
Enhancing Multi-Source Content Delivery in
Content-Centric Networks with Fountain Coding

George Parisis
Univ. of Sussex, UK

g.parisis@sussex.ac.uk

Vasilis Sourlas,
UCL, UK

v.sourlas@ucl.ac.uk

Konstantinos V. Katsaros
UCL, UK

k.katsaros@ucl.ac.uk
Wei Koong Chai

UCL, UK
w.chai@ucl.ac.uk

George Pavlou
UCL, UK

g.pavlou@ucl.ac.uk

ABSTRACT
Fountain coding has been considered as especially suit-
able for lossy environments, such as wireless networks,
as it provides redundancy while reducing coordination
overheads between sender(s) and receiver(s). As such
it presents beneficial properties for multi-source and/or
multicast communication. In this paper we investigate
enhancing the efficiency of multi-source content delivery
in the context of Content-Centric Networking (CCN)
with the usage of fountain codes. In particular, we ex-
amine whether the combination of fountain coding with
the in-network caching capabilities of CCN can further
improve performance. We also present an enhancement
of CCN’s Interest forwarding mechanism that aims at
minimizing duplicate transmissions that may occur in a
multi-source transmission scenario, where all available
content providers and caches with matching (cached)
content transmit data packets simultaneously. Our sim-
ulations indicate that the use of fountain coding in CCN
is a valid approach that further increases network per-
formance compared to traditional schemes.

CCS Concepts
•Networks → Network architectures; Routing pro-
tocols; Network algorithms; Network simulations; Routers;
Network services;

Keywords
Information-centric networks; Fountain coding; In-net-
work caching; Multi-source content delivery.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CCDWN’15 December 01-04, 2015, Heidelberg, Germany.
c© 2015 ACM. ISBN 978-1-4503-4054-0/15/12...$15.00.

DOI: http://dx.doi.org/10.1145/2836183.2836187

1. INTRODUCTION
Content-Centric Networking (CCN) [12], also referred

to as Information-Centric Networking (ICN) [23], is emerg-
ing as one of the principle future networking paradigms.
The vast majority of Internet activities are related to
content retrieval and the location of the requested con-
tent is becoming less important. In recent years, sev-
eral ICN architectures that enable content access and
delivery based on network location-independent names,
instead of endpoint addresses, have been proposed. De-
spite their differences, all ICN architectures view in-
network caching as an intrinsic building block. Each
packet is uniquely identified and authenticated without
being associated to a specific host; cache-enabled nodes
in the network cache passing-by data packets. In princi-
ple, network caches can serve future matching interests
(anycast), therefore data requests do not have to get
forwarded to the content origin/server.
According to this line of thought, research has re-

cently focused on the optimization of the in-network
caching system in order to improve efficiency, reduce de-
livery delay and inter-domain traffic. The cache-everything-
everywhere scheme [12] has been shown to be subop-
timal and, as a result of that, a plethora of selective
caching approaches have been recently proposed, in which
routers lying on the delivery path of an item decide,
based on a criterion, whether or not to cache passing by
packets [11]. In-network, packet-level caching in CCN
has been extensively studied from different perspectives,
such as content popularity estimation (e.g., [4]), crite-
ria for determining the probability of performing local
caching (e.g., [5]) and techniques to reduce caching re-
dundancy (e.g., [18]). The work presented in this paper
is orthogonal to all those previous caching approaches,
which mostly look at how and where to cache content.

Fountain coding is an information-theoretic approach
for reliably transmitting data from one or more senders
to one or more receivers; i.e., fountain codes can be
used for data multicasting and multi-sourcing [3, 16].
The fountain coding approach was originally designed

for point-to-multipoint transmissions of large files over
lossy channels [13,14,19], but the use of coding in con-
tent distribution networks (e.g., [6, 8, 10]), content re-
trieval in sensor networks (e.g., [7, 9]) and ICN (e.g.,
[17]) has already demonstrated significant benefits.
In this paper, we explore the usage and potential

