
A Heuristic for Global Coordination in
MPLS Bandwidth Constrained Path Selection

Ning Wang a, Yin Lu b, George Pavlou a

a: Center for Communication Systems Research,
University of Surrey, Guildford, United Kingdom

b: Dept.of Computer Science and Engineering,
Southeast University, Nanjing, P.R. China

{ N.Wang, G.Pavlou} @eim.surrey.ac.uk, luyinn@sina.com

Abstract
Multi-Protocol Label Switching (MPLS) has been considered
to be a promising solution to achieve end-to-end QoS
guarantees in Differentiated Services (DiffServ) domains [1].
Based on the Service Level Specification (SLS) between
customers and the ISP, traffic forecast mechanism is able to
predict traffic demands between ingress-egress routers, and
hence bandwidth guaranteed LSPs can be set up accordingly
through the DiffServ domain. In this paper, we address the
problem of computing multiple LSPs with heterogeneous
bandwidth requirements, while the overall network link cost
is optimized. We first prove that finding a set of feasible
LSPs with bandwidth constrained is NP-complete, and then
propose an efficient heuristic with global network resource
coordination over individual traffic aggregates. By simulation
we show that the proposed coordinated path section (CPS)
scheme obtains better overall LSP cost and lower bandwidth
consumption compared with existing bandwidth constrained
routing algorithms.

1. Introduction
Differentiated Services (DiffServ) has been proposed and
incrementally deployed on the Internet for QoS provisioning
in a scalable fashion. In contrast with the scenario of
Integrated Services (IntServ) and RSVP, data traffic in
DiffServ networks is classified into finite class of services at
the edge of the network, and packets belonged to the same
QoS class are treated aggregately inside the domain based on
Per Hop Behavior (PHB). On the other hand, how to achieve
end-to-end QoS guarantee raises a new challenge for
DiffServ technology. Recently some research work has been
focusing on the deployment of Multi-Protocol Label
Switching (MPLS) inside DiffServ networks to satisfy
quantitative QoS guarantees. MPLS is a new switching
technology to forward packets according to a short, fixed
length label, and to set up explicit Label Switching Paths
(LSPs) through the network. These LSPs carry flow
aggregates based on Forwarding Equivalence Classes (FEC)
generated by classifying the data packets at the ingress
routers of the MPLS networks. This basic characteristic
provides promising solutions for supporting quantitative QoS
requirements in DiffServ networks by means of setting up
explicit LSP for each traffic aggregate.
It has been argued that, if QoS constraints such as delay and
loss probability are to be incorporated in Service Level

Agreements (SLAs) in the DiffServ network, the most
practical way is to convey them into effective bandwidth
requirement for LSPs [2]. In this sense, the strategy of setting
up explicit LSPs for aggregated traffic trunks can be modeled
as the bandwidth constrained routing problem. Traditional
Shorted Path (SP) algorithm based on Dijkstra’s approach
has been proved not always efficient in QoS routing
semantics when additional metric constraints are involved,
e.g., delay, loss probability etc. In [3] it has been proved that
routing with two additive metrics is an NP-complete problem.
On the other hand, routing with one additive metric and
bandwidth constraint can be performed in polynomial time
by eliminating network links that do not have sufficient
bandwidth capacity. In literature, several classic heuristic
algorithms have addressed the problem of bandwidth
constrained routing.
A. Simple Bandwidth Guaranteed Routing [3]
This is the most straightforward approach among all the
bandwidth constrained routing algorithms. The main idea is
that, before setting up any paths, all the links that do not have
bandwidth capacity as required by the traffic trunk are
eliminated from the network. Thereafter, Dijkstra’s algorithm
is used to compute a feasible shortest path. Simple as it is,
this algorithm only focuses on the additive metric, but does
not provide any mechanism for bandwidth optimization
purpose. In fact, if multiple paths are to be computed for
different source-destination pairs, the overall performance
regarding this additive metric might not be optimal, as it will
be shown in an example in section 3.3.
B. Widest-Shortest Path (WSP) and Shorted Widest Path

(SWP) [3, 4]
Both WSP and SWP try to optimize the residual bandwidth
distribution so that the network resource can accommodate
more incoming traffic trunks in future. In WSP, when there
exist multiple shortest paths with equal number of hops
between a source-destination pair, the one with the maximum
“bottleneck” bandwidth will be selected. In contrast, SWP
first explores a path with maximum bandwidth among all
feasible paths, and if there exists a tie, the one with the
minimum number of hops will be selected. It is noted that the
metric of hop counts can be replaced with any additive
metric, e.g., link cost (if the optimization objective is to
minimize overall cost, and this is typically useful for
multicast routing), or delay (if the optimization objective is
focused on end-to-end delay).

