High-Level Access APIs in the OSIMIS TMN Platform:
Harnessing and Hiding

George Pavlou, Thurain Tin - University College London, UK
Andy Carr - Cray Communications, UK

Abstract. There is a common unjustified belief that OSI management technology,
despite being very powerful, is difficult to implement because of the complexity of the
underlying service/protocol (CMIS/P) and the power and expressiveness of the associ-
ated information model. Industry initiatives to standardise Application Program Inter-
faces (APIs) in this area have drawn the line too low, precisely at the management
service level, resulting in the daunting to use XOM/XMP API. On the contrary, the OSI-
MIS TMN platform proposes much higher level APIs, both for realising new objects in
agent applications and for accessing those objects in a distributed fashion. The latter are
the Remote and Shadow MIB APIs and the concepts and rationale behind them are laid
out while it is explained how object-oriented technology can be used to harness and hide,
retaining at the same time the full power of the underlying service.

1. Introduction

The OSI Management Model [X701] forms the basis for the Telecommunication Man-
agement Network (TMN) [M3010], both for intra- (Qx/Q3 interfaces) and inter-TMN

(X interface) communication. Following a fully fledged object-oriented approach, it
lends itself naturally to object-oriented realisation but it seems that industry is reluctant
for the jump from modular/object-based to fully object-oriented technology. Because
of this nature and its undoubtfully rich functionality, it is considered difficult to imple-
ment and has not yet enjoyed widespread support. The important aspect to accelerate
its acceptance and use is the provision of infrastructure that packages parts of its func-
tionality behind well-defined Application Program Interfaces (APIs). This will enable
the existence of infrastructure from independent vendors, reducing development costs
and making possible the easy migration to another vendor’'s package for performance,
cost or other reasons, avoiding the current monolithic realisation approach.

The key question to be asked in the case of OSI management is where exactly the line
between generic and specific infrastructure should be drawn in order to result in indus-
try-standard APIs. Initiatives in this area have drawn the line too low, exactly at the
management service level [X710]. The current widely acceptable API is X/Open’s
XOM/XMP [XOpen], XOM being the abstract syntax APl while XMP the manage-
ment service one, commonly designed for both the OSI CMIS and the Internet SNMP.
Though this allows for the provision of conformant management protocol stacks, it
does very little to help implementors of management applications with the object-ori-
ented aspects of both managed object realisation (agent) and high-level distributed
access (manager) aspects. In addition, it is rather daunting to use, its complexity owing
much to the commonality with SNMP, an ill-conceived idea due to their different

nature, and the bulky and inefficient vendor independent XOM API.

On the other hand, the OSIMIS TMN platform [Pav93a][Pav93b] was conceived as
high-level object-oriented infrastructure that facilitates the development of manage-
ment applications based on the OSI model, hiding protocol related aspects and bridg-
ing the gap between the open and distributed systems worlds. It provides extensive
support for agent, manager and hybrid applications, supporting manager access APIs
at three levels: The procedural CMIS API, knownMSAP (Management Service
Access Point), similar to XOM/XMP in functionality but much simpler. Remote

MIB (RMIB) APl which provides the object-oriented abstraction of a management
association in terms of a local agent in the accessing application for a physically
remote MIB. Finally, theshadow MIB (SMIBRAPI which provides the abstraction of
shadow copies of remote managed objects, offering “standardised” local storage and
enabling automatic stateful cacheing strategies to be applied.

The rationale and concepts behind the last two are explained here, showing how
object-oriented technology can be used to harness and hide, retaining at the same time
the full power of the underlying CMIS service. An overview of the OSIMIS platform is
given first, putting those two APIs into perspective with respect to the rest of the infra-
structure. The “raw” CMIS MSAP API is then discussed in conjunction to high-level
abstract syntax support which is fundamental to higher level APls. The issues behind
the RMIB and SMIB access APIs are then explained and the approach as a whole is
finally discussed.

2. The OSIMIS Platform Architecture

The OSIMIS TMN platform is object-oriented software infrastructure with C++
[Strou] APls that enables the quick and efficient development of management applica-
tions of any type: Network Element (NE) agents, Q-Adaptors (QAs), Mediation
Devices (MDs), Operations Systems (OSs) and Workstations (WSs). It is based on the
OSI model whose power and complexity hides behind Object-Oriented APIs, enabling
application implementers to concentrate in management policies rather than be bur-
dened with the details of management information access. A generic gateway (QA)
facility between CMIS and SNMP is also provided for automatic SNMP M to Qx
interface conversion, addressing the ubiquity of SNMP-capable NEs.

