
1

Abstract

The TINA architecture is often perceived as a service
layer specialized framework ; however a detailed
examination of the architectural context and ongoing
work in the field demonstrates that it is not so, and that
the TINA architecture can be envisioned as a Network
Management framework as well if care is taken about
some TMN specificities. Having acquired that point, the
paper proposes a conceptual architecture for
interworking TMN and TINA based systems. It then
describes a component architecture for a migrating OSI
MIB that demonstrates concretely the feasibility of
building a TMN-able agent running in a TINA-based
environment.

1. Architectural Context

This section is devoted to an examination of background
material regarding CORBA and TINA architectures,
specifically from a Network Management architecture
and requirements point of view.

CORBA Overview
The OMG (Object Management Group) aims at
designing an architectural framework supporting detailed
interface specifications that will drive the industry
towards inter-operable, reusable, portable distributed
software components based on standard object-oriented
interfaces. This resulted in the definition of an abstract
reference model called the Object Management
Architecture (OMA), and the specification of a concrete
platform called the Common Object Request Broker
Architecture (CORBA).

The Common Object Request Broker Architecture has
been designed by the Object Management Group (OMG)
with the goal to provide a truly open object distribution
architecture; thus moving one step further both:

• regarding proprietary architectures such as OLE;

• regarding non-object oriented environments such as
DCE.

 The CORBA architecture (in a snapshot) is composed of
a software bus, the Object Request Broker (ORB), on
which sit CORBA clients (referencing distant objects)
and CORBA servers (holding objects). The clients and
servers share one unique definition of their interface,
which is specified in a particular language: the Interface
Definition Language (IDL). IDL is independent from
implementation languages, thus the developer has a
choice of IDL bindings (to C++, to SmallTalk, to ADA.)
from which to select.

 In addition, the CORBA architecture offers a number of
services which are, from bottom to top:

• core object services which are generic: naming,
persistence, events etc. which can be thought of as
augmenting the functionality of the ORB;

• Common Facilities which define application-level
frameworks: Information Management, Task
Management etc.

• Business Objects, which are at application level and
perform business-specific functions.

 The TINA-C consortium integrated much of the OMG
concepts into its telecom architecture. For instance its
specification language, ODL, is by essence an extension
to IDL. Furthermore, although TINA does not specify the
communication media between software entities, existing
implementations of the Distributed Processing
Environment all are based on CORBA in various
flavours.

 CORBA represents a certain semantic shift from the
state-of-the-art middle-ware approach. Two reasons
appear:

A staged approach for TMN to TINA migration

Daniel Ranc, Alcatel Alsthom Recherche, France
George Pavlou, University College London, UK
David Griffin, University College London, UK

Alex Galis, University College London, UK

2

• The manipulation of the objects changes:

• Classic middle-ware (XOM/XMP is a good
example) provides to the programmer an
API allowing to manipulate distant objects,
however these objects are not in the user’s
name-space; instead, they are in the
framework’s name-space.

• CORBA, on the other hand, brings these
objects within the scope of the
implementation language directly as
generated code (through the IDL compiler).
Operations defined in IDL are translated
into target language operations. This way,
the distant object is manipulated exactly as
if it were local: a transparent access is
possible.

• The place of the protocol changes. Whereas in
known middle-ware the protocol is part of the API,
in CORBA the protocol is largely hidden to the user.

 These characteristics give a high level of abstraction to
distributed programming. However, it has still to be
studied if this abstraction does not introduce performance
drawbacks; scalability is another topic to be studied as
well.

 The interface language definition: IDL
 The way in which CORBA envisions the distribution of
applications through its architecture is largely different
from the OSI approach. Within the CORBA architecture,
interoperability is based on the use of a software bus, the
ORB (Object Request Broker), instead of stacks as in the
OSI paradigm.

 Definition of interfaces of software components (clients
and servers in the CORBA paradigm) are made using the
IDL specification language.

 IDL allows to describe operations signatures. It is self-
contained and does not need further specs for value
transportation (the ORB insures value interoperability
and marshalling).