C. Bandwidth-inversion Shortest Path (BSP) [5]
In the BSP algorithm, the Dijkstra’s shortest path algorithm is
still used, but the weight of each link (i, j) is defined as
follows:

ijb
jiw

1
),(=

where ijb is the residual bandwidth capacity of link (i, j).

The total weight of a path P is expressed as

�
−

= +

=><
1

1 1,
21

1
)...,(

n

i ii
n b

vvvPw

It can be found that the BSP algorithm considers exclusively
the link metric of bandwidth, and although traffic trunks can
follow the lightest path, other network metrics will not be
explored simultaneously.
D. Enhanced Bandwidth-inversion Shortest Path (EBSP) [6]
Having realized that the performance of the BSP algorithm is
not stable, and the fact that wide paths but with very long
distance might be introduced, Wang and Nahrstedt proposed
an enhanced BSP algorithm to improve the situation. In
EBSP the new weight of a path is changed into

�
−

= −

−

=><
1

1 ,1

1

21

2
)...,(

n

i ii

i

n b
vvvPw

It is noted that the new weight function is no longer static,
and this characteristic of dynamic metric according to hop
counts reduces the probability of obtaining “ longer” paths.
All the algorithms introduced above are from the viewpoint
of individual source-destination pairs, i.e., they are a type of
on-demand schemes that do not need any information on
other traffic trunks passing through the network. Hence, none
of the above algorithms consider a “global” coordination on
bandwidth allocation among all of the concurrent traffic
demands. In this scenario, individual so-called “optimized
paths” are only seen by their own corresponding source-
destination pairs. However, it is not always the case that
individual traffic trunks are blind to each other so that global
coordination is impossible. In DiffServ networks, Service
Level Agreements are made between customers and ISP, and
the corresponding SLS specifies the detailed parameters in
the agreement, including the location of ingress and egress
pair, aggregated bandwidth requirements etc. Based on these
SLSs, the ISP is able to grasp a complete map of its required
traffic demands at the edge of the DiffServ domain, and
hence simultaneous computation of all the LSPs between
ingress-egress routers becomes possible, due to the
mechanism of Traffic Forecasting (TF) from the SLAs with
customers.
When m (m≥ 2) bandwidth constrained LSPs are to be set up,
network bandwidth can be allocated to individual traffic
trunks with global resource coordination. Given the
bandwidth capacity of the network, the problem of finding a
feasible solution for setting up individual bandwidth
guaranteed LSPs is NP-complete, and we name this problem
Global Bandwidth Constrained Routing (GBCR). Given
additional metrics such as link cost and delay, the problem of
path computation will become more complicated. Since link
metrics such as delay and loss probability can be conveyed
into bandwidth requirement, we will focus on another

important metric, namely overall link cost, which can be
defined according to the need of the ISP. Typically, hop
count is a special case for link cost by setting the cost of all
links to 1. In this sense, the overall cost will directly reflect
network resource consumption, since LSPs with minimum
total number of hops consume least network bandwidth. In
this paper we will propose a new offline heuristic algorithm
for optimization of overall link cost among multiple LSPs
through the DiffServ domain. Although we only consider
setting up point-to-point LSPs for unicast routing, the
proposed approach can also be adapted for multicast
paradigms in the sense that individual paths are replaced with
trees with multiple ending point at egress routers.

