Active Objectsin TMN

A. Vassila, G. Pavliou, G. Knight

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

Tel: +44-171 419 3679, +44-171 380 7366, +44-171 380 7215
Fax: +44-171 387 1397

e-mail: n.vassila, g.paviou, g.knight @cs.ucl.ac.uk

Abstract
Telecommunications Management Network (TMN) systems use the object-oriented
information modelling techniques and communication facilities provided by OSI Systems
Management (SM). TMN interfaces are specified in terms of rather passive Managed Objects
(MOs) with prespecified behaviour. In this paper, we propose the concept of Active Managed
Objects (AMOs) as the means to specify and express arbitrary management functions
(including those specified in [1]) through a suitable scripting language. AMOs may be
delegated to a TMN application in agent role and function close to other managed objects they
access. Such a facility increases the intelligence and autonomy of TMN applications and
enables the expression of management functions with arbitrary intelligence. Also, since it uses
the normal TMN mechanisms for information modelling and access (GDMO, CMIS/P), it
could be potentially standardised. In this paper, we describe the AMO concept, examine tha
information model and scripting language aspects and present our implementation experience.

Keywords
TMN, OSI Management, Active Managed Objects, Management by Delegation

1 INTRODUCTION

This paper describes work at UCL" which is aimed at increasing the intelligence and autonomy
of components of TMN[2] systems. TMN systems normally make use of the services and
protocols defined within OSI management[3]. The OSI management information model[4] is
based on an object-oriented database paradigm with rather passive ‘Managed Objects’ (MO)
encapsulating management information on a managed system. MOs are accessed by

* Thiswork is partially funded by the ACTS project MISA (AC080).

applications in a managing role with the access being mediated by an ‘agent’ function at the

managed system, which provides database-like functions enabling target MOs to be selected in

a flexible and data-dependent way.

Our work is motivated by the following considerations:

 There are some exceptions to the general passive nature of MOs, for example the
discriminator[5] objects which take an active role in the handling of asynchronous
notifications, and themonitor metric[6] and summarisation[7] objects which calculate
various statistics based on values obtained from other local MOs. We have found these
more ‘active’ MOs to be powerful tools in management - in particular, they enable much
management activity to remain local to the managed system which would otherwise require
interaction with a remote managing application. However, their ‘managing intelligence’ is of
static nature, parameterised only through MO attributes and actions. We have sought,
therefore, to generalise the active MO concept by providing a framework for a MO whose
precise behaviour is specified in a program or script downloaded at runtime.

* Moving management intelligence close to the resources being managed should eventually
improve the overall performance of the management system as it reduces network traffic, it
enables autonomy of managed systems and at the same time improves fault tolerance of the
whole system as constant communication between managing and managed entities is no
longer substantial.

» The OSI management model has little to say about the managing function beyond specifying
the operations it is allowed to invoke. However, the TMN architecture involves a hierarchy
of applications in a manager role in which high level ones control the behaviour of their
subordinates. We have developed a system in which the behaviour of a system in a manager
role is specified in a runtime script. It is convenient to represent a subordinate managing
system and its script as a MO which can be manipulated by a high level managing system.

An answer to the above considerations is to have a script executed by an interpreter that
performs management operations. This approach has also been followed by other research
groups: In Columbia University the Management by Delegation paradigm[8] has been defined,
and a system implementing it has been developed. In addition, in INRS Telecommunications
Canada[9], another delegation framework is being developed for application management, as
well as for systems administration. [10] also describes a prototype implementation of an
‘intelligent agent’ system for application management using CORBA. Other work includes the
scot ty implementation package[11]. But, what we have identified, is that the execution of
the script should be controlled by a higher level (probably remote) management entity. This
entity should be able to control every aspect of the script. Given the TMN context for the
work this control must be through the normal TMN mechanisms. This means that the
invocation of a script must be represented as a MO; the higher level managing system then
interfaces with the script by manipulating the MQO'’s attributes, actions and notifications. We
call such MOs ‘Active Managed Objects’[12] (AMO). A similar approach has been followed
by ISO and has been documented in [13].It has to be noted that our primary interest is in
prototyping the idea of AMOs and assess their usabilty and effectiveness, rather than
presenting a fully implemented system.