 Compared to GDMO, which conceptually lies in a
similar sphere in the OSI paradigm, IDL differs from
GDMO in following ways:

• GDMO has been specifically designed for TMN
purposes, whereas IDL intends to be generic. This
explains the constructs and entities that are aimed at
the specific requirements of TMN that are found in
GDMO and which are, naturally, absent from IDL.
An example of such features is the Managed Object

Class, which is conceptually on a different level than
the class notion of IDL.

• GDMO bears features such as the containment
concept (NAME BINDING template), Attribute
Value Change specifier, packages, etc. that are not
found in IDL.

• Some of the features of GDMO are tightly coupled to
the TMN architecture. These features are naturally
not found in IDL. An example is the containment
relation, which is linked to the concept of MIB. Such
features do not exist in IDL (although they can, of
course, be provided by external services e.g. a
relationship service as proposed by the OMG).

• GDMO, due to a historical semantic evolution,
shifted slightly from a strict interface definition
language, towards a system definition language: the
GDMO compilers are indeed directly used to build
agents and managers out of the GDMO interface
specification, as if GDMO did a conceptual intrusion
within the Operations Systems instead of staying at
their interface. IDL is not, and will not, although the
ODL language, an extension of IDL used by TINA-
C, can be considered as going in a similar direction.

• GDMO has been extended with a powerful
modelling tool, the Generic Relationship Model
(GRM) which is a formalism intending to model any
kind of relationship between GDMO entities, along
with consistency modelling templates. IDL will
clearly never need such a model.

 The grammar of IDL is largely inspired from C++,
however it introduces some particular constructs
dedicated to interface specification; on the other hand it
naturally does not feature any procedural elements. An
IDL specification looks somewhat like a C++ header file:
declaration of a class, its attributes, methods.

 The mapping between GDMO and IDL that is chosen
within the study is based on the standardisation work
done by XoJIDM in its static translation proposal. The
XoJIDM mapping can be thought of as a way to allow
information transfer between the two types of models -
however it does not intend to map the spirit behind both
formalisms.

 Naming
 In CORBA the address space unit is the server. A server
could handle one or several MOs, depending on the
implementation strategy and scalability. OSI naming, on
the other hand, makes use of the universality of the
X.500 scheme to denote each and every entity throughout

3

the system.

 In a CORBA environment, naming and addressing are
different issues. The naming consists mainly of the host
name and port number that allows to reach the CORBA
server while the addressing concerns the object reference
which doesn’t depend on the implementation at all.

 And since an object reference depends on the name of the
server, the IP address and the port, it is not location
transparent and the object can not be moved in another
location transparently. The role of a Naming Service
consists of keeping the association between logical names
and object references.

 In OSI, the naming tree is responsible for retrieving the
MO and, through scoping and filtering it allows multiple
object selection. CORBA is optimised for single object
selection. To provide this functionality the CORBA
Naming Service [COSS] is used and the root object of the
OSI naming tree should be registered in the CORBA
Naming Service.

 In a nutshell:

 Compared to previous technologies or designs, CORBA
realises three shifts:

• from proprietary to open, inter-operating

• from an API-based approach to an object-oriented
approach

• from explicit remote objects to implicit remote
objects.

Joint interdomain management (JIDM)
XoJIDM produces two documents:

1- The Specification Translation [JIDMs] relates to the
static/compile-time environment. It defines a
mapping of ASN.1 to IDL types, using exclusively
‘typedef’. Complex constant values cannot be
represented in IDL, they are defined as operations
returning the constant value. The generated IDL
types ignore some ASN.1 specifications: defaults
values, tagged types, constrained types and subtypes
appear only in IDL comments. Those features do not
need to appear in the IDL, which is concerned only
by the way the data is coded and transferred, not the
constraints applied on their use. The same document
presents a translation from GDMO to IDL. A
managed object class maps to an IDL interface with
the same name, plus two additional interfaces which
support multiple replies and notifications. We will
extensively use this work in our architecture, for it

carries out a mandatory step for the migration from
OSI to CORBA TMN.

2- The Interaction Translation [JIDMi] relates to the
dynamic/run-time environment. It describes how the
CMISE services can be performed by CORBA
entities. However, this JIDM work is still in a draft
status at the time of delivery of this article.