2. Problem Formulation
A DiffServ capable network can be modeled as a directed
graph),(EVG = , with a boundary node set D (VD ⊂

and mD =||). Two types of metrics are associated with

each link),(ji in the graph, namely link cost ijc and

bandwidth capacity ijb . (ijc can be the parameter such as

administrative cost or monetary cost , or simply hop count)
For simplicity we assume that cost is a symmetric parameter,

i.e., jiij cc = for any link),(ji in the network. Aggregated

traffic demands for the network can be identified with a
mm× sized traffic trunk matrix T, and each element

Ttuv ∈ stands for the traffic demand from the ingress node u

to the ingress node v, where nodes Dvu ∈, . We suppose

that the number of non-zero elements in T is L. Global
Bandwidth Constrained Routing (GBCR) is to find a set of
paths { P1, P2,…PL} , for each of the non-zero element

Ttk ∈ , and satisfies the following requirements:

(1) Minimize � �
= ∈

L

k Eji

k
ijij Xc

1),(

, VjVi ∈∈ ,

(2) For each link Eji ∈),(, �
=

≤
L

k
ij

k
ijk bXt

1

where

�
�
� ∈

=
otherwise0

),(if1 kk
ij

Pji
X

The first constraint ensures that the total cost of the generated
paths is minimized, while the second constraint is to ensure
that the total bandwidth allocated to traffic trunks passing this
link does not exceed its bandwidth capacity. Figure 1 shows a
network model and a typical traffic matrix. In Figure 1(a), the
number in the middle is the cost associated with the link and
the numbers by the side is the bandwidth capacity along this
direction, e.g., the bandwidth capacity of link (A, B) is 3 and
that of link (B, A) is 9. The nodes filled with gray color are
boundary nodes, and the traffic demands between each of
them are shown in Figure 1(b). From the traffic matrix we
can see that there are totally 5 traffic trunks between three
boundary nodes, e.g., traffic with 3 units of bandwidth will
be injected into the network at node A and eventually leave it
at node E.

A

B

D

EF

C
4 1 10

4

2

 8

9

7
 3

7 6 4

8 2 2

3

 5

 2

9

 7

 8

4 3 7

(a)

Traffic Matrix
 A C E

A --- 1 3
C 0 --- 4
E 2 5 ---

(b)

Figure 1 Network model and Traffic Matrix

A set of LSPs { P1, P2,…PL} that satisfy constraint (2) is

called a feasible solution to the Global Bandwidth Constraint
Routing (GBCR) problem. A feasible solution to GBCR
based on the network model and traffic matrix in Figure 1 is
the path set { Aà Bà C, Aà Fà Bà Cà Dà E, Cà Dà E,
Eà Fà A, Eà Fà Bà C} with total cost of 50. After setting
up a set of paths for the traffic trunks, we find that the
bandwidth of links (C, D) and (F, B) is decreased to 0, and
we name this types of links saturated links. Now we give the
proof that finding a feasible solution to GBCR is NP-
complete. This indicates that there does not exist any
algorithm that can compute a set of feasible path with the
bandwidth constraint (2) in polynomial time.

Theorem 1: The problem of finding a feasible solution to
GBCR is NP-complete.
Proof: In order to prove the problem to be NP-complete, we
perform a bi-directional transformation between the
PARTITION problem [7] and this problem in polynomial
time.

First let A with elements { kaaa ..., ,21 } be an instance of the

PATITION problem. Each element ia has a size)(iaS . Let

� ∈
=

Aa
aSS)(. We construct an instance of GBCR

problem as shown in Figure 2. The directed network graph
),(EVG = has a boundary node set

},,...,,{ 1210 kk XXXXXD −= and 5 additional internal

nodes, namely R1 to R5. The directed link set E is as follows:

)},1(),1,3(),1,2(),3,5(),2,4{ (

)}...1:)5,{ ()}...1:)4,{ (

0XRRRRRRRRR

kiRXkiRXE ii

∪
=∪==

The directed link (R4, R2) and (R5, R3) have a bandwidth
capacity of 2/S respectively. All the other links are
assumed to have infinitive amount of bandwidth capacity.
The traffic matrix contains k non-zero elements, namely from

)...1(kiX i = to 0X . The bandwidth demand of traffic

trunk),(0XX i is set to)(iaS units. It is easy to see that

this transformation can be performed within polynomial time.

X2 R4

R5

R2

R3

R1 X0

Xk

Xk-1

X1

. ..

S/2

S/2

Figure 2 NP-completeness proof for finding feasible solutions
to GBCR

Next we show that a feasible solution for GBCR exists if and
only if set A has a partition.