In Section 2 of this paper we clarify the AMO concept and in Section 3 we present a detailed
system design for an AMO. This design is, in fact, independent of the scripting language used -

however, the capabilities of this language are clearly important. In Section 4 we discuss
language issues in general, while in Section 5 we give a detailed description of the OS|
definition of the AMO. A pilot implementation of an AMO has aready begun using the
OSIMIS TMN platform; in Section 6 we describe this work.

2 THE AMO CONCEPT

Figure 1 shows the main AMO system components. The ‘Managed System’ can be any OSI
managed system, complete with the usual collection of MOs representing the resources being
managed. In addition to these MOs, there is an AMO representing a script. From the point of
view of OSI management there is nothing special about an AMO; for example, it presents a
conventional interface to the management agent, which can invoke the normal range of
operations (get, set etc.) upon it. The ‘Remote Managing System’ in Figure 1 can manipulate
the AMO by sending CMIP request PDUs to the managed system.

In Figure 1 the Remote Managing System is shown as a stand alone component. However, it
may itself be implemented as a script and AMO in another managed system which is itself
controlled by a higher level

Remote Agent | " Managed managing system. The ir|1terpreter
Managing ¥ 1 |yrocess| . MO isystem | in Figure 1 interprets a language
System | CMIP requests | [PTOCBSS] - . 2 which includes functions which

and responses P o X
(Manager role) perform management operations.
; : , MO ; We have investigated with two

N R kinds of functions: those which
S Seript| T N .

‘MO MO provide access to local MOs and
Interpreter *. "~/ "/ | those which provide access to
MOs on remote managed systems.

Figure 1l The Active Managed Object Model.

2.1 Local MO Access

This can be used to extend the capabilities of managed systems so that thegegarand
interpret delegated programs, expressed in a suitable scripting language. The latter enables
access to other managed objects in the local
Agent | 7 Managed| System through the full range of operations
process’|""U"MO gysiem available at the object boundary i.e. get, set,
action etc. The delegated logic assumes that all
:@" :,"'M(;x: the other objects are local and accesses them
; : . ; through their distinguished names in that
Dlseriptyt i e system e.g{subsystemlid=nw, entityld=x25}.
’ ' ' mo ¢ | The results, collected by the AMO, are then
Interpreter . """ “.__ - | accessible to a managing application via the
agent process in the normal way (Figure 2).

Managing
System

»»»»»

Figure 2 Access to local MOs

Within a TMN system this capability can be used, for example, to perform some standard or
proprietary TMN management function and make the results available to an application in a
manager role. It can also be used to provide autonomous control within a managed system.

2.2 Accessto Remote M anaged Systems

An example of thisis shown in
Figure 3. Here the managed
system marked A’ in the
" aroged centre of the figure contains an
MO isystem AMO which controls an
T interpreter offering the full
CMIS client service[14]. This
& ik 1 AP TR service is being used to
A |lmeel — manage a subordinate
Jproestvo SO managed system. At the same
time, ‘A’ is itself being
@ managed by a higher level
managing system.

A MO

: |scripté:
i MO i MO :

EI

Vel

Figure 3 Hierarchical Management A Os.

This gives fully hierarchical management controlled by scripts which can be downloaded at
runtime. Strictly, it is not correct to describe the systems in Figure 3 as ‘managed systems’
since they embody the managing and the managed roles. For remote access all MOs must be
addressed through global rather than local names. The global name of a MO consists of the
managed system identifier (that can be resolved to its address using the Directory), followed by
the distinguished name of the MO to be accessed. The scripting language and underlying
infrastructure may provide location transparency so that local and remote object accesses are
indistinguishable. Local accessed vetain the CMIS properties but without using the CMIP
stack. In TMN terms, local accessedl wccur through a q reference point while remote
accesses through a Q interface.

It should be noted that the AMOs in Figure 2 and Figure 3 are identical from the

informational point of view. Their management definition remains the same, while the
difference lies solely in the capabilities of the scripting language. In the first case, operations
within the local managed system are supported - one can expect these operations to be quick
and cheap as there probably is a single address space. In the second case, operations may be
performed onany managed system. Access is via an OSI management agent offering the
normal facilities available through CMIS such as multiple object selection, filtesitegss
control, etc.
Although the systems in Figure 3 are shown performing remote operations there is no reason
why they should not access local objects by directing CMIS requests at their local agent
processes. This way, there will be no need for the script programmer to distinguish between
local and remote objects, but the advantages of using local operations will be lost.