TINA architecture from a TMN point of view
The TINA architecture as seen from a TMN perspective,
delivers a number of powerful features to network
management:

• thorough object orientation

 The OSI framework, while defining a genuine object
model for the information modelling itself, is not object
oriented in its component architecture nor in its handling
of inter-component communication. In contrast, the
TINA framework is object oriented in all of its aspects,
including the computational architecture and the way in
which the DPE handles communication (since it is based
on CORBA features in this context).

• platform

 The DPE realizes a qualitative step beyond existing
management platforms of the ISO/ITU-T world. Its
CORBA-based distribution infrastructure hides physical
implementations, technologies and DCCE details (e.g.
Kernel Transport Network).

• NRIM information model

 The NRIM information model brings a technology-
independant view of the network that can be mapped
onto existing ISO information models. The
corresponding management level in ISO terms is the
Network Management Layer (NML).

• Business Model

 TINA proposes a sophisticated Business Model filling the
relative weakness of OSI’s specifications regarding the
Service Layer. This model is largely in line (although not
equal to) with the NMF definitions at this level. The
Business Model based applications and components
represent as well a streamlined opportunity to integrate
the latter with existing OSI based systems in a
hierarchical applicative layout (see below).

4

 2. Migration perspectives and proposed
approach

 2.1 Possible perspectives of TMN-TINA co-
existence

 When examining the different scenarios of TMN systems
migration toward the TINA architecture, different co-
existence options come to mind. These perspectives, or
migration paths, differ regarding the relative topology of
OSI and TINA systems one to another on one hand, and
regarding the way in which information is really
exchanged between both worlds on the other.

 As will be perceptible through the following descriptions,
the applicability of one particular option depends on the
applicative context, and on the degree of coupling
between OSI and TINA/CORBA entities.

 Applicative vs. peer-to-peer
 The exchange of information between OSI/TMN-based
components and TINA-based components may involve
two different semantics :

• In the applicative relation, a TMN-based component
offers a specific, application-oriented access to a
TINA component. This topology makes
interoperation possible through a particular (ad hoc)
interface for a specific application.

TMN
USM

TMN
IM

mediation

TINA apps
DPE

 applicative relation.

 The applicative relationship between TINA and OSI
components represents a realistic migration scenario
from TMN to TINA, because it inherently preserves
existing OSI installations and allows to provide TINA
service layer applications to the customer at the cost of a
mediation device (CMIP-CORBA gateway).

• In the peer-to-peer relation, the TMN-based
components and the TINA-based ones behave exactly
in the same manner, with respect to the DPE. In this
case, all applications have access to the managed

objects disregarding whether they reside in TMN
agents or in TINA components.

TINA apps
DPE mediation

TMN
USM

TMN
IM

 peer-to-peer relation.

 The peer-to-peer relation projects mixed TMN systems
bearing both ISO components and TINA components on
the same level of responsibility regarding ressource
management. The DPE insures communication between
all components. A mediation couples the DPE with the
OSI components.

 loose vs. tight coupling
 Depending on the tightness of the relation between TMN
and TINA components, two layouts can be
distinguished :

• In the loose coupling layout, the two types of
components reside in distinct protocol domains, like
« pure » entities (they communicate each in their own
protocol). The interoperation requires therefore an
additional component, the mediation. Loose coupling
enables out-of-the-box or existing applications to
communicate easily without any modification. This
allows to envision CORBA interoperability in the
context of deployed TMN software at a minimum
redesign cost.

TINA apps
DPE

m
e
d
i
a
t
i
o
n

TMN
USM

TMN
IM

cmip

loose coupling layout.

The loose coupling layout attempts to keep either
interoperating system completely unaffected by the
respective other protocol, concentrating all the
translation mechanisms into the mediation component.
Loose coupling enables to reuse existing OSI components
directly.

At the opposite, in the tight coupling layout some bi-
domain entities are able to communicate both through an
ORB and through CMIP. In a sense, these entities
encapsulate their own mediation. In this situation, a
CORBA manager is able to communicate directly with a

5

CMIP agent. Tight coupling, when combined with the
ability to recompile/relink existing application code,
makes existing applications access transparently new
CORBA entities. Indeed, as this layout proposes really an
extension of the communication classes of the TMN
framework towards CORBA, tight coupling brings the
advantage of reuseability of existing TMN software.

TINA apps

TMN
USM

TMN
IM

c
m
i
p

tight coupling layout.

