
1

Tcl-MCMIS: Interpreted Management Access Facilities

Thurain Tin, George Pavlou, Rong Shi

Department of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK

e-mail: thurain@cs.ucl.ac.uk

Abstract. Programming OSI management communications is considered daunting because of the complexity of the serv-
ice/protocol (CMIS/P) and the lack of standardized high-level Application Program Interfaces (APIs) that can harness the
power and hide the protocol and abstract syntax complexity. In the OSIMIS platform, high-level C++ APIs, namely the
Remote MIB and Shadow MIB, are provided to support the construction of manager applications using object-oriented
concepts. Despite this level of support, there are times when the application programmer needs to undertake rapid develop-
ment away from the compiled approach, using only a simple scripting language. In OSIMIS, Tcl-MCMIS is one such
scripting language extension to Tcl, realising an interpreted CMIS manager interface, which can easily be intermixed with
the Tk widgets to construct management graphical user interfaces. This paper describes how Tcl-MCMIS is designed in a
generic way using the existing APIs to retain the full power of the underlying protocol support.

Keywords: OSI, Platform, CMIS/P, API, Scripting Language

1. Background and Introduction
The OSI management technology [X701] provides a powerful framework based on the rich systems management
functions (SMFs) supported by the object-oriented specification methodology (GDMO) [X722], the expressiveness
of the associated management information structure (MIM, DMI) [X720] [X721] and the complexity of the commu-
nication service and protocol (CMIS/P) [X710] [X711]. Following a fully fledged object-oriented approach, the
framework lends itself naturally to object-oriented design and realisation, and the OSIMIS platform [Pav93] [Pav95]
is a management information service infrastructure enabling this technology with the provision of well-defined C++
[Strou] Application Program Interfaces (APIs) and supporting tools. The APIs support both managed object realisa-
tion (agent role) and high-level distributed access capabilities (manager role), relieving the application programmer
from handling directly the “raw” protocol access and plain ASN.1 syntax manipulation (encoding/decoding). Thus
there is a clear separation between the generic and specific parts of the management applications as shown in Fig. 1.

Fig. 1. OSIMIS Layered Architecture, Tools and Generic Applications

DSA / DUAs
Generic
Managers

CMIP->SNMP
Tools

ASN.1 / GDMO
Tools

ACSE / ROSE
and OSI stack

UDP and
Inet stack

DASE

DSS

SNMP

RMIB’
CMISE

RMIB
GMS

SMIB MCMIS

Applications

Coord.
Support

ASN.1
Support

X.700 / X.500 space Inet space

TCL-

2

In OSIMIS, the construction of high-level distributed access for applications in manager roles is primarily achieved
with the Remote MIB (RMIB) API [Pav94]. RMIB provides an object-oriented abstraction of the remote OSI MIB by
proxying the agent concerned in the managing application. Management operation requests to the agent are carried
out by invoking the appropriate C++ method calls of the representing proxy object in a string-based notation. The
proxy object is created as an instance of the class RMIBAgent on a per-association basis and this class hides all of the
low-level CMIS/P access details and provides the transparent Protocol Data Unit (PDU) assembly for the linked
replies. Asynchronous flow of information is possible using the RMIBManager abstract class with a number of call-
back mechanisms. The latter class is abstract (virtual) to allow specialisation to take place in a derived manager class
with the required behaviour that processes the event-driven and asynchronous results.

While the RMIB harnesses and hides the protocol complexity through encapsulation and a string-based interface, the
Shadow MIB (SMIB) API [Pav94] extends the model of RMIB and addresses the dynamics of the management infor-
mation flow and the containment tree (MIT) traversal. SMIB uses the abstraction of objects in local address space,
“shadowing” the managed objects of the remote MIB. The advantages are two-fold: first, the API can be less CMIS-
like and more intuitive in terms of pointers in local address space, and second, the existence of managed object
images as shadow managed objects (SMOs) can be used to cache the information and therefore minimize the commu-
nication with the agent. The RMIB and SMIB models are depicted in Fig. 2.

Fig. 2. The Remote and Shadow MIB Access Models

High-level abstractions are also used to provide the support for dealing with ASN.1 in a way that completely shields
the application programmer from the actual abstract syntax. This is achieved by wrapping up the internal C data type
representations in C++ classes using an ASN.1 meta compiler. Essentially this employs polymorphism and encapsu-
lation of behaviour in data types with respect to encoding and decoding which take place in a transparent fashion.