benefits of fountain coding for disseminating content in
the CCN/NDN [12] architecture and investigate how in-
network caching and the reuse of encoding symbols can
further enhance performance in such a multipoint-to-
multipoint environment. Such enhancement could sub-
stantially benefit content dissemination to wireless/mobile
users, especially in the presence of content replication
or even peer-to-peer communication i.e., in the presence
of multiple content sources, while keeping inter-source
and/or sender-receiver coordination overheads to a min-
imum.
In the NDN architecture, whenever an Interest packet

arrives at some face of a router, the router searches for
matching content in its Content Store (CS) and, if such
content is found, it responds with the respective Data
packet. The router sends the Data packet to the face
the Interest arrived at. The Interest is satisfied and
therefore discarded (per packet Interest). If the router
does not find any matching content in the CS and there
is an exact-match Pending Interest Table (PIT) entry,
the interest’s arrival face is added to the PIT entry’s Re-
questing Faces list and the Interest packet is discarded.
Otherwise, if there is a matching Forwarding Informa-
tion Base (FIB) entry, the Interest packet is sent up-
stream towards the content provider. In particular, the
arrival face is removed from the face list of the match-
ing FIB entry, and if the resulting list is not empty, the
packet is sent out to one or more of the remaining faces
(in case of multiple content origins/replicas and based
on some Forwarding Strategy [12]); a new PIT entry
that records the Interest and its arrival face is created.
In NDN a router may forward an incoming Interest

towards all router interfaces that point to a provider of
the requested content (FIB entries [12]). This could lead
to multiple copies of the same Data packet, reducing the
effectiveness of caching and multi-sourcing. To mini-
mize this overhead, propose a new component named
“Retrieved Information Base” (RIB), so that routers
that belong on the same path do not send the same
cached packets towards the interested user. Finally, we
compare the performance of fountain coding in NDN
against the traditional NDN in-network caching scheme
and other probabilistic caching schemes.
The rest of the paper is organized as follows. In Sec-

tion 2, we present through a simple example the func-
tionality of the fountain coding and its advantages that
led us to consider exploiting it in CCN, whereas in Sec-
tion 3 we describe the application of fountain codes in
CCN/NDN architecture. In Section 4, we evaluate the
performance of caching and reusing encoded packets in
a multi-source environment, as well as the performance
benefits of the newly introduced RIB component. Fi-

Figure 1: A fountain coding example

nally, Section 5 concludes the paper and outlines direc-
tions for future research.

2. BACKGROUND OF FOUNTAIN COD-
ING

In fountain coding, a piece of content (content item) is
initially fragmented to equally sized fragments (F1 to F5

in Figure 1). Using these fragments, a sender/content
provider can then construct and send a very large num-
ber of encoding symbols; each symbol has the same size
as any fragment. Encoding symbols can be constructed
on the fly, as required, or pre-constructed and stored
prior to any request for the content item. In total, the
number of encoding symbols required to decode the re-
quested content is slightly larger than the number of
its fragments. Receivers can recover the requested item
from any such set of symbols therefore symbol losses
and reordering are not important [13].
Encoding. To construct an encoding symbol, a sender
first calculates its degree, which is sampled from a de-
gree distribution (e.g., the Robust Soliton distribution
in [13]). The degree specifies the number of content
fragments that will be encoded (XORed) in each sym-
bol. The properties of the distribution are crucial for
efficient encoding and decoding as well as for minimising
network overhead [13, 14, 19]. After calculating the de-
gree, the sender selects uniformly at random degree frag-
ments as neighbours of the encoding symbol (an edge is
connecting each encoding symbol with all its neighbours
in the bipartite graph shown in Figure 1). The neigh-
bours are XORed together to form an Encoding Symbol
(ES). For example, ES1 has degree 2 and is the result
of XORing fragment F1 with F3.
Decoding. In its simplest form, decoding is based on
belief propagation [13]. A receiver utilises a symbol of
degree one (i.e., a decoded symbol - a fragment of the
original data) to partially or fully decode other sym-
bols by XORing them with it (e.g., ES4 in Figure 1).
Decoding a fragment may result to further decoding a
large number (or even all) of previously received and
yet undecoded symbols.1

For the example illustrated in Figure 1, let us assume

1Both encoding and decoding operations are associated
with processing overheads. We plan to focus on these
overheads in our future work.

