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Abstract 
Multi-Protocol Label Switching (MPLS) has been considered 
to be a promising solution to achieve end-to-end QoS 
guarantees in Differentiated Services (DiffServ) domains [1]. 
Based on the Service Level Specification (SLS) between 
customers and the ISP, traffic forecast mechanism is able to 
predict traffic demands between ingress-egress routers, and 
hence bandwidth guaranteed LSPs can be set up accordingly 
through the DiffServ domain. In this paper, we address the 
problem of computing multiple LSPs with heterogeneous 
bandwidth requirements, while the overall network link cost 
is optimized. We first prove that finding a set of feasible 
LSPs with bandwidth constrained is NP-complete, and then 
propose an efficient heuristic with global network resource 
coordination over individual traffic aggregates. By simulation 
we show that the proposed coordinated path section (CPS) 
scheme obtains better overall LSP cost and lower bandwidth 
consumption compared with existing bandwidth constrained 
routing algorithms. 
 
1. Introduction 
Differentiated Services (DiffServ) has been proposed and 
incrementally deployed on the Internet for QoS provisioning 
in a scalable fashion. In contrast with the scenario of 
Integrated Services (IntServ) and RSVP, data traffic in 
DiffServ networks is classified into finite class of services at 
the edge of the network, and packets belonged to the same 
QoS class are treated aggregately inside the domain based on 
Per Hop Behavior (PHB). On the other hand, how to achieve 
end-to-end QoS guarantee raises a new challenge for 
DiffServ technology. Recently some research work has been 
focusing on the deployment of Multi-Protocol Label 
Switching (MPLS) inside DiffServ networks to satisfy 
quantitative QoS guarantees. MPLS is a new switching 
technology to forward packets according to a short, fixed 
length label, and to set up explicit Label Switching Paths 
(LSPs) through the network. These LSPs carry flow 
aggregates based on Forwarding Equivalence Classes (FEC) 
generated by classifying the data packets at the ingress 
routers of the MPLS networks. This basic characteristic 
provides promising solutions for supporting quantitative QoS 
requirements in DiffServ networks by means of setting up 
explicit LSP for each traffic aggregate.  
It has been argued that, if QoS constraints such as delay and 
loss probability are to be incorporated in Service Level 

Agreements (SLAs) in the DiffServ network, the most 
practical way is to convey them into effective bandwidth 
requirement for LSPs [2]. In this sense, the strategy of setting 
up explicit LSPs for aggregated traffic trunks can be modeled 
as the bandwidth constrained routing problem. Traditional 
Shorted Path (SP) algorithm based on Dijkstra’s approach 
has been proved not always efficient in QoS routing 
semantics when additional metric constraints are involved, 
e.g., delay, loss probability etc. In [3] it has been proved that 
routing with two additive metrics is an NP-complete problem. 
On the other hand, routing with one additive metric and 
bandwidth constraint can be performed in polynomial time 
by eliminating network links that do not have sufficient 
bandwidth capacity. In literature, several classic heuristic 
algorithms have addressed the problem of bandwidth 
constrained routing.  
A. Simple Bandwidth Guaranteed Routing [3] 
This is the most straightforward approach among all the 
bandwidth constrained routing algorithms. The main idea is 
that, before setting up any paths, all the links that do not have 
bandwidth capacity as required by the traffic trunk are 
eliminated from the network. Thereafter, Dijkstra’s algorithm 
is used to compute a feasible shortest path. Simple as it is, 
this algorithm only focuses on the additive metric, but does 
not provide any mechanism for bandwidth optimization 
purpose. In fact, if multiple paths are to be computed for 
different source-destination pairs, the overall performance 
regarding this additive metric might not be optimal, as it will 
be shown in an example in section 3.3. 
B. Widest-Shortest Path (WSP) and Shorted Widest Path 

(SWP) [3, 4] 
Both WSP and SWP try to optimize the residual bandwidth 
distribution so that the network resource can accommodate 
more incoming traffic trunks in future. In WSP, when there 
exist multiple shortest paths with equal number of hops 
between a source-destination pair, the one with the maximum 
“bottleneck”  bandwidth will be selected. In contrast, SWP 
first explores a path with maximum bandwidth among all 
feasible paths, and if there exists a tie, the one with the 
minimum number of hops will be selected. It is noted that the 
metric of hop counts can be replaced with any additive 
metric, e.g., link cost (if the optimization objective is to 
minimize overall cost, and this is typically useful for 
multicast routing), or delay (if the optimization objective is 
focused on end-to-end delay). 



