
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Mobile ad hoc networks (MANETs) form the

underlying networking paradigm upon which pervasive and
ubiquitous environments are founded. Combined with the
growing need for mobility and flexibility in network
infrastructures, the prominence and endurance of MANETs as a
networking trend becomes evident. The main characteristics of
MANETs include energy and bandwidth constraints, dynamic
topologies and platform heterogeneity. Traditional network
management principles and approaches are not applicable to
MANETs, while on the other hand self-management principles
are eminently suitable given the dynamic nature of MANETs. In
this paper we propose, implement and evaluate a framework to
enable self-management of MANETs built on an adaptive
organizational model. We present the design of our proposed
framework and we elaborate on the context-driven self-
management cycle. We also present its evaluation through
practical experiments using management case-studies.

Index Terms—context awareness, mobile ad hoc networks, self
organization

I. INTRODUCTION

HE proliferation of mobile ad hoc networking solutions
experienced in the last few years and the high rates of

user adoption of wireless technologies leads us to consider
that there will be a paradigm shift from traditional,
infrastructure-based networking towards wireless mobile,
operator–free, infrastructure-less networking, with MANETs
playing a key [4]. MANETs together with other emerging
networking technologies, such as sensor networks, will
constitute the foundations for future pervasive applications.
The major strengths of this technology lie in the fact that it is
easy to be deployed at a relatively low cost, while allowing for
user creativity through the lack of central, authoritative
management and control [7].

MANETs undoubtedly are not a solution for every
networking problem of the emerging pervasive realm.
Noteworthy drawbacks include their highly dynamic
topology, since a node participating in a MANET is
potentially mobile. These constant topological variations will

This work was supported in part by the EU EMANICS Network of

Excellence project (IST-026854).

eventually lead to a continuous state of network instability,
which in turn can deteriorate the performance of services and
applications on these networks. It becomes evident that to
fully benefit from the many potentials of ad hoc networking
one needs to cater for a wide variety of requirements and
provision for reliable, secure and efficient management [4],
[7].

There is an obvious need for frameworks that can support
the self-management of MANETs according to predefined
goals or policies. We assert that such a highly dynamic
environment can potentially benefit from context information
that will drive its self-management, resulting in a degree of
autonomy. The enabling technologies of autonomy and self-
management also include policy-based management and
programmability. Policy-based management provides the
means to infer management decisions in a flexible and
dynamic manner by matching contextual information to
predefined rules. Programmability is also beneficial to enforce
the required configuration changes on the system. This
closed-loop adaptive management can thus lead to self-
configuration, self-optimization, and hence a degree of
autonomy.

This paper addresses the design of a context-aware policy-
based framework to achieve this, focusing mainly on its
design and implementation aspects. The rest of the paper is
organized as follows. After this brief introduction, related
work is reviewed in section 2, while section 3 lays the
foundations of our proposed organizational model. The design
of our practical framework to enable self-management of
MANETs is the focus of section 4. Implementation issues and
related software metrics are presented in section 5 with
indicative evaluation results presented in section 6. Finally,
section 7 concludes the paper.

II. RELATED WORK

Autonomic computing refers to the self-managed operation
of computing systems and networks, without the need for
human administrators but with high-level objectives dictating
the system’s functionality. The IBM autonomic computing
blueprint [1] defines four distinct concepts behind autonomy,
namely self-configuration, self-optimization, self-healing and
self-protection [2]. The building block of all autonomic

A Practical Framework to Enable the
Self-Management of Mobile Ad-Hoc Networks

Apostolos Malatras and George Pavlou
Centre for Communications Systems Research, Department of Electronic Engineering,

University of Surrey, UK
a.malatras@surrey.ac.uk, g.pavlou@surrey.ac.uk

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

solutions is an autonomic element. This refers to the collection
of one or more managed elements that are handled by an
autonomic manager. The latter monitors the state of the
elements, analyzes it and acting upon high-level objectives
(typically defined as policies) imposes the execution of
configuration changes on the managed elements. This process
is repetitive [2], [3].

