
.

A GENERIC MANAGEMENT INFORMATION BASE BROWSER

G. Pavlou, J. Cowan, J. Crowcroft

Department of Computer Science
University College London

Gower Street, London WC1E 6BT
England

Abstract

A Management Information Base browser is a very important application in any
management environment as it enables a human manager to browse through the Management
Information Tree of a remote managed system, looking at and possibly modifying
management information. Such an application can be designed in a generic way, without
prior knowledge of the managed object classes present in a managed system. This results in a
tool that can cope with different versions of standard MIBs, proprietary extensions or even
newly introduced ones. The issues behind the concepts and the design of the generic browser
are presented in this paper; special attention is given to the issue of coping with changes in
the remote MIB in a generic fashion.

Keyword Codes: C.2.3; C.2.4
Keywords: Network Operations; Distributed Systems

1. Introduction

The OSI Network Management model is based on the object oriented paradigm:
management of physical or logical real resources is enabled through abstractions of them
known as Managed Objects (MOs) [1]. These and their properties are formally specified in an
abstract form [2] and this specification together with the access management protocol
CMIS/P [3] [4] identify uniquely the interoperable interface for management applications.
The managed object classes are organised in an inheritance hierarchy while the managed
objects constituting a Management Information Base (MIB) instance in a managed system are
organised in a Management Information Tree (MIT), according to containment relationships
[5]. In simple terms, an inheritance relationship specifies that an object is a kind of another
object, while a containment one specifies that an object is a part of another object.

The OSI Network Management standards specify facilities that are both powerful and
flexible. One of the most powerful concepts is that of allomorphism. This enables either
managed or managing systems to be extended, while at the same time allowing existing ones
that are unaware of these changes to continue functioning as normal. This flexibility is very
important as the OSI management standards will evolve over a long period of time, possibly



- 2 -

resulting in discrepancies between the managed object classes understood by managing and
managed systems. This will be true, for example, where new generations of standard
Management Information Bases have been implemented, proprietary changes to standard
MIBs have been made and new managed object classes have been introduced. Version
control problems in MIBs is known to be one of the most important management problems.

A very important application in any management environment is a Management
Information Base browser which enables the human manager to browse through the
Management Information Tree of a remote managed system, looking at and possibly
modifying information to implement management decisions. It should be emphasised here the
fact that the browser enables one to browse through a MIB instance. This is in contrast with
browsers that allow one to browse through definitions of managed object classes, in a similar
fashion to object-oriented programming language browsers as pioneered by Smalltalk.

The browser as an application can be designed in a generic way, assuming no prior
knowledge of the managed object classes present in the target managed system; it thus can
cope with the evolution of MIBs. This provides a solution to the problem of version
mismatch, proprietary extensions or completely new classes. The generic browser uses the
powerful features of the OSI Management model to enable one to move around in the
management information base and detect changes in it. It has no hard-wired knowledge of the
object classes in the target managed system. All it uses is minimal information stored in a
local database which describes mappings between the class, attribute and event identifiers and
their names and abstract syntaxes as defined by the OSI management standards. This database
should be updated regularly with information in addenda, proprietary extensions etc. This
concept can be taken a step further using the global OSI directory as a repository for this
information which could be searched when information cannot be locally found.

Another important aspect of such a tool is to allow a human manager to detect changes
in the management information. The obvious solution to this is to use polling which is a
necessary management facility but hardly satisfactory as it results in wastage of network
resources. Event reporting is better suited to the nature of the OSI Management model which
provides a rich set of facilities [6] [7]. The problem of how the browser uses these
generically is described later in detail.

The rest of the paper has the following structure: in Section 2 we look in detail in the
most important features of the OSI management model that are used to implement the generic
MIB browser. In Section 3 we present its design in terms of features and functionality and
look in detail at the two different modes of detecting changes, polling and event reporting. In
Section 4 we discuss the implementation models, concentrating on the structure and content
of the information held in the local database and the possible usage of the OSI directory as a
repository for this. Finally we present our conclusions.

2. The OSI Management Information Model

We describe here the general features of the OSI Management Information model and
in particular those used by the browser to manipulate the remote MIBs in a generic fashion.
The model is based on the object oriented paradigm and allows one to manage real resources
through abstractions of them known as managed objects. Managed Object Classes (MOCs)



- 3 -

related to various communications resources are specified by standards groups in a formal
language whose acronym is GDMO, standing for Guidelines for the Definition of Managed
Objects [2]. The management information schema, its inheritance and containment
hierarchies together with the management attributes, operations, actions, notifications and
behaviour of each managed object class are formally specified in that language.