Tight coupling introduces a new kind of components not
any more bound to one distribution technology. More
precisely, the ability to communicate with respects to
these protocols is a property of the object instances
themselves, instead of a centralized scheme where some
dedicated service would provide communication
capabilities. Implementations make use of the inheritance
and polymorphism properties of OO languages in order
to confer to the objects the new behavior in a transparent
manner.

2.2 A migrating OSI MIB

In OSI Systems Management (OSI-SM), managed
elements or management applications that assume an
agent role provide management interfaces consisting of
the formal specification of management information and
of an access service/protocol that is mapped onto a well
defined protocol stack. While the management
information specification provides the MIB schema,
object discovery and multiple object access facilities
allow applications in manager roles to dynamically
discover existing object instances. Operations to objects
are always addressed through the supporting agent,
which provides query facilities in a database-like fashion.

The CORBA operational paradigm is different to that of
OSI and Internet management, as it originates from the
distributed system world. CORBA objects are specified
and accessed separately, in contrast to the managed
object cluster administered by an agent. CORBA objects
are most commonly addressed by type and not by name.
This is due to the nature of distributed systems where,
typically, instances of the same type offer exactly the
same service e.g. printer servers, statistical calculation
servers, etc. Of course this does not mean that there are

no support mechanisms to distinguish between instances
of the same type (name servers, traders). It means though
that the whole framework is optimised towards a “single
object access, address by type” style of operation, in
contrast to the manager-agent model which is optimised
for “multiple object access, address by name” style of
operation.

If CORBA is used as the underlying access and
distribution mechanism for a TMN-based management
system, managed objects could be mapped one-by-one
onto CORBA objects, accessed by client objects in
managing roles. The key difference is that, in CORBA,
clusters of managed objects logically bound together are
not seen collectively through an agent. As such, an
important issue is to provide object discovery and
selection facilities similar to OSI scoping and filtering.
Such facilities are very important in management
environments where many instances of the same object
type typically exist, and names are not always known in
advance e.g. objects representing current connections.

The use of the ODP / OMG CORBA model for network
and service management presents a number of difficulties
to overcome due to the dynamic nature of management
information and the number of managed objects typically
present in managed elements. On the other hand, the
OSI-SM model scales much better and has already been
used for managing large telecommunications
infrastructures e.g. SDH/SONET, ATM, etc. Based on
this observation, an ideal framework would combine the
expressive power of OSI-SM and the programmability,
portability and distribution aspects of ODP / OMG
CORBA. In order to specify such a framework it is
important to be able to map management information
specifications in GDMO to computational interfaces in
IDL. The information modelling aspects of the two
frameworks are similar and the X/Open Joint Inter-
Domain Management task force (XoJIDM) has defined
rules for this mapping [JIDM].

In OSI Management, managed objects can be accessed
collectively through the CMIS/P scoping and filtering
facilities. These may be used for discovery services and
they minimise the management traffic incurred on the
managed network. In addition, the same operation may
be performed on many managed objects which is not only
an engineering-level optimisation but also allows a
higher level of abstraction to be provided to managing
functions. Discovery facilities may be provided through
naming servers and traders in CORBA but the efficiency
of such mechanisms, with potentially thousands of
transient managed objects in network elements, needs to
be evaluated. In addition, the CMIS/P operational

6

paradigm with potentially multiple operations expressed
through a single request is lost, unless similar facilities
are provided over CORBA.

Our proposal is that the operational framework of OSI
management is retained over CORBA through
Management Brokers (MBs). A logically bound cluster of
managed objects similar to an OSI/TMN agent
application is administered by a management broker
providing multiple object access facilities similar to
CMIS. Of course, managed objects may be also accessed
directly in the standard CORBA fashion. Event
management is provided by event discriminators and logs
through filtering, in order to overcome the relevant
CORBA limitations. Finally, the rest of the OSI Systems
Management Functions [SMF] are maintained as generic
CORBA objects that may be instantiated within a cluster.
This approach essentially maintains the OSI operational
model over CORBA but replaces the access (i.e. CMIS/P)
and distribution (OSI directory) mechanisms. As such, it
retains the OSI management expressive power, event
model and generic management facilities while it
benefits from the distribution, portability and easy
programmability of CORBA. The approach is depicted in
the figure below.