C. Bandwidth-inversion Shortest Path (BSP) [5] 
In the BSP algorithm, the Dijkstra’s shortest path algorithm is 
still used, but the weight of each link (i, j) is defined as 
follows: 
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where ijb  is the residual bandwidth capacity of link (i, j). 
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It can be found that the BSP algorithm considers exclusively 
the link metric of bandwidth, and although traffic trunks can 
follow the lightest path, other network metrics will not be 
explored simultaneously.  
D. Enhanced Bandwidth-inversion Shortest Path (EBSP) [6] 
Having realized that the performance of the BSP algorithm is 
not stable, and the fact that wide paths but with very long 
distance might be introduced, Wang and Nahrstedt proposed 
an enhanced BSP algorithm to improve the situation. In 
EBSP the new weight of a path is changed into 
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It is noted that the new weight function is no longer static, 
and this characteristic of dynamic metric according to hop 
counts reduces the probability of obtaining “ longer”  paths. 
All the algorithms introduced above are from the viewpoint 
of individual source-destination pairs, i.e., they are a type of 
on-demand schemes that do not need any information on 
other traffic trunks passing through the network. Hence, none 
of the above algorithms consider a “global”  coordination on 
bandwidth allocation among all of the concurrent traffic 
demands. In this scenario, individual so-called “optimized 
paths”  are only seen by their own corresponding source-
destination pairs. However, it is not always the case that 
individual traffic trunks are blind to each other so that global 
coordination is impossible. In DiffServ networks, Service 
Level Agreements are made between customers and ISP, and 
the corresponding SLS specifies the detailed parameters in 
the agreement, including the location of ingress and egress 
pair, aggregated bandwidth requirements etc. Based on these 
SLSs, the ISP is able to grasp a complete map of its required 
traffic demands at the edge of the DiffServ domain, and 
hence simultaneous computation of all the LSPs between 
ingress-egress routers becomes possible, due to the 
mechanism of Traffic Forecasting (TF) from the SLAs with 
customers. 
When m (m≥ 2) bandwidth constrained LSPs are to be set up, 
network bandwidth can be allocated to individual traffic 
trunks with global resource coordination. Given the 
bandwidth capacity of the network, the problem of finding a 
feasible solution for setting up individual bandwidth 
guaranteed LSPs is NP-complete, and we name this problem 
Global Bandwidth Constrained Routing (GBCR). Given 
additional metrics such as link cost and delay, the problem of 
path computation will become more complicated. Since link 
metrics such as delay and loss probability can be conveyed 
into bandwidth requirement, we will focus on another 

important metric, namely overall link cost, which can be 
defined according to the need of the ISP. Typically, hop 
count is a special case for link cost by setting the cost of all 
links to 1. In this sense, the overall cost will directly reflect 
network resource consumption, since LSPs with minimum 
total number of hops consume least network bandwidth. In 
this paper we will propose a new offline heuristic algorithm 
for optimization of overall link cost among multiple LSPs 
through the DiffServ domain. Although we only consider 
setting up point-to-point LSPs for unicast routing, the 
proposed approach can also be adapted for multicast 
paradigms in the sense that individual paths are replaced with 
trees with multiple ending point at egress routers. 
 
2. Problem Formulation 
A DiffServ capable network can be modeled as a directed 
graph ),( EVG = , with a boundary node set D ( VD ⊂  

and mD =|| ). Two types of metrics are associated with 

each link ),( ji  in the graph, namely link cost ijc  and 

bandwidth capacity ijb . ( ijc  can be the parameter such as 

administrative cost or monetary cost , or simply hop count) 
For simplicity we assume that cost is a symmetric parameter, 

i.e., jiij cc =  for any link ),( ji  in the network. Aggregated 

traffic demands for the network can be identified with a 
mm×  sized traffic trunk matrix T, and each element 

Ttuv ∈ stands for the traffic demand from the ingress node u 

to the ingress node v, where nodes Dvu ∈, . We suppose 

that the number of non-zero elements in T is L. Global 
Bandwidth Constrained Routing (GBCR) is to find a set of 
paths { P1, P2,…PL} , for each of the non-zero element 

Ttk ∈ , and satisfies the following requirements: 
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The first constraint ensures that the total cost of the generated 
paths is minimized, while the second constraint is to ensure 
that the total bandwidth allocated to traffic trunks passing this 
link does not exceed its bandwidth capacity. Figure 1 shows a 
network model and a typical traffic matrix. In Figure 1(a), the 
number in the middle is the cost associated with the link and 
the numbers by the side is the bandwidth capacity along this 
direction, e.g., the bandwidth capacity of link (A, B) is 3 and 
that of link (B, A) is 9. The nodes filled with gray color are 
boundary nodes, and the traffic demands between each of 
them are shown in Figure 1(b). From the traffic matrix we 
can see that there are totally 5 traffic trunks between three 
boundary nodes, e.g., traffic with 3 units of bandwidth will 
be injected into the network at node A and eventually leave it 
at node E. 
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Figure 1 Network model and Traffic Matrix 

 
A set of LSPs { P1, P2,…PL}  that satisfy constraint (2) is 

called a feasible solution to the Global Bandwidth Constraint 
Routing (GBCR) problem. A feasible solution to GBCR 
based on the network model and traffic matrix in Figure 1 is 
the path set { Aà Bà C, Aà Fà Bà Cà Dà E, Cà Dà E, 
Eà Fà A, Eà Fà Bà C}  with total cost of 50. After setting 
up a set of paths for the traffic trunks, we find that the 
bandwidth of links (C, D) and (F, B) is decreased to 0, and 
we name this types of links saturated links. Now we give the 
proof that finding a feasible solution to GBCR is NP-
complete. This indicates that there does not exist any 
algorithm that can compute a set of feasible path with the 
bandwidth constraint (2) in polynomial time. 
 
Theorem 1: The problem of finding a feasible solution to 
GBCR is NP-complete. 
Proof: In order to prove the problem to be NP-complete, we 
perform a bi-directional transformation between the 
PARTITION problem [7] and this problem in polynomial 
time.  

First let A with elements { kaaa ..., ,21 }  be an instance of the 

PATITION problem. Each element ia  has a size )( iaS . Let 
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problem as shown in Figure 2. The directed network graph 
),( EVG = has a boundary node set 

},,...,,{ 1210 kk XXXXXD −=  and 5 additional internal 

nodes, namely R1 to R5. The directed link set E is as follows: 
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The directed link (R4, R2) and (R5, R3) have a bandwidth 
capacity of 2/S  respectively. All the other links are 
assumed to have infinitive amount of bandwidth capacity. 
The traffic matrix contains k non-zero elements, namely from 

)...1( kiX i = to 0X . The bandwidth demand of traffic 

trunk ),( 0XX i  is set to )( iaS  units. It is easy to see that 

this transformation can be performed within polynomial time. 
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Figure 2 NP-completeness proof for finding feasible solutions 
to GBCR 

 
Next we show that a feasible solution for GBCR exists if and 
only if set A has a partition.  
 
(a) PARTITION à  GBCR 

First suppose we have a solution, say 1A , to the 

PARTITION problem, i.e.,  
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For each element 1Aai ∈ , let the corresponding traffic trunk 

from ingress node iX traverse the directed link (R4, R2) to 

reach the egress 0X . All other traffic trunks from ingress 

node iX  with the corresponding element 

1AAai −∈ traverse the directed link (R5, R3) to reach the 

egress 0X . Then the sum of the bandwidth usage of the 

directed links (R4, R2) and (R5, R3) are exactly S/2.Thus we 
have obtained a feasible solution to the GBCR problem.  
 
(b) GBCR à  PARTITION 
Next suppose that we have a feasible solution for GBCR 
based on the network graph in Figure 2. Note that each of the 

traffic trunks from ingress nodes ),...2,1( kiX i =  must 

either traverse directed link (R4, R2) or (R5, R3) to reach 

0X . For each traffic trunk from iX  that traverses the link 

(R4, R2) to reach 0X , we let )(, DUUX i ⊂∈ . Since the 

bandwidth of link (R4, R2) is S/2, we have: 
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Hence it follows from (1) and (3) we get 
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This also implies that 
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Equations (4) and (5) form a feasible solution to the 
PARTITION problem. 

 
Theorem 2: The GBCR problem is NP-complete. 
Proof: Being a generalization problem of finding feasible 
solution, which is an NP-complete one, the problem of GBCR 
itself is NP-complete with additional constraint of 
minimizing overall link cost. 

 
3. Paths Coordination Heuristic 
As we mentioned in section 1, from a viewpoint of an ISP, it 
is a valid assumption that all traffic demands between 
ingress-egress pairs can be obtained from traffic forecasting 
mechanism based on the SLSs between customers and the 
ISP. In this case, a set of LSPs can be set up simultaneously 
for delivering the corresponding traffic through the MPLS 
network. When multiple LSPs compete for some particular 
links that do not have sufficient bandwidth to support all of 
the traffic aggregates, our heurist will select part of the LSPs 
to traverse the link, while others are forced to explore 
alternative paths, with the objective that the overall path cost 
is maintained as low as possible. This type of path cost can 
directly reflect the overall bandwidth consumption and the 
overhead of setting up LSPs. 
On the other hand, since our proposed heuristic for 
computing LSPs is an offline approach for network 
dimensioning, this implies that the forecasted traffic demands 
should be relatively static for a certain period of time. 
Whenever the initially computed LSPs cannot handle the 
network dynamics efficiently, online algorithms for local 
adjustment of LSPs will be triggered, and this will be our 
further research direction. Of course, accurate traffic 
forecasting as well as efficient network dimensioning 
algorithms from the ISP helps to reduce the frequency of 
performing online adjustments. 
 
3.1 Terminologies Definition and Explanation 
Before we present our proposed heuristic for coordinated 
path selection, we first make definitions and explanations of 
some terminologies to be used in the context. 
(1) Cheapest Path (CP): The path with minimum overall link 
cost, and CP can also be computed by Dijkstra’s shortest path 
algorithm regarding link cost. In this paper the term cheapest 
path is interchangeable with shortest path since the metric of 
delay is not within our concern.  
(2) Saturated vs. Overloaded: As we mentioned in section 2, 
a saturated link refers to the one that has been nearly fully 
utilized and cannot afford bandwidth for any incoming LSPs 
under consideration. On the other hand, an overloaded link 
refers to the one whose actual allocated bandwidth has 
exceeded its bandwidth capacity, i.e., the corresponding 
utilization is greater than 100%. The objective of our 
algorithm is to minimize the overall network cost without 
incurring any overloaded link, but we do allow the existence 
of saturated links, though this is not desirable from the view 
point of load balancing. 

(3) Traffic Trunk Profit (TTP): Suppose that the cheapest 
path P for the traffic trunk T from node a to b with total cost 
C(P) traverses a link l. If we prune l from the network and re-
compute an alternative cheapest path P’  for the same source-
destination pair with total path cost C(P’ ), the Traffic Trunk 
Profit of T on link l is defined to be the difference between 
the  total cost of P and P’ , i.e., 

)()'( PCPCTTPT
l −=        (6) 

Figure 3 presents the illustration on how TTP is defined for a 
traffic trunk T from ingress node a to egress node b on link l. 
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Figure 3 Definition of Traffic Trunk Profit (TTP) 

 
(4) Profit-Expense Ratio (PER): Given a traffic trunk T from 
ingress node a to egress b and a particular link l on the 
corresponding cheapest path, The Profit-Expense Ratio 
(PER) of traffic trunk T on link l is defined to be: 

TT

T
lT

l B

PCPC

B

TTP
PER

)()'( −==         (7) 

where TB  is the bandwidth demand of traffic trunk T. 

3.2 Coordinated Path Selection (CPS) 
The main idea of our algorithm is to en-route all the traffic 
trunks through the network without incurring any overloaded 
links, and at the same time minimize the overall LSP cost. In 
the algorithms listed in section 1, individual LSPs are 
computed at the ingress router sequentially and 
independently with the consideration of local optimization. In 
contrast, in our heuristic when multiple LSPs need to traverse 
a cheap link that cannot satisfy all of the relevant demands, 
we will coordinate these LSPs in a global viewpoint, and 
allocate the link to those that can make most “profit”  and 
least “expense”  on that link. Specifically, according to the 
definition of Profit-Expense Ratio (PER), the limited 
bandwidth of the link will be allocated in non-ascent order to 
the LSPs with the largest value of PER as long as the link has 
not been overloaded. In effect, given a particular link, the 
LSP bandwidth allocation with cost optimization is modeled 
as the KNAPSACK problem [7] that is also NP-complete. 
The concept of PER is to guarantee that both profit (LSP 
cost) and expense (bandwidth constraint) are considered 
comprehensively. Figure 4 presents a scenario on the PER 
based bandwidth allocation mechanism in time of 
competitions for a particular link l. Suppose link l is on the 
cheapest paths for traffic trunks 

1T  to 
iT  but the bandwidth 

capacity cannot support all of them. In this case, we prune l 
from the graph and reconstruct cheapest LSPs for all traffic 
trunks being involved. After computing the Profit-Expense 
Ratio for each traffic trunk on l, we sequentially allocate the 
bandwidth of link l to the LSP with the highest PER value. 
This procedure will terminate when the bandwidth of this 
link cannot support any traffic trunks that have not been 
considered. For all the traffic trunks that cannot traverse link 
l, they will follow the alternative cheapest paths that do not 

contain link l, namely 'iP  in Figure 4. Specially, if there 



exist multiple paths with equal cost for a given traffic trunk 
(the corresponding value of TTP and PER is equal to 0), the 
algorithm is able to spread the traffic without even increasing 
the overall LSP cost. It should also be noted that, when 
computing alternative LSPs, no other overloaded links should 
be incurred. This path selection algorithm starts with the 
highest load link, and terminates when all the original 
overflowed links are eliminated from the network. The 
appendix presents the pseudo code of our coordinated path 
selection (CPS) algorithm. 
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Figure 4 PER based bandwidth allocation 

 
3.3. An Example 
We use the network model in Figure 5 as an example for 
describing how the proposed heuristic works. Suppose three 
traffic trunks from S1 to S3 need to traverse the small 
network to reach the egress node R. The link metric in the 
figure has the same meaning with that in Figure 1.  
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Figure 5 An example 

Before using our proposed algorithm, we take the traditional 
approach [3] to compute LSPs without global coordination. 
First an LSP with cheapest cost is constructed for the traffic 
trunk from S1 with bandwidth demand of 5Mbps. The traffic 
trunk will take the path Aà Cà E to reach R, and after the 
allocation the residual bandwidth of link (A, C) and (C, E) is 
reduced 1Mbps and 5Mbps respectively, as shown in Figure 
6(a). When we continue to compute LSPs for the rest of the 
two traffic trunks, we find link (A, C) has been saturated 
regarding their traffic demands. For the traffic trunk from S2, 
the cheapest path is Aà Dà Cà E with path cost 15, and for 
the traffic trunk from S3, the cheapest path is Aà Dà E with 
cost 8, as shown in Figure 6(b, c) respectively. The total path 
cost for the three traffic trunk is 6+15+8=29. 
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Figure 6 Traditional approach without coordination 

 
Now we use our proposed heuristic for global path 
coordination to solve the problem again. From Figure 5 we 
find that the path Aà Cà E is the cheapest for all of the three 
traffic trunks, but unfortunately link (A, C) cannot afford its 
bandwidth capacity to satisfy all of them. According to our 
algorithm, Profit-Expense Ratio (PER) will be computed for 
the three traffic trunks regarding link (A, C), and then we can 
decide to which LSP(s) the bandwidth of the link should be 
allocated so that maximum profit will be obtained. If we 
prune link (A, C) from the graph and re-compute the three 
LSPs, the cheapest paths are: Aà Bà E for traffic trunk from 
S1 (path cost 16), Aà Dà Cà E for that from S2 (path cost 
15), and Aà Dà E for that from S3 (path cost 8). In this case, 
the value of PER for the three traffic trunks on link (A, C) are 
2.0, 3.0 and 1.0 respectively, according to formula (7) in 
section 3.1. Based on the obtained PER value, we decide that 
traffic from S2 has the highest priority to traverse link (A, C). 
After that we should consider to let the traffic trunk from S1 
use link (A, C). However we find that the residual bandwidth 
is only 3Mbps and cannot afford the traffic demand of 
5Mbps, and hence we will skip to the next traffic trunk, i.e., 
the one from S3. Since it has the bandwidth demand of 
2Mbps, the traffic trunk can successfully traverse link (A, C). 
The resulted set of LSPs is given in Figure 7, with total path 
cost 28. It should be noted that if we sequentially compute 
LSPs for traffic trunks in an ascending order without global 
coordination in the graph in Figure 5, we are still able to 
obtain the same optimal result with that shown in Figure 7. 
However this is not always the case for other graph 
topologies, e.g., if we set the bandwidth capacity of link (A, 
C) to be 4Mbps instead of 6Mbps, the computation of LSPs 
in ascending order will not lead to the best solution. 
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Figure 7 Result from coordinated path selection 

 
4. Performance Study 
In our simulation, we adopt the commonly used Waxman’s 
random graph generator [8] in GT-ITM to create network 
topologies. Random network graphs with 100 nodes will be 
created, with the bandwidth capacity of each link (u, v) 
generated by the following function: 

mm BrBvuB %),( ×+=    (8) 

where mB is the given minimum bandwidth capacity while r 

is a random number. Using this function no bandwidth with 
negative value will be generated and the bandwidth capacity 

of all links will range from mB  to 2× mB -1. The cost of 

each link is randomly selected between 1 and 100. On the 
other hand, a traffic matrix that specifies ingress-egress pair 
and the corresponding LSP bandwidth demand will also be 
created. In our simulation, we also use function (8) for 
deciding the average amount of bandwidth requirement from 
each traffic trunk. Altogether 30 traffic trunks are generated 
throughout the simulation, i.e., the traffic matrix contains 30 
non-zero elements. The performance of the algorithm will be 
examined with the variance of minimum bandwidth capacity 
in the network. We will compare the performance of our 
proposed algorithm with WSP without coordination, cost-
associate BSP (CBSP), i.e. we define the hybrid weight of 
each link (u, v) as: 

uv

uv

b

c
vuw =),(  

Figure 8 illustrates the performance of the overall path cost 

with the minimum bandwidth capacity mB ranging from 

30Mbps to 70Mbps in steps of 5Mbps. The average 
bandwidth requirement from each traffic trunk is fixed at 
10Mbps. From the figure we notice that when the minimum 
bandwidth capacity increases the overall path cost achieved 
by all the three algorithms decreases. We can also find in 
Figure 8 that the proposed Coordinated Path Selection (CPS) 
algorithm achieves lower overall path cast compared with 

traditional approaches. Typically when the bandwidth 
capacity is relatively small, we notice that the corresponding 
gap is most significant. However, with the increase of the 
minimum bandwidth capacity, this gap becomes less obvious. 
This is because when there are less overflowed links in the 
network, both CPS and WSP will have a higher probability of 
selecting common paths for the given traffics aggregates. 
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Figure 8 Path cost performance 

 
Figure 9 presents the performance of the three algorithms in 
terms of link utilization. All the simulation conditions remain 
the same with those for Figure 8. We notice that the average 
link utilization decreases as the minimum bandwidth capacity 
is growing up in the network. Similar to the scenario in 
Figure 8, the performance of CPS is still the best amongst the 
three methods, i.e., it consumes least overall network 
bandwidth. While the bandwidth resource becomes ample, 
the advantage of CPS is less obvious compared with non-
coordinated algorithms. 
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Figure 9 Link utilization performance 

 
5. Summary 
In this paper we proposed an efficient offline heuristic for 
coordinated path selection in MPLS bandwidth constrained 
routing. The motivation behind is to reduce the overall link 
cost and traffic loading by means of global resource 
coordination. Our simulation results show that the proposed 
algorithm provides better performance compared with 
traditional bandwidth associated QoS routing approaches. 
Our future research work will focus on efficient online 



adjustment of LSPs and extended algorithms on selecting 
paths for bandwidth guaranteed multicast traffic in DiffServ 
networks. 
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Appendix: Pseudo code for CPS 

Procedure CPS 
    For each traffic trunk TT 
        Compute cheapest path p using Dijkstra’s algorithm   

without considering bandwidth constraints; 
        Update traffic loading for each link; 
    While there exist overflowed links do 
             Select highest load link l̂ ; 
             Let P be the set of paths passing through l̂ ; 
             For each Pp ∈  

                  Let the original path cost be C(p);         
                  Tear down the original path p containing l̂ ; 
                  Set the link cost of l̂  to INFINITY; 
                  Compute alternative cheapest path p’  without     

incurring new overflowed links; 
                  Compute PER = (C(p’ )-C(p))/B(TT(p)); 
             Sort P according to PER in non-ascend order; 

            While l̂ is not overflowed do 

                   If the residual bandwidth of l̂  > B(TT(p)) 
                        Allocate l̂  to TT(p) and compute cheapest 

path p for TT(p); 
                   If there are no new overflowed links 
                        TT( p) takes link l̂  
                   Else TT(p) follows alternative path p’ ; 
                  Update traffic loading for each link; 
                  If overflowed links remain 
                      Error: Can’t find feasible LSPs; 
                  Find next p in P; 
            Select next highest load link l̂ ; 
End Procedure 
 