that the sender encodes and sends symbols ES1 to ES8

but the receiver receives them in the following order:

ES1, ES6, ES3, ES4, ES5, ES8

Note that encoding symbols ES2 and ES7 are erased
(lost while being transferred), while some arrive “out-
of-order”(quoted since there is no concept of ordering in
fountain coding) as depicted in Figure 1. Upon receiv-
ing symbol ES1, the receiver locally stores it since two
original fragments (F1 and F3) are XORed in it and no
decoding can be performed. It also stores symbols ES6

and ES3 for the same reason. The next received sym-
bol, ES4, has degree one and only contains F4 which is
decoded. This symbol is also XORed with all previously
stored symbols that contain fragment F4 (in this case
only with symbol ES6). This action effectively removes
the edge between nodes F4 and ES6 in the bipartite
graph shown in Figure 1. ES6 now contains fragments
F1 and F5; fragment F4 has been XORed out of sym-
bol ES6. The next received symbol, ES5, with degree
2, contains fragments F2 and F5, none of which is yet
decoded; therefore it is stored until it can be decoded.
The last symbol, ES8 contains fragments F2 and F4.
F4 has been previously decoded and it can be used to
decode F2 by XORing it out of ES8 (removing the edge
between nodes F4 and ES8 in Figure 1). In turn, this
creates a chain decoding. The newly decoded fragment
F2 decodes F1 and F5 from the previously received sym-
bols ES3 and ES5, respectively. Finally, F1 decodes F3

from ES1. At this point the original piece of content is
decoded.
Fountain coding is an ideal approach for supporting

the following types of data transport, all of which are
compatible with CCN/NDN:
Multicast. Fountain coding has been a major com-
ponent of reliable multicasting proposals, such as [3],
where clients acquire bulk data at times of their choos-
ing without requiring feedback channels. Congestion
control can moreover be implemented in a layered, receiver-
driven fashion, where a client reacts to network conges-
tion by registering to and unregistering from different
layers (multicast groups) [15].
Multi-Source. Regardless of the number of receivers,
multiple senders can contribute to the production of
encoding symbols. As long as all sources of the data
produce encoding symbols based on the procedure de-
scribe above and these symbols are not identical, then
all symbols equally contribute to the decoding of the
data at the receiver’s side. Note that ensuring symbol
uniqueness is a matter of randomising the creation of
seeds that are used for the calculation of the degree and
the neighbours set for each symbol.
Multi-Path and Multi-Home. Encoding symbols
may follow different paths in the network without af-
fecting decoding or its efficiency. Symbols may also ar-
rive through different network interfaces. The receiver
is oblivious to that, only requiring a specific number of

encoding symbols to decode the original data.

3. CCN WITH FOUNTAIN CODES
In this section we describe the application of fountain

codes in the CCN/NDN architecture. We also present
an enhancement of the Interest forwarding mechanism
that alleviates the overhead of potential duplicate trans-
missions of Data packets in multipoint-to-multipoint
communication scenarios.
With fountain coding, each symbol is sent along with

some information that the receiver uses to extract its
degree and neighbours (e.g., the seed that was used to
(pseudo) randomly generate these values). Such infor-
mation can be part of the name of each CCN/NDN
data packet. In the NDN architecture [12] data ex-
change is clocked by Interest requests which are sent by
receivers in the network. Each packet of the content
item is requested separately and the network is respon-
sible for forwarding interest requests towards a source
of the data. Sending an Interest for each data packet
wastes uplink bandwidth and burdens routers with the
continuous maintenance of large amounts of state [22].
Furthermore, if an Interest is lost, the corresponding
data packet will not be forwarded, reducing the per-
ceived quality of service. In this paper we follow an
approach with Persistent Interests (PIs) similar to [22],
where routers store PIs (in the PIT) for a period of time;
PIs are not deleted after a matching data packet is for-
warded. Instead, they remain in the PIT until users
explicitly unsubscribe (i.e., when the requested content
item has been retrieved) or their lifetime expires. We
believe that the usage of PIs and fountain coding fits
better in a multi-source environment, as also shown in
our performance analysis.
Naming encoding symbols. Interests name a piece
of content as a whole (e.g., /bbc/item1). A data packet
that satisfies such an interest is named like /bbc/item1/seed,
where seed is the seed that was used for pseudo-randomly
generating the degree and neighbours for the encoding
symbol carried in this data packet. On the receiver’s
side, degree and neighbours are calculated based on the
seed provided in the name.
To enable caching, one could use the following name