Most autonomic computing platforms are targeted to
systems with sufficient resources that are relatively stable [1],
[5]. The application of autonomic principles to MANETs has
not been extensively researched. In [9] we presented our
initial approach and results on self-configuring and optimizing
MANETs. In [10] a policy-based network management
system for MANETs is proposed but the hierarchical approach
adopted assumes the existence of several “thick” nodes in the
network, which may not always be the case. The work for the
Terminodes project is considered as fundamental for the self-
organization of MANETs [6]. It is though mostly targeted to
organization and cooperation issues, while it fails to address
practical aspects.

The exploitation of context information in network
management has been addressed before given that the
potential benefits can be tangible. Relevant adaptive systems
can be deployed, interacting with the surrounding
environment and functioning according to monitored
conditions [11], [12]. The main drawback of all these
approaches is the static evaluation of context against
predefined rules. The use of dynamic context monitoring in
conjunction with network policies to achieve a degree of
dynamicity at a higher conceptual level has not been
considered in the past and this is one of the particular
innovative aspects of our approach.

III. MANET ORGANIZATION

A key consideration in a MANET is the organizational
model to be deployed. In order to cope potentially with large
scale, the most common practice is to organize the MANET
into clusters, each managed by an elected local leader or
cluster head (CH). Assuming such a hierarchical approach for
the purpose of management, CHs then cooperate and either
elect a global leader or network head (NH) or a set of CHs
that collectively undertake the role of NH. The NH takes key
management decisions, such as triggering and coordinating
the clustering process and its maintenance. A diametrically
different approach is a fully distributed one, in which all the
nodes are deemed as equal and determine collectively any
management decisions to be taken.

We assert that a purely hierarchical or a purely distributed
approach in respect to the organizational model of a MANET
is not suitable for such a network. The former is too
cumbersome and rigid and does not allow for the flexibility
required by organizational models applicable to MANETs
while it also suffers from a single point of failure threats. The
latter considers all the nodes as having “equal rights” and

determining collectively any management decisions to be
taken. This approach requires more complex cooperation and
coordination protocols and does not scale well for a large
number of nodes.

These observations guide our design choice of introducing
a hybrid approach, namely a distributed and hierarchical
organizational model for MANETs to exploit the benefits of
each of those approaches. The hierarchical approach scales
well for large networks by limiting interactions within a
cluster or among cluster heads. It also allows operation in a
controlled fashion. The distributed organizational model
allows for the flexibility required in MANETs and is adaptive
to the distributed nature of ad hoc networks.

The proposed organizational model adopts a 3-tier
architecture with nodes being assigned three roles, namely the
Cluster Node (CN), the Cluster Head (CH) and the Manager
Node (MN). Nodes that have the MN role encapsulate the CH
role as well. Nodes can assume these roles in a dynamic
manner. Our proposed organizational model has been
presented in detail in [8] and is depicted in Figure 1. The
particular example refers to a hyper-cluster consisted of two
MNs and one CH managing collectively the MANET. We will
describe the components that comprise each node’s
functionality in the next section.

MN

HYPER CLUSTER

PMT

D
-

P
R

CONTEXTPOLICY

CLUSTER

CN
PEP

CN
CCP

CMT

PEP CCP

PDP CDP

C
R

MN

CLUSTER

CN

D
-

P
R

CLUSTER

CH

CN

CN

PEP CCP

PDP CDP

DPR SYNC

CN
CN

CN

CN

Fig. 1. Organizational model and node roles

The role notion denotes the functionality and
responsibilities of each node in the proposed organizational
model. To avoid the rigid view of pure hierarchical
approaches, we introduce the hyper-cluster entity referring to
the set of mobile nodes that are assigned the MN and CH
roles. Effectively, the CHs together with the MNs form the
hyper-cluster and collectively manage the MANET. Another
differentiation from the traditional hierarchical model is the
fact that our model allows for more than one Manager Nodes
(MNs) in the MANET. The idea behind the multi-manager
paradigm lies in the nature of ad hoc networks and the
purpose of their formation. Having more than one manager
gives the flexibility to form networks between distinct trusted

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

administrative authorities. This is performed without any MN
being forced to forfeit its management privileges. Instead
managers cooperatively guide the overall network’s behavior.
The multi-manager paradigm and the hyper-cluster formation
offer a balance between the strictness of hierarchical models
and the fully-fledged freedom of distributed ones. At the same
time our model embraces both as it can be deployed as either
of these.