ORB

M”O MB MO

Object “Cluster”

M”O: Managing Object
MO: Managed Object
MB: Management Broker

The OSI-SM Operational Model Over CORBA

A Management Broker does not only have a CMIS-like
interface but also interfaces to be “informed” about new
objects it needs to administer and to receive notifications
from the managed objects it administers. In addition,
every MO inherits from a ManagedObject interface
through which the MB notifies it that it administers it. A
MB and the objects it administers may be physically
distributed but they logically form a “cluster” which can
be collectively accessed. A managed object may belong to
more than one MB domain. In the case of managed
network elements, at least one MB needs to be physically
located together with the local managed objects so that it
provides optimised access and event dissemination
facilities with minimal management traffic. In general, it

is not necessary to provide separate IDL interfaces for
every managed object as this may not be technologically
feasible with the current state of CORBA
implementations. In this case, the managed objects and
the broker may interact through a local mechanism e.g.
internal C++/Smalltalk interfaces if they share a common
address space (an engineering “capsule” in ODP terms).

3. Long-term perspective

Rather than using dedicated OSI-SM-like Management
Brokers, it is possible to provide similar clustering,
searching, notification, etc. facilities through the use of
CORBA services. A combination of the services provided
by name servers, traders and event/notification servers
(with some extensions) could reproduce the necessary
features of OSI-SM. One problem with the use of
CORBA is that federation is a key aspect in order to
achieve scaleable management systems. It would be
necessary to have dedicated name servers, traders and
event/notification servers for every logical cluster of
managed objects, e.g. in every managed element, in order
to reduce traffic and increase real-time response. These
“low-level” servers will be unified by “higher-level”
servers in a hierarchical fashion but federation issues
have not yet been worked out and are not simple. In
addition, even with such facilities in place, the generated
management traffic will be at least twice that of OSI
management. With CORBA, matching object references
will be returned to the client object and the operations
will be performed on an object-by-object basis. In OSI
management, the multiple object access request will be
sent in one packet while the results will be returned in
linked replies, one for each object accessed.

An example of the use of hierarchical traders to provide
global filtering features is given next.

A trader [X9xx] supports sophisticated queries, matching
sought properties of the target object(s). Objects can
export their interfaces to the trader together with a list of
attributes and a list of properties. Clients may request
the object references of a particular type that match
assertions on attributes and properties. The difference
between the latter is that attributes may change
dynamically while properties are fixed during the
lifetime of an object instance. As such, the trader needs
to evaluate assertions on attributes by retrieving them
from all the instances of the type associated with the
query. The function of the trader is very similar to
filtering in OSI management. A key difference is that
only interfaces of a particular type can be found through
the trader. An additional difference is that filtering is

7

tightly coupled with OSI managed objects through the
supporting agent while the ODP/OMG trader is a
separate server.

Traders can be federated in order to be able to cope with
big object spaces and different administrative domains,
as demonstrated in the following figure.

 MO

Object “Cluster”

M”O

T

T

FederationDiscovery

Access per MO

“Search”

“Registration”

4. Conclusions and remaining issues

The perspective of concretely using TINA as the
architecture for deployed TMN systems raises, from the
perspective of TMN requirements, a number of issues
related to the specificities of TMN applications. Indeed,
TMN systems require a degree of availability and
scalability seldom encountered in IT.

The scalability issue hides, in turn, a number of
architectural questions. Today, deployed systems are able
to handle on the magnitude of 1E6 managed objects while
providing a high level of resiliency. The core property
enabling this functionality is, fundamentally, the
structure of the objects through the naming tree, naming
scheme (inherited from X.500) and containment
relationship.

While being well aware that these notions are partially
taken over by the TINA/CORBA architecture (e.g.
XoJIDM naming emulates largely X.500 naming, but
without the notion of naming tree as such), present
support components such as the trader, which take in
charge the retrieval of managed objects according to
search conditions, are still not validated regarding full
scale applications. Other research directions include a
methodology to actually group managed objects into
scalable clusters or sets which reproduce to some extent
the configuration of an OSI agent within the TINA
paradigm, while hiding the vast majority of object
references to the DPE.

