
Customisable Off-line Web Browsing with Mobile Software Agents

A. Yew, G. Pavlou

Centre for Communication Systems Research
School of Electronic Engineering and Information Technology

University of Surrey, Guildford, Surrey, GU2 7XH, UK

Abstract-This paper presents a server-side multi-agent

architecture aimed at increasing the efficiency of Internet
browsing. The agent system uses the user profile to monitor
the user’s favourite web sites, to construct customised views of
those sites, and to inform the user through a web interface.
The proposed agent architecture allows customisation of the
user’s preferences, providing the user with a virtual home
environment for the web. It therefore optimises the user’s
regular browsing pattern in a location transparent manner.
After describing a prototype implementation, the paper
discusses architectural alternatives aimed at improving its
scalability.

I. INTRODUCTION

There are significant efforts within the information
technology industry towards developing applications that
allow users to customise the Internet to their needs. As
users usually have a regular browsing pattern, it is
beneficial to develop an application that optimises a user’s
time based on this pattern. One of the first of such
applications allowed the user to bookmark websites that
they often visit through a web browser. Users no longer
had to remember the exact uniform resource locator (URL)
of a website, and accessing their favourite sites became as
easy as clicking on an icon located on the web browser.
Microsoft Corporation then tried to extend the limits of
customisability adding a new feature called
'synchronisation’ to their browsers that allowed all user-
specified book-marked websites to be downloaded to the
computer’s cache at a single click of a mouse button.
Internet connection time and costs were thus reduced, and
cache copies of relevant web pages could be accessed
without connecting to the Internet. More importantly,
‘synchronization’ allowed users to specify if they wanted
the links of the book-marked website to be downloaded as
well.
 However, certain flaws in using 'synchronize' reflected
the limitations of client-side software in accomplishing user
customisation of Internet content. Firstly, synchronisation
does not take into account whether the web pages it
downloads are actually of relevance to the user. For
example, a user interested only in shoes from an on-line
shopping website uses the ‘synchronise’ function to check
for any sales of shoes; Internet explorer would download

the web page whether or not it contains any information on
sales. The second flaw with the ‘synchronise’ method is
that, until the download is complete, the browser has
absolutely no idea if the page is different from the one it
downloaded previously, thus incurring connection charges
for executing a superfluous task.
 Portals represent another effort that allows users to
customize their browsing. Portals compile popular topics
on the Internet, such as news, into a single web page,
providing users with a one-click solution to finding
information. However, portals such as America On-Line
(AOL) and the Microsoft Network (MSN) only give users
limited amount of customisability. Information provided
by portals usually originates from sources that are defined
by the provider of the portal. Therefore, users have no way
of influencing the source from which information they want
is provided.
 There exists a need to merge the concepts of a portal and
bookmarks together in order to provide a higher level of
customisation for the Internet user. The latter should be
provided “within” the network, i.e. as a Web server
offering the proposed customisation service, and not at the
user’s terminal so that the service can be accessed from any
terminal with Internet connectivity. This paper aims to
propose, through the use of software agents, the concept of
providing the Internet user a customisation service similar
to that of a “virtual home environment”.
 The virtual home environment introduced above is
similar to the same concept of the third generation mobile
communication systems as specified by the 3rd Generation
Partnership Project (3GPP). 3GPP specifies that end users
must be able to access and customise their services
independently of their terminal capabilities and location
[TS-3GPP]. In this paper, the service provided is similar to
that of a portal in which the user has control over the source
of information. Furthermore, users are provided with
additional capabilities to customise the content and delivery
of relevant information from the web, such as keyword
filtering and email updates. The service is location
independent since it is located on a Web server, and can
therefore be accessed from any location with Internet
access. Any terminal can be used to access the service if it
can communicate using HTTP [Bren-Lee], and understand

HTML. This implies that the service is “browser
independent”.

II. SOFTWARE AGENTS AND INFORMATION RETRIEVAL

 Software agents are autonomous programs that can
perform tasks and operations on behalf of a user. Agents
can either be stationary or mobile. A stationary agent
performs its tasks in the same physical environment in
which it was created; a mobile agent travels to different
locations in a network to perform its tasks. An agent will
have a repertoire of actions enabling it to react to changes
in its environment; these actions represent the agent’s
ability to modify its environment. An agent and the
environment in which it is executed are closely related to
each other: a change in the environment might cause an
agent to execute an action in response, which in turn result
in repercussions on the environment.
 With regards to object-oriented design, the concept of an
agent can be easily confused with that of an object. There
are three key differences between the two [Weiss]:

1) The locus of control, i.e. the decision whether or
not to execute an action, lies with the agent.

2) Agents have flexible behaviour.
3) Agents are considered to have their own threads of

control.
 For a server to accommodate mobile agents, an agent
platform must be present to receive the mobile agents.
Within the agent platform, there is a hierarchy of generic
components that provide certain services to the agents. A
server must contain an agency/engine. An agency/engine is
a virtual machine that allows, within a confined location on
the server, agents to execute its code and places to exist.
Places within each agency represent the logical grouping of
agents. The concept of a place allows agents to meet and if
necessary, communicate with each other.
 The issue of web reconnaissance has been investigated
by the Letizia agent system developed by Massachusetts
Institute of Technology [Liber]. When browsing a page
that has many links, the user usually goes to each one to
check its relevance to him/her, and this is where the Letizia
agent architecture becomes really effective. The static
agent will spawn and send an agent for each available link
to check, on the user’s behalf, the relevance of the page.
The advantage of spawning agents is to delegate a task to
many agents whenever a task is deemed too tedious to be
performed by a single agent.
 Ideally, the architecture would be implemented by using
mobile agents for monitoring a web site in the following
manner: A mobile agent would travel to the server hosting
the web page and be notified of updates by the server itself.
The primary benefits of making the agent mobile in this
case are the significant reduction of traffic in the network
incurred by regularly polling a web site to check for new
content, and the immediate notification of any updates by

the mobile agent to the user. The latter is important as it
determines the reactivity of the system to changes in a
dynamic environment, which is the Internet: a higher
reactivity ensures a better service for its users. In reality,
however, the increasing number of security infringements
into current commercial web sites implies that owners of
these web sites are less likely to allow foreign mobile
agents on their top-of-the line web servers. Therefore,
designing mobile agents to travel to remote commercial
websites to monitor web pages would be impractical.
However it is possible to send agents to remote proxy
servers located close to the commercial website so as to
reduce the time needed to poll these sites. This approach
was considered for the proposed approach in this paper.

III. SYSTEM IMPLEMENTATION

A. The proposed multi-agent architecture

 The components and types of agents proposed in this
paper, and their respective responsibilities are presented
below. Fig. 1 shows the relationships between the
components, and the various agents belonging to various
places, in the system.

1) Java servlets (the amount varies per system): They
collect relevant information from the user and pass them to
the task agent. They present the results of the task agent on
a single web page. They ask for user feedback to determine
if a page is relevant to the user. They enable the user to
define and customise his/her preferences

2) Task agents (1 per user): They receive news of
updates and new links from the Info agents. They spawn a
new information agent for every new link in a monitored
web site. They delete information agents that are no longer
required. They filter the copy of the web page for user-
defined keywords. They alert the user to updated websites
via the Email agent. They send results consisting of
updated websites back to interface agents. They suspend an
Information agent at its request.

3) Info agents (1 per web page): They monitor and
retrieve contents of a web page from a remote host. They
note the URL for all the links on the page. They are able to
adapt the rate in which it retrieves web pages. They inform
a task agent if the website has been updated. They inform a
task agent about the new, and the redundant links,
contained in the website. They inform a task agent about
the location (filename) of the local copy of the web page.

4) Email agent (1 per system): This agent sends
information passed on by the task agent to the user via e-
mail.

 The Task agent acts as a mediator for the Java servlets,
the Email and the Info agents, decoupling the various
agents from one another. Its purpose is to liase with both
the Info and the Email agents to present the results of the
system to the user through the Java servlets. It also holds
all aspects of the user’s preferences for the service, which it
uses to control its interactions with the other agents. Using
the mediator design allows the architecture to be easily
adaptable, because changes in code for an agent’s class
need to be reflected only in the Task agent and the affected
agent class [Gamma]. The task agent also utilises a
separate class (Filter) to perform the filtering of the website
for keywords Figure 1 shows that the Info agent utilises a
separate class (Weblinks) to check for new and old links of
the website. The reason for using a separate class in both
cases is to facilitate the modification of the respective
behavioural aspects of the Info and Task agents.

Email Agent

web page
content

website

email
placetask

place

info
place

Agent Server

Remote web server

note: arrows points towards
 direction of interaction

End User

Terminal

Info Agent
Weblinks object
(filter for links)

<uses>
Weblinks

Task Agent

<uses>Filter

Filter object
(filter for

keywords)

Java Servlet

" VHE" Provider’s Web server

Java Servlet Java Servlet

Fig. 1. Relationships between components and agents in the

system

 Fig. 1 also presents the logical separation of the various
agents into different places within an agency on a single
server with the exception of the Java servlets located on a
dedicated web server. Placing the servlets on a separate
web server increases the scalability of the overall system as
the system is able to support more HTTP requests from
users without affecting the performance of the agent server.

B. Efficiency of the multi-agent architecture

Efficiency is a very important design consideration for the
proposed multi-agent architecture. The overheads in the
proposed system can be split into two categories: cost of
maintaining the system; and the amount of processing
required for the system to work. The amount of processing
incurred by the system is related to the number of software
agents in the agent system, and affects the scalability of the
system. Therefore, it is imperative that the design uses a
minimal number of agents needed to accomplish the
specified aims. The cost of maintaining the system is
affected by the amount of network traffic generated by it.
This implicitly refers to the polling of remote websites by
the system to check for updates. This section will explain
the design decisions that improve the efficiency of the
architecture.

1. Reducing network traffic

 When a web page is checked for an update, a copy of the
web page must be downloaded and checked against a
previous copy. The downloaded web page also allows the
filtering of keywords to be performed. The writing of a
website’s content to a temporary local file, and the filtering
for keywords, require large amounts of processor time. As
remote websites have to be polled periodically by the Info
agent for updates, websites that are updated rarely should
be polled less frequently and vice versa. Therefore, a
method for optimising the frequency of polling is required
to reduce the connection costs and the processing incurred
by the system.
 Controlling the frequency of polling a web page typically
requires the Info agent to implement a state machine
internally. This state machine allows the Info agent to keep
track of the time between updates by using an internal
counter. However, the Info agent needs an input or an
event to change its state. In this case, this event would be a
sign indicating the lapse of a certain period of time. For
example, consider an agent that is optimised to poll a
website every 2 days, and receives an input every 2 hours.
Therefore, it can logically deduce that it must perform an
update after receiving 24 consecutive inputs, and uses its
internal counter to remind itself of the number of
consecutive inputs it had received. The need to maintain a
state machine for each web page also implies that one Info
agent monitors only one designated web page.

The rate of change in the optimum polling interval of a
web site is as follows: in the case of an update, it increases
by the specified minimum polling interval until it reaches
24 hours, after which it doubles until the specified
maximum polling interval is attained; in the case of the web
page being unchanged, it halves until it reaches 24 hours,
after which it decreases by the specified minimum polling
interval until the specified minimum polling interval is

attained. This algorithm allows the system to be more
responsive to web pages that are updated very often. The
change in the optimal polling interval as determined by the
algorithm is shown graphically in Fig. 2.

2. Reducing the amount of processing required

 There are two ways of reducing the amount of
processing generated by the proposed system. The most
obvious method is through optimising the algorithms used
in the system, as exemplified by varying the frequency of
polling websites for updates. Another approach is to
minimise the number of agents present in the system at all
times. This implies that any Info agent monitoring a
redundant web page should be removed from the system.
There are two ways in which a web page can be redundant:
the user does not want the system to monitor the web page
anymore; the web page ceases to exist (eg. a dead link).
Therefore, all Info agents maintains a list of Task agents
that wish to be informed of updates in the web page that it
is monitoring. Task agents can request to be taken off this
list through user intervention (eg. users can change their
preferences of web pages to be monitored). When an Info
agent realises that the list containing interested Task agents
is empty, it deletes the copies of the web page from the
server’s hard disk, and then removes itself from the system.
This ensures that the number of Info agents in the system is
controlled, and keeps the amount of processing required by
the agent system minimal.

-150

-100

-50

0

50

100

150

200

250

0 14 28 42 56 70 84 98 11
2

12
6

14
0

15
4

16
8

18
2

Current optimum polling interval (Hours)

Minimum polling interval = 2 Hours

C
ha

ng
e

in
 o

pt
im

um
 p

ol
lin

g
in

te
rv

al
 (

H
ou

rs
)

Web page updated

Web page not updated

 Fig. 2. Change in the optimum polling interval as

determined by the algorithm

C. Overview of operations performed by the system

 This section presents the operations performed by the
agent system for a given scenario. Users have to go through

an authentication process before they can access the
service. Once authenticated, users are presented with a
’welcome’ page and can then proceed to customise the
service according to their needs. This requires the URL of
the website that they want monitored to be typed in, with
the added options of entering a key word for each website,
and of being updated of a website’s changes through e-
mail. Fig. 3 gives a snapshot of the 'welcome' page, while
Fig. 4 shows the graphical interface in which users can
enter their preferences.
 A Java servlet notes all these parameters and sends them
to the user’s task agent. If, as in the case of a new user, the
latter has not been assigned, a Java servlet will then create a
task agent for the new user. If there are no Info agents
monitoring the user-specified website, the task agent will
then create and initiate a new Info agent. Otherwise, it will
request that the Info agent includes in its 'interested Task
agents' list. The Info agent will from then on communicate
directly with the task agent when the website is updated.

Fig. 3. The 'Welcome' page

Fig. 4. The 'add new website' customisation page

 The Info agent monitors the website for new
information, and notes the URLs of both new and

redundant links contained therin. The Info agent will also
adapt the rate at which it checks the web site according to
the frequency with which the website is updated. In the
event of an update, the Info agent saves the website’s
contents into a file, informs the task agent of the new and
old links, and the filename of the copy of the website. The
Task agent will note the URL of the website and the
location of the file when it interacts with the information
agent. The next paragraph describes the sequence of events
when the user specifies that links of the website need to be
monitored for new content as well.
 If the Task agent finds a new linked web page, it checks
if this web page is being monitored by another Info agent;
if necessary, it will spawn another Info agent to download
the contents of the linked website. Otherwise, it contacts
the linked web page’s Info agent asking to be included in
its list of task agents to be notified of an update. The task
agent also informs all information agents representing the
redundant links that it wishes to leave their notification list.
If filtering for keywords is required, the Task agent
accesses the file containing the copy of the website and
checks it for occurrences of the user-specified keywords. If
the web page does not include the keywords, the Task
agent will assign a negative result to this web page and will
not inform the user about it as it is deemed irrelevant.
 If an email alert is needed, the Task agent sends the
relevant alert message to the user via the Email agent.
Upon completion of all the above tasks and interactions, the
task agent compiles, based on the user’s preference, all the
results, and presents them to the user on demand through a
Java servlet.

IV. SCALABILITY

A. Estimated scalability of the system

 Measurements were taken to estimate the scalability of
the implemented system in terms of the number of web
pages that it can monitor. The system was implemented
using the Grasshopper2 agent platform [Grass] with the
Java 1.2 standard development kit on Microsoft Windows
98. Grasshopper2 was chosen because of its compliance
with the MASIF specifications [OMG]. The agent server
used was an Intel Pentium III 450 Megahertz processor on
an Intel 440BX platform with 256 Megabytes of PC-100
physical memory. It was assumed that the processing time
available for Info agents to determine if a web page has
been updated is only 30% of the specified minimum
interval between polling. The other 70% of processing
time is allocated to other tasks which includes the creation
of new Info agents, the accessing of Info agents by Task
agents, and the process undertaken by Info agents to update
their state machine. By measuring the average time taken
for an Info agent to determine whether a web page is
updated and considering the above assumptions, an

estimate of the maximum number of web pages that can be
monitored is shown in Fig. 5. The monitored web page
was located on a local server, and the web page remained
unchanged for each measurement. The latter condition
required more processing by the Info agent as each
character in the web page had to be checked against the
local copy. However, the theoretical number of possible
monitored web pages shown in Fig. 5 represents a best-case
scenario as it assumes that the optimum polling intervals of
all Info agents are equal to the minimum interval between
polling specified by the system administrator. In reality,
there will be a mixture of optimum-polling intervals from
various Info agents present in the system. An important
point that can be deduced from the calculations is that the
maximum number of web pages that the system can
monitor is related to the minimum interval between polling
specified by the system administrator. Therefore,
increasing the responsiveness of the system will result in a
reduced number of web pages the system can monitor.

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16 18 20 22 24

Specified minimum interval between polling (hours)

n
u

m
b

er
 o

f
w

eb
p

ag
es

 m
o

n
it

o
re

d

Fig. 5. Estimated scalability of the system

B. Improving scalability using mobile agents

 It is possible to increase the scalability of the system by
increasing the amount of processing time made available to
Info agents to check for updates. This would require the
reduction of the number of other tasks, such as the creation
of new Info agents, at the agent server. Fig. 6 shows an
example configuration of the proposed system where the
respective agents and their various places are distributed
over different servers. Allocating a server to each place
allows the server to dedicate all of its resources to
processing a few specific operations only.

Info agent

Task
Agent
Server

Email
Agent
Server

VHE
Provider’s

Web Server

Info
Agent
Server

B

Info
Agent
Server

C

Info
Agent
Server

A

Fig. 6. A distributed view of the system

 There are three different Info agent servers (A, B, and C)
shown in the diagram. In this example, each of these
servers has a specific purpose: Server A hosts Info agents
whose optimum polling interval is less than a day; Server B
hosts Info agents whose optimum polling interval is equal
to, or more than a day; Server C allows the initialisation of
new Info agents. After the new Info agents are initialised,
they will move to the server that matches their optimum
polling interval (which is always equal to the minimum
polling interval). By specifying such constraints on the
system, each server can provide more processing power to
the agents it hosts as the variety of polling intervals used by
Info agents present in any given Info agent server is
reduced. The dedication of a separate server for initialising
new Info agents serves to alleviate server A from
performing such duties. The delegation of this task to
server C is extremely important to the server hosting the
group of Info agents that poll websites most frequently
(server A). This is because the latter hosts the smallest
number of Info agents (as was deduced from Fig. 5).
 In order to support such a distributed system, the Info
agents have to be mobile as their optimum polling interval
can vary. Fig. 5 illustrates this concept where an agent
from server A travels to server B when its optimum polling
interval has been adjusted to the value of more than one
day.

V. SUMMARY

 This paper introduced the concept of a customisable
Web-browsing service realised through mobile software
agents. This service provides the Internet user with added
control over the way relevant information is conveniently
presented by combining the functionality of browser
bookmarks and Web portals. The use of a multi-agent
architecture was explored as a possibility of providing that

service. The architecture was implemented on the server
side so as to prevent dependency on any particular browser
technology, and to allow users to access their customised
“home environment” from any location. As such, the
service relates to some extent to the 3GPP concept of
virtual home environment.
 Software Info agents were used to perform off-line
browsing on behalf of their users and implemented a
polling-based algorithm to improved efficiency. The
mobile characteristics of these agents allowed them to
move to agent servers located close to the source of the
information, thus reducing the time needed to download the
web page. The mobile nature of the Info agents was also
exploited to improve scalability within the same location.
This meant that Info agents had to move within different
servers on the same location as their polling frequency
changes in order that a higher number of Info agents can be
hosted.
 While this service concentrated on Web-browsing,
similar services could be provided for getting on or off-line
access to users’ home files and e-mail messages. In the
case of on-line access, agent-based intelligent filtering of
information at the home site and caching at the visited site,
in combination with knowledge of the state of the network,
can provide a true virtual home environment for the
Internet.

ACKNOWLEDGMENT

 A. Yew thanks G. Pavlou, A. Liotta, C. Bohoris, and
S.C. Tan for their comments and support during the writing
of the paper.

REFERENCES

[Bren-Lee] Fielding, R., Gettys, J., Mogul, J.C.,

Frystyk, H., Masinter, L., Leach, P., and
Breners-Lee, T.: ‘Hypertext Transfer
Protocol – HTTP/1.1’, The Internet
Society and The Internet Engineering
Task Force, RFC 2616.

[Gamma] Gamma, E., Helm, R., Johnson, R., and

Vlissides, J.: ‘Design Patterns: Elements
of Reusable Object-Oriented Software’,
Addison Wesley, 1995, pp. 273 – 282.

[Grass] The Grasshopper Agent Platform, web

page: http://www.ikv.de/index.html.

[Liber] Lieberman, H.: ‘Letizia: an agent that

assists web browsing’, Proceedings of the
14th International Joint Conference on
Artificial Intelligence, Montreal, Canada,
August 1995.

[OMG] Object Management Group (OMG):
‘Mobile Agent System Interoperability
Facilities Specification’, November 1997,
OMG TC Document orbos/97-10-05.

[TS-3GPP] Technical Specification Group Services
and System Aspects: 'Virtual Home
Environment (Release 4)', 3rd Generation
Partnership Project, Technical
Specification 3GPP TS 23.127 V4.0.0
(2000-11).

[Wiess] Weiss, G.: ‘Multiagent systems: a

modern approach to distributed artificial
intelligence’, (MIT press, 1999), pp42.