The RMIB and SMIB APIs are compiled and as such they exist as libraries. Although these APIs greatly reduce the
amount of work needed by the application programmer by factorising out the generic parts of the management appli-
cation, their compiled nature, however, does not facilitate rapid prototyping. Therefore there is a clear need for an
interpreted interface and this requirement seems most imperative as prototyping and scripting language environments
commonly exist with the support for building graphical user interfaces (GUIs). The Tool Command Language (Tcl)
and the associated Tk widget set from the University of California at Berkeley have the basis for the quick construc-
tion of simple test scripts with X-Windows support [TclTk]. The core of Tcl has been extended, by a large user com-
munity, to provide a number of useful “extensions” typically through C and C++ linkage. In OSIMIS, we have
researched, designed and implemented a CMIS-based Tcl extension set that is suitable for prototyping OSI manager
applications, called Tcl-MCMIS. In this paper, we explain how the design of a simple scripting language interface
like Tcl-MCMIS can be implemented in a generic fashion and also discuss how the interface can be made to operate
across a number of different transport mechanisms, independent of the OSI stack.

<SMIBMgr>
<ApplObj> <RMIBMgr>

RMIBAgent
SMIBAgent

API

SMOs

CMIS/P

3

2. Rationale and Reusability
The advent of the Tcl scripting language and of the associated Tk widget set has greatly simplified the construction of
test scripts and GUIs, both being of paramount importance to network and system management environments. In
OSIMIS, every management syntax has a well-defined string representation used mostly for pretty printing but also
potentially for programming. The syntax support is hidden behind an O-O ASN.1 API, through the Attr (general
ASN.1 type) and AVA (Attribute Value Assertion - type/value pair) classes, where every attribute, action, error and
event report value is encapsulated in a C++ class. This together with the string-based CMIS interface from RMIB led
to an interpreted interface in Tcl, since the latter naturally uses the string representation as its data type.

Also quite importantly, OSIMIS already has a set of generic manager applications which are built with no compiled
knowledge of the agent’s GDMO. These generic applications operate from the Unix command line / shell and as such
the given string arguments are parsed from the environment to the program code. It is thus natural enough to reuse
part of the generic manager applications to establish a similar command line syntax in Tcl-MCMIS. Unlike the com-
piled approach, application programmers with little or no exposure to network programming should be able to per-
form powerful management operations with just a few simple lines of scripting commands, and redirect the results to
a number of display widgets in Tk.

3. Design and Implementation

Keep it simple: as simple as possible, but no simpler. - Albert Einstein

In designing the Tcl-MCMIS interface, we took the following steps and targets to help us introduce the new exten-
sions and control the component interactions making use of the existing OSIMIS manager infrastructure.

• define the new command name and associated command syntax

• implement the corresponding command procedure in C or C++

• register the command and procedure names with the interpreter

• control the agent and manager objects for management communications via the RMIB

• format the management results

• asynchronous and event-driven support

• timer scheduling

• interactive support as in wish(1)

3.1. Defining a new command name and the associated syntax

Defining a new command name should be simple and straight forward. The name should succinctly identify the pur-
pose of the command. For example, m_connect is the command to be used to establish management associations to
the remote MIB agents. The syntax associated with a new command should identify the required and optional argu-
ments expected by that command. As mentioned previously, we have followed the style of the generic manager appli-
cations and adopted a similar command syntax for Tcl-MCMIS where mandatory arguments precede the optional
ones and the latter are identified with the flags. In m_connect, for instance, we will need to tell which agent object to
use (with the unique agent identifier) for the association, the logical application title (the agent name), the host
machine name, and the timeout period to be used in all synchronous management operations. Hence, m_connect has
the syntax shown below.

m_connect agentId ?-a appl? ?-h host? ?-t timeout?

4

In the table below we list the complete management commands and their syntaxes.