Management of real resources takes place through instances of managed object classes
i.e. managed objects. The collection of managed objects related to the management of an
open system is known as a managed system. These managed objects are organised in a
Management Information Tree according to containment relationships. This is necessary for
naming purposes, so that managing applications can unambiguously access them. In the MIT
schema, the containment relationships between classes are specified by Name Bindings [5].
Each object class has a naming attribute in a name binding with a containing class, which
together with its value identifies the object uniquely within the scope of the latter. This is
known as a Relative Distinguished Name (RDN). The sequence of all RDNs from the top of
the tree to a managed object constitute its Distinguished Name (DN), which is unique within
the scope of the managed system. A simple example of an MIT instance and its schema are
given in Figure 1.

c
c
c
c

c
c
c
c

c
c
c
c

hhhhhhhh
c
chhhhhhhhc

c

hhhhhhhh
c
chhhhhhhhc

c

hhhhhhhh
c
chhhhhhhhc

c

hhhhhhhh
c
chhhhhhhhc

c
hhhhhhhh

c
chhhhhhhhc

c

c
c

hhhhhhhh
c
chhhhhhhh

c
c

hhhhhhhh
c
chhhhhhhh c

c
hhhhhhhh
c
chhhhhhhh

c
c

hhhhhhhh
c
chhhhhhhh

c
c

hhhhhhhh
c
chhhhhhhh c

c
hhhhhhhh
c
chhhhhhhh

systemId=null

connId
tpConn

entityId
tpEntity

subsystemId
subsystem

discrId
eFDiscr

systemId
system

connId=2464

subsystemId=4discrId=7

entityId=isode

connId=2475

Figure 1. Example of an MIT Instance and Schema

A managed object instance may belong to many allomorphic classes, enabling it to be
managed as any of them [5]. This is a very important concept as it allows one to extend a
managed object class according to specific needs without preventing other systems from
managing it. All managed object classes are derived from the generic class top, which has as
its attributes the actual class, the list of allomorphic classes, the name binding and the list of



- 4 -

packages realised in that object instance. A package is a collection of attributes, notifications,
operations and behaviour and there may be conditional (optional) ones, increasing even
further the management flexibility.

The management service/protocol CMIS/P [3] [4] enables access to management
information. It provides a rich set of operations which together with the managed object class
specifications uniquely identify the management interface between a managing and a
managed system. These services namely are:

g M-GET which reads management attributes

g M-SET which modifies management attributes

g M-ACTION which performs an action on a managed object

g M-CREATE which creates a managed object

g M-DELETE which deletes a managed object

g M-EVENT-REPORT which enables a managed system to notify a managing
application that an event has occurred.

All these operations have as common parameters the distinguished name and the
managed object class. The former enables a particular object to be addressed while the latter
enables it to be managed as a particular allomorphic class. The M-GET, M-SET, M-
ACTION and M-DELETE operations may be applied to more than one objects using scoping:
this enables one to address subordinate objects of a particular level, down to a particular level
or the whole subtree. The selection of objects may be controlled by a filter parameter,
containing assertions on attribute values connected by logical operators.

Let’s look now at those issues relevant to the generic nature of the browser. First it is
possible to get the attributes of a managed object without knowing what these are in advance.
This is achieved by specifying no attribute list in the M-GET operation which results in all
attributes being returned. Also using scoping, the subordinates of an object can be found.
Usually when searching for subordinates one specifies just one well known attribute e.g. the
"objectClass", to reduce processing in the agent. Every result will contain the object class
and distinguished name, so that any of the subordinate objects can subsequently be addressed.

The key point is that in order to bootstrap this searching process, there must be a well
known top object in the MIT. The standards specify that the top object in every managed
system will be an instance of class system, which can have any relative distinguished name.
The local distinguished name form is used in order to access this, which enables one to access
objects relative to the top. If the system object’s distinguished name is e.g.
{systemId=athena}, its local name would be {}, an empty DN. In this way the top object in a
managed system can always be accessed [5].

