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Abstract. We present the design and implementation of a working prototype system that enables 
self-configuration in mobile ad hoc networks (MANETs) by exploiting context awareness and 
cross-layer design principles. The driving force behind the proposed system is to allow for self-
configuration of MANETs by enabling them to be adaptive to varying conditions. Emphasis is 
placed on describing the requirements and specifications of the supporting platform’s functionality. 
We propose the distributed management of the MANET through a proactively constructed body of 
nodes in order to cope with the inherently dynamic nature of MANETs. We present our work on 
deploying the designed system on our experimental MANET testbed and provide results of its 
performance based on extended testing. 

1 Introduction 
The concept of mobile ad hoc networks (MANETs) has brought a new paradigm in 
communication networks and acts as an enabler for pervasive computing and 
communication environments. In ad hoc networks, the mobile nodes (MNs) are free to 
move randomly and organize themselves arbitrarily; thus, the network’s wireless topology 
may change rapidly and unpredictably. Conventional wireless networks require some 
form of fixed network infrastructure (i.e. the core network) and centralized administration 
for their operation. In contrast, since MANETs are self-creating, individual MNs are 
responsible for dynamically discovering other nodes they can communicate with. This 
way of dynamically creating a network often requires the ability to rapidly create, deploy 
and manage services and protocols in response to user demands and surrounding 
conditions in an equally dynamic manner. 
We assert that this highly dynamic environment can benefit from the emerging context-
driven autonomic communications paradigm. There has been no proper previous research 
on deploying autonomic communication solutions in MANETs, but such aspect is 
important due to their inherent nature. As such, autonomic communication principles can 
assist in the self-management of MANETs and enable network self-configuration and 
optimization by utilizing context information. The latter can be used to establish the need 
for automatic changes (self-configuration) in accordance to high-level pre-existing rules. 
Context-information can be used to trigger cross-layer changes (network and application 
configurations) according to predefined rules, leading to autonomic decision-making. 
This paper provides conceptual and practical design, implementation and deployment 
issues regarding a middleware platform used for the self-configuration of MANETs. The 
structure of the paper is as follows. After this brief introduction, Section 2 reviews basic 
autonomic communication and computing principles, including pointers to related work. 



 

Section 3 gives an overview of the proposed system’s design and architecture providing 
justification for our choices. Details on the implementation of the platform and its 
deployment on our experimental MANET testbed is the subject of Section 4, where the 
results of our practical experimentation are also presented. Finally, Section 5 concludes 
the paper and discusses future research directions. 

2 Autonomic Communications Principles and Related Work 
Autonomic computing emerged as an initiative by IBM and has generated a very active 
research stream bringing together interdisciplinary domains. Autonomic computing refers 
to the self-managed operation of computing systems and networks, without the need for 
administrators but with high-level objectives dictating the system’s functionality. The 
IBM autonomic computing blueprint [1] defines four distinct concepts behind autonomy, 
namely self-configuration, self-optimization, self-healing and self-protection [2]. The 
building block of all autonomic solutions is an autonomic element. This refers to the 
collection of one or more managed elements that are handled by an autonomic manager. 
The latter monitors the state of the elements, analyzes it and acting upon high-level 
objectives (typically defined as policies) imposes the execution of configuration changes 
on the managed elements. This process is repetitive [2], [3].  
Most autonomic computing platforms are targeted to systems with sufficient resources 
that are relatively stable [1], [4], and [5]. The application of autonomic principles on 
MANETs has not been adequately researched. In [10] we presented our initial approach 
and results on self-configuring and optimizing MANETs.  In [6] a policy-based network 
management system for MANETs is proposed but the hierarchical approach adopted 
assumes the existence of several “thick” nodes in the network, which may not always be 
the case.  
Programmability is a very important aspect of autonomic systems, especially in ad hoc 
networks given the multitude of potential solutions for routing, quality of service support 
and other application services. Programmability can be achieved through a variety of 
means. Active control packets may carry code to be evaluated in routers and this approach 
has been used for active routing in ad hoc networks [7]. Mobile agents may be used in full 
mobility scenarios, carrying code and state to manipulate different MNs, or in a 
constrained mobility mode [8] as a more flexible means for the management by delegation 
approach [9]; in the latter, code is uploaded and executed in MNs through “elastic 
management agents”, augmenting the node functionality. Programmability is also possible 
through the provision of suitable management interfaces that allow code to be uploaded to 
MNs and activated in a controllable fashion. In our recent work [11] we proposed a 
programmable middleware capable of dynamically deploying services and protocols in ad 
hoc networks. 

3 System design and Architecture 
We propose the deployment of a lightweight, context-aware middleware platform on 
every MN of a MANET and a distributed management approach based on the existence of 



 

an adaptive set of nodes called Management Body (MB). The middleware platform is 
responsible for monitoring the individual MN context individually and the context of the 
MANET as a whole. Context information is handled locally at each MN and aggregated 
information is passed to the management body of the MANET. The latter reaches 
management decisions based on this aggregated context and in accordance with 
predefined rules. The corresponding configuration changes are autonomously deployed on 
the MNs through software plugins that carry the desired functionality. 

3.1 A Hybrid Approach to MANET Management 
There exist two diverse approaches regarding the management approach to be deployed in 
a MANET. In the hierarchical approach the MANET is grouped into clusters, each 
electing a local leader or cluster head (CH). The CHs act in cooperation and elect a global 
leader or network head (NH) that is responsible for deciding on key management issues. 
This approach bears similarities to the one undertaken by routing protocols such as OSPF 
and scales well, limiting the MN interactions within a cluster or among CHs. Moreover, it 
allows operation in a controlled distributed fashion, where decisions are taken not only by 
the NH but through cooperation and “voting” among the CHs. A diametrically different 
approach is a fully distributed one, in which all the nodes are deemed as equal and 
determine collectively any management decisions to be taken. This approach requires 
more complex cooperation protocols and may not scale for large networks with many 
MNs. On the other hand the hierarchical approach suffers from the existence of single 
points of failure, i.e. the CHs. In case a CH leaves the MANET or moves to a different 
location (and thus changes cluster), the clustering process will have to be re-initiated, an 
option not suitable for dynamically formed MANETs. 
We chose to use a hybrid approach for our management scheme. Our approach resembles 
the hierarchical approach by dividing the MANET in clusters; a collaborative 
Management Body of MNs replaces the CH. The MB has collectively the functionality of 
the CH but does not suffer from single node movements as these are mitigated from 
interactions with the other MNs forming the MB. In a similar fashion, a collaborative 
body comprising selected nodes from the management body replaces the network head 
(Figure 1). The management decisions are taken collaboratively by the MNs assigned to 
the management body. Our scheme is inspired from the formation of virtual backbones in 
MANET routing protocols and service provisioning. The idea of using a virtual backbone 
to serve as a management entity in a MANET is not new.  There have been several 
approaches in the literature that have considered similar schemes [12], [13], [14].  
We chose this hybrid approach due to the fact that neither of the existing approaches suits 
the MANET features completely. The hierarchical approach does not perform well when 
node mobility is involved and is thus applicable to longer-term, relatively stable 
MANETs. In contrast, the fully distributed approach is very demanding as far as message 
exchanges are concerned and can be applied to small MANETs with few nodes. The 
combined approach we chose has the following benefits. The management decisions are 
devised by a number of nodes in the MANET and not by a single one. This distributes the 
load across the MANET, which is necessary for both resource conservation and reliability 



 

& robustness reasons (i.e. avoiding single points of failure). The hierarchical features of 
this scheme allow for the deployment of a uniform management approach over the 
MANET as desired. The MBs are constructed so as to be relatively stable, while there is 
support for nodes leaving the MB. The MB is reconstructed only if a significant amount 
of MNs that comprise it leave. This ensures the avoidance of dangerous situations, with 
any node potentially triggering the MB formation process unnecessarily. We realise the 
overhead imposed on the MANET from the cooperative management architecture but we 
consider this a fair trade-off given the robustness achieved. 

 
Fig. 1 Hybrid approach to MANET management  

The virtual backbone used in MANETs is usually constructed as the Minimum Connected 
Dominating Set (MCDS) of the MANET graph. Unfortunately, the construction of an 
MCDS for a connected graph is an NP-Complete problem. There are two ways to face this 
problem, namely using an approximation algorithm or making use of a heuristic to reduce 
the problem into one solved in polynomial time. We chose to undertake the heuristic 
approach when creating the MB. Apart from that, and in favour of simplicity and 
timeliness, we opted towards establishing any CDS and not the minimum one. We use 
two heuristics to discover the CDS, the computational capabilities of the MNs (the most 
resourceful nodes) and their prospective, relative location stability (the nodes that are less 
likely to affect the network topology and thus do not lead to frequent MB re-formations).  
The nodes that will be part of the MB should therefore have sufficient resources to handle 
the additional requirements, such as communicating with other MB-members to reach to 
management decisions. The nodes forming the MB are collectively the set of nodes with 
the highest computational resources in the MANET. Every node is calculating a value that 