Table 1. Management Commands and their Syntaxes

3.2. Implementing the command procedures

In Tcl, every command has its corresponding procedure which typically parses the given command line arguments
and realises the behaviour of the command’s functionality. The command name and the procedure name are normally
registered with the interpreter at initialisation. During run-time, whenever a command is invoked, the interpreter
selects the correct command procedure through an internal look-up table and finally executes the procedure using the
given arguments from the calling environment.

In Tcl-MCMIS, there are simple command procedures realising the code needed to create/delete proxy agent objects
and manager objects, through the rmib_agent, rmib_manager and rmib_destroy commands, which are used to
support the management communications. The command procedures implementing management operations are
much more complex and they are explained in the next section. Additionally, there are procedures for scheduling and
cancelling timer wake-ups.

3.3. Enabling management communications via the RMIB API

Typically, a management operation procedure carries out the required functionality by first looking for, using the
unique object identifier(s), the appropriate proxy agent object (an RMIBAgent instance) to communicate with the
remote agent and may be the manager object (an RMIBManager-derived instance) if the command was called asyn-
chronously. Next, the given command line arguments are parsed and packaged suitably into C and C++ parameters.
Then the corresponding C++ method of the RMIBAgent that provides the CMIS operation is executed with the trans-
lated arguments.

For successful synchronous operations, the command procedure completes by extracting the returned C++ result into
a consistent Tcl list format, and finally returns the list to the calling environment. If the operation failed locally during
interpretation, then an error message is returned immediately with a failure indication to the caller. Fig. 3 shows the
general interaction in Tcl-MCMIS. In the case of asynchronous operations, the result formatting takes place, of
course, in the manager’s call-back environment. The asynchronous and event-driven support is explained later, while
the formatting of management results that is consistent in all cases of management operations is explained next.

CMIS primitive Management command and syntax

M-INITIALISE m_connect agentId ?-a appl? ? -h host? ? -t timeout?

M-TERMINATE m_disconnect agentId

M-GET m_get agentId ?-c class? ? -i instance? ? -s scope ?sync??
?-f filter? ? -a attr .. ? ? -m managerId ? -o ??

M-CANCEL-GET m_cancel_get agentId invokeId

M-SET m_set agentId ? -c class? ? -i instance? ? -s scope ?sync??
?-f filter? ? -w|a|r|d attrType?=attrValue?? .. ?-m managerId?

M-ACTION m_action agentId ? -c class? ? -i instance? ? -s scope ?sync??
?-f filter? ? -a actionType?=actionValue?? ? -m managerId?

M-CREATE m_create agentId ? -c class? ? -i instance | -s superiorInstance?
?-r referenceInstance? ? -a attrType=attrValue? .. ?-m managerId?

M-DELETE m_delete agentId ? -c class? ? -i instance?
?-s scope ?sync?? ? -f filter? ? -m managerId?

5

Fig. 3. Tcl-MCMIS Model Interactions

3.4. Result formatting

After invoking one of the management commands, the result of the operation is, whether synchronous or asynchro-
nous, whether or not successful in the remote managed system, conveyed in a consistent list format even though man-
aged object results will vary according to the nature of the operation. This consistency also allows for an easy
manipulation of results using Tcl’s built-in list commands. The top-level result format and the sub-components are
described in the following sections.

3.4.1. {moList}

{moList} is a list which represents the complete result of a management operation. The format is:

{ id replyId appl host operType firstError { mo1} ... { mon}}

id is either the identifier of the agent object (if synchronous invocation) or the identifier of the manager object (if
asynchronous invocation) used in the management command. replyId is the reply identifier used in the actual CMIS
result and is equivalent to the invocation identifier of the original request. It is also the only means to correlate the
asynchronous results. appl and host identify respectively the logical application title (the agent name) and the host
name of the remote managed system in which the operation was performed.

operType is the type of operation performed i.e. one of M_GET, M_SET, M_ACTION, M_CREATE or M_DELETE.
firstError is the error code of the first managed object in the list with an error (getListError and setListError are
excluded as partial results are expected in these cases). Finally, the remaining part of the list consists of one or more
{ mo} lists each of which represents a managed object result.