convention for Interest packets: /bbc/item1/RIB, where
RIB, i.e., Retrieved Information Base (RIB), is a new
name component that represents the seeds of all encod-
ing symbols that are cached by routers (at the time the
Interest was processed) on the path that has been fol-
lowed by the Interest so far. Essentially, with the RIB
component, each router can know which of its currently
cached symbols have not been already replayed to the
receiver(s) by other routers in the path. RIB is updated
at each hop along the path and is used to minimize the
overhead of duplicate transmissions.
A client initially sends an Interest with an empty RIB.

Each router along a path towards a content origin in-
cludes in the RIB the seeds of the matching cached en-

 FC-RIB-item FC-RIB-pckt
 FC-noRIB-item FC-noRIB-pckt
 noFC-RIB-item noFC-RIB-pckt
 NDN-item NDN-pckt

2 4 6 8 10 15 20 25 30

0.00
0.05
0.10
0.150.2

0.4

0.6

0.8
V=110, M=100K, C/M=0.01, k=1000, p=0.4, z=0.7

C

ac
he

 H
it

R
at

io

Number of Sources per Item

 FC-RIB-avg FC-RIB-max
 FC-noRIB-avg FC-noRIB-max
 noFC-RIB-avg noFC-RIB-max
 NDN-avg NDN-max

2 4 6 8 10 15 20 25 30

0
2
4
6

10

15

20

25

30
V=110, M=100K, C/M=0.01, k=1000, p=0.4, z=0.7

Li
nk

 S
tre

ss
 (i

te
m

s/
se

c)

Number of Sources per Item
2 4 6 8 10 15 20 25 30

0.0

0.8

1.6

2.4

3.2

4.0

4.8

 FC-RIB
 FC-noRIB
 noFC-RIB
 NDN

V=110, M=100K, C/M=0.01, k=1000, p=0.4, z=0.7

O
ve

rh
ea

d
ite

m
 tr

an
sm

is
si

on
 (i

te
m

s)

Number of Sources per Item

Figure 2: Effect of the number of different content sources per item on the performance of the
considered caching schemes.

coded symbols that will be sent back to the client in
response to the received Interest. Finally, the content
origin, upon receiving an Interest, sends to the client
encoded symbols that are not included in the RIB until
either the PI expires or the user notifies the server that
the content item has been retrieved (and fully decoded).
A realization of the RIB could be through the us-

age of Bloom filters [1]. It is well known that the us-
age of Bloom filters may yield false positives. In our
case this means that a router might erroneously assume
that cached packets have already been transmitted to
the requesting user. It is important to highlight that
false positives do not result in the delivery of incorrect
data when fountain coding is used since other encoded
symbols can be used to decode a content item. On the
downside, a false positive might result in some extra
traffic, since other encoded packets should be transmit-
ted from another router further along the path or from
the content origin itself. Nevertheless, the probability
of a false positive depends on the number of bits used
and the number of hash functions. For example, using
four bits per element2, as explained in [2], we can create
filters for a realistic number of cached encoded symbols
(e.g., a couple of thousands) which fit in an MTU-sized
Interest packet and yielding an accuracy in the area of
85% (less than 15% of false positives). Further accuracy
can be achieved using more bits and larger packets. Due
to lack of space, in our evaluation we assume that false
positives are equal to zero; we leave the inclusion of false
positives for future investigation.
In-network caching. A CCN router can replay all (or
a number of cached encoding symbols) from its cache.
In most cases, a cache will have to check whether any of
the currently cached symbols for the requested content
item has not been previously received by the receiver.
The RIB component in the Interest packet can be used
for that purpose.
In this paper, we assume that each intermediate router

along the path from the user to a content provider only

2Here an element is a cached encoded symbol identified
by its respective seed.