The OSIMIS layered architecture and generic applications are shown in Figure 1. The
OSI stack up to the ACSE/ROSE level is provided by ISODE [ISODE] OSI stack,
while the Internet stack up to UDP is provided by the UNIX operating system kernel.
On top of these OSIMIS provides procedural (i.e. non-OO) realisations of CMIS/P and
SNMP, the CMIS API being the aforementioned MSAP, complemented by the ISODE
Presentation Element (PE) ASN.1 API. Work is ongoing to support the industry stand-
ard XOM/XMP API, which will make OSIMIS stack independent. This change will be
invisible to applications as CMIS is hidden by the higher level Generic Managed Sys-

tem (GMS) agent and RMIB/SMIB manager APIs while ASN.1 is hidden by the high-
level abstract syntax API which currently encapsulates the ISODE PE and in the future
the XOM one. There is similar infrastructure to RMIB to facilitate SNMP object
accesgRMIB’). Finally, the Directory Support Service (DSS) provides access to the
X.500 Directory [X.500] for address resolution and location and other transparency
services. While the above infrastructure is realised as libraries linked with applications,
OSIMIS provides also a number of fundamental generic applications. These are
ASN.1 and GDMO compilers with C++ bindings, a set of generic managers including
a dynamic MIB browser, the CMIS/P-SNMP gateway supported by a information
model translator and a generic Directory Service Agent (DSA) with a set of Directory
User Agents (DUAS), the last two provided by ISODE.

Applications
ASN.1 &
Coord. SMIB GDMO
Support GMS Support
RMIB DSS RMIB’
CMISE DASE SNMP
ACSE/ROSE UDP and
and OSI stack Internet stack

ASN.1 GDMO| | CMIP/SNMP Generic DSA/
Tools Tools Gateway Managers | DUAs

Fig. 1. The OSIMIS Layered Architecture and Generic Applications

A fundamental element for complex applications e.g. an OS that acts in both manager
and agent roles is the coordination with respect to internal and external events. OSI-
MIS provides an object-oriented coordination mechanism that supports real-time
“wake-ups” and a first-come-first-served event-driven mechanism. This works best for
asynchronous external communications in order to avoid blocking and as such all the
higher level APIs have both synchronous and asynchronous options, as is the case with
the RMIB and SMIB ones. This does not preclude the use of co-routine or thread
mechanisms in which case only synchronous interfaces may be used as they are easier
to program - no maintenance of state required by applications. Co-routines have
already been used and threads are planned for the future.

3. Management Service and High-Level Abstract Syntax Support

The OSIMIS CMIS MSAP API was conceived much before standard APIs such as the
X/Open XOM/XMP were specified and as such it does not conform to the latter. Hav-
ing been designed specifically for CMIS and not for both CMIS and SNMP, it hides
more information and may result in more efficient implementations. The reason it is a
procedural object-based in the C programming language and not a fully object-ori-
ented implementation in C++ like the rest of OSIMIS, is in order to conform to the
ISODE style, the trend in industry APIs and to be easily integrated by diverse environ-
ments. It offers full control over every CMIS detalil, leaving its user to deal with associ-
ations, assemble linked replies, handle errors and encode/decode attribute, action and
event report values. CMIS requests and responses are modelled through procedure
calls while incoming indications and confirmation are modelled through a single
“wait” call, dealing with all possible situations. Multiplexing of incoming data on var-
ious associations is an orthogonal issue and can be handled either by the OSIMIS coor-
dination support or any other user-defined mechanism.

Programming applications at this level can be tedious and error-prone and clearly
higher level abstractions are necessary. One issue though which is common to all the
higher-level APls is abstract syntax support. Ideally, a distributed management appli-
cation programmer should be completely shielded from encoding/decoding details and
should be allowed to program in terms of internal representations e.g. C or C++ data
types, being unaware of the underlying abstract/transfer syntax mechanism. This is
possible through object-oriented ASN.1 compilers like the one provided by OSIMIS,
which produces C++ objects of a certain style while it can be modified to work with a
different underlying mechanism. Currently the ISODE PE ASN.1 API is supported
while the X/Open XOM one will be supported in the future. This is achieved by using
polymorphism to encapsulate behaviour in data types with respect to encoding and
decoding, which take place in a totally transparent fashion as requested by the infra-
structure. This OO ASN.1 API is used by all the high-level OSIMIS APIs, namely the
GMS, RMIB and SMIB, giving a distributed system programming flavour and dis-
pensing with explicit ASN.1 manipulation.

4. The Remote MIB Access API

The object-oriented and expressive nature of the OSI Management Model [X701] and
the associated information model [X720] provide the essential framework through
which management applications exchange management information using the CMIS
service. Though the OSI structure of management information is largely based on
object-oriented design and specification methodology, the same is not true for the level
of programming support provided by most CMIS APIs as it is the case with both the
OSIMIS MSAP and the X/Open XOM/XMP ones.

Most CMIS/P API realisations leave the implementor to deal with the unpleasant, low-

level mechanics of management information access. For example, object identifiers are
used for class, attribute, action and event report names while distinguished names in
their native forms are used to address object instances. Similarly, scoping and filtering
mechanisms that are used to select and eliminate the desired objects for the operation
are tied down to low-level data structures. Furthermore, the CMIP protocol is designed
in such a way that only a single instance information can be carried in the response
Protocol Data Unit (PDU). Hence, in the case where multiple managed object replies
are returned as a result of a single request, the response PDUs are linked with a com-
mon identifier and the task of assembling those PDUs into managed object results
falls, unfortunately, to the hands of the application implementor.

In the RACE NEMESYS and ICM projects, studies on the design and construction of
high-level access APIs have been conducted to provide efficient access to the remote
management information bases, supporting at a higher level the development of appli-
cations in manager roles. The Remote MIB (RMIB) Access API has culminated from
one such study, offering a high-level friendly CMIS interface. The primary motive
behind the RMIB API has been the desire to “hide” as much as possible of the low-
level details of CMIS/P as mentioned, using object-oriented abstractions whilst retain-
ing its full power. The advantages gained from the implementor’s point of view are
two-fold: firstly s/he will be freed from the direct manipulation of unfriendly and terse
management parameters, and hence be able to concentrate on realising the manage-
ment policy i.e. the application’s intelligence. Secondly, the reduction in application
code size means that development can be more rapidly accomplished.

The RMIB Access API provides a high-level object-oriented abstraction of remote OSI
MIBs using the notion of an “association object”. This object is used to encapsulate the
management association with a remote agent, hiding the use of the underlying low-
level CMIS/P parameters and access to the remote Management Information Tree
(MIT). The normal procedures of association control are hidden through friendlier
means using only the logical application name and host information and exploiting
possibly the location transparency support service. In realisation terms, the association
object is represented in a C++ class calkddiBAgent Each instantiation of this class

will allow an association establishment with one remote agent. In addition to associa-
tion control, the RMIBAgent class defines a set of high-level CMIS-like messages at
the API, concealing the actual CMIS/P calls. Management operations are thus per-
formed by sending the appropriate messages to the association object. Figure 2 shows
the model of the general interaction involved. Hence, this approach allows an associa-
tion object to be flexibly manipulated among other objects in the application. The level
of support provided by the RMIBAgent class, therefore, enables the implementor to
think and design the application in terms of abstractions, taking into account the clear

separation of concern from the raw low-level access detalils.

Managing application

RMIB Manager

Application Object

Application Object

RMIB Agent

Agent

Managed
Objects

Fig. 2. Remote MIB Model Interactions

CMIS permits a number of ways to select managed objects for an operation, through a
base managed object and also the type of subtree to be scoped below this. A selected
subtree of managed objects can be further subjected to selection criteria, based on the
logical conditions given in a filter expression. The base managed object must be identi-
fied through its distinguished name. The object identifier of the managed object class
may also be provided to allow allomorphic object access. In the RMIB interface, man-
aged object names are handled through a human readable string-based notation. For
example, “transportEntity” and “subsystemld=transport@entityld=isode”refer
respectively to the class and local distinguished name of the ISO transport entity
object. This notation will allow the programmer to disregard completely the underly-
ing raw CMIS API structures, leaving the necessary parsing to take place behind the
interface. Using the string notation, filters can also be expressed easily and comprehen-
sively. Finally, attribute, action and event report values use the OSIMIS OO ASN.1
API through theAttr (general ASN.1 type) an&VA (Attribute Value Assertion - type/

value pair) classes.

The result returned from a request may consist of a number of managed objects. The
generated managed object results may also contain attribute value assertions, as itisin

the case with the M-Get, M-Set, and M-Create request primitives. Several approaches
can be taken in returning the results from the interface level to the application’s calling
environment; having decoded the linked replies, results can be passed up either one by
one or collectively in a single unit, a container. Both approaches are supported by the
RMIB, transferring each response PDU into an instance of EIRHSObject Obvi-

ously, this class is extensive enough to capture the union of managed object parameters
that can be returned in all response primitives. The individual CMISObject results may
be packaged into a single containing unit, implemented bZhkSObjectListclass.