(a) PARTITION à GBCR

First suppose we have a solution, say 1A , to the

PARTITION problem, i.e.,

� �
∈ −∈

==
1 1

2/)()(
Aa AAa

SaSaS

For each element 1Aai ∈ , let the corresponding traffic trunk

from ingress node iX traverse the directed link (R4, R2) to

reach the egress 0X . All other traffic trunks from ingress

node iX with the corresponding element

1AAai −∈ traverse the directed link (R5, R3) to reach the

egress 0X . Then the sum of the bandwidth usage of the

directed links (R4, R2) and (R5, R3) are exactly S/2.Thus we
have obtained a feasible solution to the GBCR problem.

(b) GBCR à PARTITION
Next suppose that we have a feasible solution for GBCR
based on the network graph in Figure 2. Note that each of the

traffic trunks from ingress nodes),...2,1(kiX i = must

either traverse directed link (R4, R2) or (R5, R3) to reach

0X . For each traffic trunk from iX that traverses the link

(R4, R2) to reach 0X , we let)(, DUUX i ⊂∈ . Since the

bandwidth of link (R4, R2) is S/2, we have:

�
∈

≤
Uu

SuS 2/)((1)

Likewise,

�
−−∈

≤
}{ 0

2/)(
XUDv

SvS (2)

But we note that

� � � �
∈ ∈ −−∈ ∈

=−≥−=
Uu Aa XUDv Aa

SSaSvSaSuS
}{ 0

2/2/)()()()(

 (3)
Hence it follows from (1) and (3) we get

�
∈

=
Uu

SuS 2/)((4)

This also implies that

�
−−∈

=
}{ 0

2/)(
XUDv

SvS (5)

Equations (4) and (5) form a feasible solution to the
PARTITION problem.

Theorem 2: The GBCR problem is NP-complete.
Proof: Being a generalization problem of finding feasible
solution, which is an NP-complete one, the problem of GBCR
itself is NP-complete with additional constraint of
minimizing overall link cost.

3. Paths Coordination Heuristic
As we mentioned in section 1, from a viewpoint of an ISP, it
is a valid assumption that all traffic demands between
ingress-egress pairs can be obtained from traffic forecasting
mechanism based on the SLSs between customers and the
ISP. In this case, a set of LSPs can be set up simultaneously
for delivering the corresponding traffic through the MPLS
network. When multiple LSPs compete for some particular
links that do not have sufficient bandwidth to support all of
the traffic aggregates, our heurist will select part of the LSPs
to traverse the link, while others are forced to explore
alternative paths, with the objective that the overall path cost
is maintained as low as possible. This type of path cost can
directly reflect the overall bandwidth consumption and the
overhead of setting up LSPs.
On the other hand, since our proposed heuristic for
computing LSPs is an offline approach for network
dimensioning, this implies that the forecasted traffic demands
should be relatively static for a certain period of time.
Whenever the initially computed LSPs cannot handle the
network dynamics efficiently, online algorithms for local
adjustment of LSPs will be triggered, and this will be our
further research direction. Of course, accurate traffic
forecasting as well as efficient network dimensioning
algorithms from the ISP helps to reduce the frequency of
performing online adjustments.

3.1 Terminologies Definition and Explanation
Before we present our proposed heuristic for coordinated
path selection, we first make definitions and explanations of
some terminologies to be used in the context.
(1) Cheapest Path (CP): The path with minimum overall link
cost, and CP can also be computed by Dijkstra’s shortest path
algorithm regarding link cost. In this paper the term cheapest
path is interchangeable with shortest path since the metric of
delay is not within our concern.
(2) Saturated vs. Overloaded: As we mentioned in section 2,
a saturated link refers to the one that has been nearly fully
utilized and cannot afford bandwidth for any incoming LSPs
under consideration. On the other hand, an overloaded link
refers to the one whose actual allocated bandwidth has
exceeded its bandwidth capacity, i.e., the corresponding
utilization is greater than 100%. The objective of our
algorithm is to minimize the overall network cost without
incurring any overloaded link, but we do allow the existence
of saturated links, though this is not desirable from the view
point of load balancing.