IV. SELF-MANAGEMENT OF MANETS

To achieve any form of network management, let alone
self-management, it is essential to establish a concrete
organizational model that will cater for and correspond to the
requirements set by the nature of the particular networking
paradigm, i.e. MANET in this case. The design of a generic
network management framework will be based on this model.

Self-management necessitates awareness regarding the
environment, implying the need for context-awareness and
management of this context information. Context management
refers to monitoring the environment and distributing the
collected information so that all the network nodes –
especially in a MANET where centralization is non-existent –
to have a uniform understanding of the current context
conditions. It is also evident that the self-management
framework must build on a particular management scheme.
Redundancy to achieve reliability, synchronization to gain
consistency and uniformity, policies to benefit from flexibility
and generic applicability, are amongst the main aspects that
will be incorporated in the proposed management scheme. It
should also conform to the principles of the proposed
organizational model. Network management implies the
constant re-configuration of network nodes according to
higher-level management decisions. Coming to self-
management, dynamic configuration is of paramount
importance, since dynamic conditions drive the need for
configuration enforcement and in turn feed the monitoring of
the environment to identify similar needs. We therefore
present a software plugin-based approach for MANET
configuration, building on network programmability
principles.

We put forward a generic framework to achieve MANET
self-management that operates in the following fashion.
Context awareness achieved through efficient context
modeling and monitoring is the foundation of our framework.
It feeds the management scheme that is built on the
requirements of a MANET-targeted organizational model. The
management scheme based on this dynamic context
information enforces through an appropriate platform
configuration changes in the MANET nodes so as to conform
to the high-level management decisions. These decisions may
in turn result in new context information being generated and
thus new management decisions need to be taken.
Consequently a closed loop self-management cycle is
generated, which can lead to self-optimization of MANETs,

subject to the appropriate network policies having been
introduced beforehand.

A. Context-modeling

Network self-management relies on accurate information
being collected from the environment, in order to identify
conditions that could trigger the need for management
changes and subsequent actions being taken. Raw data as
collected from a variety of sensors are modeled with the use of
a generic context model, in order for high-level context
information to be deduced and handled by our system. The
abundance of sensors available to a device could lead to an
abundance of collected information, storage of which may be
non economical given the memory requirements of a mobile
device. The administrator introduces the context models that
will be used to support management decisions and through
these models the sensors that will be utilized are identified.
This information is stored in the Context Repository
component that can be found at every node of the MANET
and stores diverse types of context, according to the role of
each node (CN, CH or MN).

B. Management scheme

Policy-based network management (PBNM) principles
applied to the requirements of the MANET realm constitute
the foundation of our proposed management scheme. It
directly interacts with the organizational model to specify
node assignment to PBNM roles and the context management
framework in order to monitor conditions that trigger the
various policies. Administrators introduce the policies that
guide the self-management of MANETs through the
initialization of the Manager Node modules. When the
conditions of the policies are met then actions need to be
enforced. The management scheme then interacts with the
dynamic configuration component of our framework and
employs the corresponding changes to the appropriate nodes.

Traditional PBNM architectures are comprised of the Policy
Management Tool (PMT), which introduces policies into the
system, the Policy Repository (PR) where these policies are
stored, the Policy Decision Point (PDP) that evaluates at
runtime policy conditions and decides upon their activation
and the Policy Enforcement Point (PEP) that enforces the
policy decisions on the nodes. Bearing in mind the MANET
requirements and adhering to the aforementioned
organizational model we propose adapting the PBNM
paradigm to serve our needs. In particular, every node can
support full PBNM functionality but according to its role
certain functionality remains dormant. CNs have only the PEP
entity installed, CHs have PDP functionality and MNs have
PMT responsibilities. Every level of the hierarchy
encompasses the functionality of the lower levels. Our
management scheme supports multi-manager operation, which
though raises issues of synchronization and uniform decision

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

making.
In order to tackle the aforementioned deficiencies we

propose the DPR (Distributed Policy Repository) component.
DPR is an enhanced version of the Policy Repository and
consists of repository replicas distributed among hyper-
cluster’s nodes. Each manager node (MN) or cluster head
(CH) accommodates a DPR replica of the repository and
serves as access points for repository requests within their
cluster, balancing this way processing load and traffic in the
network.