3 THE RUNTIME ENVIRONMENT

After having introduced AMOs, we now investigate their functionality in some detail. Our aim
isto construct a language independent system so that the AMO can work with more than one
language and interpreter. Therefore, we must identify the language independent aspects of the
system and define an information model for an AMO which encapsulates these. The identified
purposes of AMOs can be summarised as:

» To provide management access to scripts; i.e. to store information on scripts and identify
the interpreters that will execute them.

* To initiate and terminate execution of scripts according to managing systems requests and
local rules.

 To communicate with a running script for the purpose of passing parameters and
notifications to scripts and retrieving results.

» To provide/present/structure results for managing applications.

3.1 AMO Functionality

The script and its invocation are the real resource that is managed by the managing application
viathe AMO. Therefore, the AMO must represent all the aspects of the script that could be of
interest to the managing application and that are likely to be changed during its lifetime.

The first requirement isto deliver the script to the managed system and store it there. Thisis
done by storing the script as an attribute in the AMO, and delivering it using regular CMIS
operations. It isimportant to note that we assume that our system will be persistent, that is, all
the AMO components will survive any system failure.

Once a script is started, it represents a separate thread of control within the managed
system. This thread will exist until either a managing application requests termination, the
script voluntarily terminates or the managed system forces termination (perhaps because the
script is consuming too many resources). Typicaly, a script will use an event-driven
programming style. The events of interest being, for example, notifications from other MOs
within the managed system, receipt of communication from other managed systems, timer
events and receipt of signals from the manager application or the local agent process. The
execution of the thread will normally be suspended whilst it waits for an event.

It is important that the managing application is not obliged to access the AMO and script
during its execution for reasons other than an emergency, or to retrieve results and statistics.
This means that the AMO must carry al the knowledge that concerns the execution of the
script as directed by the managing application. However, athough, as stated above, the
managing application is not obliged to access the AMO during script execution it may do so in
order to vary aspects of script execution - for example, to adjust polling frequency.

At the very least, a script must be able to communicate with its local environment and with
its managing application. One role for a script could be to provide sophisticated, autonomous
processing of local events. Such events will engender notifications from MOs which the AMO
must pick up and pass to its script through some sort of asynchronous signalling mechanism.
We propose that the AMO class inherits from the discriminator class which will enable it to
receive notifications and filter them before generating signals. Normally the filter will be

provided by the managing application which created the AMO and can be changed at any time.
A signalling mechanism can also be employed to alow asynchronous communication from the
managing application. Thisisinvoked using the CMIS M-ACTION service.

It is evident that a managed system with AMOs and scripts embedded within it has many of
the characteristics of a multiprocessing, multi-user operating system. It is unwise in such a
system to assume that all scripts are benign; it isimportant that the managed system can defend
itself against rogue scripts. This defence, one can envisage, could be exercised through pre-
emptive scheduling mechanisms parameterised by some sort of priority value. Furthermore, an
interpreter for a safe language would provide a major defence againg malign scripts, by
forbidding all access other to the script’s own state variables and the MIB.

It is important to note that any management operations invoked by the script must behave
exactly as if they were invoked directly by a managing process, because the AMO acts on
behalf of a specific managing application. The normal access control mechanisms are applied to
the attributes of the AMO and to operations on managed objects invoked by the script. The
issues involving the mechanism by which this is done are under investigation. It is evident,
however, that by identifying the managing application that created the AMO in every
management operation, access control can be performed in a uniform fashion.

From the requirements above, we can summarise a number of features which must be present
in the AMO information model:

» Actions which can be used by the managing system to start, stop execution and to
signal the script thread. The result of the first action will be the creation of a new thread
of execution for the script. The second action will result in a previously created script
thread being terminated. The side-effects of this must be further investigated, as there is the
problem of destroying a script while executing, which can cause corruption of management
information. The third action will cause the AMO to deliver a signal to the script. The exact
mechanism through which such signals are handled within a script are language dependent.
Typically, the effect will be to cause the script to exit from a waiting state and execute the
appropriate code.

* A notification of script termination and exceptions. The AMO should be able to notify
the managing system about the script execution (mode of completion, execution error etc.).
asynchronously. The normal mechanisms are employed with the AMO issuing a notification
which triggers an event report through a discriminator.

» A notification to be invoked from within the script. It is important that the script should
be able to trigger notifications voluntarily. Thus the script programmer can ensure that a
notification (and hence an event report) is issued when a situation that requires further
involvement by a managing application is identified. Again, the precise way in which this
facility is invoked is language dependent.

» A filter. This is used to filter notifications coming from within the managed system and
determine whether these should result in signals being passed to the script thread.

* An interval timer mechanism. This can be used in order to simulate polling procedures.
The AMO will signal the script at specified intervals - minimising the need for managing
application intervention. Note that polling can also be implemented by calling a timeout
function from within the script. However, a mechanism controlled through the AMO, has
the benefit of allowing the managing application to adjust operations at runtime.

» An attributeto identify the script to be run and the controlling managing application.
The first will contain a string representation of the script. It will be set by the managing
entity when the AMO is created. The second attribute is essentia for the operation of the
AMO system because it has to appear in al communications with local or remote systems,
as the script inherits all the permissions that the i ssuing managing application owns.

4 FACILITIESOF THE SCRIPTING LANGUAGE

As stated above, the AMO has been designed so as to impose minima constraints on the
language employed for the script. We envisage scripts implementing anything from one line
statistical calculations to complex control policies - so a range of languages may be deployed
to suit these different applications. In this section we examine two aspects of the facilities these
languages must provide. First we look at the
facilities which are the counterpoint to the

Operation

N

AMO ||

API1 Notification generic facilities provided by the AMO - those that
* ,‘ implement API 1 in Figure 4. Next we outline the
‘| 'script | ¢ API 2 requirements for a general purpose language
| | suitable for the TMN environment. This must
Interpreter provide the full functionality offered by the OSI

model - APl 2in Figure 4.

Figure 4 Script APIs.

4.1 Theinterfacetothe AMO

It is useful to think of the script executing in conjunction with an AMO as analogous to a user
space process executing in a general multitasking operating system. Interactions take place in
two directions. The script must be able to read and write certain AMO attributes so that,
ultimately, it may communicate with the remote managing application (similar to Unix ioctl()
cals). It must also be able to cause the AMO to emit notifications and react to signals from the
AMO (similar to the Unix signal()/Kill() mechanism). The script can be started during AMO
creation or through a subsequent activation action while a termination signal will be passed to
it at deletion in order to terminate gracefully.

In the following example script, the scheduling primitives can be seen, as well as an example
of the CMIS extensions to the scripting language (described in Section 4.2).

Regi st er Ti ners (900000, scollect) Initialisation code
i fnumber =Get syst em d=grappa@ nt erfacesl d=NULL i f Nunber;
UpTi me=Cet syst emnl d=grappa@ nt er net Syst eml d=NULL sysUpTi ne;
proc scollect () { Callback function
date = get SystenDate();
upTi me=Cet syst enl d=grappa@ nt er net Syst eml d=NULL sysUpTi ne;
i f (upTime<Uptine) issuenotification(systemld=grappa “has been reset!!");
for (j==1, j<=ifnumber, j++) {
dn="systemld=grappa@interfacesld=NULL@ifEntryld=SnmplInteger="};
inucastpkts = Get (dn “ifinUcastPkts”);
outucastpkts = Get (dn “ifOutUcastPkts”);}
Set Qut put | nf o (date, UpTime, inucastpkts, outucastpkts);

}

In the above example, the procedure scol | ect () is executed every fifteen minutes. Several
values are retrieved from the local MIB-I11, written in the Qut put | nf o AMO attribute and a
notification is emittted if needed. This notification can be sent as an event report or logged,
depending on the actions of the managing application (creation of a discriminator).

4.2 A general purpose language for TMN management

In this section we examine the required facilities of the scripting language in order to enable the
expression and realisation of management policies. The base language facilities with respect to
the available data and control structures need to be comparable to those of compiled
programming languages. Object-oriented aspects, i.e. classes, inheritance and polymorphism,
are necessary for structuring more complex scripts. Scripting languages that can be thought as
potential candidates are Tcl [15]/ Scheme[16] and their object-oriented extensions and of
course Java[17]. These languages need to be extended with management facilities that will
enable interaction with the TMN environment and the MIB. It is these extensions we consider
in this section.

A script may access managed objects that are ‘local’ to the AMO i.e. part of the same
Management Information Tree (MIT) across a TMN interface, or ‘remote’ as part of another
MIT and TMN interface. Remote object accesses may incur an increased latency as an external
representation of the ‘method call’ will travel across the network, involving protocol overhead
etc. As such, the script should be aware of the system in which it executes through the name of
the top MIT object so that it can distinguish between local and remote access. On the other
hand, the syntactic aspects of object access should be in principle the same for both local and
remote objects. Global distinguished names may be used to provide location transparency
while local distinguished names will default to the local environment.

It appears at first that this unification is difficult: local access can be modelled as managed
object method invocation, in the same fashion as in any object-oriented environment. On the
other hand, remote access should reflect thitiescof CMIS, whereaccess is mediated by an
agent. The difference is crucial and, in a first consideration, it appears to have an effect on the
language extensions. As it has been shown in [18], higher level abstractions on top of CMIS
are possible, providing the illusion of direct objactess. In fact, it is possible to unify the two
types of extensions, assuming that CMIS facilities such as scoping and filtering are also
available for local access. In fact, suchlit#s increase the available flexibility and simplify the
script logic, as well as optimising the management traffic for remotess. Managed objects
may be addressed through their distinguished names (see example script in section 4.1), or
through (implementation dependent) object references i.e. handles or pointers. Unifying local
and remote access means of course that association establishment has to be completely
transparent to the script i.e. hidden.

The style of interaction should be both synchronous and asynchronous. A synchronous style
of interaction has method call semantics and results in natural, linear program flow but blocks
the thread of execution until the call returns. An asynchronous style of interaction has message
passing semantics and requires the management of state since the result will be returned
through a ‘callback’. Asynchronous facilities are of paramount importance in single threaded

environments as they prevent blocking the whole application for remote accesses with
increased latency.

5 ANINFORMATION MODEL FOR AN AMO

In the light of the analysis in Sections 3 and 4 we can now give a more formal specification of
an AMO which inherits from theeventForwardingDiscriminator managed object class.

ATTRI BUTES
I d/ Nare |dentifies the AMO and nameiit in the OSI MIT.
Aut hori sation |dentifies the managing system that created the AMO. It will
(@aDN) contain the distinguished name of the managing which will be used
as input to access control functions.
Script (string) Holds the delegated script.
Ti mer Used to change the intervals between script executions without

(sequence of integers) having to alter the script itself.
Filter (CMISFilter) A filter for notifications from local MOs. Notifications which pass
the filter result in signals to the script.

Par anet er s To be provided to the script when it starts. The syntax is a set of
(name-value pairs) pairs that indicate the name of a parameter and its value.

I nput I nf o Settable by the managing application, readable by the script every
(name-value pairs) timeit is changed.

QutputInfo Gettable by the managing application, writeable by the script to
(name-value pairs) indicate some results from its execution.

Priority (integer) Indicatesthe priority that should be given to the script execution.

Apart from the standard notifications or actions that any managed object can include, the
AMO will aso support the following. The need for these was discussed in Section 3.1.

NOTI FI CATI ONS
Term nationlnfo Triggered when the script terminates.

| nf or mvenager Triggered asaresult of thei ssuenot i fi cati on() function.
ACTI ONS

ActivateSThread The AMO activates the script thread upon receipt of this action.

Dest r oySThr ead The script thread is del eted.

6 IMPLEMENTATION EXPERIENCE

In this section we present considerations regarding the implementation of AMOs. The purpose
of this presentation is twofold: to explain how the AMO concept has been implemented in our
environment i.e. the OSIMIS TMN platform; and to identify the necessary requirements in
order to implement AMOs on other TMN platforms.