(3) Traffic Trunk Profit (TTP): Suppose that the cheapest
path P for the traffic trunk T from node a to b with total cost
C(P) traverses a link l. If we prune l from the network and re-
compute an alternative cheapest path P’ for the same source-
destination pair with total path cost C(P’), the Traffic Trunk
Profit of T on link l is defined to be the difference between
the total cost of P and P’ , i.e.,

)()'(PCPCTTPT
l −= (6)

Figure 3 presents the illustration on how TTP is defined for a
traffic trunk T from ingress node a to egress node b on link l.

a b
l PT

C(P)

P'C(P')

Figure 3 Definition of Traffic Trunk Profit (TTP)

(4) Profit-Expense Ratio (PER): Given a traffic trunk T from
ingress node a to egress b and a particular link l on the
corresponding cheapest path, The Profit-Expense Ratio
(PER) of traffic trunk T on link l is defined to be:

TT

T
lT

l B

PCPC

B

TTP
PER

)()'(−== (7)

where TB is the bandwidth demand of traffic trunk T.

3.2 Coordinated Path Selection (CPS)
The main idea of our algorithm is to en-route all the traffic
trunks through the network without incurring any overloaded
links, and at the same time minimize the overall LSP cost. In
the algorithms listed in section 1, individual LSPs are
computed at the ingress router sequentially and
independently with the consideration of local optimization. In
contrast, in our heuristic when multiple LSPs need to traverse
a cheap link that cannot satisfy all of the relevant demands,
we will coordinate these LSPs in a global viewpoint, and
allocate the link to those that can make most “profit” and
least “expense” on that link. Specifically, according to the
definition of Profit-Expense Ratio (PER), the limited
bandwidth of the link will be allocated in non-ascent order to
the LSPs with the largest value of PER as long as the link has
not been overloaded. In effect, given a particular link, the
LSP bandwidth allocation with cost optimization is modeled
as the KNAPSACK problem [7] that is also NP-complete.
The concept of PER is to guarantee that both profit (LSP
cost) and expense (bandwidth constraint) are considered
comprehensively. Figure 4 presents a scenario on the PER
based bandwidth allocation mechanism in time of
competitions for a particular link l. Suppose link l is on the
cheapest paths for traffic trunks

1T to
iT but the bandwidth

capacity cannot support all of them. In this case, we prune l
from the graph and reconstruct cheapest LSPs for all traffic
trunks being involved. After computing the Profit-Expense
Ratio for each traffic trunk on l, we sequentially allocate the
bandwidth of link l to the LSP with the highest PER value.
This procedure will terminate when the bandwidth of this
link cannot support any traffic trunks that have not been
considered. For all the traffic trunks that cannot traverse link
l, they will follow the alternative cheapest paths that do not

contain link l, namely 'iP in Figure 4. Specially, if there

exist multiple paths with equal cost for a given traffic trunk
(the corresponding value of TTP and PER is equal to 0), the
algorithm is able to spread the traffic without even increasing
the overall LSP cost. It should also be noted that, when
computing alternative LSPs, no other overloaded links should
be incurred. This path selection algorithm starts with the
highest load link, and terminates when all the original
overflowed links are eliminated from the network. The
appendix presents the pseudo code of our coordinated path
selection (CPS) algorithm.

a2
l

a1

ai

b1

bi

b2

... ...

T1

T2

Ti

Pi'

P2'

P1'

P1

P2

Pi

Figure 4 PER based bandwidth allocation

3.3. An Example
We use the network model in Figure 5 as an example for
describing how the proposed heuristic works. Suppose three
traffic trunks from S1 to S3 need to traverse the small
network to reach the egress node R. The link metric in the
figure has the same meaning with that in Figure 1.

S1

S2

S3

A

B

C

D

E

5Mbps

3Mbps

2Mbps

2

7

6 5 9 5

3 6 7 7

 2

 2

4 1 6 8 5 10

3 4 7

R

Figure 5 An example

Before using our proposed algorithm, we take the traditional
approach [3] to compute LSPs without global coordination.
First an LSP with cheapest cost is constructed for the traffic
trunk from S1 with bandwidth demand of 5Mbps. The traffic
trunk will take the path Aà Cà E to reach R, and after the
allocation the residual bandwidth of link (A, C) and (C, E) is
reduced 1Mbps and 5Mbps respectively, as shown in Figure
6(a). When we continue to compute LSPs for the rest of the
two traffic trunks, we find link (A, C) has been saturated
regarding their traffic demands. For the traffic trunk from S2,
the cheapest path is Aà Dà Cà E with path cost 15, and for
the traffic trunk from S3, the cheapest path is Aà Dà E with
cost 8, as shown in Figure 6(b, c) respectively. The total path
cost for the three traffic trunk is 6+15+8=29.

A

B

C

D

E

4 1 1 8 5 5

A

B

C

D

E
8 5 2

0 4 7

3 6 4

A

B

C

D

E

3 6 2

7

2

0

(a) (b)

(c)

S3

S2

S1

Figure 6 Traditional approach without coordination

Now we use our proposed heuristic for global path
coordination to solve the problem again. From Figure 5 we
find that the path Aà Cà E is the cheapest for all of the three
traffic trunks, but unfortunately link (A, C) cannot afford its
bandwidth capacity to satisfy all of them. According to our
algorithm, Profit-Expense Ratio (PER) will be computed for
the three traffic trunks regarding link (A, C), and then we can
decide to which LSP(s) the bandwidth of the link should be
allocated so that maximum profit will be obtained. If we
prune link (A, C) from the graph and re-compute the three
LSPs, the cheapest paths are: Aà Bà E for traffic trunk from
S1 (path cost 16), Aà Dà Cà E for that from S2 (path cost
15), and Aà Dà E for that from S3 (path cost 8). In this case,
the value of PER for the three traffic trunks on link (A, C) are
2.0, 3.0 and 1.0 respectively, according to formula (7) in
section 3.1. Based on the obtained PER value, we decide that
traffic from S2 has the highest priority to traverse link (A, C).
After that we should consider to let the traffic trunk from S1
use link (A, C). However we find that the residual bandwidth
is only 3Mbps and cannot afford the traffic demand of
5Mbps, and hence we will skip to the next traffic trunk, i.e.,
the one from S3. Since it has the bandwidth demand of
2Mbps, the traffic trunk can successfully traverse link (A, C).
The resulted set of LSPs is given in Figure 7, with total path
cost 28. It should be noted that if we sequentially compute
LSPs for traffic trunks in an ascending order without global
coordination in the graph in Figure 5, we are still able to
obtain the same optimal result with that shown in Figure 7.
However this is not always the case for other graph
topologies, e.g., if we set the bandwidth capacity of link (A,
C) to be 4Mbps instead of 6Mbps, the computation of LSPs
in ascending order will not lead to the best solution.

A

B

C

D

E A

B

C

D

E
8 5 7

A

B

C

D

E

(a) (b)

(c)

S3

S2

S1

8 5 5

4 1 3

4 1 1

2

 7

 1 5 9 0

Figure 7 Result from coordinated path selection

4. Performance Study
In our simulation, we adopt the commonly used Waxman’s
random graph generator [8] in GT-ITM to create network
topologies. Random network graphs with 100 nodes will be
created, with the bandwidth capacity of each link (u, v)
generated by the following function:

mm BrBvuB %),(×+= (8)

where mB is the given minimum bandwidth capacity while r

is a random number. Using this function no bandwidth with
negative value will be generated and the bandwidth capacity

of all links will range from mB to 2× mB -1. The cost of

each link is randomly selected between 1 and 100. On the
other hand, a traffic matrix that specifies ingress-egress pair
and the corresponding LSP bandwidth demand will also be
created. In our simulation, we also use function (8) for
deciding the average amount of bandwidth requirement from
each traffic trunk. Altogether 30 traffic trunks are generated
throughout the simulation, i.e., the traffic matrix contains 30
non-zero elements. The performance of the algorithm will be
examined with the variance of minimum bandwidth capacity
in the network. We will compare the performance of our
proposed algorithm with WSP without coordination, cost-
associate BSP (CBSP), i.e. we define the hybrid weight of
each link (u, v) as:

uv

uv

b

c
vuw =),(

Figure 8 illustrates the performance of the overall path cost

with the minimum bandwidth capacity mB ranging from

30Mbps to 70Mbps in steps of 5Mbps. The average
bandwidth requirement from each traffic trunk is fixed at
10Mbps. From the figure we notice that when the minimum
bandwidth capacity increases the overall path cost achieved
by all the three algorithms decreases. We can also find in
Figure 8 that the proposed Coordinated Path Selection (CPS)
algorithm achieves lower overall path cast compared with

traditional approaches. Typically when the bandwidth
capacity is relatively small, we notice that the corresponding
gap is most significant. However, with the increase of the
minimum bandwidth capacity, this gap becomes less obvious.
This is because when there are less overflowed links in the
network, both CPS and WSP will have a higher probability of
selecting common paths for the given traffics aggregates.