C. Dynamic configuration

Once management decisions have been inferred, there
exists the need to carry out the necessary configuration
changes to the mobile nodes so as to enforce these decisions.
This occurs through a dynamic, programmable configuration
platform. It receives input from the management scheme by
means of high-level management decisions and based on rules
set out by the administrator upon initialization, translates them
into low-level configuration changes. Dynamic configuration
is performed with the use of software plugins that bear the
necessary configuration functionality and are distributed
among the mobile nodes. These, in their simplest form are
scripts that are executed in the configured device and change
local variables; this avoids having to perform these series of
changes remotely which could be difficult in a flaky
environment such as a MANET. Uniformity and
synchronization are essential prerequisites for the success of
the dynamic configuration of nodes. The employment of new
configuration in the MANET may result in new context being
generated and thus an update to the Context Repository to be
performed.

D. Context management

The context management component cooperates and works
in parallel with the policy-based scheme for MANETs that
was previously introduced. Context information is gathered
locally at every MANET node and after basic processing it is
passed to the corresponding CH that is responsible for its
aggregation and processing to higher level contexts. Cluster-
wide decisions based on this context can be imposed by the
CHs, provided that certain conditions as specified by policies
are met. At regular intervals, aggregated context from CHs is
passed to the MNs in order to establish if MANET-wide
configuration changes are necessary. Based on our
organizational model, we identify 3 main entities that
constitute our context management framework, namely the
Context Collection Point (CCP), Context Decision Point
(CDP) and Context Management Tool (CMT).

Fig. 2. Context Collection Point design

The CCP is deployed on every MANET node and is
responsible for communicating with available sensors e.g.
GPS, storage media, battery. The Sensor Manager interacts
with the Sensor Communication Interfaces and presents the
data and events collected from the sensor in a uniform way to
the CCP to balance sensor diversity. The main entity of the
CCP is the Local Context Manager, which is responsible for
managing context information locally and for the
communication with other nodes of the MANET. The Cluster
Manager is the entity that performs all the activities related to
the hyper-cluster formation and maintenance. The Data
Collector gathers the diversely formatted data as received
from the Sensor Manager and passes them to the Data
Optimizer. Optimization rules guide the operation of the Data
Optimizer whose responsibilities include pruning the collected
set of data from invalid values and transforming the data to
appropriate formats. The data is then passed to the Context
Modeler that converts it to context using a generic model. The
Semantic Handler feeds the Context Modeler with information
regarding the type of data to be converted and the way this
should be performed according to predefined context
inference rules. Useful context is then passed to the Context
Optimizer that based on Optimization Rules prunes the
collected context and limits its size. Finally context
information is passed to the Local Context Manager that stores
it in the Context Repository (Figure 2).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig. 3. Context Decision Point design

The Cluster Context Manager is the main entity of the
Context Decision Point (CDP) installed on every CH. It is
responsible for monitoring and interacting with the CCP
modules of the nodes that are associated with this CH and also
with the corresponding MN. The Cluster Manager, as with the
CCP, is responsible for monitoring and informing the Cluster
Context Manager regarding changes in the clustering process.
The CDP has a series of Cluster Node Monitors that are
responsible for collecting the context of the CNs associated to
the CH. The Cluster Node Monitors periodically passes the
collected context to the Context Aggregator. The Context
Aggregator after having gathered the context from all
managed CCPs produces average values to reduce the amount
of data available to the CDP. Predefined, hard-coded
Inference Rules combined with the aggregated context are
used by the Context Processor to deduce higher-level contexts
that have cluster-wide applicability. For example, mobility
patterns from CNs collected by the CH can yield a cluster-
wide view of the volatility of the whole cluster. Context
optimizing occurs in the same fashion as in the CCP. The
context collected at the cluster level can be used for cluster-
wide adaptation when certain conditions are met. To
accommodate this, the CDP communicates with the PDP also
located at the CH and evaluates context against the monitored
objects specified at the DPR to establish the need for cluster-
wide configuration changes (Figure 3).

The CMT runs in MNs and allows the manager to trigger a
management decision either directly or indirectly by

modifying policies through the PMT, hence the CMT/PMT
analogy and relationship. The main entity of the CMT is the
CMT Manager whose responsibilities include communicating
with the CMTs of other MNs and exchanging information
regarding the context of the CHs each manages. This way
ensures that all MNs have a uniform understanding of the
context of the whole MANET in a distributed and efficient
manner. The CMT Manager also interacts with the PMT and
the PDP available at the MN in order to establish the need for
MANET-wide configuration changes, by matching monitored
context against monitored objects as specified in the policies
stored in the distributed policy repository. The Cluster
Manager keeps track of the clustering process and notifies the
CMT Manager for any changes, while retaining CDP
Monitors for every CH it manages. At the same time it retains
CMT Monitors for other MNs, if any. The CDP Monitors
receive context from CDPs and the CMT Monitors exchange
MN-wide context. The CMT functionality apart from that is
essentially equivalent to the CDP one (Figure 4).

Fig. 4. Context Management Tool design

V. IMPLEMENTATION

To test the platform’s performance and efficiency and also
examine its operation in a real environment, we deployed it in
our experimental MANET testbed that comprises 3 laptops
and 4 Personal Digital Assistants (PDAs). The testbed is a 6-
hop MANET and is considered as a relatively reliable
environment so that results can be extrapolated (Table 1).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

TABLE 1
EXPERIMENTAL TESTBED CONFIGURATION

Platform Attribute Description
Processor 400 MHz Intel XScale
Memory 48 MB ROM, 128 MB

RAM
OS Familiar Linux 2.4.19

PDA

Wireless NIC IEEE 802.11b
Processor 1,7 GHz Intel Centrino
Memory 512 MB RAM
OS Debian Linux 2.6.3 Laptop

Wireless NIC IEEE 802.11b
The most time consuming activity in setting up the testbed

consisted of installing Linux-based operating systems in all
the equipment. This was necessary to accommodate certain
operating requirements that were expected from our
framework, such as the ability to interact with lower-level
protocols i.e. routing, that are inaccessible through Windows-
based systems. While this process is simplified as far as
laptops were concerned, the same did not stand for the PDAs.
To date these equipments do not have a standardized version
of Linux for their configuration. The only available solution is
an extremely useful, open-source effort, namely Familiar
Linux [16]. We were forced to implement certain changes to
support proper operation of our framework, mostly in terms of
allowing Java applications to be executed on the PDAs. These
were in the form of certain kernel re-compilations. Extensive
testing was performed before the actual deployment of our
platform on the testbed to examine its proper operation under
real ad hoc network conditions. Upon that we set forward to
implement our platform in a manner that caters for the limited
resources of such wireless devices, but in parallel does not
make performance or operational compromises.

The platform is implemented using the Java 2 Micro
Edition (J2ME) [15]. This version requires a much smaller
memory footprint than the standard or enterprise edition,
while at the same time it is optimized for the processing power
and I/O capabilities of small mobile devices. We also used the
Connected Device Configuration (CDC) framework instead of
the limited one (CLDC), as the latter lacks support for
required advanced operations. We chose to use Java because
of its ubiquity, platform independence and the fact that it
integrates naturally with Java-based plugins for node
configuration. Our platform though caters also for C/C++-
based plugins. The use of Java requires MNs to have the Java
Runtime Environment (JRE) installed. Although this is
relatively memory-hungry, our hands-on experience confirms
that even the resource-poor PDAs can comfortably support the
execution of the JRE. Trivial FTP (TFTP) [14] was used for
the distribution of the plugins. It is less complex than FTP and
consumes less network resources. The communication
between the mobile nodes uses the lightweight XML-RPC
protocol [13]. We chose an XML-based approach because we
also use XML to represent contextual data collected by mobile
nodes. XML handling necessitates a lightweight XML API
and in that respect we used the J2ME kXML2 parser

(http://kxml.sourceforge.net/).

TABLE 2
 JAVA IMPLEMENTATION PACKAGES

Package Description
Utils Generic classes to handle network

connectivity and neighbor discovery, file
parsing and information handlers.

Tftp Classes that implement the TFTP protocol for
file transfers.

Sensors Classes that interact with the sensors to
collect raw data. A generic sensor interface
guides extensibility.

Models Specific context information models
introduced into the system by an
administrator.

Context Functionality needed to parse and process
context models as these were defined in the
“models” package.