The first important consideration is related to the choice of the underlying scripting language.
In most TMN platforms, APIs like those depicted in Figure 4 are implemented in C/C++, so
the first important requirement for the scripting language is to be extensible and able to
interface easily to C/C++.

One of the reasons for choosing Tcl as opposed to e.g. Scheme as the scripting language to
verify the AMO concept, apart from the existence of the Safe-Tcl interpreter, was the ease
with which it interfaces to C/C++. The interface between Tcl (or any similar scripting
language) and the ‘encapsulating’ C/C++ environment is in two directions:

» from Tcl to C/C++, for accessing local or remote managed objects and for manipulating the
AMOs own attributes and emitting notifications

« from C/C++ to Tcl, for starting the AMO script, receiving notifications from local or
remote managed objects and receiving input from actions invoked on the AMO (including
setting its attributes, deletion etc.).

The next important consideration has to do with combined event handling in the scripting
language and the encapsulating C/C++ environment i.e. the TMN application in agent role.
Both these systems need to deal with events with respect to communication endpoints and
timer alarms. In our case the starting point is the OSIMIS system which implements a managed
system as a single Unix process without thread support. As an AMO sifirgtegute in the

same operating system process with (part or all of) the encapsulating management agent, it is
necessary to be able to combine their events so that there is a central listening and dispatching
loop, serving one or more AMO scripts and the surrounding agent. There are two different
possibilities for accomplishing this:

1. through a scripting language interpreter that can be interrogated about the endpoints and
alarms it deals with so that they can be combined with those of the underlying TMN C/C++
system; or

2. through a scripting language that can be extended with the endpoints and alarms of the
underlying TMN C/C++ system.

In both cases, the assumption is that the target central mechanism can be extended with
‘foreign’ descriptors and alarms. In our implementation we have followed the second approach
as it suited both the nature of Tcl and the OSIMIS process coordination mechanism. An
extension of the OSIMIS event handling mechanism passes control to Tcl and integrates with it
the OSIMIS C++ endpoints and timer alarms.

Finally, the most important implementation consideration is related to the TMN platform
APIs for accessing other managed objects, local and remote, and interacting with the AMOs
own attributes, reacting to actions and emitting notifications. A key feature of scripting
languages such as Tcl (or Scheme) is that the main data types are the string and list while other
complex types can be emulated through these. An important requirement for any underlying
TMN platform is that its APIs should support the manipulation of attributes, actions,
notifications and their values through string representations. The same applies also to
distinguished names, filter expressions and other CMIS-level parameters. The OSIMIS APIs
support string expressions in addition to the native C/C++ types, so it has been straightforward

to map these onto Tcl language extensions. When accessing local managed objects, scoping

and filtering may be supported in addition to accessing objects on a one-by-one basis; this

provides additiona flexibility and is particularly important for presenting the same access
paradigm for both local and remote objects, as it was explained in Section 4.2. In addition,

access control functionality is necessary as the script / encapsulating AMO assumes the identity

of the managing application that ‘owns’ it. In OSIMIS, the local managed object access API
allows the evaluation of scoping and filtering parameters. In addition, an object instance
modelling the Acess Decision Function (ADF) is globally available and this allows for the
evaluation of access control rights in order to be able to grant or deny access. When accessing
remote managed objects, these faclilities are available through the OSIMIS RMIB manager
support infrastructure. Local and remote managed object accesses can be distinguished
through the global name prefix: the scripting language knows about the environment in which
it executes through the name of the top MIT object e.g. {c=GB, 0=UCL, ou=CS, cn=ATM-
CM-0S, networkld=ATM}.

In summary, the key requirements in order to be able to implement AMOs on any TMN
platform with C/C++ APIs are the following: a flexible scripting language that integrates easily
with C/C++ and that is safe for the local system; the possibility for a combined process
coordination mechanism that integrates the scripting language and C/C++ TMN platform
events; and flexible managed object access APIs for local and remote objects that support
scoping, filtering and access control bcally, as well as accept string parameters.

7 SUMMARY AND FURTHER WORK

In this paper we have identified the need for programmable management facilities within the
TMN environment and have investigated how the execution of such programs may be
controlled using existing TMN mechanisms. We have identified two APIs which need to be
available to program scripts; one provides access to the local environment in which the script is
embedded, the other provides access to MOs in local and remote systems. These APIs have
been analysed in some detail and a scheme for their implementation within the UCL OSIMIS
system has been presented.