sends cached encoded symbols. Only content providers
send newly constructed encoded symbols. Another al-
ternative would be to allow network caches to decode
pieces of content using passing-by symbols, instead of
merely caching them. This would, in turn, allow them
to create new symbols, just as original content providers
do, minimising the probability of disseminating dupli-
cate symbols. This alternative approach is left for fu-
ture work. Also, since the cache-everything-everywhere
approach of CCN/NDN has been shown to be subopti-
mal, we assume a simple opportunistic caching mecha-
nism where each router caches an encoding symbol with
probability p (p = 1 in NDN), regardless of whether a
symbol is cached elsewhere or not along the path. More
sophisticated approaches where the degree distribution
of the coding process is taken into consideration when
deciding which symbol to cache, are also left for future
investigation.

4. PERFORMANCE EVALUATION
We implemented the proposed fountain coding ap-

proach in CCN in a Matlab-based simulator and we
evaluate the performance of various caching mechanisms
based on the Interoute network (V = 110 nodes) topol-
ogy as provided in the Zoo topology dataset3. In the
considered scenario, each node is associated with a cache
and we assume that, by default, all caches have the same
capacity C, defined as a percentage of the content cat-
alogue size M .
In [21], the authors indicate that in their VoD dataset

the size of the catalogue of watched videos amounts to
500K unique items. In our experimentation, we con-
sider a list of M = 100K content items, a number that
preserves a good approximation of a realistic content
catalogue while allowing our simulations to run in re-
alistic time-scales. Additionally, and without loss of
generality we assume that each item is fragmented into
k = 1000 equally sized fragments. We also assume that
each content item is served by S content origins, that

3http://www.topology-zoo.org/dataset.html

 FC-RIB-item FC-RIB-pckt
 FC-noRIB-item FC-noRIB-pckt
 noFC-RIB-item noFC-RIB-pckt
 NDN-item NDN-pckt

0.0 0.5 1.0 1.5 2.0 4 8 12 16 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 V=110, M=100K, S=5, k=1000, p=0.4, z=0.7

C
ac

he
 H

it
R

at
io

Storage Capacity %C/M

 FC-RIB-avg FC-RIB-max
 FC-noRIB-avg FC-noRIB-max
 noFC-RIB-avg noFC-RIB-max
 NDN-avg NDN-max

0.0 0.5 1.0 1.5 2.0 4 8 12 16 20

0.0

1.5

3.0

4.56
9

12
15
18
21
24
27 V=110, M=100K, S=5, k=1000, p=0.4, z=0.7

Li
nk

 S
tre

ss
 (i

te
m

s/
se

c)

Storage Capacity %C/M
0.0 0.5 1.0 1.5 2.0 4 8 12 16 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 FC-RIB
 FC-noRIB
 noFC-RIB
 NDN

V=110, M=100K, S=5, k=1000, p=0.4, z=0.7

O
ve

rh
ea

d
ite

m
 tr

an
sm

is
si

on
 (i

te
m

s)

Storage Capacity %C/M

Figure 3: Effect of the caching capacity of each router on the performance of the considered caching
schemes.

represent servers which are arbitrarily attached to S
(different for each item) edge nodes.
To generate user demand, we assumed that item pop-

ularity is given by a Zipf law distribution of exponent
z = 0.7 at each network node/router, and we assumed
that users attached to each router are requesting con-
tent items with a rate of one request per second. Thus,
the request rate for each item at each node varies from
0-1 req/sec depending on its popularity and ranking.
Generally, the popularity of each content item may dif-
fer from place to place, a phenomenon that is referred
to as locality of interest. In our model, we assume that
the request popularity exponent has the same value z
at each router; this captures the global popularity of
items. In each router the ranking/order of the items
within the Zipf distribution is different; this captures
the different locality of interest.
We have simulated four different caching schemes.

More specifically, we evaluated caching schemes when
using fountain coding with and without the RIB com-
ponent (FC-RIB and FC-noRIB accordingly), as well as
the standard NDN caching mechanism with and with-
out the RIB component (noFC-RIB and NDN accord-
ingly). In the fountain coding-based schemes as well as
in the noFC-RIB scheme, we assumed that each router
caches a passing-by packet with a probability equal to
p = 0.4 (p = 1 in the NDN scheme).
Our evaluation is based on the following metrics:

• Cache Hit Ratio: We present both the item level as
well as the packet level hit ratio. The item level hit
ratio is the ratio of the content requests that have
found the requested item (all its fragments/packets)
cached within the network, over the total number of
issued requests. The packet level hit ratio is the ratio
of the packets (all the retrieved packets encoded or
not) found in the network (and not at the content
origins) and used for the decoding of an item for the
fountain coding schemes and for the retrieval of an
item for the standard NDN schemes (not duplicate
found packets).

• Average Link Stress (in items/sec): the mean num-
ber of delivered content items that traverse each link
of the network.

• Maximum Link Stress (in items/sec): the maximum
number of delivered content items that traverse the
most constrained/congested link of the network. This
metric along with the Average Link Stress metric is
indicative of the load balancing capabilities of each
examined scheme.

• Traffic Overhead (in items): the average number of
extra items that a requesting user receives from the
network in order to receive the requested content.
This is the amount of content that the RIB com-
ponent (wherever used) and the duplicate dropping
mechanisms of the NDN architecture did not man-
age to save due to the multi-source environment and
the simultaneous request of every available content
origin.

Impact of the number of content sources. In
Figure 2 we depict the impact of the number of differ-
ent content sources S in the examined schemes. Gen-
erally, we observe that the usage of fountain coding
significantly outperforms the traditional schemes when
the number of sources are more than one. Only when
there is a single content origin the traditional NDN
caching mechanism outperforms the fountain coding-
based schemes, given the overhead (in terms of required
encoding symbols) that is associated with the decoding
of the original data. The fountain coding schemes are
not affected by the number of sources regarding the link
stress metrics and they perform up to 3 times better
regarding the packet level hit ratio (2 times better re-
garding the item level hit ratio) compared to the tradi-
tional NDN caching mechanism. Also, the usage of the
RIB retains the network overhead at a tolerable level
and its usage, combined with the simple probabilistic
caching method, performs up to 80% better compared
to the cache-everything-everywhere NDN scheme. Fi-
nally, the proposed RIB mechanism (even without be-
ing combined with fountain coding) is useful for the

minimization of the overhead in CCN architectures and
definitely worth further exploration.
Impact of the cache size. In Figure 3 we illustrate
the impact of the cache capacity, expressed as the frac-
tion of the items’ population that can be stored in the
cache of a router for a given number of servers (S = 5)
per content item. As previously, the schemes that incor-
porate the fountain coding perform significantly better
compared to the other ones. Note that for low cache
capacities (≤ 2% of the total information), we observe
that the packet level hit ratio is twice as high as in
the traditional NDN scheme. This means that in real
world scenarios (small cache size at each router), even
if the item level hit ratio is small, more than 50% of the
delivered packets are found in the network, which, in
turn, means that combining fountain coding with our
proposed RIB approach could be proven very useful for
future ICN applications. Finally, as in the previous ex-
periment, the usage of the RIB component can save up
to 70% of the duplicate transmissions even for very low
caching capacities.

5. CONCLUSIONS
In this paper we examined the usage of fountain cod-

ing in Content-Centric Networks. Particularly, we in-
vestigated the performance of the NDN architecture and
its in-network caching capability when combined with
fountain coding. We also proposed an enhancement to
the NDN Interest forwarding mechanism to minimize
the duplicate transmissions in a multi-source environ-
ment, where all possible content origins are requested
simultaneously. Our simulation-based analysis shows
that the usage of fountain coding in CCN is a valid tool
for the retrieval of cached content since it significantly
outperforms traditional schemes.
Apart from the future work hints given throughout

the paper, this work can also be extended to accommo-
date the retrieval of cached content in disruptive scenar-
ios (e.g., [20]), where the content origin is not always
present due to its own mobility or to network node/link
failures and the transmission of a packet between two
nodes is prone to errors.

Acknowledgments
V. Sourlas work is supported by the EC through the
FP7 INTENT project (grant no. 628360). W. K. Chai
work is supported by the CHIST-ERA/EPSRC UK project
CONCERT (grant no. EP/L018535/1).

6. REFERENCES
[1] B. H. Bloom. Space/Time Trade-offs in Hash

Coding with Allowable Errors. Commun. ACM,
1970.

[2] J. W. Byers, J. Considine, M. Mitzenmacher, and
S. Rost. Informed content delivery across adaptive
overlay networks. In ACM SIGCOMM, 2002.

[3] J. W. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM,
1998.

[4] G. Carofiglio, M. Gallo, L. Muscariello, and
D. Perino. Modeling data transfer in
content-centric networking. In ITC, 2011.

[5] W. K. Chai, D. He, I. Psaras, and G. Pavlou.
Cache “less for more” in information-centric
networks (extended version). Computer
Communications, 2013.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J.
Wainwright, and K. Ramchandran. Network
coding for distributed storage systems.
Information Theory, IEEE Transactions on, 2010.

[7] A. G. Dimakis, V. Prabhakaran, and
K. Ramchandran. Ubiquitous Access to
Distributed Data in Large-scale Sensor Networks
Through Decentralized Erasure Codes. In IPSN,
2005.

[8] A. G. Dimakis, V. Prabhakaran, and
K. Ramchandran. Decentralized erasure codes for
distributed networked storage. IEEE/ACM
Transactions on Networking (TON), 2006.

[9] A. G. Dimakis, V. Prabhakaran, and
K. Ramchandran. Distributed fountain codes for
networked storage. In IEEE ICASSP, 2006.

[10] C. Gkantsidis and P. R. Rodriguez. Network
coding for large scale content distribution. In
IEEE INFOCOM, 2005.

[11] A. Ioannou and S. Weber. Towards on-path
caching alternatives in Information-Centric
Networks. In IEEE Conference on Local
Computer Networks, LCN, 2014.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton,
M. F. Plass, N. H. Briggs, and R. L. Braynard.
Networking Named Content. In ACM CoNEXT,
2009.

[13] M. Luby. LT Codes. In Symposium on
Foundations of Computer Science, 2002.

[14] M. Luby, A. Shokrollahi, M. Watson, and
T. Stockhammer. RFC 5053 - Raptor Forward
Error Correction Scheme for Object Delivery.
Technical report.

[15] S. McCanne, V. Jacobson, and M. Vetterli.
Receiver-driven Layered Multicast. SIGCOMM
Comput. Commun. Rev., 1996.

[16] G. Parisis, T. Moncaster, A. Madhavapeddy, and
J. Crowcroft. Trevi: Watering Down Storage
Hotspots with Cool Fountain Codes. In ACM
HotNets, 2013.

[17] G. Parisis and D. Trossen. Filling the Gaps of
Unused Capacity Through a Fountain Coded
Dissemination of Information. SIGMOBILE Mob.
Comput. Commun. Rev., 2014.

[18] I. Psaras, W. K. Chai, and G. Pavlou. In-Network

Cache Management and Resource Allocation for
Information-Centric Networks. IEEE TPDS, 2014.

[19] A. Shokrollahi. Raptor codes. Information
Theory, IEEE Trans. on, 2006.

[20] V. Sourlas, L. Tassiulas, I. Psaras, and G. Pavlou.
Information Resilience through User-Assisted
Caching in Disruptive Content-Centric Networks.
In IFIP NETWORKING, 2015.

[21] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin,
M. A. Kaafar, and S. Uhlig. Trace-Driven Analysis
of ICN Caching Algorithms on Video-on-Demand
Workloads. In ACM CoNEXT, 2014.

[22] C. Tsilopoulos and G. Xylomenos. Supporting
Diverse Traffic Types in Information Centric
Networks. In ACM SIGCOMM Workshop on
ICN, 2011.

[23] G. Xylomenos, C. N. Ververidis, V. Siris,
N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.
Katsaros, and G. C. Polyzos. A survey of
information-centric networking research.
Communications Surveys & Tutorials, IEEE,
2014.

