
Secure management information
exchange

Saleem N. Bhatti Kevin M. T. McCarthy
S.Bhatti@cs.ucl.ac.uk K.McCarthy@cs.ucl.ac.uk

+44 171 419 3249 +44 171 419 3687

Graham Knight George Pavlou
G.Knight@cs.ucl.ac.uk G.Pavlou@cs.ucl.ac.uk

+44 171 380 7366 +44 171 380 7215

Department of Computer Science
University College London

Gower Street
London WC1E 6BT
United Kingdom

16 August 1995

Abstract

This paper describes the design and implementation of a secure management protocol for the management
of distributed applications. The protocol is a modi�ed use of the ISO CMIP protocol, with additional
mechanisms and behaviour to provide the following security services:

� Mutual authentication of communicating parties. Both parties can prove to each other that they
are who they claim to be by the exchange of signed credentials.

� Stream integrity for management information packets (protocol data units { PDUS). The
management information exchanged between the parties is protected from replay, misordering, mod-
i�cation, insertion and deletion of the PDUs.

� Con�dentiality of the management PDUs. Only the communicating parties can read the infor-
mation passed between them. The mechanism used also provides back tra�c protection and
perfect forward secrecy.

In previous work we have implemented a public-key based system. Here, we present an experiment based
on the use of a secret-key mechanism, for a faster, lightweight approach. The authentication mechanism
makes use of the MD5 algorithm and the DES encryption standard. The PDU integrity mechanisms make
use of a pseudo random number sequence for PDU numbering and the MD5 algorithm for generating
unforgeable signatures for the PDUs.

A discussion making comparisons with the public-key approach, plus suggestions for improvements and
further work is included.

Keywords

network security, network management, distributed systems security

1 Introduction

To establish management facilities in an open environment, it is of paramount importance that we have

con�dence in the operation of the management applications. we need to be sure that they can perform the

tasks they are required to do and that no other applications can perform or subvert these tasks. This is

particularly important if the management applications and the systems being managed are geographically

widely dispersed, so that a possible attack directed at normal management operations is physically hard

to counter.

In management of network elements, we can often use physical security to prevent some attacks, e.g.

allowing restricted access to switches and routers etc. However, this may mean that remote management is

not possible and that a human administrator must be physicaly in the presence of the equipment to perform

management tasks, for instance, by use of a terminal device connected directly to the equipment. Further,

if we are to try and manage distributed applications, then remote distributed management applications

will need to cooperate to achieve the management goals. In such an environment, we must have a secure

exchange of management information between all the management applications.

In general, we must assume that the underlying communications networks are insecure and that the

management applications know best what the security requirements are to perform their particular task.

Also, in the case of a distributed application, we must endeavour not to weaken any existing security

features that are part of the normal behaviour of the application. For instance, if we had a managed

e-mail system, then it may be possible for an attacker to cause mail to be delivered to persons other than

the intended recipients by subverting the management system in use rather than directly attacking the

e-mail system.

This paper describes a lightweight security mechanism which we have implemented for ensuring a secure

exchange of management information. For the case of authentication and integrity, we have not needed to

modify the syntax of the CMIP protocol, but for providing con�dentiality we need to encrypt the CMIP

PDU.

The discussion regarding security requirements for applications is normally given in terms of:

� Threats: the attacks that one wishes to guard against.

1

� Services: the services that can be employed to counter the threats identi�ed.

� Mechanisms: the mechanisms that can be used to implement the services that are required.

In the rest of this paper, the discussion is presented in terms of the management interactions that take place

between managed systems (a server or agent) and the managing system (a manager or client).

Note that an application may have many managment interactions with other applications and within

those interactions it may, in general, take both a managing and managed role during the lifetime of the

interaction. Further, we describe the services used and mechanisms employed with in our implementation

of the ISO CMIP protocol [1]. As CMIP is a connection oriented protocol, we identify the initiator of

the connection request (or association in OSI parlance) and the responder to the connection request.

1.1 Contents of this paper

In section 2 we take a look at the goals for this particular work. In the next three sections we look at, in

turn, the particular threats that we wish to protect against (section 3), the security services we intend to

use (section 4) and then describe the mechanisms that we have used to realise them (section 5). Section 6

describes our implementations. After a brief discussion in section 7, we round o� with a summary in

section 8.

2 Security requirements for management applications

A general description of the threats, services and mechanisms is given in the X.800 document [2]. OMNI-

Point016 [3] has similar descriptions, but tailored to the context of network management using the ISO

management model.

Previously, we have investigated the use of public-key systems as the basis of our security system [4, 5, 6].