Agent

Managed
Objects

RMIB Agent
Procedure

Interpreter

command
result/error

RMIB API

CMIS API

Tcl-MCMIS
API

Tcl

C++

Command

arguments

Management Script

agentId

6

3.4.2. {mo}

{mo} is a list which represents a single managed object result. The format is:

{ errorCode { class} { instance} { operTime} [{ ava1} ... { avan}]}

errorCode is the error code resulting from operating on the managed object. Error codes and their descriptions are
described in the appendix. {class} is a list containing the class name of the managed object which can be empty {} in
the case of certain errors. {instance} is a list containing the instance name of the managed object which can also be
empty {}. {operTime} is the time of operation in the remote managed system and available only when errorCode is
noError, getListError or setListError, otherwise it will be the empty list {}.

What follows after {operTime} depends on the type of operation performed, and if applicable, the kind of error pro-
duced. This may be a number of {ava} lists representing the attribute value assertions or a single {ava} list represent-
ing either an action result or error information. In the case of failure, nothing is included beyond {operTime} except
when errorCode is noSuchAttribute, missingAttributeValue, invalidAttributeValue or processingFailure. Each of the
three variations of {ava} is described in the following sections.

3.4.3. {attr}

{attr} is a list which represents an attribute value assertion result in the case of the m_get, m_set and m_create com-
mands. The format is:

{[errorCode] type [{ value}]}

Firstly, if the error code in the containing managed object is noError then attr is of the form {type {value}} where
type is the attribute type. {value} is the attribute value and is given in a list which may be of a variable length includ-
ing the white spaces. In the case of set-valued attributes, {value} will be of the form {{foo % bar}} using the “%”
character to separate the attributes.

Secondly, if the error code in the containing managed object is either getListError or setListError, then attr can be of
the form {errorCode type} describing an attribute level error. For example, {noSuchAttribute foobar}. In these situa-
tions, valid attribute results must be distinguished from those which are not by explicitly checking the first element of
{attr}.

3.4.4. {actionRes}

{actionRes} is a list which represents an action result in the case of the m_action command. The format is:

{ type {value}}

type is the action type and {value} is the action result given in a list which may be of a variable length including the
white spaces. For example, {getUserNamesReply { rongshi saleem marvin marvin marvin }}.

3.4.5. {errorInfo}

{errorInfo} is a list which represents the error information only when the error code in the containing managed object
is one of noSuchAttribute, missingAttributeValue, invalidAttributeValue or processingFailure. The format is:

7

{ type [{ value}]}

The error information is otherwise not conveyed for other kinds of errors because “thinking” manager applications
should be able to cope in those situations, and the error code of the managed object should suffice. For example,
noSuchObjectInstance error code is self-explanatory with respect to the object instance parameter used in the request.

If the error code is noSuchAttribute or missingAttributeValue, then errorInfo identifies the attribute type in the form
{ type}. On the other hand, if the error code is invalidAttributeValue or processingFailure, then errorInfo identifies the
type/value combination of the error information in the form {type {value}}.

Fig. 4. Event-driven and asynchronous information flow

3.5. Asynchronous and event-driven support

In supporting the construction of any complex management systems, e.g. TMN Operations Systems [M3010], it is
very important to provide the asynchronous flow of information and event-driven features like the CMIS event notifi-
cation service to effectively optimise the communication link, to avoid blocking and receive the notifications of
changes from the remote MIB agent. As mentioned, in the RMIB API, the RMIBManager class enables a number of
asynchronous and event-driven services via the specialised call-backs.

In Tcl-MCMIS, we provide the rmib_manager command to instantiate manager objects of a special RMIBManager-
derived class to achieve the “double call-back” as shown in Fig. 4. The first call-back takes place between the
RMIBAgent and the RMIBManager, and the second call-back takes place from the RMIBManager to a Tcl proce-
dure. The latter may be a procedure which processes an event report or a CMIS result, or otherwise accept the notifi-
cation of remote agent’s termination. Typically, the call-back procedures are registered at the creation of a manager
instance using the rmib_manager command by declaring the procedure names of the call-backs to be used. The
application programmer must, of course, ensure that the call-back procedures are properly implemented a priori.

Agent

Managed
Objects

RMIBAgent

RMIBManager

Manager Object

KS

TkCoordinator

Managing application

Tcl procedure

X events

8

The handling of external input and events is provided in OSIMIS through the Coordinator and Knowledge Source
(KS) abstraction, where a derived Coordinator class called TkCoordinator is used in Tcl-MCMIS to allow multiplex-
ing of the incoming data including the X-Windows events of Tk.