In any design and implementation of distributed systems, it is important to allow max-
imum flexibility in terms of the interface interaction; that is, the interface should oper-
ate in both synchronous and asynchronous fashion. In the former, the RMIBAgent
high-level operations are RPC-like in which the call will be blocked until the result or
error is received. The time-out interval can be made adjustable to prevent the call from
becoming blocked beyond an acceptable duration. Moreover, the total flexibility for
realising complex TMN Operations Systems can only be achieved with an asynchro-
nous interface. Using the idea of “call-back” functions, the API includes an abstract
class calledRMIBManager This class provides a set of call-backs which must be spe-
cialised in an asynchronous manager class, and should be re-defined with the desired
behaviour to respond according to different types of CMIS results. The RMIBAgent
which buffers the results, after decoding and assembling the linked replies, is
“informed” to be able to call back the RMIBManager.

Event reporting [X734] is fundamental to the event-driven nature of OSI management
and is achieved through special support Event Forwarding Discriminator (EFD)
objects. An application needs to manipulate those explicitly to request, terminate, sus-
pend or resume reporting. In the case of the RMIB API, explicit manipulation is hid-
den behind the RMIBAgent class, allowing the assertion on event type, time and
emitting class and instance or through an arbitrary filter, all in a string form through
high-level methods that hide the related CMIS operations necessary to manipulate the
EFD. An advantage of that approach is that the proliferation of EFDs in the remote
MIT is avoided through centralised control, which reduces both the size of the remote
agent and enables faster evaluation of event filtering criteria. Replies to confirmed
event reports to acknowledge reception are also handled transparently by the RMIBA-
gent. As event reports are inherently asynchronous, event reporting is achieved using
the RMIBManager class and the callback mechanism discussed above.

5. The Shadow MIB Access API
5.1 Rationale

One of the main considerations in the design of a manager is the dynamics of the infor-
mation flow. Moreover, it is often important to minimise unnecessary manager/agent
communication particularly if the communications link between the manager and

agent has low bandwidth or if the amount of information requested by a manager is
large. Also, since a manager normally retrieves information from an agent more fre-
qguently than it modifies it, the method of retrieval is important. A key issue here is
whether the communications mechanism between manager and agent is polled or event
driven. A number of factors affect this decision but two are particularly important.
These are, the rate of change of information at the agent and the frequency of access by
the manager. If the information at the agent changes more frequently than the rate at
which the manager accesses it, a polling mechanism may be satisfactory particularly if
the manager is only interested in the latest information. In this situation, unnecessary
communication is minimised since the manager only accesses the agent when it needs
to. Between accesses the information at the agent may go through several state changes
with which the manager is not concerned.

Alternatively, if the information at the agent changes less frequently than the rate at
which the manager accesses it an event driven mechanism is more suitable whereby
communication only occurs when the agent notifies the manager of information
changes. This can be achieved by using the ISO Object Management Function [X730]
which specifies notifications for when MOs are instantiated or deleted, and when MO
attributes change. In this case the manager needs to maintain a cache of information
which is updated by the events from the agent. The situation is straightforward when
the manager modifies MO attributes. The manager has to access the agent since both
the cache and the agent have to be updated.

As explained earlier, the RMIB API provides a high level interface for interacting with
the information held in an agent's MIB. The event interface of the RMIB allows the
manager to register for Object Management events but leaves the application to main-
tain an MIB cache. This is additional work for the application writer. What is therefore
desirable is a platform function which maintains a cache of MIB information and
relieves the function user from the details of maintaining them. Such a facility is the
foundation of a Shadow MIB (SMIB). There are a number of options for the structure
of the SMIB itself but the obvious one is to emulate the MO, attribute and MO contain-
ment tree structure of the agent’s MIB. The SMIB would then consist of Shadow MOs
(SMOs).

The SMIB has a number of advantages. The primary one is that it is possible to provide
an API which is easier for the application writer to use. Also, in situations where an
event driven approach is unsuitable, sophisticated polling mechanisms can be pro-
vided. These are particularly useful if the manager has knowledge of the behaviour of
the agent MIB. Also, if an application is managing a number of agents, there is the
possibility of merging the MO containment trees of the agents into one “shadow” tree
at the manager. The user of the SMIB API can therefore access the SMOs regardless of
the location of the agent in which the MOs are actually located.

Work has been done in this area by the RACE NEMESYS project which produced a
non-standards based shadow MIB facility called the Management Unit Information
Base (MUIB) [MUIB]. Work on an OSI based SMIB facility is currently underway in
the RACE ICM project.