Such systems o�er strong assurances of authenticity and con�dential exchange of information. There are

several authentication frameworks that are based on public-key approaches, the most commonly nown of

which are X.509 [7] and PGP [8]. Another system that makes use of the X.500 directory is DASS [9].

Here we consider the use of a shared-key system, based on the use of a secret-key value that is shared

2

between each responder/initiator pair. The system aims for a lightweight approach, with the following

goals in mind:

G1 Speed: public-key systems rely on computationally expensive algorithms that can be slow, partic-

ularly when implemented in software. Shared-key systems based use of secret-key, block algorithms

tend to be much faster.

G2 Independence of operation: public-key systems make use of an asymmetric key-pair, the private-

key and the public-key parts. Although the public-key part of the key can be exchanged out-of-

band, current large public-key systems rely on the public-key part being stored as part of credentials

in a 'well known' place (e.g. a directory service) and signed by trusted third party (the certi�cation

authority (CA)), for example, the ITU X.509 system [7]. The use of a shared secret-key removes

the need for this extra level of indirection and the communication overhead that may be associated

with it. This increases the speed of the system as a whole and reduces its reliance on a secure and

reliable directory service.

A further comparison of the public-key and secret-key systems is made in section 7.

3 Security threats

The particular threats that we have considered are as follows:

T1 Masquerade: where an attacker takes a false identity.

T2 Replay: where an attacker replays previously captured management PDUs.

T3 Insertion/Deletion: where an attacker constructs fake PDUs and inserts them into the commu-

nication stream, or removes PDUs from the communication stream.

T4 Disclosure: where an attacker can observe sensitive management information by inspecting the

contents of the management PDUs.

T5 Denial of service: where an attacker can somehow prevent a management application from o�ering

and/or using a management service.

3

The Internet community has also been looking at the security problem, and from the IPSEC Working

Group [10] and the Network Working Group [11] we �nd the following threats identi�ed:

T6 Examination of previous tra�c: an attacker is able to capture and store PDUs and then read

them at a later date, when the security of future network tra�c is compromised.

T7 Examination of future tra�c: an attacker is able to breach the security of future PDUs when

the security of current or previous network tra�c is compromised.

T8 Clogging: an attacker is able to tie-up computing resources by making continuous bogus authen-

tication requests to management applications.

T6 and T7 can be seen as special cases of threat T4 (Disclosure) but imply that the techniques used to

protect against T4 must be such that there are parameters that can be changed in the mechanism so that

T6 and T7 are also countered. For instance, use of a key based mechanism where the key can be changed

frequently and easily.

T8 is a special case of threat T5 (Denial of service). Denial of service is the hardest form of attack to

counter. Denial of service attacks could range from a simple cutting of the wire(!) to more cunningly

devised approaches such as clogging or barrages of fake PDU storms (packet
ooding) to swamp the

network resources. In the rest of this paper, we do not discuss the countering of denial of service attacks.

4 Security services

To counter the threats listed in the section 3, we have chosen the following services:

S1 Mutual authentication of communicating parties: the initiator and responder exchange cre-

dentials at connection set-up. The credentials contain an electronic signature that each party can

use to validate the other's identity. This counters threat T1.

S2 PDU sequence numbering: a pseudo random number sequence will be used to number the

PDUs. The seed for the pseudo random sequence is exchanged at connection set-up time.

4

S3 PDU electronic signatures: the sender of the PDU generates a signature for each PDU. The

signature is sent with the PDU and veri�ed by the receiver. A secret value that is used in the

generation of the signature is exchanged at connection set-up time. Together with S2, this counters

threats T2 and T3.

S4 Encryption of CMIP PDUs: the CMIP PDUs will be encrypted. The information to be used

in the encryption algorithm (e.g. key) will be exchanged at connection set-up time. This counters

threat T4.

(The method of countering threats T6, T7 and T8 are given in section 5.) The use of the services are based

around the exchange of credentials in the implementation of S1. Both initiator and responder must each

produce, independently, a set of credentials that can be validated by the other. The credentials consist

of a token that contains information about the identity of the sender and any information/parameters

required for S2, S3 and S4.

5 Security mechanisms

The mechanisms that are used to implement the services described in section 4 are as listed below:

M1 Exchange of credentials: during connection set-up, the communicating parties send each other

a set of credentials that contain an electronic signature. The credentials consist of a token and

a signature for that token; the token contains parameters for the operation of M2, M3 and M4

(explained below). The uniqueness of the signature is guaranteed by the use of a shared-key { a

secret value known a priori only to the two parties in the association set-up. This provides services

S1.

M2 Use of well-known PDU sequence numbers: a sequence of numbers is generated using a

pseudo random number generator (PRNG). The sequence is 'well-known' to both parties as the

seed for the PRNG will be exchanged securely at connection set-up time. This provides service S2.