Plugin Classes that provide the functionality for the
dynamic, programmable framework for the
dynamic (re-) configuration of mobile nodes.

ccp Refers to the CCP entity of the context
management framework.

cdp Implements the CDP and PDP entities.
Cluster manager classes support the
organizational model’s operation.

cmt CMT and Manager Node functionality. The
organizational model is supported by means
of cluster manager classes.

cr Context Repository (CR) related classes.
Indexing and storage optimizers are also
supported by relevant classes.

We have designed, developed and implemented the

proposed context-aware self-management framework for
MANETs. Having utilized J2ME that is targeted for small
mobile devices, we assert that the system implementation
requirements are satisfied. For the purposes of the proposed
context-aware self-management framework we developed 10
packages that fully support the desired functionality in terms
of the self-management loop that was previously described.
Table 2 describes briefly these packages.

The proper operation of our framework is proved by the
experiments performed in the real ad hoc network, i.e. our
experimental testbed. These are presented in the following
section. Table 3 summarizes software metrics pertaining to
our implementation. It is evident that the platform is
lightweight since the implementation is considered to be
limited in terms of lines of code, a metric which is
approximately 7000. A lot of effort was placed on code
optimization and refinement and thus led to a small size of the
produced code, in the range of a few Kbytes, i.e. 50.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

TABLE 3
IMPLEMENTATION SOFTWARE METRICS

Metric Value
of packages 11
Total lines of code 7009
of classes 99
of attributes 373
Nested block depth Mean: 1.485

Std deviation: 0.852
of methods 499
McCabe Cyclomatic
Complexity

Mean: 1.858
Std deviation: 0.913

Depth of inheritance tree Mean: 1.394
Std deviation: 0.489

VI. EVALUATION

The scenario we chose to test on our experimental testbed
includes the dynamic change of the routing protocol used in
the MANET. MANET routing protocol performance is
dependent on the stability of the network itself. Reactive
routing protocols are better suited for very volatile network
topologies, while proactive approaches for more static
MANETs. The scenario involves collecting context
information from the surroundings of the mobile nodes and
using these to predict node mobility. This information is
gathered from the hyper-cluster and a MANET-wide mobility
ratio is derived indicating the frequency of prospective
topological changes. This ratio is constantly being monitored.
In our application scenario, we consider a volatile MANET
where the AODV protocol is running (AODV-UU
implementation). By monitoring the mobility ratio the hyper-
cluster nodes collectively infer – through the appropriate
policy monitored objects - that the network is becoming less
mobile and thus the routing protocol should switch to a
proactive one like OLSR (www.olsr.org implementation) in
order to achieve better efficiency. The identified configuration
change is signaled through the PEPs to all mobile nodes in the
MANET and the AODV plugin is terminated, while the OLSR
plugin is activated as previously described.

The scenario serves the purpose of presenting both the self-
configuration and self-optimizing aspects of the platform, as
well as the platform functionality. The self-configuration
aspect is apparent from the scenario itself, while in this case
the self-optimizing aspects refer to the fact that by changing
the network protocol we achieve better performance of the
network by means of bandwidth consumption (proactive and
reactive routing protocols consume different amount of
bandwidth and work better in different network states).

Results from testbed measurements prove first of all that the
framework functions properly, since the routing protocol
dynamic switching occurs smoothly and in accordance with
the network mobility, while the situation can revert to the
original configuration if the necessary conditions are met. The
framework as evaluated in our testbed seems to fulfill its goal

as being lightweight and deployable on devices with limited
resources, e.g. PDAs. The time needed for its initialization is
20 msec for the laptops and 736 msec for the PDAs, while the
memory utilization was 47 KB and 49 KB respectively. The
differences in time are attributed to the different processing
capabilities, while memory consumption is almost identical.

The other parameter of the testbed experimentation
validates the efficiency of the framework. From the moment
the hyper-cluster identifies the need to alter the routing
protocol, up until the activation of the new routing protocol
the time required is at acceptable levels, being dependent on
the size of the routing plugin and the network size. The
dependency is almost linear, as is evident from Table 4, for a
network expanding from 5 to 7 nodes (bus topology is
considered). The OLSR routing plugin has a size of 150 KB.
The times are acceptable since the plugin has a notable size
and routing protocol termination (AODV) and activation
times (OLSR) are considered.