 

denotes its capability to become a member of the MB. The value of this property is then 
used in the selection process for the dominating set. 
Our proposed capability function (CF) exploits the following attributes: memory 
requirements (MEM), processing power (PP), battery power (BP), mobility ratio (MR) 
and current load (CL). These 5 variables need to be combined in a single equation, the 
Capability Function (CF). MEM, PP and BP are obviously proportional to CF while MR 
and CL are inversely proportional. By assigning weights to these variables in accordance 
to their significance, we have the initial CF equation (1). 
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The main requirement for the CF is to lead to comparable results among MNs. For this 
reason the various attributes must be demoted in common range values. Space limitations 
do not allow us to delve into more details on how to achieve this. Equation 1 is used to 
derive a value for every MN that is proportional to its capability of being part of the MB.  
Obviously, one should not expect the MANET topology to be known. Distributed 
approaches to construct the MB are thus adopted. The distributed construction of CDS has 
been intensely researched [12], [13], and [14]. We decided to take a similar approach. 
Details of the algorithm we have used to derive the CDS of the MANET are not presented 
due to space limitations. Our approach is based on building a relatively stable CDS with 
the “thickest” nodes according to the CF mentioned, but also takes into consideration the 
need for maintenance of the CDS due to the inherently unstable MANET nature. 

3.2 Context Management 
Autonomic communications solutions currently available have focused on monitoring 
device specific characteristics and network conditions in order to infer configuration 
adjustments on the devices or the network as whole. We differentiate our approach by 
extending the sensed environment to also consider user-specific information (i.e. user 
profiles and user explicit information) that can have an effect on the underlying network, 
as well as physical environment attributes with the same property (i.e. device location and 
vicinity information). Cross-layer context gathering is the basis of our middleware 
platform that exploits this information in order to allow for MANET self-configuration. 
The collection of context from the surroundings of the mobile nodes is handled by a series 
of interfaces that communicate with the available sensors, constituting the monitoring 
component of our platform. We consider the term context in a generic fashion, 
incorporating both computational and physical resources. 
Each MN is responsible for collecting its own context information and processing it to 
higher-level context information that has an impact on the management plane of the 
MANET. For example a MN might collect its current location and monitor this through a 
GPS receiver installed on it, but this information is not useful for the MB. Useful 
information for the MB would be the mobility prediction for each MN, since having this 



 

can be used for proactive configuration changes, as it will be shown in Section 4. Other 
higher-level context information can refer to QoS requirements, security requirements and 
prospective network load. This set of elaborate context information is in effect aggregated 
from simpler context information. The advantages of this approach are obvious.  By 
aggregating the context information available to a MN to a set of “advanced” contexts that 
are passed to the MB, less control load is imposed on the MANET in terms of traffic. It 
also distributes the processing and storage load of handling all the context information 
among the MNs of the MANET. The alternative would be to pass all this information to 
the MB, which would then be responsible for processing it, storing it and infer 
configuration changes based on it. The set of advanced MN contexts that are passed 
around from MNs to the MB are predefined and their processing occurs using the 
functionality of our middleware platform as described later.  
 

 
Fig. 2 Mobile node mobility context as derived from simpler contexts 

Figure 2 presents an example of how the aggregated context of MN mobility can be 
derived from simpler contexts collected from device sensors. The analysis of elaborate 
contexts to simpler ones is based on the sensors used, while it should also be noted that 
semantic metadata information and algorithmic functions describe the way this analysis 
occurs in a human-understandable and a formal way respectively (e.g. in the example of 
Figure 2, the MN mobility is more dependent on the movement metrics rather than the 
user specific information since we deem the former as more credible). We represent the 
context using an XML-based model that takes all this information into account and allows 
hits lightweight processing, specific details though lie outside the scope of this paper. 

3.3 MANET self-configuration 
The proposed middleware platform builds on the aggregated context information that is 
collected from all nodes to reach to management decisions for the MANET as a whole. 



