-aodv-13.txt.
[20] Clausen, T., Jacquet, P., Optimized Link State Routing Protocol (OLSR), RFC 3626,

October 2003.

http://www.xmlrpc.com/spec

	1 Introduction
	2 Autonomic Communications Principles and Related Work
	3 System design and Architecture
	3.1 A Hybrid Approach to MANET Management
	3.2 Context Management
	3.3 MANET self-configuration
	3.4 Middleware Architecture

	4 Usage scenario and testbed evaluation
	4.1 Testbed Configuration and Platform Implementation
	4.2 Autonomic routing protocol selection

	5 Conclusions
	6 References