5.2 Design Considerations

There are a number of design approaches which can be used for an SMIB facility. One
of the main considerations is how much compiled knowledge is required by the appli-
cation. Some options are:

No compiled knowledgdhis approach does not require a managing application
to use GDMO information about the agent MIB. It has the advantage of being able
to shadow the MIB of any agent to which it connects as long as the agent MIB
uses only generic attribute types. The last point is also the main disadvantage.
This approach is useful for applications such as MIB browsers.

Static knowledgeThis makes use of the GDMO already defined for the agent by
compiling it to produce skeleton code for the SMIB. This allows several options in
the choice of API. One possibility is to use the GDMO to produce a different C++
class for each MO with specifically named attribute access methods. This makes
for a more intuitive C++ API. Since most management applications are written
with semantic knowledge of the agent’s functionality, it is probably not a disad-
vantage for the application writer to have to use the agent’s GDMO.

As previously mentioned, work is underway in the RACE ICM project. The approach
being used is that of no compiled knowledge. Figure 3 gives an overview of the design
being adopted.As can be seen, the design builds upon the RMIB facility and is centred
around two C++ classes - an SMIB Agent and Shadow Managed Object (SMO). The
API to the SMIB facility is provided by both these classes. In general, operations
which apply to particular SMOs or a subtree of SMOs are performed through the SMO
API. Other operations are performed through the SMIBAgent API.

At initialisation time the application instantiates a single SMIB Agent and invokes it in
order to instantiate the containment tree of SMOs which comprise the SMIB. Event
Forwarding Discriminators [X734] and Logs [X735] are not shadowed. Once instanti-
ated, the SMIB can be navigated using C++ pointers to objects. Scoping and filtering
of sub-trees can be performed from any SMO in the tree.If the agent MIB supports
object management events the application can use the SMIB Agent to initiate auto-
matic updates of the SMIB. This means the SMIB will be updated whenever MOs are
created or deleted, and MO attributes change. The SMO API also supports the option

of synchronously updating the SMO whenever any of its attributes are read.

Managing application

SMIB Manager

Application Object

N

Application Object

API

Shadow
Managed
Objects

RMIB Agent

Agent

Managed
Objects

Fig. 3. Shadow MIB Model Interactions

Both synchronous and asynchronous interfaces are allowed when accessing MO
attributes. Asynchronous invocations use the asynchronous invocation facility of the

RMIB where the application object is called back when the response arrives. The main
difference is that the callback functions are provided through the application object

inheriting from a SMIB Manager class instead of a RMIB Manager class.

Provision of an SMIB API also allows a nhumber of polling options to be offered. These
include polling at regular intervals, polling according to some predominate schedule,
and adaptive polling. Adaptive polling could vary it’s frequency based on, for example,
the number of times an attribute has changed value in the previous ten polls, or the rate
of change of a numeric value based on previous polls.

6. Discussion and Conclusions

[References

[X701]

[M3010]

[X710]

[XOpen]

[Pav93a]

[Pav93b]

[Strou]

[X500]

[X720]

[MUIB]

[X730]

[X734]

[X735]

ITU X.701, Information Technology - Open Systems Interconnection -
Systems Management Overview, 7/91

ITU M.3010, Principles for a Telecommunications Management Network,
Working Party IV, Report 28, 12/91

ITU X.710, Information Technology - Open Systems Interconnection -
Common Management Information Service Definition, Version 2, 7/91

X/Open, OSl-Abstract-Data Manipulation and Management Protocols
Specification, 1/92

Pavlou, G., S. Bhatti and G. Knight, OSIMIS User Manual Version 1.0 for
System Version 3.0, 02/93

Pavlou G., The OSIMIS TMN Platform: Support for Multiple Technology
Integrated Management Systems, Proceedings of the 1st RACE IS&N
Conference, Paris, 11/93

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
Reading, MA, 1986

ITU X.500, Information Processing, Open Systems Interconnection - The
Directory: Overview of Concepts, Models and Service, 1988

ITU X.720, Information Technology - Structure of Management Informa-
tion - Part 1: Management Information Model, 8/91

Chapter 10, Experiment 3 Design, NEMESYS RACE Project 1005, ref.
05/DOW/SAR/DS/B/024/al, 5/92

CCITT Recommendation X.730 (ISO 10164-1) Information Technology -
Open Systems Interconnection - Systems Management - Part 1. Object
Management Function (for CCITT Applications), 10/91

CCITT Recommendation X.734 (ISO 10164-5) Information Technology -
Open Systems Interconnection - Systems Management - Part 5: Event
Report Management Function, 8/91

CCITT Recommendation X.735 (ISO 10164-6) Information Technology -

Open Systems Interconnection - Systems Management - Part 6: Log Con-
trol Function, 6/91