 

These decisions are then implemented as (re-) configuration changes. Only this context 
information is transported across the MANET, limiting thus the traffic requirements. It 
also relieves the MB from a series of resource- and time-consuming processing 
operations, which are handled individually by every node, distributing thus the processing 
load. We have already mentioned that the set of aggregated context information is 
prespecified. The same stands for the rules that are used to establish the need for 
configuration changes in the MANET. The MNs forming the MB of the MANET know 
these rules in the form of policies. When certain preconditions are met, the rules are 
activated and the corresponding configuration changes are deployed on the MNs. One 
such example that will be elaborated in the next section is monitoring MN mobility. When 
the relative mobility of the MNs is changing, it might be beneficial to change the routing 
protocol used in the MANET. These rules in our platform are currently static and 
predefined. We are working towards a more dynamic and adaptive scheme based on 
higher-level policies, so as to increase the degree of autonomy of our system.  
The configuration changes are deployed on the MANET through software plugins that 
carry the corresponding functionality. These plugins can be any software module, from a 
simple set of commands, e.g. a script, to complex applications, as long as they conform to 
the defined interface. All plugins should conform to standard interfaces regarding 
activation, deactivation and reconfiguration.  
One question that arises is how the MB members collaboratively monitor and act upon the 
aggregated context of all MNs. For each aggregated context there is a function used to 
calculate its value as far as the related rule is concerned. Every MB member calculates 
this value collectively for the MNs it dominates and floods this information within the 
MB. At the end of this process every member of the MB will have a MANET-wide 
understanding of the rule-specific value for every aggregated context. In the previous 
example, relative mobility is the rule variable for routing protocol selection. Every MB 
member calculates its relative mobility to that of the MNs it dominates, floods this 
information to the rest of the MB members and receives relevant information from them. 
The new values it receives are used to update its relative mobility so as to include those of 
the rest of the nodes in the MANET.  
This MANET-wide value for every aggregated context is compared against the rules in 
the MB nodes to establish if the need for a configuration change occurs. If so, then the 
appropriate action is passed from every MB member to the nodes it manages through a 
particular plugin. The fact that all MB members have the same values for the context and 
the same predefined rules ensure that the same action, if any, will be employed on the 
MANET, achieving a uniform self-configuration scheme.  

3.4 Middleware Architecture 
Figure 3 depicts the proposed system’s architecture from a high-level perspective. This 
middleware platform is installed on every MN of the MANET, empowering it with the 
necessary functionality. As it will be seen at the experimentation phase, the architecture 
proposed is relatively lightweight. We will describe the platform and provide justification 
for our design choices regarding monitoring, context handling and self-configuration. 



 

Context Monitoring 
The sensed environment is accessed by means of sensors. These sensors are diverse in the 
way they provide the sensed information to whoever needs it. We designed a generic 
interface for that purpose, the Sensor Communication Interface (SCI), to which all 
communication protocols with the sensors conform. Every device is equipped with the 
SCIs for the sensors it carries and we consider them supplied as software modules 
bundled with the sensors. Realizing that a device might require accessing a sensor for the 
first time (i.e. a new positioning device) and does not have the particular SCI, we have 
implemented the SCI Manager. This is responsible for advertising the SCIs the device 
holds and discovering and retrieving SCIs from other MNs by communicating with their 
respective SCI Managers.  

 
Fig. 3 Higher-level context-aware middleware architecture 

Sensors do not produce context information but raw data that has to be translated into 



 

meaningful information i.e. context. For this reason semantics regarding the data the 
sensors produce are included in the various SCIs so that the raw data gains some semantic 
meaning before it is passed to the Context Processor. The Context Collector is responsible 
for this task. Another task that this module is in charge of is the pruning of the abundant 
context information. Sensors produce a plethora of data that are not all useful. For 
example GPS receivers inform for every single location change, even in the scale of some 
meters. This amount of detail might not be needed to be collected. The Context Collector 
retains custom filters for each context collected that states which changes in values are 
deemed significant to be stored and which should be discarded. 
Context Handling 
The Context Processor and the Context Handler are the two modules that collectively 
manage locally the context information for a MN. The former is responsible for modelling 
the primitive context information collected from the sensors to the generic context model 
we have devised. Semantic information is tagged to the context in order to allow for 
semantic operations to be performed. The Context Collector comprises 3 entities, namely 
the Processing Interfaces, the Context Modeller and the Semantic Handler. The 
Processing Interfaces entity is used to provide different interfaces for the handling of 
various data types provided by sensors. One sensor might for example produce binary 
data and another scalar. This entity provides the generic feature for the platform to be able 
to respond to every possible input. The Context Modeller then is instantiated with its main 
activity being the translation of the simple data to the model representation proposed. The 
Semantic Handler enriches the semantics of the context, with metadata more specific to 
the uses of the platform. The sensors provide some metadata about their collected data to 
give an understanding of what they are monitoring. For example a GPS might yield that it 
is collecting MN location through a “location” value. The Semantic Handler builds on this 
and provides more semantics like “latitude-longitude/positioning” etc. The purpose of this 
is to ensure that the platform is not explicitly bundled with sensors, i.e. the “location” 
metadata but it is rather bundled with the general notion described by more than one 
words. The Context Processor stores context information in the local data store created for 
this reason.  
The Context Handler is responsible for the task described earlier: collecting simple 
contexts and aggregating them to higher-lever contexts that are going to be sent to the 
MB. To do that in a generic fashion it exploits Context Handlers and Aggregated Context 
Modelling. These two entities collaborate with the Semantic Handling entity to infer 
useful knowledge on the aggregated context. The modelling of this higher-level context is 
based on predefined models that are hard-coded on the platform. The platform is open 
enough though to support new aggregated context models that may be required from the 
MB. The MB might decide for example upon using a context of MN QoS requirements. 
The MNs are not aware of the model to be followed to infer this context from simpler 
contexts. The MB members then transfer the model properties to the MNs and acting upon 
it the MNs respond to the MB with the desired QoS requirements context. 
Self-Configuration 
We consider that the functionality the MNs, regardless of the heterogeneity of the 



 

available platforms, is manipulated and altered through software plugins. For instance, a 
routing protocol used by mobile nodes, is as far as our platform is concerned a loadable 
plugin that has open interfaces to allow its activation, de-activation or reconfiguration 
according to management demands. The self-configuration aspects of our context-driven 
middleware platform are thus implemented through the use of these software plugins that 
can be implemented simple scripts or Java, C/C++ or any other programming language 
objects in our experimental prototype.  
Self-configuration is handled through the MN State Manager module. The main 
responsibility of this module is to collect and advertise the aggregated context information 
to the MB. Communication with the MB (through XML-RPC as will be elaborated later) 
is handled by the State Manager, as is communication with other MNs. Hard-coded into 
this module are the general Context-Driven Management Rules that are used by the MB to 
examine if necessary conditions are met and configuration changes are necessary. The 
Local Status Monitor has the obvious functionality of retaining and making available the 
information on the current local status of a MN. The Configuration Enforcer receives 
“orders” from the MB regarding configuration changes through software plugins. When 
such “orders” are given, the Configuration Enforcer imposes them on the platform by 
acquiring the required plugin if it does not have it and activating it.  
The plugins are considered to be owned by at least some nodes of the MANET, since we 
cannot consider them being generated at runtime. For example, if the plugin is a routing 
protocol like the case study in Section 4, this must exist in some of the MANET nodes. 
The nodes that have the required plugin are informed by the MB to distribute it within the 
MANET by means of efficient flooding to their neighbours and so forth. The flooding is 
efficient in two ways: i) the receiving MN is first queried to establish it does not have the 
plugin already and ii) the plugin is flooded only to MNs that share the same platform with 
the owner of the plugin (this is necessary for heterogeneous environments with multiple 
platform configurations, such as our experimental testbed). 

4 Usage scenario and testbed evaluation 
For purposes of validation and experimentation we have implemented the proposed 
programmable middleware platform and deployed it in our experimental testbed. After 
reviewing the specific implementation details, we present the results obtained when 
testing our implementation in the testbed. 

4.1 Testbed Configuration and Platform Implementation 
To test the platform’s performance and efficiency and also examine its operation in a real 
environment, we deployed it in our experimental MANET testbed that comprises 2 
laptops and 4 PDAs (see Table 1 for configuration details). The testbed is a 6-hop 
MANET and is considered as a relatively reliable environment so that the results can be 
extrapolated and general conclusions can be drawn.  
The platform is implemented using the Java 2 Micro Edition (J2ME). This version 
requires a much smaller memory footprint than the standard or enterprise edition, while at 



 

the same time it is optimized for the processing power and I/O capabilities of small 
mobile devices. We also used the Connected Device Configuration (CDC) framework 
instead of the limited one (CLDC), as the latter lacks support for required advanced 
operations. We chose to use Java because of its ubiquity and platform independence. Our 
platform caters also for both Java and C/C++-based plugins. The use of Java requires 
MNs to have the Java Runtime Environment (JRE) installed. Although this is relatively 
memory-hungry, our hands-on experience confirms that even the resource-poor PDAs can 
comfortably support the execution of the JRE. 