3.6. Timer scheduling

In management systems which require polling the managed objects and real resources, it is imperative to provide
some form of scheduling timer wake-ups. In OSIMIS, the scheduling mechanism is part of the Coordinator and
Knowledge Source abstraction and as such we have made this facility to be part of Tcl-MCMIS via the TkCoordina-
tor instance. Two commands, schedule_wakeups and cancel_wakeups, are implemented. The former schedules
timer wake-ups by registering the name of the wake-up procedure to be called and the polling period. The latter com-
mand is for cancelling the existing wake-up(s).

4. Making OSI Stack Independent
The string-based nature of Tcl can lead to different approaches in defining Tcl-MCMIS detaching the OSI stack. This
observation has led to a fully string-based CMIS/P specification [LCMIP] that may be used locally over a pipe or
remotely over a reliable transport service e.g. TCP, OSI TS etc. This may be used to construct a generic management
access server which receives string CMIS messages, forwards them to the addressed remote application and returns
the results/errors to the invoking client.

A number of Tcl CMIS extension instances may be communicating with the server from UNIX workstations, PCs
etc. while the server runs on a UNIX system. This architecture results in OSI CMIP stack independence for the man-
ager. For example, teleworkers with ISDN access in their homes can run Tcl CMIS clients on their PCs, communicat-
ing to a generic management access server whose front-end uses TCP, and the back-end performs requested
operations on the target managed systems.

5. Conclusions
Tcl-MCMIS supports the easy construction of management tools such as MIB browsers, event monitors, etc. with
minimal development time, compared to the compiled approach which involves a longer learning curve. Due to the
interpreted nature, performance degradation, robustness and tolerance are obviously questionable. If a manager appli-
cation involves heavy computations for realising the management intelligence, the policy concerned should better be
implemented within C or C++, rather than processing in Tcl with the string operations. Large Tcl scripts can be very
complex without showing clearly the program structure, and therefore they can be very difficult to maintain and
debug! In order to avoid those pitfalls, a better approach will be to adopt the object-oriented methodologies supported
by [incr Tcl] and Object Tcl with C++-like programming flavours.

Acknowledgements

We are grateful to Kevin McCarthy, of UCL, for his comments on an early draft. This paper describes work under-
taken in the context of the RACE II Integrated Communications Management and the ESPRIT MIDAS projects. The
RACE programme is partially funded by the Commission of the European Union.

9

References

[X701] ITU-T X.701, Information Technology - Open Systems Interconnection - Systems Management Over-
view, 7/91.

[X720] ITU-T X.720, Information Technology - Open Systems Interconnection - Structure of Management Infor-
mation: Management Information Model, 1/92.

[X721] ITU-T X.721, Information Technology - Open Systems Interconnection - Structure of Management Infor-
mation: Definition of Management Information, 2/92.

[X722] ITU-T X.722, Information Technology - Open Systems Interconnection - Structure of Management Infor-
mation: Guidelines for the Definition of Managed Objects, 8/91.

[X710] ITU-T X.710, Information Technology - Open Systems Interconnection - Common Management Infor-
mation Service Definition, Version 2, 7/91.

[X711] ITU-T X.711, Information Technology - Open Systems Interconnection - Common Management Infor-
mation Protocol Specification, Version 2, 7/91.

[M3010] ITU-T M.3010, Principles for a Telecommunications Management Network

[Pav93] Pavlou, G., Implementing OSI Management, Tutorial presented at the 3rd IFIP/IEEE International Sym-
posium on Integrated Network Management, April 1993, San Francisco, U.S.A. Also available as UCL
Computer Science Research Note RN/94/80.

[Pav95] Pavlou, G., K. McCarthy, S. Bhatti, G. Knight, The OSIMIS Platform: Making OSI Management Simple,
in Integrated Network Management IV, pp. 480-493, Chapman & Hall, 1995.

[Strou] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.

[Pav94] Pavlou, G., T. Tin, A. Carr, High-Level Access APIs in the OSIMIS TMN Platform: Harnessing and Hid-
ing, in Towards a Pan-European Telecommunication Service Infrastructure - IS&N’94, pp. 219-230,
Springer-Verlag, 1994.