TABLE 4
OLSR ACTIVATION TIME VS. NETWORK SIZE

Network Size OLSR Plugin
Distribution
& Activation

Similarity
Ratio to

Linearity
5 nodes 18763.3 msec
7 nodes 26681.4 msec 94,8 %

VII. CONCLUSIONS

The quest to achieve self-management of mobile ad hoc
networks was what drove the research undertaken in this
paper. To this extent we studied the diverse aspects of
providing management for MANETs in an autonomic manner.
These included the monitoring of surrounding context
information; organizing the MANET in a scalable and reliable
manner; employing a policy-based management scheme in the
MANET realm; managing context information effectively so
as to ensure network-wide understanding of conditions in a
dynamic fashion; dynamically configuring the MANET
according to high-level management decisions; and providing
for actual deployment of the proposed self-management
framework on a MANET.

Our proposed framework serves as an operating proof-of-
concept for our research. Based on our work we assert that we
can exploit context awareness to provide a generic and
efficient practical framework to achieve self-management of
MANETs taking into account their inherent characteristics.
Nevertheless, it is essential to stress that self-management
cannot be achieved in the absence of the human user. Pure
autonomy requires artificial intelligence, long-term research of
which has pinpointed the difficulties in achieving relevant
goals. The framework we propose exploits user intelligence
and intertwines it with system efficiency to realize the task of
enabling context-driven self-management of MANETs.

We plan to further experiment with additional case-studies
on the self-management of MANETs and complement the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

initial evaluation presented in this paper, as the main focus so
far was has been the design and implementation of the
proposed framework.

REFERENCES
[1] Haas, R., Droz, P. & Stiller, B., “Autonomic service deployment in

networks”, IBM Systems Journal, Vol. 42(1), 2003
[2] Kephart, J.O. and Chess, D.M., “The Vision of Autonomic Computing”,

IEEE Computer, January 2003
[3] Ganek, A. & Corbi, T.A., “The dawning of the autonomic computing

era”, IBM Systems Journal, Vol. 42(1), 2003
[4] Perkins, C. E., Ad Hoc Networking, 2001 Addison Wesley Longman

Inc.
[5] Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S. and Rao,

S., “AUTONOMIA: An Autonomic Computing Environment”, IEEE
International Conference on Performance, Computing and
Communications, April 2003

[6] L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J-P. Hubaux, J-Y. Le
Boudec "Self-Organization in Mobile Ad-Hoc Networks: the approach
of Terminodes", IEEE Communication Magazine, Vol. 39 (6), June 2001

[7] Chlamtac, I., Conti, M. & Liu, J. J.-N., “Mobile ad hoc networking:
imperatives and challenges”, Ad Hoc Networks 1(2003), pp. 13-64,
ScienceDirect, Elsevier 2003

[8] A. Hadjiantonis, A.Malatras and G. Pavlou, “A context-aware, policy-
based framework for the management of MANETs”, 7th IEEE Intl
Workshop on Policies for Distributed Systems and Networks (POLICY
06), June 2006.

[9] A. Malatras, G. Pavlou S. Gouveris, S. Sivavakeesar and V. Karakoidas,
“Self Configuring and Optimizing Mobile Ad Hoc Networks”, Poster,
IEEE International Conference on Autonomic Computing (ICAC 2005),
June 2005

[10] Chadha, R., Cheng, H., Cheng, Y.-H., Chiang, J., Ghetie, A., Levin, G.,
and Tanna, H., “Policy-based mobile as hoc network management”, 5th
IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY04), 2004

[11] Bellavista, P., Corradi, A., Montanari, R., Stefanelli, C., “Context-aware
middleware for resource management in the wireless Internet”, IEEE
Transactions on Software Engineering, Vol 29(12), December 2003

[12] Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.,
“Reconfigurable Context-Sensitive Middleware for Pervasive
Computing”, IEEE Pervasive Computing, July-September 2002

[13] XML-RPC specifications web site, http://www.xmlrpc.com/spec, visited
February 2007

[14] K. Sollins, TFTP Protocol, IETF RFC 1350, July 1992
[15] Java 2 Mobile Edition Homepage, http://java.sun.com/javame/index.jsp,

visited February 2007
[16] The Familiar Project Homepage, http://familiar.handhelds.org/, visited

February 2007