M3 Electronic signatures for PDUs: strong checksums are generated for each PDU by the the use

of a hashing function. The checksum can only be generated by the communicating parties as part

of the input to the signature generation function is a secret value exchanged securely at connection

5

set-up time. (The signature mechanism is very similar to that used for M1.) This provides service

S3.

M4 Secret-key encryption of PDU byte stream: the CMIP PDU is encrypted before being trans-

mitted. The key for the encryption function is exchanged securely at connection set-up time. This

provides service S4.

The threats T6, T7 and T8 listed above can also be countered by careful selection of the implementation

of the mechanisms listed above.

Let us �rst consider T6 and T7. For T6 we require a facility for back tra�c protection and for T7 a

facility providing perfect forward secrecy [10]. Both these facilities can be implemented if we ensure

that a new encryption key { a session-key { is used for M4 every time a new connection is set up.

Further, we generate this key as a random value just before it is required for use, and so we do not need

secure secondary storage for it.

An attack in the form of T8 relies on the fact that the authentication procedure is computationally

expensive and will tie-up resources at the recipient of authentication requests. A counter measure suggested

in [11] is to use a cookie that is a hash value formed from, say, the IP/UDP/TCP addressing information

of the sender. As will be explained later, we use a lightweight, shared-key based approach for signatures

to provide authentication of user/application identities that achieves a similar e�ect.

Hence, we explicitly counter threats T1 to T5, whilst T6, T7 and T8 are countered as side-e�ects of the

implementations of the mechanisms we have chosen.

5.1 State of the art

There is currently a lot of activity within the Internet community and standards bodies such as the ITU

and ISO concerning the formulation of security recommendations for network and distributed systems

security.

6

5.1.1 The Internet community

As well as the work for securing IPv6 [15, 16, 17], the IETF IPSEC working Group have produced an

Internet Draft describing the management of security information [10]. The IETF work also addresses

similar threats to the ones listed as T1 to T8. Of great relevance here is the considerable e�ort being

directed towards providing a security infrastructure for SNMP. SNMPv1 had no security features, and the

original SNMPv2 security recommendations [12] have not been widely accepted by the Internet community.

Currently, there is activity not only to revise the SNMPv2 security infrastructure [13, 14], but also to

provide security facilities that could be retro-�tted to existing SNMPv1 technology [19].

At the time of writing, the activities in the Internet community centre around the provision of the following

security mechanisms for IPv6 and SNMP:

� Management of security related information for IP [10].

� Security architecture for IP [15].

� Authentication of IP packet headers [17].

� Encryption of IP packet payloads [16, 18].

� ('O�cial', i.e. produced by an IETF Working Group) authentication and encryption for SNMP [13,

14].

� ('Uno�cial') authentication only [19], and authentication and encryption [20, 21] for SNMP.

(Additionally, there is access control work for SNMPv2.) Although the IP and SNMP work does not

explicitly state that the use of any particular algorithm is mandatory, the (very strong) implication is that

the mechanisms are implemented using the MD5 algorithm [22] to produce electronic signatures (SHA [23]

is also mentioned) and the DES [24] algorithm (i.e. a secret-key algorithm) to encrypt PDUs.

Although SNMP security is also shared-key/secret-key based, there are two main problems with most of

the approaches:

� In general, the stream integrity is achieved by use of 'loseley synchronised' clocks between manager

and agent. As only one clock exists at the agent, this could cause problems if the agent is commu-

nicating with more than one manager at the same time (the leap-frogging clocks problem known to

the SNMP community).

7

� Back tra�c protection and perfect forward secrecy (countering T6 and T7) cannot be provided as

the same key is used each time for encryption of PDUs. As, there are currently no in-band methods

to establish a session-key, SNMP security keys must be changed frequently to prevent possible

know-plaintext or tra�c analysis attacks on the PDUs.

Neither of these problems exists with CMIP; as it is a connection oriented protocol, during the connection

set-up phase, a new session-key can be exchanged to be used in the integrity and encryption mechanisms.

At the time of writing, other major problems appear to exist with the IP security proposals, and there is

great discussion within the Internet community [25].

5.1.2 The ITU and ISO

The international standards bodies have also been making e�orts to de�ne security features for use in data

communications applications. Although the particular area of security for management protocols has not

been addressed, there is relevant work which could be applied. (This is in keeping with the generality of

the service element (SE) approach to building application level protocols in the ITU/ISO philosophy.)

The current work in this area from the ITU/ISO is the Generic Upper Layer Security (GULS)

document [26]. This draft standard provides a service de�nition and protocol for a new application level

service element that can provide security services such as authentication and con�dentiality for any ISO

application level protocol. There are also proposals for a general security framework for open systems [27].

These documents are now in the �nal stages of becoming full standards.

More mature and stable work is available in the form of the authentication framework that forms part

of the ITU/ISO Directory service, documented in X.509 [7] and X.511 [28]. This provides a public-key

based approach to authentication and uses the ITU/ISO Directory service as the repository for various

security related information including credentials for users and certi�cation authorities (CAs), as well as

revocation lists for credentials that are no longer valid. In X.511, syntaxes for credentials are de�ned that

can bear a signature from a CA. This syntax can be used not just by the directory but by any application

that uses the ITU/ISO association control service element (ACSE [29]). The authenticated information

is a globally unique identity { a distinguished name (DN). An example of a DN is:

8

c=GB@o=University College London@ou=Computer Science@cn=Saleem Bhatti

The identity can refer to a real person or an application (in fact it can be anything). Once a DN

has been authenticated it can then be used for other purposes, e.g. as input to access control decision

functions. However, an application using the X.509 framework, in general, will need capabilities to access

the Directory service to look up:

� Public-key information of other users and applications.

� CA credentials.

� Revocation lists.

Caching Directory information is always possible but at the cost of losing timeliness of updates to such

sensative information as revocation lists.

5.2 Authentication

The authentication mechanism we have chosen makes use of DNs. The signature is formed for a token

that contains the DN (along with some other information). The authentication mechanism is based on

the use of a shared-secret which is known a priori to both parties. This is exchanged out-of-band. (The

implications of this are discussed later.) The algorithm is described below.

ENCRYPT(K;M) encrypt message M using key K

DECRYPT(K;M) decrypt message M using key K

HASH(K;M) make keyed hash value of message M using key K

RANDOM(p; q) generate a random byte stream, minimum size p, maximum size q

D:m data member m in data structure D

M@A! B A sends message M to B

A M@B A receives message M from B

C1?A1 : A2 if C1 is true then do A1 else do A2

D1 = D2 assignment

D1 == D2 comparison

9

A ` V A knows value V

S signature T token C credential

KIR shared-secret KS session-key I initiator

R responder DN distinguished name E expiry time

t validity period

Subscripts

I initiator R responder

Prerequisites:

I ` KIR ; R ` KIR (1)

I ` t ; R ` t (2)

KIR is the shared-key that is known only to I and R. The secrecy of this value is the basis for the

establishment of a trust relationship between I and R. The value t is a constant value that is e�ectively

the period of time (in seconds) for which the credentials are considered to be valid. (t will typically be

about 10 seconds or less.)

At I:

KS = RANDOM(8; 8) (3)

K = ENCRYPT(KIR;KS) (4)

EI = now + t (5)

TI = fDNI;DNR; EI; Kg (6)

SI = HASH(KIR; TI) (7)

CI = fTI ; SIg (8)

CI@I ! R (9)

The signature, SI , prevents the forging of TI , i.e. prevents a masquerade attack (T1). As, only I and

R know the value KIR, only they can generate and/or reproduce a correct value of SI . To prevent

replay (T2) of CI , the signature SI is only useful if each separate instance of TI (and hence SI) is

10

di�erent. This is assured by the use of a randomly generated session-key value KS and by use of the

timestamp EI . KS e�ectively takes two roles { that of the session-key that will be used to initialise the

integrity and con�dentiality mechanisms after connection set-up, and also that of a nonce. A nonce is

a (usually randomly generated) value to be used only once and then discarded, and serves to add some

unpredictability to the contents of the token TI . (The reason for using a KS value of length 8 will be

explained later.)

At R:

R CI@I (10)

e = noError (11)

S = HASH(KIR; CI :TI) (12)

S == CI :SI ? continue : e = invalidSignature; goto sendResponse (13)

EI > now ? continue : e = credentialsExpired; goto sendResponse (14)

TI :DNR == DNR ? continue : e = unknownRecipient; goto sendResponse (15)

KS = DECRYPT(CI :TI :K;KIR) (16)

R ` KS ? e = sessionKeyReused : continue (17)

sendResponse :

ER = now + t (18)

TR = fDNR; e;ERg (19)

SR = HASH(KIR; TR) (20)

CR = fTR; SRg (21)

CR@R ! I (22)

e == noError ? continue : drop connection (23)

R receives TI and performs several checks on TI . The failure modes that could result from these checks

are:

� invalidSignature: the signature could not be veri�ed. This could suggest that the contents of TI

have been changed. Implicit to this step, of course, is the following:

11

R ` TI :DNI

i.e. that the responder knows of the initiator (the prerequisite step 2) so that DNI can be used to

look up KIR.

� credentialsExpired: the expiry time recorded in the token has been exceeded. This could be due

to an abnormal delay in the credentials being received by the responder, suggesting a possibility

that an attacker is trying to intercept the connection request in some way. It could just mean that

there was an abnormal amount of network congestion en-route(!), so the value of t must be chosen

carefully to re
ect the network environment in which this scheme is to operate correctly.

� unknownRecipient: the responder does not think that it is the intended recipient of the message.

Such an error could be caused by an attacker trying to replay a previously captured credential in

an attempt to connect to a di�erent responder.

� unknownInitiator: the responder does not know the creator of the credential. This is to prevent

a similar attack as for unknownRecipient.

� sessionKeyReused: the responder has detected that two connections have been attempted with

the same session-key. This failure mode prevents an attacker from replaying credentials within the

expiry period of those credentials.

The last of these failure modes relies on the fact that the value of KS is generated in a manner that is

likely to yield di�erent values each time. This can be achieved by, for example, using the current time as

part of the function that produces the seed for the random number generator used. Recommendations for

randomness properties for use in security systems is presented in [30]. The use of a fast hash function for

the production of signatures not only achieves G1 and G2, but also counters the clogging attack (T8) in a

similar fashion to that recommended in [11] (i.e. it is fast and computationally inexpensive to evaluate).

If any of the checks on TI fail, then the connection set-up is aborted.

Once the credentials have been checked, R has authenticated I and we can say that R trusts that it has

set up a connection with I. R must now send a set of credentials back to I so that R can be authenticated

by I. As well as R's identity, DNR, and an expiry timestamp, E, the responder's token, TR, contains any

12

error information that may have resulted from R's attempt to process TI . In the event of a history of

several failures in authentication, this error information giving the reason for the failure may be important

in tracking down a possible security attack. One may consider it more secure to use the 'fresh', securely

exchanged value KS in generating SR rather than KIR. However, to notify the error, e, to I, we must use

KIR to sign TR, as R does not yet have con�dence that the sender of TI is indeed I.

At I:

I CR@R (24)

S = HASH(KIR; CR:TR) (25)

S == CR:SR ? continue : drop connection (26)

CR:e == noError ? continue : drop connection (27)

CR:ER > now ? continue : drop connection (28)

I ` CR:DNR ? continue : drop connection (29)

connection established (30)

The responder's credentials are checked, and if the checks succeed then the I and R have mutually

authenticated each other and the connection set-up is completed, else it is aborted.

5.2.1 Authenticated connection closure

To prevent the possibility of an attacker sending false connection-close requests, we also authenticate a

connection closure at the end of a management communication session. The call closure can be initiated

by either the original initiator, I, or the original responder, R, so in the description below we simply refer

to them as A and B, the communicating parties. The mechanism is as follows:

G GoodBye token A party A B party B

At A:

SA = HASH(KS;DNA) (31)

G = fDNA; SAg (32)

G@A ! B (33)

13

At B:

B G@A (34)

S = HASH(KS;DNa) (35)

S == G:SA ? drop connection : ignore (36)

B ` DNA ? drop connection : ignore (37)

As the signature, SA, is generated using the the session-key, KS exchanged securely during the connection

set-up, we can be sure that the issuer of the connection-close request is in fact the party with which we

originally established the association.

5.3 Con�dentiality

The con�dentiality mechanism encrypts management PDUs. Padding bytes with random values { junk

{ are used to help protect the encrypted PDUs from tra�c analysis or know-plaintext attacks. The

mechanism used for creating the encrypted PDU is shown below.

V an initialisation value B byte stream

JP1 junk pre-padding for PDU JP2 junk post-padding for PDU

PDU the original PDU PDUE the encrypted PDU

Q � P Q logically concatenated with P

V = RANDOM(8; 8) (38)

JPI = RANDOM(0; 127) (39)

JP2 = RANDOM(0; 127) (40)

B = V � JP1 � PDU � JP2 (41)

PDU = ENCRYPT(KS;B) (42)

14

The session-key, KS, exchanged securley at connection set-up is used as the encryption key. As a new

value for KS is exchanged each time a connection is set up, we have protected against T6 and T7.

5.4 Integrity

The integrity mechanism for the PDUs is based on the generation of two di�erent values that are to be

carried along with each PDU:

� PDU sequence number: each PDU has a sequence number that is generated by the sender of

the PDU. The sequence number is part of a pseudo random sequence as generated by a PRNG. The

session-key, KS, is used to seed the PRNG.

� PDU signatures: each PDU has a strong checksum evaluated for it. This checksum is generated

using the same mechanism as that which is used to generate the signatures used in the authentication

mechanism with one di�erence; the key used for the creating the hash value (signature) is the session-

key, KS, rather than the shared-key, KIR. This ensures that the same tra�c generated during

di�erent management connections will always have di�erent checksums and so protect against T6

and T7.

Both these checks will need to be carried with the PDU. However, the ROS PDU only has one �eld,

invokeID, that can be used. So, the value that is assigned to the invokeID is the bitwise exclusive-OR of

the sequence number and the checksum value. The mechanism is show below.

C checksum N PDU number sequence

R the ROS invokeID PRNG(X;n) nth value in sequence seeded by X

C = HASH(KS; PDUE) (43)

Nn = PRNG(KS; n) (44)

R = C �Nn (45)

As the communication between manager and agent is, in general, asynchronous, there are actually two

PDU number sequences, one directed from manager to agent and one from agent to manager. Di�erent

15

parts of KS are used as the seed for each sequence.

We note that this system of PDU integrity checks also implicitly provides a form of authentication

and non-repudiation service for the management PDUs. This is because only the two communicating

parties can possibly generate the correct PDU signatures and PDU sequence numbers. The checksum, C,

is additionally protected if the integrity mechanism and con�dentiality mechanism are used to gether as

C is evaluated for the uncrypted PDU and not PDUE which is seen 'on the wire'.

6 Implementation

Our implementation is calledMSAP Lightweight Security (MLS). MSAP (management service access

point) is our implementation of the CMISE. The implementation of the mechanisms is in C and C++ on

UNIX based systems.

We use the following pieces of software:

� The OSIMIS package [32] to provide the ISO management infrastructure and CMIP protocol im-

plementation.

� The ISODE package [33] to provide the upper layer ISO communications stack.

� The MD5 implementation in RFC1321 [22].

� An implementation of DES written at UCL.

The value of KS is used as the parameter for the con�dentiality and integrity mechanisms. It would have

been possible to use separate values as the parameters to each mechanism, but in keeping with goal G1

and in trying to realise a lightweight approach, we have opted to use only one value. This does mean that

if one of the mechanisms used is easier to break than the others, then by concentrating his/her e�orts on

that mechanism, an attacker could comprise all the mechanisms by breaking that one. While we have not

conducted any qualitative analysis of the feasabilty of such an attack, we are con�dent that, given the

known properties of the cryptographic functions that we have chosen, it would be extremely di�cult for

an attacker to succeed in an 'on the wire' attack of the system.

The shared-keys for an application are maintained in a local �le that is read at start-up. The �le is a table

16

that consists of two columns; the �rst column contains the DN of a peer, the next column the shared-key

for that peer.

6.1 Authentication

The mutual authentication is realised by the use of signatures based on a keyed MD5 hash value. The key

is KIR the shared-key that is known only to I and R. The user application programming interface (API)

to the authentication mechanisms is as follows:

The initiator token TI is represented by the C structure:

typedef struct MLSInitiatorInfo_s {

char *name; /* string DN of user/application */

char *peer; /* string DN of peer user/application */

unsigned int services; /* use values below */

#define MLS_pduIntegrity (unsigned int) 0x00000001

#define MLS_confidentiality (unsigned int) 0x00000002

#define MLS_all (unsigned int) 0x00000003

char sessionKey[8]; /* MD5 key - zeros if no key for this assoc */

} MLSInitiatorInfo;

int makeMLSInitiatorAcseInfo(MLSInitiatorInfo *info, External **external);

int getMLSInitiatorAcseInfo(External *external, MLSInitiatorInfo **info);

The additional feature here that is not described in secion 5.2 is the services �eld; although this �eld

was not mentioned previously it can be seen that it does not a�ect the earlier arguments regarding

the mechanisms used. The �eld lets the initiator select the use of PDU integrity mechanisms and the

PDU con�dentiality mechanism. If the value is zero, then only the mutually authenticated connection is

established.

Also, the timestamps are applied and checked beneath the API, the user being informed of any errors (see

error list below), so there is no need for the user to handle the timestamp information.

Once the association is set-up, the session-key must be stored. The operation of the other mechanisms rely

17

on this. There is a simple key management API for session-keys and shared-keys (but this is not shown

here). The APIs to the other mechanisms then use the �le descriptor for the connection as a handle onto

any security information for that connection.

The responder token, TR is:

typedef struct MLSResponderInfo_s {

char *peer; /* peer */

int error; /* 0 (no error) or one of the #defines below */

unsigned int services; /* use same values above */

} MLSResponderInfo;

#define MLS_miscellaneousError (-1)

#define MLS_unknownRecipient (-2)

#define MLS_unknownInitiator (-3)

#define MLS_credentialsExpired (-4)

#define MLS_sessionKeyReused (-5)

#define MLS_invalidSignature (-6)

int makeMLSResponderAcseInfo(MLSResponderInfo *info, External **external);

int getMLSResponderAcseInfo(External *external, MLSResponderInfo *info);

The responder may chose to ask for di�erent services than those requested by the initiator. If the initiator

does not agree with the services requested by the responder, then it can chose to close the connection.

In all the functions listed above, the error values returned are those listed above as #define MLS XXX

constants. MLS unknownRecipient is a local API error as well as a remote error that can be returned by

the responder. MLS unknownInitiator is only a local API error to notify an error in the value given for

MLSInitiatorInfo.name.

The External data structure is used to pass the information to the ACSE via CMISE; the external is

transported in the CMIP userInfo which is in turn passed in to the ACSE user-information �eld.

The GoodBye token, G, is constructed directly, not requiring an intermediate C structure:

int makeMLSGoodByeAcseInfo(const int fd, char *name, External **external);

18

int getMLSGoodByeAcseInfo(const int fd, External *external, char **name);

fd is the �le descriptor for the open connection which is to be closed.

The HASH function for signatures is realised by the MD5 implementation and is used as described

in [34]. The signatures for the tokens are created using the following API:

int mlsSignature(PE pe, const char key[8], char signature[16]);

The PE is a presentation element abstraction used by ISODE. This API can be used to generate a

signature for any syntax as long as an ISODE encoding (in the form of a PE) is constructed.

6.2 Con�dentiality

The DES encryption and decryption functions are used in cipher block chaining (CBC) mode to realise

the ENCRYPT and DECRYPT functions (respectively), hence the choice of 8 bytes for the size of the

session-key, KS, and the use of the initialisation value, V , also of size 8 bytes. The randomly generated

value, V , not only forms the initialisation vector to the DES functions, but is also used for the sizes of

JP1 and JP2:

jJP1j = V [0] mod 128

jJP2j = V [1] mod 128

This precludes the need to include separate header information to the encrypted PDU, PDUE , to give the

location of the junk padding. The criteria for the choice of the sizes of padding value were fairly loose;

the main considerations were:

� to generate enough padding to make a tra�c analysis or known plain-text infeasible; the use of a

random size of JP1 and JP2 upsets possible attacks based on knowledge of the PDU contents or

knowledge of the byte alignment of the PDU encoding or size of the PDU.

� that the padding should not increase the �nal size of PDUE so that it adversely a�ects the through-

put with respect to the useful information contained within the PDU.

19

There could be an argument to change the padding size in light of the known performance of the MD5

algorithm implementation (explained later).

The API to this service is very simple and requires only the �le descriptor of the open connection and the

PDU to be encoded:

int encodeMLSPdu(const int msd, PE *pdu);

int decodeMLSPdu(const int msd, PE *pdu);

The �le descriptor, msd, is used to look up the session-key using the key management API mentioned

earlier.

6.3 Integrity

While the signatures for the PDU mechanism use the same HASH function as that used for the signatures

for the tokens, the API is slightly di�erent:

/* MD5 interface */

typedef struct MD5Value_s { /* 128 bits */

union {

unsigned char bytes[16];

unsigned long words[4]; /* 32 bit long */

} union_MD5Value;

} MD5Value;

int makeMd5Value(const int fd, PE pdu, MD5Value *check);

This takes account of the fact that the �le descriptor, fd, is now available and can be used to access any

security information related to a connection, e.g. the session-key. Other than that, the signature is formed

in the same way as for the mlsSignature() API function.

The generation of the sequence numbers is by use of the standard C function random(3). This has good

randomness properties and the period of this function can be determined from its initial state. The �rst

20

4 bytes of KS are used to generate the initiator to responder sequence, and the remaining 4 bytes to

generate the responder to initiator sequence.

The application must record whether the connection was set up with itself as the initiator or responder:

typedef enum IRStatus_e {IRStatus_none, IRStatus_initiator, IRStatus_responder} IRStatus;

void setIRStatus(const int fd, const IRStatus s);

Once this is done, a simple API can be used to generate the sequence numbers:

int makeId(const int fd);

int makePeerId(const int fd);

An API also exists to save and restore the sequence state for a particular connection. This is needed in

cases where the number sequence needs to rolled back when there are error conditions.

6.4 Performance

The speed of the various implementations that we have constructed are given here. They are based on

tests performed on a Sun SPARCclassic with 48MB of memory running SunOS 4.1.3. Tests involving the

network were performed using a Sun4 IPC with 24MB of memory also running SunOS 4.1.3. The two Sun

workstations were connected by 10Mb/s Ethernet and were on the same spar of the network. The network

was moderateley loaded. All mean values were calculated by timing 1000 repititions of the algorithms

with bu�er sizes of 2n; n = 0; :::;16.