[LCMIP] Pavlou, G., LCMIP: A Lightweight Protocol Architecture for Data and Telecommunication Network
Management and Control, UCL Computer Science Research Note RN/95/61.

[TclTk] Ousterhout, J. K., Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.

[incr Tcl] McLennan, M. J., [incr Tcl] - Object-Oriented Programming in Tcl, AT&T Bell Laboratories,
Allentown, PA, 1994.

10

Appendix

CMIS Error Codes and their Descriptions

Error code M-Get M-Set M-Action M-Create M-Delete Description

noError no error has occurred.

noSuchObjectClass the specified MO class was not recognised.

noSuchObjectIn-
stance

. the specified MO instance was not recog-
nised. In M-Create, the specified parent MO
instance was not recognised.

accessDenied the specified MO instance cannot be
accessed due to security reasons. In M-Cre-
ate, the specified instance cannot be created.

classInstanceConflict the specified MO does not belong to the
specified class. In M-Create, the specified
MO cannot be created as a member of the
specified MO class.

processingFailure a general failure occurred while processing
the operation (usually out of memory).

invalidScope the specified scope was invalid.

invalidFilter the specified filter was invalid.

syncNotSupported the specified (atomic) synchronisation is not
supported.

complexityLimitation one of the specified scope, filter or sync
parameter was too complex.

noSuchAttribute . . . a specified attribute was not recognised. In
M-Get and M-Set, this is an attribute level
error.

getListError . some of the attributes could not be accessed
due to errors. Partial results may be
expected.

operationCancelled . the operation was cancelled.

setListError . some of the attributes could not be accessed
due to errors. Partial results may be
expected.

noSuchAction . the specified action type is not supported by
the MO class.

noSuchArgument . the specified action information was not rec-
ognised.

invalidArgument-
Value

. the specified action information is invalid.

duplicateManagedOb-
jectInstance

. the specified MO instance already exists.

11

An Example

The following sequence of commands shows the retrieval of the system object and its subordinates from an OSIMIS
“SMA” agent running at host “kinou”:

% set agent [rmib_agent -a SMA -h kinou]

% set r [m_connect $agent]

% puts [m_get $agent -s baseTo1stLevel]

% set r [m_disconnect $agent]

yielding the following result:

1 1 SMA kinou M_GET noError

{noError {system} {} {19950714170258} {objectClass {system}} {nameBinding {dummy-OID}} {systemId
{kinou}} {systemTitle {c=GB@o=UCL@ou=CS@cn=SMA@systemId=kinou}} {operationalState {enabled}}
{usageState {idle}}}

{noError {subsystem} {subsystemId=4} {19950714170258} {objectClass {subsystem}} {nameBinding {subsys-
tem-system}} {subsystemId {4}}}

{noError {uxObj1} {uxObjId=test} {19950714170259} {objectClass {uxObj1}} {nameBinding {uxObj1-system}}
{uxObjId {test}} {sysTime {950714170259Z}} {wiseSaying {it’s easy with osimis-4.0}} {nUsers {1}}}

{noError {monitorMetric} {scannerId=uxObjId=test} {19950714170259} {objectClass {monitorMetric}} {name-
Binding {scanner-system}} {scannerId {uxObjId=test}} {administrativeState {unlocked}} {granularityPeriod
{secs:10}} {operationalState {enabled}} {observedObjectInstance {uxObjId=test}} {observedAttributeId {nUs-
ers}} {derivedGauge {1}} {severityIndicatingGaugeThreshold {{Low:5 Switch:Off High:8 Switch:On}}} {severit-
yIndicatingTideMarkMax {maximum: cur 1 prev 0.00 reset 19950714170212Z}} {severityIndicatingTideMarkMin
{minimum: cur 1 prev 0.00 reset 19950714170212Z}} {previousScanCounterValue {0}} {previousScanGaugeValue
{0}} {counterOrGaugeDifference {False}}}

noSuchReferenceOb-
ject

. the specified reference MO instance does not
exist.

invalidObjectInstance . the specified MO instance violates the nam-
ing rules.

missingAttribute-
Value

. a required attribute value was not specified.

invalidAttributeValue . a specified attribute value was invalid.

Error code M-Get M-Set M-Action M-Create M-Delete Description