The other main issue relates to event reporting, whose model is described in [6]. A
managing system, such as the browser, needs to create a special management support object
called an eventForwardingDiscriminator in the remote managed system in order to receive
event reports. The main attributes of that object are a destination address, which specifies
where an event report should be sent, a discriminator construct i.e. a filter which specifies the
conditions under which the event report should be sent and an administrative state, which



- 5 -

may be used to turn the discriminator off and on. The latter may be used to avoid deleting the
discriminator in order to temporarily suspend event reporting. Via the event discriminator,
one can receive either all event reports from the remote MIB when no filter expression is
specified, or particular event reports depending on the assertions in the filter.

Finally it should be stated that the managed object class, attribute and event identifiers
are ASN.1 [8] OBJECT IDENTIFIERs i.e. a series of numbers according to the registration to
the global ISO/CCITT naming tree. Attribute values and event report information are
presentation streams i.e. instances of the ASN.1 type ANY [4]. These can only be
meaningfully manipulated if their syntax is known. This is defined in standard or other
ASN.1 modules and specified in the managed object class specification. A local database is
used to describe the mapping of class, attribute and event identifiers to their names and
abstract syntaxes. It is this information the browser uses to handle attribute and event
information in a generic fashion, as described in Section 4.

3. The Generic Browser

Designing the generic MIB browser according to the principles described above raised
two main issues: the first was how to organise the display to allow the human manager to
move around in the MIT. The second was how to ensure that the local display reflected
exactly the state of the remote MIB.

3.1 Operations and Functionality

Initially we started with the idea of displaying the whole of the containment hierarchy
of the remote MIB graphically, as a tree structure. For each node of the tree we would
display the class and relative distinguished name, allowing the user to select a specific object
to look at all its attributes. The problem with this approach is that it requires one to read the
whole management information tree and it only gives a picture of it at the time the
information was requested i.e. at the browser start-up time. Transient objects such as
connections may be created and deleted reflecting the operation of the real resource they
represent. Other managed objects, such as event discriminators may be created through
CMIS by another manager. Requesting this information periodically in order to update the
displayed MIT does not guarantee to capture all changes and is quite an expensive operation
in terms of both agent processing and network resources.

An alternative approach is to request all event reports from the remote MIB in order to
update the displayed MIT: managed objects should emit event notifications associated with
object creation and deletion. As event reports include the distinguished name of the emitting
object, the policy to update the displayed MIT is simple: if the distinguished name is
unknown to the browser it means that an object has just been created and the display is
updated. If the DN is known, one single attribute is requested to find out if the object was
possibly deleted. The problem with this approach is that requesting all event reports and - for
most of them - subsequently performing a M-GET operation may potentially create even
more traffic than periodically requesting the whole MIB!

Instead of displaying the entire MIT we adopted the notion of a current object: this is
an object whose attributes are displayed along with the class/relative distinguished names of
its immediate subordinates; the position of this object in the containment hierarchy is



- 6 -

indicated by displaying its distinguished name. The human manager may then either select a
subordinate object in order to move DOWN the MIT or move UP to the object above, making
it the new current object.

A REFRESH operation allows a manager to refresh the values of the current object
without having to move back up and down the containment hierarchy. When refreshing an
object or even when trying to move up or down the MIT, there is the possibility that the target
object no longer exists e.g. a connection has been closed resulting in the deletion of the
corresponding managed object. In that case, the browser automatically moves up the
hierarchy until it finds an object that exists.

As one moves up and down the MIT, it is also possible to MODIFY the value of an
attribute. As long as its syntax is known, the value entered from the keyboard may be
generically parsed. An M-SET operation is always attempted at the remote agent as the
browser does not know which operations are valid for each attribute of the current class; this
introduces a possible waste of network resources but this is the only way the generic browser
can ascertain if the operation is invalid, its value wrong etc. and then display this to the user.

Looking at the mechanics of the generic handling of these operations, they are all based
on the features of the OSI management model as explained in section 2. When the browser is
first started it attempts to establish a management association to the remote managed system
and to subsequently get the top object of class system using an empty local distinguished
name. If any of these steps fail, the browser abandons communication with that managed
system. Otherwise, the state information that the browser keeps about the current MIT
position is:

1. a list of all the managed object classes from the top to the current object

2. the current object’s distinguished name

3. its attribute identifiers/types and their position in the display

4. the managed object classes and (relative) distinguished names of its subordinates

This information is adequate to enable the browser to move up and down the MIT as
the appropriate distinguished name can be constructed and the managed object class is
known. The attribute identifiers of the current object enable one to request the modification of
an attribute value. Every time the current position is changed, two M-GET requests are
issued: one for the new current object with an empty attribute list i.e. requesting all attributes
and no scope information and another one for the same object with a single attribute and
scope specifying the first level subordinates.

In order to display the current object in a meaningful way, the browser looks up in the
local directory the mapping of class and attribute identifiers to their respective names and
syntaxes. Even if the database does not contain information about objects in the MIB, the
browser is still able to move up and down the MIT. However the attribute and class
identifiers are only displayed in the numeric "dot notation" form e.g. 2.9.3.2.41.3 and no
attribute values are displayed. Even when an attribute is found through the directory, its
syntax may be a proprietary extension not known to the browser i.e. has no precompiled
knowledge, in which case that attribute value cannot be displayed.



- 7 -

3.2 Monitoring by Polling

The concept of the current object is powerful enough but it only allows one to look at a
single object at a time. One may express the need to examine more than one object at once.
Also there may be a need to poll these objects regularly, in which case refreshing each of
them becomes cumbersome. This led to the idea of a MONITOR operation: it is possible to
monitor an object in a separate window which refreshes itself periodically according to a
default time interval that can be changed.

This operation applies to the current object which may become a monitored one.
Subsequent changes of the MIT position do not affect any monitored objects. This way there
may be many objects monitored in separate windows, in addition to the current one. When a
monitored object dies, the relevant window is closed and an appropriate message is displayed.
It must be noted that monitoring by polling is a rather wasteful operation since unchanged
objects may be retrieved. Nevertheless, it is important for the network manager and the
browser provides this flexibility.

An instance of the generic browser display is shown in Figure 2. The basic window
contains the current object’s class, distinguished name, attributes and subordinates. The actual
object on the display is a transport entity and has two transport connections as subordinates.
In the one window, a modify operation is attempted on the remoteUnsuccessfulConnections
attribute while in the other one of the connections is being monitored. The MIT instance is
the same as that of Figure 1.

3.3 Event Handling

Rather than using polling, the OSI Management model encourages the use of event
handling to report important changes in the MIB. Ideally, one would like to point to a
particular managed object or even an attribute within that object and request to be informed
when it changes. Unfortunately, there is no way to generically identify which event reports
are associated with a particular managed object class and what are their semantics. This
information is specified in the managed object class description and even if there was a way
for the latter to be determined on the fly, its semantics are only specified in a natural language
such as English!

An event report associated with a managed object class may convey any information
pertaining to the event, possibly comprising (some) attribute values of the emitting object
among other relevant information. Even though the syntax of an event report can be
dynamically determined in the same way as that of the attributes, applying this information to
update the displayed object could only happen if knowledge of that particular object class, its
event reports and their semantics were hard-wired in the browser. The latter is obviously
undesirable as it defies its generic nature.

An alternative approach would be to receive all event reports emitted by a managed
object instance and subsequently refresh the local copy of that object by requesting all its
attributes again. This introduces the overhead of one more management operation (namely a
M-GET) per event report but it is still better than periodically polling the object in terms of
network resource usage and management information timeliness. This is the approach taken
in the browser.



- 8 -

Refreshing the local copy of an object through event reporting does not guarantee that
all the changes in the management information the object comprises will be captured. Most
of them will take place silently, without the emission of event reports. It will only be
significant changes, classified as events, that will be reported if requested. Examples of these
are state changes, error conditions, threshold violations etc. These should be adequate to
cover important changes in the operation of the real resource the managed object represents.
Refreshing the local managed object copy after the received report will, most of the time,
give a picture of what happened by highlighting the changes to attribute values.

Even if the browser cannot determine which event reports are likely to occur and under
which conditions, the human manager may be partly able to determine that from other
contextual information e.g. from the name of an attribute. If there is for example a protocol
machine object with one attribute named "protocolErrors" (a counter) and another one named
"protocolErrorsThreshold" (obviously a threshold applied to that counter), it is very likely
that event reports will be emitted when the threshold is violated. However, the browser
program itself is unable to make this semantic leap by examining just a sequence of ASCII
characters.

The current browser’s implementation of event handling relates to the current object
being examined or to any other monitored object. The monitor operation has actually two
modes: monitor by polling and monitor by event reporting. The two modes can co-exist and
the human manager may select whichever mode s/he finds appropriate.

Let’s now take a look at the mechanics of this generic event handling. The first time
the browser is requested to do anything with event reporting, it creates an event forwarding
discriminator managed object in the remote managed system. This contains a filtering
expression specifying under which conditions an event report should be forwarded. In the
case of an object monitored by event reporting, it is enough to assert on its name:

objectInstance = <monitoredObjectInstance>

This guarantees that only events related to the particular monitored object will be received.
Every time this happens, the object is refreshed and a message about the change is displayed.

When the current object is being monitored, one is interested in both the current object
and its immediate subordinates. Supplying a filter comprising a logical OR of expressions as
above becomes too expensive to evaluate when there are a lot of subordinates. CMIS filtering
is powerful enough to allow simplify this using the GreaterThanOrEqual operator:

objectInstance >= <currentObjectInstance>

This involves only one distinguished name comparison, which alleviates processing in the
agent. When a report pertaining to the current object occurs, the object is refreshed. When
the report pertains to any of its subordinates, its distinguished name on the display is
highlighted to show that something happened. The human manager may subsequently move
down to that object.

When there are many event monitored objects, the filtering expression is a logical OR
of all the expressions and the browser keeps track of the current one to which it adds or
subtracts accordingly. Every time this expression changes, the discriminator construct
attribute is set through a M-SET operation in the remote agent in order to change the event
reporting mode.



- 9 -

4. Implementation Models

We previously referred to a local database which is used to map attribute and event
identifiers to their respective names and syntaxes. The information in this database is as
defined in the various documents specifying management information related to
communications resources. This will be gradually enriched with proprietary or other
information as it becomes available. The exact information in the database is:

g the object identifier of the attribute, event or class

g its name as an ASCII string e.g. activeConnections

g the name of the managed object class it belongs

g the object identifier of the ASN.1 module where its syntax is defined

g the actual syntax as in that module e.g. ObservedValue

This information allows the browser to map the object identifier of the classes,
attributes and events to their name and syntax. The browser has precompiled knowledge of
various syntaxes, which it uses to manipulate meaningfully the attribute and event values.
This knowledge consists of the following methods related to a particular syntax:

g encode which converts an internal representation of a syntax to a ASN.1/BER [8] [9]
presentation stream

g decode which performs exactly the inverse operation

g parse which converts an ASCII string to an internal representation and

g print which performs exactly the inverse operation

The term internal representation above means a data structure as manipulated by a program.
When a presentation stream comes from the network i.e. an attribute or event report value,
decode and print are used to generate the value to be displayed while parse and encode are
used for the modify operation to convert the typed-in value to a presentation stream.

In the current implementation, a simple ASCII file is used as the database and all the
information is read in memory for fast access. This of course has an impact on the size of the
browser but for the time being the amount of the information loaded is quite small. A more
scalable model would be to load in this information as the browser encounters new objects
during its operation, possibly from a real database. This may result in slower access to objects
the first time they are encountered. Some example entries for the ASCII database used at
present are given in Table 1.

name oid class module syntax

discriminator 2.9.3.2.3.3
discrId 2.9.3.2.7.1 discriminator 2.9.3.2.2.1 SimpleNameType
discrConstruct 2.9.3.2.7.56 discriminator 2.9.1.1.3 CMISFilter

TABLE 1. Example database entries



- 10 -

Information which is not stored locally may be obtained by accessing the global X.500
directory service [10]. This assumes that the directory information model will be extended to
accommodate this. The browser will then contact the local Directory Service Agent (DSA) to
request information that it cannot find in its local database. This feature is not yet
implemented but is planned for the future. The browser will then connect to the local DSA
upon initialisation in order to be able to pass requests for information later. These will take
place asynchronously, without affecting its normal operation. Any information obtained from
the directory will be added to the local database, to be available in future invocations of the
browser.

A generic browser based on the above principles could be implemented using any
programming paradigm. Our implementation is based on the object oriented one as both the
OSI Management Model and Graphical User Interfaces exhibit a similar nature. This
enhanced the software structure and enabled reusability of many generic components. It made
it particularly easy to separate the browser’s application engine from the display manager so
that in the future it would be possible to adapt it to different user interface technology.

The programming language used for the implementation was C++ [11] and we have
used the excellent InterViews graphical object library [12] based on the X-Window system.
The underlying OSI stack was provided by the ISODE software [13] [14], enabling the
browser to run both on pure OSI network technology and TCP/IP using the RFC1006 method.
The CMIS/P management protocol was as provided by the OSIMIS package [15], according
to the latest version 2 international standard. The browser is now an integral part of OSIMIS.

5. Conclusions

The MIB browser is a very useful application and its generic nature makes it a vital part
of a management platform as it can be used to browse through existing or future MIBs of
diverse nature. It is a particularly useful tool in a management environment, allowing the
human manager to take a microscopic view of the operation of real resources through the
corresponding managed objects. We have also found it a very useful debugging aid tool
during the development of management information bases.

In the future, the browser will be enhanced to cope with some of the limitations
outlined in this paper. The X.500 Directory Service will be used in addition to the local
database. There is also much scope for improving the event handling in the browser. Finally,
we intend to provide a more macroscopic view of the MIB structure using a graphical
representation.

The browser has actually been used in three completely different environments: in the
RACE NEMESYS project (NEtwork Management using Expert SYStems) as part of a
prototype for traffic and quality of service management in Integrated Broadband
Communications [16], in the ESPRIT PROOF project (Primary Rate OSI Office Facilities) to
manage gateways between IP/X.25 and Primary Rate ISDN [17] and in the OSIMIS package
where it is used to manage a MIB related to the ISO Transport Protocol [15]. In all these
applications the same browser has been used without the need to modify a single line of code!



- 11 -

.

Figure 2. The Browser in Operation



- 12 -

Acknowledgements

The work described in this paper was accomplished under the NEMESYS research
project (NEtwork Management using Expert SYStems) as part of the RACE research
programme (Research in Advanced Communications in Europe).

REFERENCES

[1] ISO/IS 10040, Information Technology - Open Systems Interconnection - Systems
Management Overview, August 1991

[2] ISO/IS 10165-4, Information Technology - Structure of Management Information - Part 4:
Guidelines for the Definition of Managed Objects, August 1991

[3] ISO/IS 9595, Information Technology - Open Systems Interconnection - Common
Management Information Service Definition, Version 2, July 1991

[4] ISO/IS 9595, Information Technology - Open Systems Interconnection - Common
Management Information Protocol Specification, Version 2, July 1991

[5] ISO/IS 10165-4, Information Technology - Structure of Management Information - Part 1:
Management Information Model, August 1991

[6] ISO/IS 10164-5, Information Technology - Open Systems Interconnection - Systems
Management - Part 5: Event Report Management Function, August 1991

[7] ISO/IS 10164-6, Information Technology - Open Systems Interconnection - Systems
Management - Part 6: Log Control Function, August 1991

[8] ISO/IS 8824, Information Processing - Open Systems Interconnection - Specification of
Abstract Syntax Notation One (ASN.1), 1987

[9] ISO/IS 8825, Information Processing - Open Systems Interconnection - Specification of
Basic Encoding Rules for Abstract Syntax Notation One (ASN.1), 1987

[10] ISO/IS 9594-1, Information Processing - Open Systems Interconnection - The Directory:
Overview of Concepts, Models and Service, 1988

[11] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA, 1986

[12] M.A.Linton, P.R.Calder, J.M.Vlissides, InterViews: A C++ Graphical Interface Toolkit,
Technical Report CSL-TR-88-358, Stanford University, July 1988

[13] M.T.Rose, J.P.Onions, C.J.Robbins, The ISO Development Environment User’s Manual
Version 7.0, PSI Inc / X-Tel Services Ltd, July 1991

[14] M.T.Rose, The Open Book - A Practical Perspective on OSI, Prentice Hall, New Jersey,
1990

[15] G.Pavlou, G.Knight, S.Walton, Experience of Implementing OSI Management Facilities,
Proceedings of the IFIP Second International Symposium on Integrated Network
Management, Washington, April 1991

[16] A. Mann, G.Pavlou, Quality of Service Management in IBC: an OSI Management Based
Prototype, Proceedings of the Fifth RACE Telecommunications Management Network
Conference, London, November 1991

[17] S. Walton, G.Knight, R.Carbonell, M.Hardie, The Construction of a Connectionless
Ethernet/ISDN Gateway, Microprocessors and Microsystems, Vol. 15, No. 1, Jan-Feb 1991



- 13 -