Table 1 Testbed hardware configuration 

Platform Configuration Attribute Description 
Processor 400 MHz Intel XScale 
Memory 48 MB ROM, 128 MB RAM  
Operating System Familiar Linux 2.4.19 PDA 

Wireless interfaces Integrated wireless LAN 802.11b 
Processor  1,7 GHz Intel Centrino 
Memory 512 MB RAM 
Operating System Debian Linux 2.6.3 Laptop 

Wireless interfaces Integrated wireless LAN 802.11 a/b/g 
The communication between MNs uses the lightweight XML-RPC protocol [17]. XML-
RPC is a subset of the Simple Object Access Protocol (SOAP) with only basic 
functionality enabled. It allows software running on different operating systems and 
hardware architectures to communicate through remote procedure calls (RPCs). XML-
RPC uses the HTTP protocol as transport and XML encodings for the RPC protocol itself. 
We chose an XML-based approach because we also use XML to represent contextual data 
collected by MNs. We could have possibly chosen Web Services, but this approach would 
have certainly been more heavyweight. In addition, Web Services, in the same fashion 
with distributed object technologies such as CORBA, necessitate object advertisement and 
discovery functionality, which is not required in our platform that relies on simple 
message passing modelled through RPCs. Given our recent performance evaluation of 
XML-RPC and other management approaches [16], we believe that XML-RPC provides a 
useful blend of functionality and performance. 
Trivial FTP (TFTP) [18] was used for the distribution of the plugins. It is less complex 
than FTP and consumes less network resources. TFTP has no password-based user 
authentication, which saves both time and traffic in a trusted environment; as already 
mentioned, security in an ad hoc environment is an important issue but is outside the 
scope of the current work. In addition, TFTP uses only one connection, contrary to FTP 
that requires two connections, one for control and one for data traffic. 

4.2 Autonomic routing protocol selection 
The scenario we chose to test on our experimental testbed includes the dynamic change of 
the routing protocol used in the MANET. MANET routing protocol performance is 



 

dependent on the stability of the network itself. Reactive routing protocols are better 
suited for very volatile network topologies, while proactive approaches for more static 
MANETs. The scenario implemented was that of the dynamic routing protocol change 
according to contextual information regarding the mobility of MNs. MNs use initially the 
reactive AODV routing protocol [19] for their ad hoc communication over 802.11b, while 
at some point indicated by the change in the mobility pattern they switch to the proactive 
OLSR protocol [20] as the network becomes close to stationary. This decision is derived 
and imposed by the MB. Both these routing protocols are realized as C-based user space 
daemons. Practical problems during this experiments included wireless link interference 
given that the wireless interfaces were in a confined space. In addition, since testing for 
various network topologies was necessary, we used a MAC address filter tool to emulate 
broken links or unreachable destinations. 
The scenario serves the purpose of presenting both the self-configuration and self-
optimizing aspects of the platform, as well as the platform functionality. The self-
configuration aspect is apparent from the scenario itself, while in this case the self-
optimizing aspects refer to the fact that by changing the network protocol we achieve 
better performance of the MANET by means of bandwidth consumption (proactive and 
reactive routing protocols consume different amount of bandwidth and work better in 
different network states). 
We experimented with many different topologies, routing protocols and other plugins to 
get a concrete understanding of the platform’s operation. In the following subsections we 
present experimental results regarding the routing protocol switch scenario for three 
different yet representative network topologies: star, random and line. The star topology 
models a centralized approach, with the MB conveniently located in the centre and 
comprised of one node, having a 1-hop distance from other nodes.  The line topology is 
the one that performs worse than the others, and models a sparse MANET with 6-hop 
diameter (the MB in this case is comprised of 4 nodes in a total of 6). The random 
topology models a middle-ground situation between the previous topologies and models 
the most common case real-world scenario (2 nodes form the MB). Although we have 
implemented context processing and dissemination in our platform, getting mobility 
information requires sensors MNs such as accelerometers, GPS support, etc.  Given the 
practical difficulty of sensing real mobility changes, we chose to generate them 
artificially, through pre-specified timers and mockup context information. As we were 
mostly interested to assess the performance in terms of the plugin dissemination and 
activation, this approach is adequate. We plan though to focus on context-based 
performance issues in future work. Finally, it is essential to emphasize that the results 
have derived by a number of identical experiments and mean values are presented. Table 
2 presents the results regarding the three described topologies as far as incurred traffic is 
concerned and convergence time. 
Results from testbed measurements prove first of all that the platform functions properly, 
since the routing protocol dynamic change performs smoothly and in accordance with the 
network mobility, while the situation can revert to the original configuration if the 
necessary conditions are met. The platform as evaluated in our testbed seems to fulfil its 