2000

2200

2400

2600

2800

3000

3200

30 35 40 45 50 55 60 65 70
Minimum Bandwidth

Pa
th

 c
os

t

CPS
WSP
CBSP

Figure 8 Path cost performance

Figure 9 presents the performance of the three algorithms in
terms of link utilization. All the simulation conditions remain
the same with those for Figure 8. We notice that the average
link utilization decreases as the minimum bandwidth capacity
is growing up in the network. Similar to the scenario in
Figure 8, the performance of CPS is still the best amongst the
three methods, i.e., it consumes least overall network
bandwidth. While the bandwidth resource becomes ample,
the advantage of CPS is less obvious compared with non-
coordinated algorithms.

3

4

5

6

7

8

9

30 35 40 45 50 55 60 65 70
Minimum Bandwidth

L
in

k
ut

ili
za

tio
n

(%
) CPS

WSP

CBSP

Figure 9 Link utilization performance

5. Summary
In this paper we proposed an efficient offline heuristic for
coordinated path selection in MPLS bandwidth constrained
routing. The motivation behind is to reduce the overall link
cost and traffic loading by means of global resource
coordination. Our simulation results show that the proposed
algorithm provides better performance compared with
traditional bandwidth associated QoS routing approaches.
Our future research work will focus on efficient online

adjustment of LSPs and extended algorithms on selecting
paths for bandwidth guaranteed multicast traffic in DiffServ
networks.

References
[1] Y. Lin et al, “QoS Routing Granularity in MPLS
Networks” , IEEE Communications, 40(6), 2002, pp 58-65
[2] M. Kodialam, T. V. Lakshman, “Minimum Interference
Routing with Applications to MPLS Traffic Engineering” ,
IEEE INFOCOM 2000, pp 884-893
[3] Z. Wang, J. Crowcroft, “Quality-of-Service Routing for
Supporting Multimedia Applications” , IEEE JSAC, Vol. 14,
No. 7, 1996, pp 1228-1234
[4] G. Apostolopoulos et al, “QoS Routing Mechanisms and
OSPF Extensions” , RFC 2676, Aug. 1999
[5] Q. Ma, P. Steenkiste, “On Path Selection for Traffic with
Bandwidth Guarantees” , IEEE ICNP’97, pp 191-202
[6] J. Wang, K. Nahrstedt, “Hop-by-Hop Routing Algorithms
for Premium-class Traffic In DiffServ Networks” , IEEE
INFOCOM 2002
[7] M. R. Garey et al, “Computer And Intractability – A
Guide to the Theory of NP-Completeness” , Freeman, 1979
[8] B. M. Waxman, “Routing of multipoint connections” ,
IEEE JSAC 6(9) 1988, pp 1617-1622

Appendix: Pseudo code for CPS

Procedure CPS
 For each traffic trunk TT
 Compute cheapest path p using Dijkstra’s algorithm

without considering bandwidth constraints;
 Update traffic loading for each link;
 While there exist overflowed links do
 Select highest load link l̂ ;
 Let P be the set of paths passing through l̂ ;
 For each Pp ∈

 Let the original path cost be C(p);
 Tear down the original path p containing l̂ ;
 Set the link cost of l̂ to INFINITY;
 Compute alternative cheapest path p’ without

incurring new overflowed links;
 Compute PER = (C(p’)-C(p))/B(TT(p));
 Sort P according to PER in non-ascend order;

 While l̂ is not overflowed do

 If the residual bandwidth of l̂ > B(TT(p))
 Allocate l̂ to TT(p) and compute cheapest

path p for TT(p);
 If there are no new overflowed links
 TT(p) takes link l̂
 Else TT(p) follows alternative path p’ ;
 Update traffic loading for each link;
 If overflowed links remain
 Error: Can’t find feasible LSPs;
 Find next p in P;
 Select next highest load link l̂ ;
End Procedure