The control of the script execution is effected by representing the script and its execution as
a MO - a concept we have named an ‘Active Managed Object’. The requirements for the
attributes, notifications and actions of an AMO have been studied and our conclusions have
been presented.

Currently a pilot implementation which implements a subset of the facilities of the two APIs
above exists, using the Tcl scripting language. This implementation will be used to assess the
effectiveness of the AMO concept and will gradually be extended to include more of the
required facilities, as well as to assess the efficiency of the chosen language.

8 REFERENCES

[1] ITU/CCITT Recommendation M.3400 - TMN Management Functions, October 1992.
[2] ITU/CCITT Recommendation M.3010 - Principles For A Telecommunications
Management Network, October 1992.

[3] ITU-T X.701, Information Technology - Open Systems Interconnection - Systems
Management Overview, June 1991.

[4] ITU-T X.720, Information Technology - Open Systems Interconnection - Structure of
Management Information - Part 1. Management Information Model, January 1992.

[9] ITU-T X.734, Information Technology - Open Systems Interconnection - Systems
Management - Part 5: Event Report Management Function, 1992.

[6] ITU-T X.738, Information Technology - Open Systems Interconnection - Systems

Management - Part 11: Metric Objects and Attributes, 1994.
[7] ITU-T X.739, Information Technology - Open Systems Interconnection - Systems
Management - Part 13: Summarisation Function, 1994.

[8] G. Goldszmidt and Y.Yemini, Evaluating Management Decisions via Delegation, in

IFIP International ~ Symposium of Network Management, April 1993,

[9] Jean-Charles Grégoire, Management with Delegation, IRIP AlPs Techniques for

LAN and MAN Management, Paris France, 1993.

[10] P. Steenekamp and J. Roos, A Framework for Policy-based Agents: Implementation of
an Application Management Scenarid AHP/IEEE DSOM Workshop, Italy, 1996.

[11] J. Shonwalder and H. Langerdorfer, Tcl Extensions for Network Management
Applications, in3rd Tcl/Tk Workshop, Toronto, 1995.

[12] A.Vassila and G.Knight, Introducing Active Managed Objects for Effective and
Autonomous Distributed Management Bringing Services to People, IS&N Conference,
Heraklion Greece, 1995.

[13] ISO/IEC DIS 10164-21 - Information Technology - Open Systems Interconnection -
Command Sequencer for Systems Management, 1996.

[14] ITU-T X.710 - Information Technology - Open Systems Interconnection - Common
Management Information Service/Protocol, Version 2.

[15] J.K.Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[16] Wiliam Clinger and Jonathan Rees (eds.), RelisReport on the Algorithmic
Language Scheme, November 1991.

[17] Sun Microsystems, The JaVaLanguage: A White Paper, 1995.

[18] G.Pavlou, G.Knight, K.McCarthy and S.Bhatti, The OSIMIS Platform: Making OSI
Management Simple, imtegrated Network Management 1V pp.480-493, Chapman and Hall,
1995.

9 BIOGRAPHIES

Anastasia Vassila graduated from the Computer Science Department of the University of Crete in
1993. Currently she is a PhD student in UCL under the supervision of Graham Knight. She does
research on integrated network and systems management, emphasising on autonomous, event-driven
management in the OSI/TMN framework.

George Pavlou received his Diploma in Electrical and Mechanical Engineering from the National
Technical University of Athens in 1982 and his MSc in Computer Science from University College
London in 1986. He has since worked in the Computer Science department at UCL mainly as a
researcher but also as a lecturer. He is now a Senior Research Scientist and has been leading research
efforts in the area of management of broadband networks and services.

Graham Knight graduated in Mathematics from the University of Southampton in 1969 and received
his MSc in Computer Science from University College London in 1986. He has since worked in the

Computer Science department at UCL mainly as a researcher and lecturer. Heis how a Senior Lecturer
and has led a number of research efforts in the department. These have been mainly concerned with two
areas. network management and ISDN. Currently he is leading the UCL €ffort in three EU-funded
projects in the areas of network and systems management and broadband networks.