 

goal as being lightweight and deployable on devices with limited resources, such as 
PDAs. The time needed for the initialization of the base functionality is 26 msec for the 
laptops and 741 msec for the PDAs, while the memory utilization was 3788 bytes and 
4208 bytes respectively. The differences in time are attributed to the significantly different 
processing capabilities, while memory consumption is almost identical, which was 
expected since the platform is the same for both configurations. 

Table 2 Experimental testbed results under various MANET topologies 

Star Topology 
Time required for convergence: 41.96 sec 

Routing related traffic: 7736 bytes 
Inter-MN traffic: 41742 bytes 

TFTP traffic: 1064880 bytes 

 
The MB is formed of 1 node, solely A 

Line Topology
Time required for convergence: 47.94 sec 

Routing related traffic: 14332 bytes 

Inter-MN traffic: 83145 bytes 

TFTP traffic: 1530924 bytes 

 

 

The MB is formed of 4 nodes, C, B, D, E 

Random Topology
Time required for convergence: 44.43 sec 

Routing related traffic: 12068 bytes 

Inter-MN traffic: 51491 bytes 

TFTP traffic: 1366896 bytes 

 The MB is formed of 2 nodes, A and B  

The other parameters of the testbed experimentation prove the efficiency of the platform. 
From the moment the management body identifies the need to alter the routing protocol, 
up until the activation of the new routing protocol the time required is at acceptable levels, 
being dependent on the size of the routing plugin and the network size. The OLSR routing 
plugin has a size of 450 KB for the laptops and 98,1 KB for the PDAs. The convergence 
time required for the alignment of nodes capabilities depends on the distributed plugin. In 



 

our test case the plugin size is significant, and thus requires considerable time for its 
deployment throughout the network. The measured time takes into account the fact the 
wireless links are not stable throughout the experiment due to interference reasons. In a 
number of experiments, link breakages occurred without any external intervention, and we 
attribute these to the inter-MN interference. Given these link breakages, the time 
measured in our experiments includes the additional latency introduced for route 
reconstruction. 
Another important observation is the fact that the inter-MN traffic is rather limited with a 
maximum of 83145 bytes for the line topology, which is attributed to the fact that this is 
the sparsest one and the MB is composed of many nodes due to the specific node location. 
Even so, the inter-MN traffic is not large enough to make our hybrid management 
approach inapplicable.  The inter-MN traffic includes the traffic required to construct and 
maintain the MB, the aggregated context advertisements from the MNs to the MB and 
other platform specific MN calls. Regarding the TFTP traffic this includes the transfer of 
the routing protocol plugin to the MNs that do not have it. This noteworthy traffic size is 
justified if one considers the significant size of the plugin and the fact that two versions 
are disseminated in the MANET (laptop and PDA versions). 

5 Conclusions 
We presented the foundations and major design principles of a context-aware, 
programmable middleware platform that enables self-configuration in MANETs. The 
platform has been implemented and successfully deployed on our experimental testbed, 
with encouraging initial results. Our future work focuses on further expanding the 
architecture to take into account more elaborate management policies that conform and 
adapt to the dynamic nature of the MANETs. We have limited our experimental 
evaluation of the platform to include only results from actual deployment on our testbed. 
We plan though to test its performance, scalability and its effect on MANET optimization 
using also simulation tools, complementing those MANET simulations with real-world 
practical experiments as suggested in [15]. Understanding the major security implications 
that may arise from the deployment of software modules on mobile nodes, we plan to 
expand our framework to incorporate advanced security mechanisms using possibly 
“sandbox” techniques for controlled execution in a failsafe environment and authenticated 
remote activation of software modules.  
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