The migration of the management systems presented

retains the operational model of OSI-SM/TMN over a
CORBA-based Distributed Processing Environment. This
approach is based on the results of the XoJIDM work for
mapping GDMO specifications to IDL but it focusing on
a native CORBA-based Open Distributed Management
Architecture. This approach provides a smooth migration
path from current TMN-based management systems to
target systems operating over CORBA-based DPEs.
While there is plenty of ongoing research regarding OSI-
SM/TMN and CORBA migration and interworking, the
approach presented in this paper retains the relevant
advantages of TMN for network management while it is
both compliant and complementary to the JIDM
approach.

References

>;���@ ,78�7 5HF� ;����� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 6\VWHPV ,QWHUFRQQHFWLRQ � 6\VWHPV
0DQDJHPHQW 2YHUYLHZ� �����

>6103@ -�&DVH� 0�)HGRU�
0�6FKRIIVWDOO� -�'DYLQ� $ 6LPSOH 1HWZRUN
0DQDJHPHQW 3URWRFRO �6103�� 5)& ����� �����

>;���@ ,78�7 5HF� ;����� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 'LVWULEXWHG 3URFHVVLQJ � %DVLF
5HIHUHQFH 0RGHO RI 2SHQ 'LVWULEXWHG 3URFHVVLQJ � 3DUW ��
2YHUYLHZ� ����

>&25%$@ 20*� 7KH &RPPRQ 2EMHFW
5HTXHVW %URNHU $UFKLWHFWXUH DQG 6SHFLILFDWLRQ
�&25%$�� �����

>0����@ ,78�7 5HF� 0������
3ULQFLSOHV IRU D 7HOHFRPPXQLFDWLRQV 0DQDJHPHQW
1HWZRUN �701�� 6* ,9������

>7,1$@ $Q 2YHUYLHZ RI WKH
7HOHFRPPXQLFDWLRQV ,QIRUPDWLRQ 1HWZRUNLQJ $UFKLWHFWXUH
�7,1$�� 7,1$·�� &RQIHUHQFH� 0HOERXUQH�
$XVWUDOLD� �����

>;���@ ,78�7 5HF� ;����� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 6\VWHPV ,QWHUFRQQHFWLRQ � 6WUXFWXUH RI
0DQDJHPHQW ,QIRUPDWLRQ �0DQDJHPHQW ,QIRUPDWLRQ
0RGHO �0,0�� �����

>;���@ ,78�7 5HF� ;����� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 6\VWHPV ,QWHUFRQQHFWLRQ � 6WUXFWXUH RI
0DQDJHPHQW ,QIRUPDWLRQ� *XLGHOLQHV IRU WKH 'HILQLWLRQ RI
0DQDJHG 2EMHFWV �*'02�� �����

8

>,'/@ 20*� 6SHFLILFDWLRQ RI WKH ,QWHUIDFH
'HILQLWLRQ /DQJXDJH �,'/��

>&266@ 20*� &RPPRQ 2EMHFW 6HUYLFHV
6SHFLILFDWLRQ �&266� � (YHQW� /LIH�&\FOH� 1DPH� HWF��
�����

>;������@,78�7 5HF� ;��������� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 6\VWHPV ,QWHUFRQQHFWLRQ � &RPPRQ
0DQDJHPHQW ,QIRUPDWLRQ 6HUYLFH 'HILQLWLRQ DQG 3URWRFRO
6SHFLILFDWLRQ �&0,6�3� 9HUVLRQ �� �����

>,,23@ 20*� &25%$,QWHUQHW ,QWHU�
2SHUDELOLW\ 3URWRFRO�

>;�[[@ ,78�7 5HF� ;��[[� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 'LVWULEXWHG 3URFHVVLQJ � 7UDGHU�

>60)@ ,78�7 5HF� ;��������� ,QIRUPDWLRQ
7HFKQRORJ\ � 2SHQ 6\VWHPV ,QWHUFRQQHFWLRQ � 6\VWHPV
0DQDJHPHQW)XQFWLRQV�

>-,'0@ ;�2SHQ � 10)� -RLQW
,QWHU�'RPDLQ 0DQDJHPHQW �-,'0� 6SHFLILFDWLRQV �
6103 60, WR &25%$,'/� $61���*'02 WR

&25%$,'/ DQG ,'/ WR *'02�$61��

WUDQVODWLRQV� �����

