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Abstract

The demand for a great variety of sophisticated telecommunications services with multimedia characteristics is increasing. This trend
highlights the need for the efficient creation of distributed programs with multimedia data exchanges running on distributed processing
environments. Therefore, it is necessary to support the object-oriented development of distributed multimedia applications in a flexible
manner. This paper recognises Microsoft’s Distributed Component Object Model (DCOM) as a key potential technology in the area of
service engineering and examines a structured approach to enhance it for the handling of continuous media streams through the design and
implementation of a collection of suitable multimedia support services. The proposed approach focuses on the modelling of continuous
media communications in DCOM and is validated through the design and implementation of a multimedia conferencing service. Though the
approach is targeted to DCOM, the paper lays a set of concrete concepts for realising stream interfaces in distributed object platforms.
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1. Introduction

Driven by technological advances, market growth and
deregulation, the global telecommunications industry is
rapidly adopting a highly dynamic and open character,
which, in combination with the evolving synergy between
information and telecommunication technologies, provides
a wide range of opportunities for the delivery of advanced
multimedia telecommunications services (also referred to as
telematic services). Based on recent developments in object
orientation and distributed computing, these telecommuni-
cations services are designed, realised, and deployed as
multimedia applications operating on distributed computing
platforms [17].

These platforms are object-oriented Distributed Proces-
sing Environments (DPEs), which provide a uniform
distributed computational model, isolating service designers
and developers from the heterogeneity of underlying
systems (i.e. different networks, end-systems, communica-
tion protocols, operating systems, and programming
language environments), and thus hiding many of the
complexities encountered in building distributed software
[1]. However, there are key application areas in which
distributed object platforms have lagged behind ad-hoc

* Corresponding author.
E-mail addresses: d.adamopoulos @eim.surrey.ac.uk (D.X. Adamopoulos),
g.pavlou@eim.surrey.ac.uk (G. Pavlou), kospap@org.ote.gr (C.A. Papandreou).

approaches to building distributed applications. In particu-
lar, support for distributed multimedia applications is weak
or non existent in the most important of today’s distributed
object products.

Despite the fact that multimedia support has been consid-
ered in general terms in the ISO’s/ITU-T’s Reference Model
for Open Distributed Processing (RM-ODP) [7,12], it has
not yet been examined in Microsoft’s Distributed Compo-
nent Object Model (DCOM) [3], and is not yet mature in the
Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) [11,18,19].
Recently, a wide range of new telecommunications services
are becoming increasingly popular by employing video to
convey information and to enhance communication among
human users (e.g. videoconferencing, video on-demand,
interactive teletraining, etc.). Therefore, in the emerging
multi-vendor, multi-stakeholder telecommunications envir-
onment, it is necessary to facilitate the rapid and flexible
deployment of a great diversity of multimedia, multi-party
services by providing support for continuous media in
DPEs. The role of DCOM is expected to be important as
it is one of the promising distributed object platforms for
service engineering. Key advantages are its ubiquity and the
fact that it supports key DPE features such as multiple inter-
faces per object and object groups [2].

This paper presents an approach which extends DCOM to
an environment suitable for the development of advanced
multimedia telecommunications services. More specifically,
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it examines central issues associated with the provision of
object-oriented support in DCOM for the handling of
continuous media in terms of representation, transmission,
and management. The proposed approach is validated
through the design and implementation of a multimedia
conferencing service. Finally, experiments are conducted
in order to assess the flexibility and efficiency of the
proposed approach and conclusions are drawn.

2. Modelling multimedia telecommunications services

Multimedia computing is concerned with the integration
of a variety of media types (text, graphics, still images,
animation, motion video, voice, sound) into a single coher-
ent computing environment, while multimedia communica-
tion involves the interaction of devices which can deal with
networked suppliers and consumers of various types of digi-
tally represented information [20]. The tasks broadly
involved in this process can be divided into the coding
and transport of the different media, and into related control
aspects, such as how to locate services, request transfer,
establish and maintain connections, ensure integrity and
timeliness, and handle presentation issues during the deliv-
ery of multimedia information. These control aspects are the
concern of this paper, since they are particularly important
for the realisation of the full potential of distributed object
platforms [15]. Another important requirement is the ability
to hide the heterogeneous low-level aspects of dealing with
streams through high-level Application Programming Inter-
faces (APIs) and to provide abstractions which could be
easily dealt with by non-network programmers. For the
rest of this section, we examine other research and standar-
disation work related to the flexible handling of multimedia
streams.

The model of object interaction conventionally adopted
in distributed object platforms (i.e. remote method invoca-
tion) is inappropriate for continuous or dynamic media, i.e.
media which contain a temporal element, such as real-time
audio or video. Information from a microphone or a video
camera is an unlimited continuous stream of information
that needs to be handled in real time. For these media
types, a streaming, i.e. continuous mode of interaction is
required rather than a request/response method invocation
model. The main difference from discrete data interaction is
that continuous interaction is not atomic since it models the
exchange of continuous data (an on-going communications
activity) between multimedia objects [4,15].

This difference is also reflected by the RM-ODP’s multi-
media computational model that builds streaming interac-
tion over the primitive notion of a signal, which is defined as
the emission/reception of a data item from/to an interface. A
stream interface is modelled as a sequence of signal emis-
sions from a producer interface together with an associated
sequence of signal receptions at a consumer interface. In
RM-ODP, the emission or reception point of such a

sequence of signals is known as a flow (as opposed to an
operation in the traditional request/response style of inter-
action), and an interface containing flows rather than opera-
tions is known as a stream interface. A stream interface may
contain many flows with varying types and directionalities.
It is specified by a stream interface template that consists of
a finite set of action templates, one for each flow type in the
stream interface. Each action template contains the flow
name, its information type, and an indication of its causality,
since flows are unidirectional (producer or consumer, but
not both) [7,12].

Streams are also present in several other distributed
computing architectures. Initially, they appeared in the
Multimedia Systems Services (MSS) architecture, which
was proposed by the Interactive Multimedia Association
(IMA) [9]. In this approach, the objects producing the
streams are ‘special’ and inaccessible to applications; the
latter can control, but not directly access, the real-time
media. The IMA MSS is currently being adopted and
extended by ISO in its PREMO standard [10]. Furthermore,
much of the initial work on streams, which influenced
greatly the RM-ODP, took place trying to address the
requirements of multimedia support in the Advanced
Network Systems Architecture (ANSA) [21], either within
the context of the existing computational model or by chan-
ging it [4]. The current ANSA Phase III Distributed Inter-
active MultiMedia Architecture (DIMMA) project is
pursuing the latter approach and is based on the ANSAware
distributed systems platform, which has been enhanced
with a modular protocol stack and a flexible multiplexing
structure [16].

OMG has recently addressed the need for streams and
real-time services in CORBA by issuing a request for propo-
sals (RFP) for the control and management of audio/video
streams, and by summarising submissions in Ref. [18].
However, this RFP does not examine the implementation
of streams in CORBA. Such implementation issues were
addressed by specific Object Request Broker (ORB)
vendors, and by the ACTS ReTINA project, which designed
a distributed object platform based on CORBA, enhanced
with streams and Quality of Service (QoS) extensions [5].
More specifically, the architecture proposed by the ACTS
ReTINA project was based on a clear separation between
ORB support mechanisms (such as interface reference
management, threads, buffers, etc.) and stream binding
classes, which provide communication services tailored to
particular applications through the use of a generic binding
protocol. Another CORBA version 2.0 compliant imple-
mentation considering multimedia support is the TAO
ORB, which runs on real-time operating system platforms,
and is primarily designed for strict real-time applications
[22].

In all the above architectures, the modelling of continu-
ous media communications through a flexible, high-level
but efficient infrastructure are crucial. More specifically,
modelling mainly involves the choice of suitable and
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Fig. 1. Inheritance structure for (characteristic) continuous media devices.

sufficient abstractions, their implementation on a target
DPE, and the adoption of appropriate interaction patterns
and semantics. Flexibility is a general property referring to
the way that modelling concepts and artefacts are used for
the design, development and deployment of open telecom-
munications services. The great variety, inherent complex-
ity, and the increasing demand for customisation of such
services raise the importance of flexibility.

Based on these assumptions, we propose a generic plat-
form (a multimedia support platform) for the handling of
continuous media in DCOM. This consists of primitive
COM objects or services (multimedia support services),
which can facilitate the construction of new telecommuni-
cations services with multimedia characteristics. More
specifically, the multimedia support services, and the asso-
ciated COM objects, are compatible with RM-ODP in the
sense that they adopt related concepts and functionality, and
thus enable a wide degree of information sharing and appli-
cation interoperability. Furthermore, these services can be
reused and customised, and their interfaces have been
designed to allow flexibility and efficiency in achieving
their implementation. This is important for telecommunica-
tions services which manipulate multimedia objects, where
performance is critical.

While this paper deals with the flexible modelling of
multimedia streams in a DCOM-based DPE, it should be
noted that besides supporting modelling aspects, the control
and management software of new telecommunications
infrastructures needs also to support a range of QoS char-
acteristics, the synchronisation of continuous media, and the
careful management of underlying resources [4,25]. These
aspects are outside the scope of this paper.

3. Enhancing DCOM for the support of continuous
media

DCOM is the distributed extension to COM (Component
Object Model) that builds an Object Remote Procedure Call
(ORPC) layer on top of DCE RPC to support remote objects.
In general, DCOM provides all the necessary facilities for
the integration of heterogeneous components in a distribu-
ted environment [3,8].

However, DCOM does not satisfy the more complicated
and stringent requirements of handling multimedia streams.
To enable DCOM to be the basis for new telecommunica-
tions services which require the handling and control of
continuous media, extra features are necessary. The most
obvious requirement is that the concept of streams should be
added to the DCOM object model through the introduction
of stream interfaces, since at present only operational inter-
faces are defined. In this case, the transport of the necessary
control information should be based on DCOM object inter-
actions and the underlying protocols.

Before focusing on DCOM, it has to be noted that COM
handles multimedia information through the Microsoft
DirectShow architecture (previously Microsoft ActiveMo-
vie architecture), which incorporates the notion of streams.
Apparently, the use of this notion is restricted to the envir-
onment of stand-alone multimedia capable computers with
Microsoft Windows operating systems (9x, NT 4.0, 2000),
i.e. DirectShow is not a distributed architecture.

For the rest of this section, in Subsection 3.1 we present
the key modelling abstraction, in Subsection 3.2 we present
the stream communication algorithm, and in Subsection 3.3
we discuss some important implementation details.

3.1. The proposed approach

We propose here a multimedia support platform with the
introduction of a number of support services in the DCOM
architecture. These services (which are used in conjunction
with existing DCOM services) provide new functionality
without requiring any changes to the basic underlying
DCOM architectural model. The new services consist prin-
cipally of two types of COM objects: devices and stream
binders. These are both seen by the higher layers of (soft-
ware) abstraction as normal services with standard abstract
data type interfaces, but they encapsulate the control and
transmission of continuous media.

COM object devices are an abstraction of physical
devices, stored continuous media or software processes.
They may be either sources, sinks or transformers of contin-
uous media data (‘modules’). A source is a media producer
and is normally an abstraction of a media-generating hard-
ware device, such as a camera or a microphone. A sink is a
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typedef enum {in, out, inout} DeviceType;
HRESULT GetDeviceType([out] DeviceType* DType) ;
HRESULT Start();

HRESULT StartEx([in] int NumberOfSegments) ;
HRESULT StopQ);

HRESULT Suspend() ;

HRESULT SuspendEx([in] int Time) ;

HRESULT SuspendEx1([in] int NumberOfSegments) ;
HRESULT Resume() ;

HRESULT Skip([in] int NumberOfSegments) ;
HRESULT GetPosition([out] int* SegmentNumber) ;

Fig. 2. The IChain Interface.

media consumer and is normally an abstraction of a media-
rendering hardware device, such as a framebuffer/VDU or a
loudspeaker. Finally, a module is both a media producer and
consumer, as it accepts incoming data, processes it in some
way, and produces output. Devices are ‘virtual® entities in
the sense that there may be multiple logical devices per
physical device depending on the requirements of the
specific application.

As can be seen from the inheritance structure of Fig. 1,
most devices present a device dependent interface, a generic
control or chain interface (IChain), and an endpoint inter-
face (IEndpoint). The device dependent interface contains
operations specific to the device modelled and is used for
the management of the device. For example, a camera might
have operations such as focus, pan or tilt. Furthermore, it
has to be noted that all devices have to inherit from the
IUnknown interface, which provides functionality required
by all COM objects. This is common in most distributed
object platforms, e.g. in CORBA and Java Remote Method
Invocation (Java-RMI).

A piece of continuous media can be visualised as a chain
comprising a sequence of segments or links, each of which
represents an atomic unit specific to the media type in ques-
tion (e.g. a frame of video) [4]. Thus, a chain is an abstrac-
tion over a continuous media source or sink that focuses on
the control of the production and consumption of continuous
media data. Based on this abstraction, the IChain interface
provides generic operations for controlling continuous
media devices and managing continuous media transmis-
sions. It is a device independent interface which is common
to all continuous media devices. The IChain interface is
summarised in Fig. 2 using (a simplified variation of)
Microsoft’s Interface Definition Language (M-IDL),
which is an extension of the Distributed Computing Envir-
onment’s (DCE’s) IDL.

interface IEndpoint : IUnknown

More specifically, the GetDeviceType operation returns
the type of the device under examination (producer, consu-
mer or module), while the Start and Stop operations switch
the device’s information flow on and off accordingly. The
functionality of the two last operations, which are the most
important of the IChain interface, is based on the use of a
virtual pointer (CurrentSegment) that moves through the
media chain as it is played or recorded. The value of this
pointer in a producer device reveals the number of segments
that have been transmitted, while in a consumer device
represents the number of segments that have been received.
The Start and Stop operations make also use of the fact that
a producer device places the outgoing segments on the
OutputSegment buffer, while a consumer device places
the incoming segments (before processing them) on
the InputSegment buffer. It has to be noted that the
StartEx operation is a variation of the Start operation,
which does not initialise the CurrentSegment pointer
and produces/consumes a specific number of segments
(NumberOfSegments).

There are also operations for suspending and resuming
the activity of a device (Suspend and Resume, respec-
tively). After a Suspend operation the production/consump-
tion of segments in a device stops until the Resume
operation is called or in the case of SuspendEx/
SuspendEx1 for the time period specified (explicitly or
implicitly) by the parameters of the operation. In both
cases the value of the CurrentSegment pointer is
preserved. Finally, this pointer may be located and moved
using the GetPosition and Skip operations. More specifically,
GetPosition returns the current value of the Current
Segment pointer, while Skip ignores NumberOfSegment
segments that were to be transferred (in the case of a producer
device) or that were already transferred (in the case of a consu-
mer device) preserving the value of the CurrentSegment
pointer.

Another interface which is common to all continuous
media devices (device independent interface) is the
IEndpoint interface. An endpoint is a connection point
(a port) for a stream, and the |Endpoint interface is
thus the ‘stream interface’ of a device. It has to be
stressed though, that the term ‘stream’ in this paper is
not strictly used in accordance with the RM-ODP termi-
nology, in which a stream is related to a set of flows.
On the contrary, the more accepted meaning of the term
‘stream’ is used to denote one particular uni-directional
flow of a series of messages of a pre-defined type, such

HRESULT GetSegment ([out] BSTR* Segment) ;
HRESULT PutSegment (|in] BSTR* Segment) ;
HRESULT SetCharacteristics([in] long ChrSize,
[in, size_is(ChrSize)] long* ChrArray) ;
HRESULT GetCharacteristics([in, out] long* ChrSize,
[out, size_is(ChrSize)] long* ChrArray) ;

Fig. 3. The |IEndpoint interface.
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Fig. 4. The state transition diagram of a device.

as an audio flow or a video flow between two devices
[13]. If a device participates in more than one stream,
multiple instances of that device have to be used.

The IEndpoint interface abstracts over all aspects of a
device which are concerned with the transport of continuous
media. Essentially, as it can be seen in Fig. 3, it presents a
pair of operations, GetSegment and PutSegment, through
which segments can be read (from the OutputSegment buffer
of a producer device) or written (to the InputSegment
buffer of a consumer device), respectively. With this
approach, the content of a stream is not considered and it
is viewed purely as a byte transport mechanism. The two
other operations of the interface (SetCharacteristics and
GetCharacteristics) refer to a number of transmission
related characteristics used for QoS issues.

The operations inside the IChain and the IEndpoint inter-
faces of a specific device must take place in an acceptable
and semantically correct order (e.g. for the same device a
Stop operation cannot be followed by a Suspend opera-
tion) to avoid unexpected results/errors. To ensure such an
order, each device has a state (DeviceState), which is
checked before an operation is executed. The proposed

interface IStreamBinder :

HRESULT
HRESULT
HRESULT

StartSink ([ in]

HRESULT
HRESULT
HRESULT
HRESULT
HRESULT
HRESULT
HRESULT

StopSink ([in]

ResumeSource ([

and anticipated transitions between the states of a device
can be seen at the state transition diagram of Fig. 4, which
also depicts the possible states of a device (idle, ready,
active, and suspended).

In order to be able to control streams the binding process
must be made explicit. The term ‘binding’ is used in a general
sense to mean both the process of associating and intercon-
necting different sources and sinks according to specific
communication semantics, and the end result of this process.
Binding implies setting up an access path between the
involved COM objects (devices), which in turn typically
comprises of locating the desired COM objects, setting up
appropriate data structures to enable communication between
them, and using suitable communication resources to support
remote object interactions [4,23].

The binding process is made explicit through the intro-
duction of a binding COM object (StreamBinder).
StreamBinder represents the connection between bound
COM objects and provides an operational interface
(IStreamBinder) through which the binding between
streams can be created, monitored, and controlled by other
COM objects. More specifically, as can be seen in Fig. 5, the

IUnknown

StartSource([in] IUnknown* SourceGroup) ;

IUnknown* SinkGroup) ;

Connect&Transfer([in] IUnknown* SourceGroup,

[in] IUnknown* SinkGroup) ;

StopSource([in] IUnknown* SourceGroup) ;

IUnknown* SinkGroup) ;

SuspendSource ([in] IUnknown* SourceGroup) ;
SuspendSink ([in] IUnknown* SinkGroup) ;

in] IUnknown* SourceGroup) ;

ResumeSink([in] IUnknown* SinkGroup) ;
DestroyConnection([in] IUnknown* SourceGroup,

[in] IUnknown* SinkGroup) ;

Fig. 5. The |StreamBinder interface.
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interface IObjectGroup : IUnknown

HRESULT Join([in] IUnknown* refiid) ;
HRESULT Leave() ;
HRESULT Use([out] IUnknown* refiid);
HRESULT Reset();

Fig. 6. The I0ObjectGroup interface.

IStreamBinder interface contains operations which allow
the client of a StreamBinder to start and stop the flow of
continuous media information, connect and disconnect
devices via their IEndpoint interfaces (and thus create and
destroy stream connections), and suspend/resume the activ-
ity of the involved devices. With these operations, the
StreamBinder hides continuous media transmissions,
which can be optimised by using dedicated transport proto-
cols entirely distinct from those used to convey control
messages.

The binding action can be initiated by a COM object
involved in the binding or by a completely separate object.
In general, client COM objects wishing to initiate continu-
ous media transfer, request from the StreamBinder to start
the appropriate source and sink devices (StartSource,
StartSink). Then, the StreamBinder establishes a stream
connection between these devices and activates the transmit
function (Connect&Transfer). The resulting stream can be
managed by suspending (SuspendSource, SuspendSink),
resuming (ResumeSource, ResumeSink), and stopping
(StopSource, StopSink) the participating devices and it
can be destroyed when desired (DestroyConnection). It is
evident that this approach is working best in a multi-threaded
DCOM environment. In such an environment, other methods
can be invoked on the StreamBinder object (and thus other
streams can be activated), whilst data is streamed via an exist-
ing stream connection. Additionally, this approach ensures
that an operation will not be executed on a device
with an incorrect, i.e. semantically unintended, role
(producer/consumer). For example, the StartSource
operation before calling Start on the device specified
by its parameter, checks whether this device is a producer
(using the GetDeviceType operation).

The StreamBinder, in the most general case, supports
multiple stream connections, as it allows M sources to be
connected to N sinks (without necessarily M = N), by estab-
lishing the appropriate streams between them. When it is
desirable to start, stop, establish, and generally perform
control operations to a number of streams simultaneously,
the notion of object groups simplifies greatly the necessary
code (calls to the StreamBinder operations). Additionally,
it eases considerably the process of ensuring that the code
reflects the correct/intended semantics, as it decreases the
possibility of missing, wrong, or out of order operations on
devices. This is due to the fact that errors can now appear
only during the formation of object groups; an activity
which corresponds to a relatively small and well structured
piece of code that can easily be examined. Two typical

errors that can be avoided without difficulty through the
use of object groups is the execution of an operation on a
device that belongs to a different stream than the one
intended, and the execution of Connect&Transfer and/or
DestroyConnection on two devices that (are intended to)
participate in different streams.

Conceptually, object groups are modelled using the COM
class ObjectGroup, which collects in a group a set of
related COM objects. Actually, it maintains a list of the
interface references (REFIIDs) of the COM objects that
belong to a specific group. The 10bjectGroup interface
can be seen in Fig. 6. Join and Leave operations allow
new members to join the group and existing members to
leave the group respectively, while Use and Reset provide
access to the group current membership list.

In a typical scenario, two instances of the ObjectGroup
COM class are used: a SourceGroup and a SinkGroup
(which are actually the interface references of the two
instances). The two lists that are maintained by these two
groups, contain at corresponding positions the interface
references of the sources and sinks that are going to be
engaged in stream communication. Thus, the use of (the
interface references of) these two groups as parameters in
the operations of the IStreamBinder interface allows the
invocation of (corresponding) operations on a number of
COM objects (sources/sinks) at the same time. However,
it must be noted that in order to increase the flexibility
and support application semantics where the simultaneously
establishment and control of multiple streams is not desir-
able, the use of object groups in the operations of the
IStreamBinder interface is not mandatory. Interface refer-
ences to simple COM objects (sources/sinks) can also be
used as parameters.

The COM objects examined so far constitute the
proposed multimedia support services for DCOM, and
should be reused during the development of specific multi-
media services. They may therefore have to be customised
according to the specific service requirements. This activity,
which is very important as it determines the practical value
of the proposed approach is supported through the use of
either containment or aggregation, as DCOM allows only
interface and not implementation inheritance [8].

More specifically, under containment one COM object
contains another, with the outer COM object (e.g. represent-
ing a ‘new’ enhanced multimedia device) accessing the
inner COM object (representing an already used and tested
‘old’ device) through its interfaces. Generally, clients of the
outer COM object are unaware of the relationship, except in
the case where the outer COM object chooses to expose an
interface that is supported by the inner COM object.

On the other hand, aggregation occurs when the outer
COM object exposes the interfaces of the inner COM object
directly to clients. One important characteristic of this tech-
nique is that it can only be used for in-process COM object
servers (i.e. DLL server modules). However, this particular-
ity of aggregation can become a significant restriction when
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Fig. 7. An example scenario for the multimedia support services.

using the proposed API, because some of its COM objects
(devices, StreamBinder) may be, as far as their clients are
concerned and depending on application requirements,
either local servers (implemented as EXEs) or remote
servers (executed on a remote server machine). Therefore,
when reusing or customising COM objects from the
proposed API, the containment method is the preferred
way since it enables the resulting component to operate
under all possible COM server types.

3.2. The stream communication algorithm

The proposed multimedia support services described in the
previous section can be used for the establishment and control
of stream communication in DCOM in a structured fashion. To
illustrate this approach, a possible scenario is examined.
According to Fig. 7, which depicts the configuration of the
COM objects involved in the example scenario, two source
devices (e.g. video cameras) are connected via a Stream
Binder to two sink devices (e.g. VDUs), and two different
streams are established between the source and sink devices.

The necessary steps that have to be followed in order to
realise the two video connections (streams 1 and 2) between
the sources and sinks of Fig. 7 using the proposed multi-
media support services are the following.

Step 1: Obtain the necessary interface references.
The interface references (REFIIDs) of the two sources
(Source1lUserA and Source2UserB) and the two
sinks (Sink1UserC and Sink2UserC) involved in
stream communication are obtained. Device dependent
operations are also performed if necessary.

Step 2: Create new instances of required services (COM

objects).
A StreamBinder instance is created and the related
interface reference is obtained. Additionally (if

required), two ObjectGroup instances are created
and the related interface references are also obtained
(SourceGroup and SinkGroup).

Step 3: Form the appropriate object groups (if

required).
Taking into account the streams that is desirable to
be established (or actually considering the source
and sink devices that need to be connected by
streams), the REFIIDs of the sources become members
of the SourceGroup [Join(SourcelUserA), Join
(Source2UserB)], and the REFIIDs of the sinks
become members of the SinkGroup [Join(Sinki1
UserC), Join(Sink2UserC)].

Step 4. Start the devices.
The sink and source devices are started [StartSink
(SinkGroup), StartSource(SourceGroup)].

Step 5: Establish connections between source and sink

devices.
Associate the appropriate sources and sinks and initiate
continuous media transfer between them [Connect&
Transfer(SourceGroup, SinkGroup)]. Steps 4 and 5
can also take place in the opposite order.

Step 6: Stop the devices.
When the interaction is finished the sink and source
devices are stopped [StopSink(SinkGroup), Stop
Source(SourceGroup)].

Step 7: Destroy connections and services.
The connections established between the appropriate
sources and sinks are destroyed [DestroyConnection
(SourceGroup, SinkGroup)]. Then, the Stream
Binder and the ObjectGroup instances created in step
2 are also destroyed.

The above described steps constitute a kind of algorithm, i.e. a
stream communication algorithm for establishing and
controlling stream connections in DCOM. Two more steps
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can be added to this algorithm depending on the functionality
required by some applications. More specifically, between
steps 5 and 6 (i.e. while all the devices are active), the sink
and source devices can be suspended [SuspendSink
(SinkGroup), SuspendSource(SourceGroup)] and then,
on a consecutive (mandatory) step, they can be resumed
[ResumeSink(SinkGroup), ResumeSource (Source
Group)].

The stream communication algorithm utilises the opera-
tions of the IStreamBinder interface to create and manage
bindings between the appropriate sources and sinks. These
bindings do not have to be controlled directly by the COM
objects involved in the binding (i.e. the sources and the
sinks), but may instead be created by third party COM
objects which obtain references to interfaces owned by
those COM objects. This facility eases considerably the
configuration and structuring of potentially complex multi-
media telecommunications services containing many per-
media COM objects.

A similar situation is described in Fig. 7, where the
StreamManager COM object interacts with the Stream
Binder and performs all the steps of the stream communica-
tion algorithm. In the general case, the StreamManager
can call directly operations, both on (source/sink) devices
and on the StreamBinder, and is responsible for the ‘encap-
sulation’ of the (control) logic that is related with streams.
To avoid errors and unexpected results, caution is needed to
ensure that when an operation is executed on a device, the
same or a (semantically) compatible operation is also
executed on the device with which the former device is
(will be) connected by a stream.

From these remarks, it is evident that the structure and the
behaviour of the StreamManager depends on the require-
ments of a specific application, and on the way that this
application handles streams. In contrast, the interfaces and
the functionality of the (COM objects used to model)
devices and the StreamBinder are application independent
and thus suitable for reuse. Actually, these interfaces (and
the corresponding multimedia support services) can be
considered as a high level API for the handling of contin-
uous media in DCOM.

The advantages of this high level API are highlighted
when taking into account that the main alternative approach
for stream handling in DCOM requires the use of low level
native Windows APIs (such as Win32), which is charac-
terised by the following [8,22].

e Excessive low level details that:

o divert the attention of the developers from the more
crucial (broader) application-related semantics and
the program structure;

o raise the potential for errors;

o increase the learning effort required; and

o hinder the development of complex applications.

e Continuous re-discovery and re-invention, in an ad hoc
manner, of incompatible higher-level programming

abstractions that seriously hampers programming
productivity and code compatibility.

Therefore, the development of multimedia telecommunica-
tions services in DCOM benefits greatly from the use of the
proposed API, because it isolates the application domain
semantics from the complexities of multimedia devices
and continuous media communications, by providing
services based on abstract data type interfaces. Additionally,
it reduces and simplifies the required programming effort,
by locating all the code related with the handling of streams
inside easily extensible reusable components, preventing
thus developers from ‘reinventing the wheel” using elemen-
tary capabilities and functionalities.

3.3. Important implementation considerations

There are a few DCOM related issues that affect consid-
erably the implementation of the proposed multimedia
support services. These issues, which will be examined
briefly in this section, include class factories, access to
remote COM objects, and the available threading models.

In order to be able to use a (device or a StreamBinder)
COM object, an instance must be created. This is done
through a special COM object called a class factory,
which implements the IClassFactory interface. This func-
tionality is based on the design pattern of a ‘Factory
Method’, according to which, when a client wishes to
instantiate a server object, a request is sent to a ‘Factory
Object’ for the corresponding class [6]. In complying, a
class factory has to be created for every server component
specified by the proposed multimedia support services. It
has to be noted, that for optimisation reasons in some (not
very common) cases (e.g. when a device has a large number
of device specific interfaces, and depending also on their
intended use), a custom implementation of the IClass
Factory interface is allowed, but caution is needed to
avoid possible compatibility conflicts/problems.

After performing all the necessary instantiations, a client
that wishes to call operations on a (device or a Stream
Binder) COM object has to obtain a pointer to a suitable
interface of that object. When the desired COM object is
remote (which is common during the proposed stream
communication algorithm) the CoCreatelnstanceEx()
function has to be used in a suitable manner to locate the
server machine, create (an instance of) the appropriate COM
object on that machine, and finally return the desired inter-
face pointer. This function is called with an array of
MULTI_QI structures as one of its parameters:

typedef struct _MULTI_QI {

const IID* plID; // pointer to an interface identifier
IUnknown * pltf; // returned interface pointer
HRESULT hr; // result of the operation

} MULTL_QI;

As can be seen in Fig. 8, each plID member of this array is
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// initialise the MULTI_QI structure
MULTI_QI qil2]; // create an array of e.g. 2 structures
memset (&qi, 0, sizeof(qi)); // prepare the array for use
qi[0] .pIID = &IID IChain; // add the 1st interface
qi[1].pIID = &IID_IEndpoint; // add the 2nd interface
// create a server COM object on the server machine
HRESULT hr=CoCreatelnstanceEx (

CLSID_CMyServer, // COM class id

NULL, // outer unknown

CLSCTX_SERVER, // server object scope

&ServerInfo, // name of the server machine

2, // length of the MULTI_QI array

qi); // pointer to the lst element of this
// array

// check the qi codes
if (SUCCEEDED (hr))
{

// also check qi hresult
hr=qi[0] .hr;

b
if (SUCCEEDED (hr))
{

// extract interface pointers from MULTI_QI structure
m_pComServer=(ICpServer*)qi[0] . pItf;

Fig. 8. Using an interface of a remote server object in DCOM.

given an IID of an interface of the remote COM object. If
the CoCreatelnstanceEx() succeeds, the desired interfaces
can be obtained through the pointers in the pltf members. If
there is an error, the hr member will receive the error code.
Thus, except from the status of CoCreatelnstanceEx(), the
status of each element in the MULTI_QI array should also
be checked, before a (valid) interface pointer can be
extracted from the array.

When a client requires access to a particular remote COM
object, and this object has more than one interface to which
the client needs pointers, an array of MULTI_QI structures
should be created, containing as many plIDs as necessary to
keep all the IIDs of the interfaces that the client will (or
intends to) use on the COM object. In that way, the
CoCreatelnstanceEx() will be called only once and multi-
ple calls to it, due to an incomplete (in terms of requested
IIDs) MULTI_QI array, will be avoided. This tactic reduces
the number of necessary RPC calls across the network, and
improves the efficiency of the code especially when remote
COM objects exhibit more than one interface (e.g. as in the
case of COM objects used to model continuous media
devices), and/or the network performance is or becomes
slow.

Finally, shifting the focus to the internal structure of
COM objects, the way that threading is performed needs
to be examined. Threading involves specifying code
segments that will be executed concurrently by creating,
somewhere within a program, more than one thread, and
ensuring the protection of shared resources, the provision
of thread synchronisation, and the avoidance of deadlocks
and race conditions. In DCOM, threads are established to
improve performance (minimise execution time), to
simplify the code, and to avoid the blocking of COM objects
(e.g. to prevent the blocking of the StreamBinder when
executing an operation on a device). Therefore, in the

proposed multimedia support services threading is used in
the implementation of the StreamManager and the IChain
interface of the COM objects used to represent devices, in
the interfacing with physical devices, and in the realisation
of stream connections using transport protocols.

When programming using DCOM, and therefore in the
proposed API, except from the thread handling functions of
Win32 (e.g. CreateThread(), ExitThread(), etc.), the
following COM threading models can be applied [3,8]:

o The simple single threaded model: all COM usage in a
client must be performed in the same thread—the one
that called Colnitialize(). Only this single thread can use
COM objects that are created by the client. COM objects
that support this model do not have to protect any shared
variables/data.

o The Single Threaded Apartment (STA) model: multiple
threads in a client can call ColnitializeEx() (forming
separate apartments) and create (instances of) COM
objects. However, the COM objects created on a parti-
cular thread can only be used on that thread. Any inter-
action between COM objects in different apartments
(threads), even apartments in the same process, has to
be marshalled by the COM runtime through a proxy.
Thus, any shared variables/data used by these COM
objects do not have to be protected, since they are actu-
ally accessed only via one single thread. On the other
hand, the shared variables/data that are used outside of
these COM objects (e.g. variables used by the class
factory object, global object counters, etc.) must be
protected using Win32 synchronisation primitives.

o The MultiThreaded Apartment (MTA) model: this is the
free threading model. A client may create as many
threads as it wishes (that all are part of the same apart-
ment), create any (instances of) COM objects on any of
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Fig. 9. An important service scenario of the MMCS-ET and the position of the interfaces of the proposed APIL.

the threads, and use the COM objects on the same or
other threads. The client always calls the methods of
the COM objects directly, without doing any marshal-
ling. COM objects that support this model must protect
all shared variables/data. They cannot make any ‘single
thread access’ assumption in any part of the code. These
COM objects must be written to be totally re-entrant, i.e.
being able to be executed by multiple threads at the same
time.

4. Validation and experimentation

The proposed multimedia support infrastructure and the
related API have been tested in several simple scenarios
(such as the one depicted in Fig. 7) involving different
configurations of source and sink devices associated by
various stream connections. It has been found that they
constitute a viable, flexible, consistent, coherent, and rela-
tively intuitive way of building multimedia telecommunica-
tions services in DCOM.

To verify and reinforce these results under (more) realis-
tic conditions, and to determine also the true practical value
and applicability of the proposed API, an extended proto-
type of a MultiMedia Conferencing Service for Education

and Training (MMCS-ET) has been developed [20]. This
service is implemented using MS Visual C++ 6.0 and
DCOM on MS Windows NT 4.0, and is executed on a
number of workstations connected via a 10 Mbit/s Ethernet
LAN. All the interconnected workstations belong to the
same (MS Windows NT) domain and one of them functions
as a primary domain controller.

The main objective of the MMCS-ET is to facilitate the
establishment of an educational/training session between
one teacher/trainer and a number of remote students/trai-
nees, which is equivalent to the educational/training session
that would have been established between the same people
(teacher/trainer and students/trainees) in a traditional class-
room. More specifically, in a virtual classroom the teacher
still has the need to manage the educational/training session.
Additionally, there is also a need for audio/video (A/V)
communication among all the session participants (to
substitute face to face contact), text communication
between only two session participants (as that achieved
with the use of notepads), text communication among all
the session participants (as that achieved with the use of a
blackboard), file communication between the session parti-
cipants (e.g. for the exchange of course material), and colla-
boration among all the session participants in order to
perform a common task. For this reason, the MMCS-ET
implements a variety of scenarios supporting session
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Table 1
The main TINA-C originated computational objects of the MMCS-ET
Abbreviation TINA-C service components Main functionality Domain role Session type
as-UAP access session User APplication It models/represents a variety of User Access
applications & programs in the
user domain.
PA Provider Agent It is the user’s end-point of an User Access
access session.
1A Initial Agent It is the initial access point to a Provider Access
domain.
UA User Agent It represents a user in the Provider Access
provider domain.
ss-UAP service session User APplication It enables a user to make use of Party Service
the capabilities of a service
session, through an appropriate
user interface.
SF Service Factory It creates the service session Provider Service
components for the MMCS-ET
and controls their life-cycle
according to requests from UAs.
USM User service Session Manager It represents and holds the Provider Service
context of a party or resource in a
service session.
SSM Service Session Manager It supports service capabilities Provider Service
that are shared among users in a
service session.
CSM Communication Session It provides the appropriate Provider Communication

Manager

connectivity functionality to the
SSM and manages application-
level, end-to-end bindings
between stream interfaces

(stream flow connections).

management requirements (session establishment, modifi-
cation, suspension, resumption, and shutdown), interaction
requirements (audio/video, text, and file communication),
and collaboration support requirements (chat facility, file
exchange facility, and voting).

The computational view of the MMCS-ET in the simple
case where one teacher interacts with only one student can
be seen in Fig. 9. From this figure, it is evident that the
MMCS-ET is designed according to the TINA-C (Telecom-
munications Information Networking Architecture Consor-
tium) service architecture (version 5.0). The main objective
of TINA-C is to define and validate an open, innovative, and
coherent architectural framework (a long term architecture
for telematic services) that would address in an integrated
manner service control and service management. This
framework encompasses the long term objectives of
both Intelligent Network (IN) and Telecommunication
Management Network (TMN), applies ODP standards and
object-oriented design principles, facilitates the design and
provision of services in a heterogeneous system and
network environment with different domains of ownership,
and ensures the introduction of new and enhanced services
and their management, much faster and more efficiently
than with current approaches [17,24].

Therefore, the MMCS-ET is realised by a set of interact-
ing service components, i.e. Computational Objects (COs)

interacting via their computational interfaces, which are
distributed across different network elements. The TINA-
C originated COs that are used in the service scenario
depicted in Fig. 9 can be seen in Table 1. More specifically,
the IA is the initial contact point for the PA when wishing to
interact with the provider domain and is used to establish an
access session with the UA. The as-UAP provides the neces-
sary user interface for the user (teacher or student) to inter-
act with the provider domain, as it collaborates with the PA
to perform user requests. In the provider domain, the SSM
and the USMs are instantiated by SFs based on requests
from the UAs. An SSM and USM provide session control
capabilities. The ss-UAP in the user domain allows a user to
interact with a service session and acts as an end point for
session control. Finally, Fig. 9 emphasises on the way that
A/V communication is achieved between the teacher and
the student by the establishment of two streams of opposite
directions, presenting the position of the interfaces of the
proposed multimedia support services for DCOM. It has to
be noted that the Communication Session Manager
(CSM), which is at the boundary with the resource layer,
incorporates the functionality of the StreamManager, and
that the GetFromProducer and PutToConsumer COM
objects are used for the realisation of the stream connec-
tions.

The MMCS-ET validated the proposed API and
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Fig. 10. Experimenting with the use (or not) of object groups in the stream communication algorithm.

confirmed the results of the initial tests with the simple
scenarios, but also gave an insight, through several experi-
ments, for the optimisation of the proposed API in terms of
its use and its more efficient implementation in DCOM.
More specifically, two types of experiments were
conducted. The first type involved the application of object
groups in the stream communication algorithm, examining
the complexity of the resulting code (which is actually the
main piece of code written by the service developer when
using the proposed API) in terms of the number of necessary
calls of operations to other COM objects. The number of
such calls (with and without the use of object groups) for
an increasing number of stream connections can be seen in
Fig. 10. It has to be noted that different stream connections
are established between different source and sink devices.
Thus, for example, four stream connections imply the exis-
tence of four sources and four sinks. From Fig. 10 it is
evident that the use of object groups, as the number of
stream connections is increasing, reduces considerably the
number of operation calls that have to be made and, there-
fore, simplifies the code of the stream communication algo-
rithm (together with the task of the service developer) and
increases its efficiency.

The second type of experiment involved the examination
of the performance (in terms of execution time) of the differ-
ent COM threading models when applied to the proposed
APIL. A choice between these models becomes especially
important when the StreamManager creates separate
threads for the instantiation of the (COM objects represent-
ing the) devices and the execution of device specific actions,
for the instantiation and initialisation of the GetFromPro-
ducer and PutToConsumer COM objects, and for the

Table 2
Comparison of COM threading models using the proposed API

COM threading models Time 1 (ms) Time 2 (ms)
STA 19.6 12.6
MTA 18.19 11.66

instantiation of the StreamBinder and the execution of
the stream communication algorithm. It has to be noted
that only the STA and MTA models are considered because
the single threaded model is really just a special type of the
STA model.

When each of the STA and MTA models are applied to all
of the (COM objects) of the proposed API the time needed
(in ms) to start (Time 1) and stop (Time 2) a stream connec-
tion between one source and one sink device is measured for
each of them. Time 1 corresponds to steps 4 and 5 of the
stream communication algorithm, while Time 2 corre-
sponds to steps 6 and 7. The results of the measurements
can be seen in Table 2. From this table, it is evident that the
MTA model has a better performance (which becomes even
better as the number of stream connections increases).
Therefore, for the proposed API, taking also into account
that there are no synchronisation issues, the MTA model is
the preferred choice. Its performance superiority is mainly
due to the fact that inter-thread access is direct (as all the
threads are in the same apartment), requiring no proxy inter-
vention as in the STA model.

In order to place the proposed API for DCOM in a
more general context, and increase in that way the confi-
dence in its use, a (high level) comparison with the approach
followed by OMG for the handling of continuous media [18]
is attempted, because OMG’s CORBA is considered to be
the main (commercial) alternative to DCOM. The results of
this comparison, which focuses on how continuous media
communication is modelled, can be seen in Table 3.

From this table, it can be easily deduced that the
proposed API and the OMG A/V streams specification
have the same scope as they are modelling the same basic
concepts (due to their common influence by the RM-ODP),
albeit in different ways. Therefore, they are ‘conceptually
compatible’, although their target technological domains
are divergent, facilitating thus service developers to map
their designs regarding continuous media interactions
easily to either a DCOM or a CORBA DPE. It has to be
noted that the comparison of Table 3 was not extended to



D.X. Adamopoulos et al. / Computer Communications 25 (2002) 169182 181

Table 3

Comparison of modelling approaches for handling continuous media in CORBA and DCOM

Important concepts Modelling in OMG A/V

Spec. (CORBA)

Modelling in the proposed
API (DCOM)

Multimedia device
Device specific aspects
Device control aspects

MMDevice interface/object
VDev interface/object
StreamEndpoint interface/

object
Stream endpoint StreamEndpoint interface/
object
Stream binding StreamCitrl interface/object
Stream StreamCitrl interface/object

Device COM object
Device dependent interface
IChain interface

IEndpoint interface

StreamBinder COM object
Connect&Transfer operation

(StreamBinder COM object)

FlowConnection interface/
object

Stream flows

A stream has only one flow

cover performance issues, because performance depends
greatly on the actual implementation of the OMG A/V
streams specification by the different ORB vendors, and
because the result of such a comparison would not be very
important as the decision for the adoption of one of the
approaches depends almost entirely on the choice of the
base DPE technology, e.g. DCOM or CORBA; a choice
which is relatively difficult as detailed in Ref. [2].

Finally, for reasons of completeness it has to be noted that
the proposed modelling approach can be considered as
complementary to the approaches followed by both the
ACTS VITAL project and the ACTS ReTINA project,
which were two of the most important TINA-C auxiliary
projects that were supported by the European Union (EU).
More specifically, the ACTS VITAL project demonstrated
and validated the development, deployment, management
and use of heterogeneous service features on an Open
Distributed Telecommunication Architecture (ODTA),
which is TINA-based (while integrating existing network-
ing concepts, such as TMN, IN, and the Internet) by imple-
menting a variety of telecommunications services.
However, a well defined modelling approach regarding
the handling of continuous media in these services was
clearly missing and the related design and implementation
was done in an ad-hoc manner.

On the other hand. the scope of the ACTS ReTINA
project was very wide, as it proposed a minimal but
highly flexible framework for the construction of ORBs
suitable for the development of applications with temporal
QoS constraints. The ReTINA ORB framework supports
the introduction of arbitrary binding mechanisms, including
arbitrary communication protocols and communication
stacks, and fine-grained control of system-level resources.
In this sense, a multimedia stream communication
framework was developed as a service of the ReTINA
DPE, by specialising the (generic) binding and commun-
ication framework in the case of the transmission of
continuous media flows. This framework allows the
construction of multiparty stream binding objects
involving the transmission of continuous flows with the

ability to “plug” transport protocols as well as media
coders [5].

However, the ReTINA multimedia framework, with the
exception of its binding model, focuses mainly on imple-
mentation issues and therefore can be considered as comple-
mentary to the proposed modelling approach. More
specifically, the proposed stream communication algorithm
and the proposed API can be used for the implementation of
multimedia telematic services together with a ReTINA
DPE. Furthermore, the ReTINA binding model is concep-
tually compatible with the binding functionality prescribed
by the proposed modelling approach, and the notions of
stream binding and stream interface in ReTINA can be
mapped respectively to the concepts of the StreamBinder
COM object and the IEndpoint interface introduced by the
proposed approach. However, it has to be stressed that the
objective of the ReTINA multimedia framework was to
devise a ‘multimedia-aware’ DPE, i.e. a DPE with native
support for programmable stream interfaces, whereas the
proposed approach and the OMG A/V streams specification
assume that continuous flows are handled outside the DPE.
For this reason, the ReTINA DPE manipulates both opera-
tion and stream interfaces in a uniform fashion as standard
DPE-native interfaces [23].

5. Conclusions

There is a technology push in the area of multimedia
communications, which is acting as a catalyst for the speci-
fication and development of new multimedia telecommuni-
cations services. These services will be deployed in a
distributed object environment. Therefore, there is an
increasingly important need for distributed object platforms
to support continuous media interactions in a flexible
manner.

Recognising this need, OMG attempts to promote the use
of continuous media in CORBA DPEs, by enhancing
CORBA with the ability to control and manage continuous
media streams together with standard CORBA interactions
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in an integrated way [18]. Central role in this approach has
the exploitation of easy to use and comprehend program-
ming abstractions for the simplification and improvement of
the work of service designers/developers. Therefore, the
OMG A/V streams specification reveals also the more
general trend towards the use of high level APIs, in a variety
of telecommunications service engineering activities, as for
example is the JAIN set of integrated network APIs for the
Java platform, which provides a framework to build and
combine services that span across different (packet, PSTN,
and wireless) networks [14].

In this paper, we have proposed a number of RM-ODP
compliant multimedia support services together with a
related API in order to enhance DCOM with continuous
media support. These extensions, which offer an abstraction
over stream communications and multimedia devices, do
not affect the core DCOM architecture, but only add the
necessary functionality in terms of additional services
(DPE services). Although our approach has used DCOM
as the target platform, the concepts, principles and design
approach presented are general enough to be used for realis-
ing stream interface support in other distributed object plat-
forms such as CORBA and Java-RMI.

The viability of the proposed approach was evaluated by
the implementation of the MMCS-ET, which demonstrated
that DCOM’s features can be successfully extended to
address multimedia requirements in such a way that a
substantial amount of software reuse can be achieved,
which is the target of flexible DPEs.
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