
Extensible Signaling Framework for Decentralized
Network Management Applications

Dario Valocchi∗, Daphne Tuncer†, Marinos Charalambides†, Mauro Femminella∗, Gianluca Reali∗, George Pavlou†
†Department of Electronic and Electrical Engineering,University College London, UK

∗Department of Engineering, University of Perugia, IT

Abstract—The management of network infrastructures has
become increasingly complex over time, which is mainly at-
tributed to the introduction of new functionality to support
emerging services and applications. To address this important
issue, research efforts in the last few years focused on developing
Software-Defined Networking solutions. While initial work pro-
posed centralized architectures, their scalability limitations have
led researchers to investigate a distributed control plane, with
controller placement algorithms and mechanisms for building
a logically centralized network view, being examples of chal-
lenges addressed. A critical issue that has not been adequately
addressed concerns the communication between distributed
decision-making entities to ensure configuration consistency. To
this end, this paper proposes a signaling framework that can
allow the exchange of information in distributed management
and control scenarios. The benefits of the proposed framework
are illustrated through a realistic network resource management
use case. Based on simulation, we demonstrate the flexibility
and extensibility of our solution in meeting the requirements of
distributed decision-making processes.

I. INTRODUCTION

It is commonly admitted that network infrastructures have
become over time very complex. To support an ever increasing
range of applications and technologies, today’s networks need
to provide a heterogeneous set of functionalities, usually
implemented using equipment from multiple vendors, which
very often cannot easily inter-operate. As such, it has become
essential to simplify the network management processes.

The Software-Defined Networking (SDN) paradigm has
emerged as a promising solution to tame this complexity. The
main principle behind SDN resides in the separation between
the control and forwarding logic, which can be represented by
a decoupling between the data plane and the control plane. In
a SDN environment, the network infrastructure is controlled
through a unified control plane independent of specific vendor
equipment based on an abstract view of the resources. Flex-
ibility, programmability, simplification of management tasks
and application deployment are among the main advantages
usually advocated for the development of SDN-based network
solutions [1].

Early SDN proposals mainly focused on centralized control
plane approaches to implement the control logic (e.g., [2][3]).
In addition, management applications are usually executed
through a central management system which operates on a
global view of the network resources (e.g., [4]). Despite their

advantages - relatively simple to implement and can result in
optimized resource configuration - centralized solutions have
limitations, especially in terms of scalability, as the size and
dynamics of the network increase.

To overcome these limitations, we developed in our previous
work a novel SDN-based management and control framework
for fixed backbone networks [5]. The proposed framework
follows a layered architecture and relies on distributed planes
to implement the management and control functionality. More
specifically, management operations are executed through a
set of distributed Local Managers (LMs), which interact in
order to decide on the reconfigurations to apply for optimiz-
ing the utilization of the network resources. The resulting
configuration is then communicated to a set of distributed
Local Controllers (LCs), which determine the best sequence
of actions to enforce for updating the network parameters.

In this paper, we go a step further in the implementation of
the distributed management and control planes and develop a
new signaling framework to enable the communication and in-
teraction between the different entities in our framework. The
development of a signaling mechanism to support interactions
between distributed points is a key challenge in the design
of any decentralized system. Such a mechanism should pro-
vide the means for multiple entities to communicate without
incurring significant signaling overhead and complexity.

To satisfy these requirements, the proposed signaling frame-
work relies on a modular structure that enables the decou-
pling between the transport logic, which is realized based on
common transport protocols, and the management application
logic, which exchanges application-level information. Such
a modular structure offers several advantages in terms of
flexibility and extensibility. By extracting the mechanisms
common to all the applications (e.g., transport, security etc.)
into a commonly accessible layer, it enables application mul-
tiplexing: applications with different logic can implement
their own specific requirements in terms of communication
while relying on the common signaling layer to realize the
exchange of information. In addition, the modularity allows the
interoperability of components with different implementations
(e.g., LMs and LCs), which can make the framework also
applicable to other types of environments, e.g., distributed
virtualized network functions.

While the management and control framework considered
in [5] relies on several interfaces, in this paper we focus on978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

the interaction between the distributed management entities. In
particular, we illustrate the role and benefits of the proposed
signaling framework based on a representative resource man-
agement use case for content distribution in the context of an
ISP-operated caching scenario [6]. The associated application
has strong requirements in terms of the diversity and volume of
information used by each management entity to take a decision
and, as such, to be exchanged during a reconfiguration phase.
The results of the evaluation, which are based on realistic
settings, show that the signaling cost is directly influenced
by the logic of the application. This demonstrates that the
scalability of the approach is driven by the complexity of
the communication scheme associated with the application
rather than the internal mechanics of the proposed signaling
framework.

The remainder of this paper is organized as follows. Section
II provides background information on the network resource
management framework and the caching application consid-
ered in this paper. Section III elaborates on the knowledge
required by the different components of the management
framework to interact with each other. Section IV describes
the proposed signaling framework in detail. Evaluation results
are presented in Section V. Section VI describes related work.
Finally, conclusions are provided in Section VII.

II. BACKGROUND

In this section, we provide background information about
the SDN-based resource management and control framework
considered in this paper, as well as the cache management
application used to illustrate the functionality of the proposed
signaling framework.

A. Management and Control Framework

In our previous work [5], we developed a novel SDN-
based network resource management and control framework
to support both static and dynamic resource management
applications in fixed backbone infrastructures. In the proposed
framework, the network infrastructure is managed and con-
trolled by a set of software-based Local Managers (LMs) and
Local Controllers (LCs), forming distributed management and
control planes, respectively. The framework follows a three-
layer architecture as depicted in Fig. 1. The bottom layer repre-
sents the underlying network infrastructure. The middle layer
implements distributed management and control functionality.
Finally, the top layer represents the central management sys-
tem. As depicted in the figure, the interaction between the
different components of the architecture is realized through a
set of interfaces.

A key feature of this framework resides in its modular
structure, which is represented by two levels of separation, i.e.,
between the management and control functionalities, on one
hand, and between centralized and distributed management
operations, on the other. Short to medium term management
operations are performed by the LMs, which implement the
logic of management applications. These are responsible for
computing the configuration of the set of network resources

Distributed

Management and Control

Physical Network

Infrastructure

Central

Management
Local Manager

Orchestrator

Local Controller

Orchestrator

Central Management System

Local Controller (LC)

Local Manager (LM)

Switch (SW)

Interaction LM-SW

Interaction LC-SW

Management Substrate Link

Interaction LM-LC

Interaction Orchestrator-LM

Interaction Orchestrator-LC

Fig. 1. Resource management and control framework proposed in [5].

under their supervision according to the objective of the
applications which they implement. Configuration decisions
taken by LMs are provided to the LCs, which define and
plan the sequence of actions to be enforced for updating
the network parameters. These actions are then translated to
instructions sent to and executed by the relevant network
devices. In contrast to the LMs, the centralized management
system is responsible for longer term operations, for example
those that pertain to the instantiation and life cycle of LMs
and LCs.

The clear distinction between the management and control
logic provides several deployment benefits. This not only
allows the two concerns to evolve independently, offering
increased design choices and flexibility for the system vendors,
it also simplifies the integration of new network applications,
while maintaining interoperability. It should be noted that this
separation can be seen as a realization of the abstraction
discussed in the network self-management literature, which
proposed to partition the management process into sepa-
rate functions represented by the Monitoring-Analyze-Plan-
Execution (“MAPE”) loop [7].

As depicted in Fig. 2, the logic of the management applica-
tions (MAs) is distributed across a set of LMs, which provide
a common execution environment for different applications.
Each MA is instantiated at the LM level as a module (e.g.,
MA1, MA2), which maintains information tables and imple-
ments algorithms to decide on the configurations to apply. To
support the decision-making process of a specific MA, the set
of LMs involved in the execution of that application are orga-
nized into a management substrate [8][9]. The substrate is a
logical structure used to facilitate the exchange of information
between decision-making entities for coordination purposes.
The number of substrates, as well as their structure, depend
on the number and type of applications implemented in the
distributed management plane (one substrate per application).
It is worth noting that, although the same set of MAs is
depicted on each LM in Fig. 2, this is not a requirement of
the framework. In practice, each LM can instantiate a different
number of applications.

We elaborate on the interaction between the different com-

TABLE I
MAIN ACRONYMS.

ASL Application Signaling Layer
ASP Application Signaling Protocol
LC Local Controller
LM Local Manager
LMO Local Manager Orchestrator
MA Management Application
MSL Management Signaling Layer
MSP Management Signaling Protocol

ponents of the management plane (i.e., LMO, LMs and MAs)
in Section III. For clarification purposes, the main acronyms
used in this paper are summarized in Table I.

B. Cache Management Application

To illustrate the role and benefits of the proposed signaling
framework, we investigate how this can be used to enable
the content management application that we developed in
[6] in the context of an ISP-operated caching scenario. In
this scenario, each network node is associated with caching
capability which is used to locally store a set of content
items. The configuration of each cache is computed based on
the logic of the content management application implemented
by a set of LMs, which coordinate their decisions through
the management substrate defined for that application. The
objective is to determine which content items to cache, and
where, based on content characteristics such as the popularity
and origin (geographical) of requests.

More specifically, the decision-making process of this ap-
plication relies on two phases. In the first phase, content place-
ment decisions are computed concurrently by the LMs which
coordinate between themselves to acquire global knowledge
about the user demand distribution (i.e., from which content
popularity and geographical scope can be deduced), as well as
cache configuration. In the second phase, decisions are taken
independently by each LM with the objective of filling up any
remaining local cache capacity.

III. KNOWLEDGE FOR DISTRIBUTED MANAGEMENT
ARCHITECTURE

In this section we describe in detail the information main-
tained and shared by the management entities of the frame-
work, in order to underline the main motivations behind our
design choices.

A. Local Manager Orchestrator

As described in Section II, the LMO is the main centralized
management entity. It is responsible for long-term configura-
tions, such as deciding the number of LMs to deploy, their
location in the network, and the subset of resources under
their responsibility. The main LMO task is to compute the
partitioning of the network resources into clusters and to
identify the location of each LM inside each cluster. In [5],
we proposed an algorithm to compute the clusters and the
placement of the LMs. The output of this algorithm is used to

Fig. 2. Distributed management plane.

deploy the distributed management infrastructure. The LMO
communicates with the physical layer in order to instantiate
the LMs in the selected locations (i.e., bare metal servers,
cloud managers, Network Function Virtualization platforms).
Subsequently, the LMO communicates to each LM the list
of the network resources under its responsibility and the list
of the IP addresses of the other LMs in the network (LMO-
LM interface). The second task performed by the LMO is to
decide, based on the different management functions, the list
of LMs where a specific MA must be installed. By computing
this placement, the LMO also decides on the structure of the
management substrate, defining the connectivity between the
various modules of each MA. The list of MAs to be installed is
then passed to each LM by the LMO, triggering the installation
procedures. Finally, after the MA deployment, the LMO must
communicate to each MA module the list of its neighbors in
the relevant substrate (LMO-MA interface). To provide the
services described above, the LMO must store the following
information about the managed network:

• Network topology
• Network Resources (i.e., routers, servers, switches,

caches, etc.)
As an output of the placement procedures, the LMO will
maintain two internal tables:

• <LM id, Server Id, <Rid>, <MA Id>>: a list where
each entry represents a LM, the server hosting it, the list
of the managed resources (i.e., switches, routers, caches)
under its responsibility, and the list of the hosted MAs.

• <MA Id, <LM Id>>: the list of LMs running the MA
(i.e., the MA substrate).

B. Local Manager

As explained in Section II-A, the LM represents a common
execution environment for the MA modules, providing an ab-
straction of the managed resources to the hosted applications.
As such, it must store the list of these resources, as well
as the identifier (e.g., address) of the LCs that will enforce
its decisions on the them. In addition, it must also store the
address of all the other LMs in the network, in order to enable
the communication between the MAs hosted locally and the
MAs hosted on remote LMs.

To provide the services described above, each LM maintains
the following information:

• <R Id>: the list of the managed resources.
• <MA Id>: the list of the hosted MAs.
• <LM Id, IP address>: the translation table between LM

identifier and IP address.
• <LC Id, IP address>: the translation table between LC

identifier and IP address.
This information is retrieved via the LMO-LM interface

during the deployment phase and updated, if needed, during a
long term reconfiguration cycle.

C. Management Application

The MA implements the actual management and decision
logic. As pointed out in Section II, MA modules run on
the LMs deployed in the network and, depending on the
application, they store different types of information according
to the requirements of the specific management function, e.g.,
link utilization, content demand, content location, network
statistics, etc.

In order to make a decision, a MA module can act in-
dependently or share local information with a subset of its
neighbors in the substrate, thus co-operating with other MA
modules. The substrate could also be used to share additional
information such as event triggers or to facilitate synchroniza-
tion among the distributed entities during the decision-making
process. To communicate through the substrate, MA modules
must store the list of their neighbors, which is retrieved from
the LMO once deployed. The information maintained by each
MA module is the following:

• <LM Id>: the list of neighboring LMs in the manage-
ment substrate.

• Application specific information.

IV. SIGNALING FRAMEWORK

In order to enable communication between the entities of
the proposed management and control framework, a suitable
signaling protocol suite has to be designed. In this section
we present our solution, describing the design principles, the
signaling architecture and the functionality of the proposed
components.

A. Design Principles

Different management applications can have different re-
quirements in terms of how and when they need to share
information. Due to this heterogeneity, a monolithic signaling
protocol would be unsuitable to cope with the needs of
different applications. Furthermore, the types of management
applications that will be developed in the future, as well
as their signaling requirements cannot be predicted. Another
important aspect for the design of the signaling framework is
the relationship between the management and control planes.
Different types of applications would require to control differ-
ent categories of network resources, which can be classified,
for example, into SDN switches, routers, and network caches.
Based on this classification, different controllers would be
required to control and enforce decisions on different resource
categories. As such, the signaling framework should be flexible

Fig. 3. Signaling architecture.

and allow the MAs to interact and communicate with different
types of LCs, through the abstraction provided by the LMs.

In addition, the signaling framework should also support the
parallel evolution of the management and control planes. The
definition of new features, or the introduction of new MAs,
new categories of resources or new and more advanced LCs,
should not require a re-design of the signaling architecture.

The proposed signaling framework is therefore designed to
ensure both flexibility, in terms of enabling the communication
between different types of applications and different types
of controllers/resources, and extensibility to cope with the
evolving nature of the management and control planes.

To achieve these objectives, our architecture decouples the
infrastructure signaling, necessary to deploy and coordinate
the system entities, from the management signaling required
by the MAs to execute their decision-making process. This
decoupling leads to a two-layer architecture as depicted in
Fig. 3: the Management Signaling Layer (MSL) deals with
the infrastructure signaling, whereas the Application Signaling
Layer (ASL) implements the signaling logic needed by the MA
modules.

The main functions of the MSL are the following:
1) Exchange packets used by the system to deploy modules

over the network and update their internal status (e.g.,
deploy LM, setup MAs, distribute substrate information,
etc.).

2) Multiplex and demultiplex packets coming from and
directed to the MAs.

3) Provide the communication interface between the MAs
and the LCs.

The ASL has two main functions:
1) Exchange packets to share information needed by MA

modules to make decisions.
2) Exchange packets to synchronize the different phases of

the decision-making process of a given application.
We refer to the Management Signaling Protocol (MSP) as an

implementation of the MSL, and to the Application Signaling
Protocols (ASPs) as the implementations of different ASLs.
The decoupling between the MSL and the ASL allows the
MA developers to design their own information format and
communication scheme, which relies on a common layer to
provide message transport and addressing services. In addition,
the MSL provides a common interface for the different MAs
to push their decisions to the relevant type of LCs (e.g., for
SDN switches or caches) associated with the LM, regardless of
the specific vendor implementations. The evolution of existing

Application Specific Fields
(variable length)

Ver. Msg Type

Source Manager ID

[Application ID]

Msg Type

Application Payload

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

ASP
Header

MSP
Header

Fig. 4. MSP and ASP packet format.

LCs, or even the introduction of new LCs and/or resource
categories, will not affect the signaling architecture, and will
only require the definition of new identifiers for the different
LCs, and the development of a relevant MA to interact
with/manage them. Another advantage of this architecture is
that, in case of LM relocation, the decoupling between the
MSL and the ASL allows the LMO to inform the other LMs
about the new address of the relocated LM. This alleviates the
need to compute and distribute a new network-level substrate
for all the MAs affected by the relocation, which provides
gains in terms of computing time and network bandwidth.

B. Management Signaling Protocol Operations

Instead of designing a new IP based transport protocol, we
designed the MSP to rely on existing transport and session
protocols, which provide the communication primitives, such
as datagram messaging (UDP), reliable sessions (TCP), or
secure and reliable sessions (TLS over TCP).

To provide the address resolution service to the ASP, the
MSP must maintain a table containing the list of the LMs
deployed in the network with their relevant IP address. The
ASP maintains information about the substrate of the relevant
MA, represented by a list of LM identifiers. The interface
between the ASP and the MSP allows the ASP to specify a
list of LMs, which are the signaling destinations, its payload,
and the signaling requirements (i.e., reliability, security, etc.).
The MSP adds its header to the payload, uses its internal table
to resolve the IP addresses of the destinations and chooses,
among the available transport services, the one matching
the ASP requirements. It can then send the packet to the
selected destinations. Fig. 4 shows the packet format of the
proposed signaling framework. The header of the MSP is
designed to be as general as possible in order to cope with the
different requirements in terms of flexibility and extensibility,
as described in Section IV-A. The Message Type field in the
MSP header is used to identify packets carrying ASP payloads,
and packets coming from or directed to LCs, or to the LMO.
The MSP header also contains the Source Manager Id field
that is fetched with the payload to the ASP when a message is
received. As such, the ASP does not need to execute a reverse
lookup on the MSP table in order to identify the source of the
message.

In contrast, the ASP packet format strongly depends on the
specific ASP implementation. A Message Type field should
be available to allow the finite state machine of the ASP
to identify the format of the carried MA payload. For ex-

ample, the ASP header of a time-driven MA could provide
synchronization fields, such as a configuration cycle identifier,
an iteration identifier or a timestamp.

V. PERFORMANCE EVALUATION

In this section we present the results of the experiments
we performed in order to quantitatively assess the benefits
of the proposed signaling framework. The performance of
the communication scheme is evaluated both in terms of
computational complexity and network cost based on a custom
simulator. Although the signaling framework is designed to
support various types of MAs, we designed and implemented
a specific management application and its ASP. Section V-A
describes this application and the associated ASP. Section V-B
provides insights on the features of the simulator and on the
evaluated performance metrics. Finally, the obtained results
are presented and discussed in Section V-C.

A. ASP for Distributed Cache Management

An overview of the scenario used to illustrate the effec-
tiveness of our solution is presented in Section II-B; a more
elaborate description can be found in [6]. In this section, we
focus on the interaction between the different MA modules
and on the functionality of the associated ASP.

In the proposed scenario each MA module is associated
with a fixed amount of caching space, used to locally store
content items, and is in charge of selecting which content
items to cache for the next configuration cycle. This decision
is taken in a coordinated fashion among MA modules and is
based on demand characteristics, such as content popularity.
The cache reconfiguration algorithm is executed periodically
by MA modules, once a quasi-synchronous timer expires.
The decision process is composed of two phases. The first
phase is iterative and involves the use of the ASP. At the
start of this phase, MA modules exchange content popularity
information, as perceived from their local view, through the
ASP. The collected information is subsequently aggregated by
each module separately to build a data structure representing
the global view of content popularity. The next part of this
phase involves an iterative process to decide on which content
items to store at each of the available caching locations. At
each iteration, every MA module selects a variable number of
items to cache locally based on, (a) information extracted from
the global popularity structure, and (b) the cache status of other
modules in the substrate. Given that (b) needs to be updated
at each iteration, MA modules use the ASP to share their
cache status once a new placement has been computed. The
first phase ends in an asynchronous fashion and a final cache
status exchange is therefore required in order to synchronize
the global content placement view between the different MA
modules. The second phase of the configuration algorithm is
carried out by each MA module independently and, as such,
does not involve the ASP.

In the context of the scenario considered in this paper, it
is evident that, along with the messages carrying application
specific information, a synchronization mechanism is needed

in order to keep the MA modules in sync with the current
step of the algorithm. We can divide each iteration of the first
phase of the algorithm into two types of tasks: a compute task
(e.g., compute content placement) and a sharing task (e.g.,
sharing the local cache status). As a result, the MA needs two
synchronization mechanisms:

• A synchronization mechanism to notify the MA, during
a sharing task, when the information exchange is finished
and the information retrieved from the substrate can be
processed.

• A synchronization mechanism to orchestrate the different
MA modules in the substrate to ensure that they are all
executing the same computing task of the algorithm.

The first synchronization mechanism is provided by the
ASP, by exploiting the nature of the MA. At each sharing step,
MA modules broadcast a set of messages knowing exactly the
number of messages they expect to receive (i.e., number of
remote MA modules). A bitmap is maintained by the ASP for
each type of signaling message, which has a number of bits
equal to the number of remote MA modules in the substrate.
All bits are initialized with a zero value at the beginning of
a sharing task. A bit corresponding to a specific MA module
is set to one if, during the sharing task, a message has been
received from that module. The ASP can thus notify the MA
that a particular sharing task has been completed when all the
values maintained by the relevant bitmap are true.

In the case of the second synchronization mechanism, a
set of synchronization messages is defined, so that upon
completing a specific compute step of the algorithm, each
module starts a new sharing task, exchanging synchronization
messages relevant to that computing task. When the sharing
task is completed all the modules can move to the next task
of the iteration.

B. Evaluation Settings

Our simulator has been implemented in Java. It uses the
Deltacom topology [10], composed by 92 nodes, for layer
3 routing. We assume that each link in the network has an
available bandwidth of 10 Gbit/s, which is a typical capacity
value in real networks (e.g., [11]). The placement of LMs is
provided as an input and is used to compute the relevant IP
distances between pairs of managers. The number of requests
per content, for each manager and for each reconfiguration
cycle, is also provided as an input to the simulator. To
determine the number of requests per content, we generate one
hour of random requests based on a Poisson distribution with
inter-arrival time λ = 5000 req/h (based on the hourly request
pattern of the video on demand (VoD) trace presented in [12])
and a Zipf distribution with skew factor α = 1.2 (based on
the characteristics of the VoD dataset used in [13]). For the
geographical distribution of interests (i.e., number of distinct
locations from which a content is requested), we use the model
proposed in [6] with β = 0.8. In this case, the predominance
of popular content items can be preserved without strongly
discriminating less popular ones.

The performance has been evaluated both in terms of the
time consumed by the MA during one reconfiguration cycle,
and the traffic generated during the decision-making phase.
The time consumed by the MA is divided into:

• The CPU Time used by each module of the MA to
compute the required data structures and the output of
the placement algorithm.

• The Network Time used by each module of the MA
to send signaling messages to its peers in the substrate.
This time is divided into two components; the transfer
time and the network delay as follows:

– The Network Delay is measured assuming that each
IP hop in the topology incurs a 5 ms delay (based
on the values reported in [14]).

– The Transfer Time is computed by dividing the size
of the packet with the link bandwidth.

As for the traffic generated, the Network Traffic is com-
puted by summing up the size of each packet multiplied by
the length of the path between its source and its destination,
measured in terms of IP hops.

Each MA module is represented by an object that imple-
ments the content placement algorithm and the ASP described
above. The simulation is time-driven and in real time. At the
end of each reconfiguration cycle, the average value and the
standard deviation for the network time and the CPU time
are computed based on the values measured by each node,
while the network traffic metric is obtained by summing up
the contribution of each node. For each test we compute the
average value along with the standard deviation for all the
relevant metrics, collected for 10 reconfiguration cycles.

C. Simulation Results

We collected values for the described metrics for different
configurations of three main parameters of the system: the
content catalogue size, the number of managers (i.e., caches),
and the caching space available at each caching location. We
consider a content catalogue with a number of items ranging
from 104 to 105 based on the catalogue sizes reported in [15].
The number of managers, and their location in the topology,
is computed using the placement algorithm proposed in [5],
and it ranges from 4 to 82. As for the available caching space
per location, we also used [15] and selected four values for
the ratio between the total caching space in the network and
the catalogue size (5%, 10%, 15% and 20%), but due to space
limitations, we present results only with the two extreme cases
(5% and 20%)1. For each ratio, we compute the available space
per location by dividing the resulting total caching space by
the number of managers.

Figure 5 shows the simulation results for the average CPU
time, with a 95% confidence interval. The computing time
needed to complete a reconfiguration cycle strongly depends
on the size of the content catalogue, but as the size of the
catalogue increases by a factor of 10, the average CPU time

1It is worth noting that similar results were obtained with the two other
ratio values.

0 50 100

Number of managers

0

500

1000

1500

2000

2500

C
P

U
 t

im
e

 [
u

s
]

(a) Total Cache Capacity

/Catalog Size = 5%

10
4
 contents

5*10
4
 contents

10
5
 contents

0 50 100

Number of managers

0

500

1000

1500

2000

C
P

U
 t

im
e

 [
u

s
]

(b) Total Cache Capacity

/Catalog Size = 20%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 5. Average CPU time with 95% confidence interval for a ratio between
the total caching space and the catalogue size of (a) 5% and (b) 20%, for
different values of the catalogue size, as a function of the number of managers.

0 50 100

Number of managers

0

50

100

150

200

250

N
e

tw
o

rk
 t

im
e

 [
s
]

(a) Total Cache Capacity

/Catalog Size = 5%

10
4
 contents

5*10
4
 contents

10
5
 contents

0 50 100

Number of managers

0

50

100

150

N
e

tw
o

rk
 t

im
e

 [
s
]

(b) Total Cache Capacity

/Catalog Size = 20%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 6. Average Network time with 95% confidence interval for a ratio
between the total caching space and the catalogue size of (a) 5% and (b)
20%, for different values of the catalogue size, as a function of the number
of managers.

increases only by a factor of 2. Two interesting observations
can be made from the results presented in Figure 5. Increasing
the size of the total caching space (i.e., increasing the size
of each cache) leads to a lower computation time. This can
be explained by the placement algorithm, which relies on a
parameter p to control the number of content items to consider
for caching at each iteration of the first phase. The value of
p depends on the total available caching space in the network
and an increase in its value means that more items can be
cached at each iteration. This leads to a decrease in the number
of iterations needed to complete the first phase. Given that
the cost of each iteration is dominated by the contribution
of sharing tasks, the effect of the value of p on this cost is
negligible. As a result, a lower number of iterations leads to
a lower CPU time.

The second observation is that an increase in the number
of managers in the network leads to a decrease of the CPU
time, but only up to a certain value, when the number of LMs
account for around 50% of the network nodes. Increasing the
number of managers above this value results to a decrease
in the performance in terms of CPU time. This happens
because, with a higher number of managers, the size of the
data structures maintained by the MA modules grows. For
example, the size of the global content demand structure grows
linearly with the number of managers, since this is based
on an aggregate of the local view of each manager. This is
particularly evident when the catalogue size increases. In order
to mitigate this effect, the scope of peering of each manager
can be limited by partitioning the substrate into clusters of

0 50 100

Number of managers

0

50

100

150

N
e

tw
o

rk
 T

ra
ff

ic
 [

M
B

]

(a) Total Cache Capacity

/Catalog Size = 5%

10
4
 contents

5*10
4
 contents

10
5
 contents

0 50 100

Number of managers

0

20

40

60

80

100

N
e

tw
o

rk
 T

ra
ff

ic
 [

M
B

]

(b) Total Cache Capacity

/Catalog Size = 20%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 7. Average Network Traffic with 95% confidence interval for a ratio
between the total caching space and the catalogue size of (a) 5% and (b)
20%, for different values of the catalogue size, as a function of the number
of managers.

managers. This will reduce the knowledge of each manager,
decreasing the size of the structures maintained by the MA
module, and thus improve the performance in terms of CPU
time.

Figures 6 and 7 show the results for the network related
metrics. These demonstrate how the signaling framework can
support the complexity of the communication scheme of the
considered MA. The MA relies on a N-to-N communication
scheme, leading to a complexity in the order of O(N2),
with N being the number of managers. The results show that
the quadratic relationship between the number of managers
and the network metrics is respected: no further overhead or
complexity are incurred by the signaling system. In addition,
an increase of the caching space at each manager leads to
an increase in the performance in terms of network metrics.
Increasing the caching space leads to a decrease in the number
of iterations needed to complete a reconfiguration cycle (due
to the effect of p), thus resulting to a decrease in the number of
sharing tasks, and consequently to performance improvement.

An interesting result is the performance improvement in
terms of network metrics when the number of contents in
the catalogue increases. When a lower number of contents is
considered, we observe that more signaling traffic is generated,
which is due to the way in which local popularity is computed.
As explained in Section V-B, we generate one hour of requests
as a Poisson process. The total number of requests received
during that period is then distributed between the contents in
the catalogue according to the Zipf’s Law, in order to compute
the number of requests per content. The function proposed in
[6] is used to compute the geographical distribution of the
demand. The total number of requests per content is then
divided by the number of geographical locations and assigned
to a random set of managers, accordingly, if and only if the
number of requests for that content at a specific location is
greater than zero. Given that the total number of requests for
each configuration cycle follows a constant stochastic model
and the number of requests per content is driven by Zipf’s
Law, an increase in the total number of content items leads to a
decrease in the total number of requests per content, resulting
to more items having zero requests at certain geographical
locations. This decreases the length of some of the messages
exchanged in the first phase of the algorithm, thus decreasing

also the Network Time and the Network Traffic. In order to
evaluate the effect of the function used to compute the number
of requests per content, we also executed tests replacing
the Zipf’s law with a uniform distribution. This forces each
content to be requested at least once and from at least one
location. Due to space limitations, we do not show the results
here, but it is worth mentioning that, in this case, the value of
network related metrics increase with the size of the catalogue.

VI. RELATED WORK

To overcome the limitations of early SDN solutions, which
rely on a physically centralized control infrastructure, recent
research efforts have focused on distributed control plane
approaches (e.g., [16][17]), which come with the set of
traditional challenges associated with the implementation of
any distributed system (e.g., communication and interaction
between distributed entities [18], synchronization issues [19]
etc.).

To achieve the synchronization of network-wide view be-
tween distributed SDN controllers, Tootoonchian et al. devel-
oped in [16] a controller-to-controller communication mecha-
nism based on a pub/sub system. A communication protocol to
support the exchange of information between SDN controllers,
referred to as SDNi, has also been discussed in [20], where
the design of an interface mechanism for SDN-based domain
controllers is proposed. While these approaches have focused
on a horizontal communication design between the controllers,
a different direction was followed by Yeganeh et al. in [17],
in which communication between control entities is only
permitted vertically between a root controller and a set of
distributed local controllers. In [21], Levin et al. investigate
the problem of interaction between distributed controllers
from the perspective of the impact of distribution on the
performance of management applications. In particular, the
authors discuss two trade-offs which should be taken into
account when designing applications for distributed control
planes: between performance optimality and state distribution
overhead, and, between complexity of the application logic
and robustness to inconsistency. The primary objective of
most of the communication mechanisms proposed in the SDN
literature is to enable distributed controllers to build a global
network view. While this is also one of the objectives of the
signaling framework proposed in this paper, our solution pro-
vides additional functionality for the purpose of coordinating
the decisions of distributed management entities.

In addition, while the approaches described above realize
distributed control planes, they consider a centralized solution
to implement network applications, which cannot achieve
reactive and adaptive functionality. Distributed network man-
agement application solutions have received significant atten-
tion in the context of the research on autonomic networks.
Previous efforts have focused on various issues associated
with the communication and interaction between distributed
management entities, such as the definition of the interaction
type [7], the orchestration of distributed decisions [22], or the
development of frameworks and protocols for the exchange of

information between distributed decision points [23][8][24].
In this paper, we also design a communication protocol
for distributed management entities. However, in contrast to
previous work which mainly focused on specific use cases,
we propose a general and extensible signaling framework that
can be used to support any type of application.

The issue of a generic signaling framework, flexible enough
to support virtually every kind of signaling application, has
been also addressed by the IETF in [25], and further extended
in [26]. However, in spite of its generality, the complexity of
the framework prevented it from becoming widely used. A
generic messaging system able to support peering messaging
and to provide a messaging substrate service to overlaying
applications has been proposed in [27]. This mainly focuses
on the storage, duplication and retrieval of information and,
although it is designed to be extensible, it is not suitable
to provide a synchronization system to a set of management
entities involved in distributed decision-making processes.

VII. CONCLUSIONS

This paper presents the design and performance evaluation
of a novel signaling framework, which enables communication
in a distributed management system. The proposed signaling
framework provides both flexibility and extensibility, enabling
different types of management applications to interact and
control a heterogeneous set of network resources, and allowing
the management and control planes to evolve without needing
to modify the signaling stack. The results of the evaluation
show that the evolution of the network related metrics with
the number of managers follows the expected trend (i.e.,
quadratic), which demonstrates that the signaling framework
does not introduce scalability limitations or significant com-
plexity. In fact, the cache management application used for
evaluation purposes can be regarded as an extreme case,
requiring each distributed application module to build a global
view of the content demand and cache status. Other applica-
tions could take advantage of the decentralized management
framework to limit the overhead, by relying on a gossip-
based ASP to spread information in an epidemic fashion,
tolerating partial knowledge. Furthermore, the scope of peering
between managers can be limited by partitioning the substrate
into clusters, or optimizing the structure of the substrate to
cope with specific signaling mechanisms and requirements.
Future work will investigate and evaluate the impact of such
partitioning as well as other management applications with
different communication requirements. Another aspect to be
investigated concerns the control plane of the management
framework, which will involve a complete definition of the
interface between LCs and LMs, and a thorough study of the
communication between the orchestrator and the distributed
entities.

ACKNOWLEDGMENT

This research was funded by the EPSRC KCN project
(EP/L026120/1) and by the Flamingo Network of Excellence
project (318488) of the EU Seventh Framework Programme.

REFERENCES

[1] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 114–119, February 2013.

[2] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the Datacenter,” in Proc. of HotNets-VIII, 2009.

[3] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On Controller Performance in Software-defined Networks,” in Proc. of
Hot-ICE’12, 2012.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” in Proc. of SIGCOMM’13, 2013, pp. 3–14.

[5] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
Resource Management and Control in Software Defined Networks,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 1,
pp. 18–33, March 2015.

[6] D. Tuncer, M. Charalambides, R. Landa, and G. Pavlou, “More Control
Over Network Resources: An ISP Caching Perspective,” in Proc. of
CNSM’13, 2013.

[7] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart, “An archi-
tectural approach to autonomic computing,” in Proc. of International
Conference on Autonomic Computing, May 2004, pp. 2–9.

[8] D. Tuncer, M. Charalambides, H. El-Ezhabi, and G. Pavlou, “A Hy-
brid Management Substrate Structure for Adaptive Network Resource
Management,” in Proc. of ManFI’14, Krakow, Poland, May 2014, pp.
1–7.

[9] M. Charalambides, G. Pavlou, P. Flegkas, N. Wang, and D. Tuncer,
“Managing the future internet through intelligent in-network substrates,”
Network, IEEE, vol. 25, no. 6, pp. 34–40, 2011.

[10] “The Deltacom topology,” 2010, http://www.topology-zoo.org/maps/
Deltacom.jpg/.

[11] “The GEANT topology,” 2012, http://www.geant.net/Resources/Media
Library/Documents/1084%20GEANT%20Topology%20MAR%2012.
pdf.

[12] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding User
Behavior in Large-scale Video-on-demand Systems,” in Proc. of Eu-
roSys’06, 2006, pp. 333–344.

[13] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and
S. Uhlig, “Trace-Driven Analysis of ICN Caching Algorithms on Video-
on-Demand Workloads,” in Proc. of CoNEXT’14, 2014, pp. 363–376.

[14] Y. Zhu, C. Dovrolis, and M. Ammar, “Combining Multihoming with
Overlay Routing (or, How to Be a Better ISP without Owning a
Network),” in Proc. of INFOCOM’07, may 2007, pp. 839 –847.

[15] G. R. D. Rossi, “Caching performance of content centric networks under
multi-path routing (and more),” 2011, Telecom ParisTech, Paris, France.

[16] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. of INM/WREN’10, 2010, pp. 3–3.

[17] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proc. of HotSDN’12,
2012, pp. 19–24.

[18] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach
to Network Control and Management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 41–54, Oct. 2005.

[19] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[20] “SDNi: A Message Exchange Protocol for Software Defined Networks
(SDNs) across Multiple Domains,” Jun. 2012, https://tools.ietf.org/html/
draft-yin-sdn-sdni-00. [Online; accessed 08-July-2015].

[21] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically Centralized?: State Distribution Trade-offs in Software Defined
Networks,” in Proc. of HotSDN’12, Helsinki, Finland, 2012, pp. 1–6.

[22] E. Lavinal, T. Desprats, and Y. Raynaud, “A generic multi-agent concep-
tual framework towards self-management,” in Proc. of NOMS’06, April
2006, pp. 394–403.

[23] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang, “DACoRM: A
coordinated, decentralized and adaptive network resource management
scheme,” in Proc. of NOMS’12, Maui, Hawaii, Apr. 2012, pp. 417–425.

[24] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource man-
agement for cloud environments,” in Proc. of CNSM’10, Oct 2010, pp.
1–8.

[25] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch, “Next
Steps in Signaling (NSIS): Framework,” IETF, RFC 4080, Jun. 2005.

[26] M. Femminella, R. Francescangeli, G. Reali, and H. Schulzrinne,
“Gossip-based signaling dissemination extension for next steps in sig-
naling,” in Proc. of NOMS’12, April 2012, pp. 1022–1028.

[27] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“REsource LOcation And Discovery (RELOAD) Base Protocol,” RFC
6940 (Proposed Standard), Tech. Rep. 6940, Jan. 2014. [Online].
Available: http://www.ietf.org/rfc/rfc6940.txt