The DES implementation achieved a mean throughput of about 190KB/s (1.52Mb/s). The throughput

of the MD5 algorithm implementation is non-linear at bu�er sizes of less than 1024 bytes, but above this

threshold value, it achieved a throughput of about 460KB/s (3.68Mb/s). Figure 1 shows this non-linearity.

If it is likely that the management systems will generally exchange PDUs that are smaller than 1024

bytes, using larger limits for the sizes of JPI and JP2 to force the algorithm towards operation nearer its

greatest throughput may be desirable (available network capacity permitting, of course). However, in our

case, the performance bottleneck is the DES implementation; its maximum throughput is approximately

190KB/s and the MD5 implementation achieves this rate at bu�er sizes of � 32 bytes.

21

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000 35000

M
D

5
th

ro
ug

hp
ut

 [K
B

/s
]

bufer size [bytes]

"md5.data"

Figure 1: The performance of the MD5 implementation

In the X.509 public-key based approaches with we have we have experimented previously [4, 5], similar

integrity check and con�dentiality mechanisms were employed so the overhead is comparable in those

respects. However, the connection set-up takes much longer, depending on the number of Directory

operations required and number of certi�cation authorities involved. We have previously recorded times

between 11 and 24 seconds(!) with a fully public-key based approach, and these times did not include the

checking of revocation lists that may have been held in the Directory. Although most of this extra time

was due to the use of software implementations of the public-key cryptography functions, there was an

overhead of at least 100% compared to connect times when there is no Directory access.

The �gures in Table 1 shows the a�ect of the use of mutual authentication on typical connection set-up

and tear-down times. While these times show that there is a relatively large percentage increase in the

times due to the processing of the token exchange, the absolute times are still quite favourable.

(times in s) Authentication

none mutual overhead [%]

connect 0.26 0.38 46

disconnect 0.04 0.07 75

Table 1: Management application connect and disconnect times

22

The overhead due to the integrity mechanisms was approximately 10% and that due to the con�dentiality

mechanism was approximately 12%. With both services together, the overall overhead was approximately

25% compared to the case when there were no security features in use.

Most of the overhead was due to the use of software implementations of the cryptographic algorithms

used; the performance would improve signi�cantly if hardware was used instead.

7 Discussion

The discussion here is presented as a list of issues that have arisen from our experiences with security of

management work.

7.1 General applicability of results

The CMIP protocol is used by the common management information service element (CMISE).

The CMISE make use of two other services elements; the association control service element (ACSE) and

the remote operations service element (ROSE) [31]. The interactions between the service elements

and an application are depicted in Figure 2.

The CMISE uses the ACSE to establish and close connections. Once an association is established, CMIP

PDUs are passed from the CMISE to ROSE and are carried as the payload of ROS PDUs. The mecha-

nisms we have described pass credentials in the ACSE user-information �eld and evaluate signatures on

ROS PDU payloads. We therefore suggest that it should be possible to apply these mechanisms to any

ACSE/ROSE based protocol.

7.2 Key management: a brief comparison with a public-key based ap-

proach

The main drawbacks with the use of a shared-key system such as the one described here is that of managing

the shared-keys for each I/R pair. The main problems are:

23

ROSEACSE

network

CMISE

management application

ACSE association control service element

CMISE common management information service element

ROSE remote operations servise element

Figure 2: The interactions between CMISE, ACSE and ROSE

� Key distribution: as the keys must be kept secret, they must be distributed in a secure manner

if we are to have con�dence in the security of this system. This is usually done out-of-band, for

example, by secure e-mail, courier, etc. However, this problem can also a�ect public-key systems

where the secret part of the key must be sent to the user.

There is now a proposal for Kerberos, a shared-key based system, to use public-keys for the initial

authentication exchange [35]. Such systems could be used to distribute shared-keys in-band, given

a suitable key distribution framework.

� Secure storage of keys: the shared-keys must be stored securely so that only the applica-

tions/users that require them can read them. This problem is, again, also true of public-key based

systems. However, hardware based solutions such as the use of SmartCards can solve this problem.

� Revocation of keys: should a key become compromised, it is up to the network administrators to

ensure that the shared-key database is updated. The simple, lightweight system we have proposed

does not have an associated authentication framework (such as in X.509) to allow the use of revo-

24

cation lists. This is in keeping with goal G2 to ensure that the management system is not reliant

on another distributed service being available before it can operate.

� Scaling: a shared-key based solution does not scale well. For N parties, a shared-key based

approach requires that the number of keys involved increase O(N(N � 1)=2) whilst a public-key

based approach scales O(N). This is a huge drawback and so we would favour the use of shared-key

based systems in an environment where goals G1 and G2 are of paramount importance.

7.3 A question of trust

Establishment of trust in public-key based systems is based on the communicating parties verifying cre-

dentials that are signed by a trusted third party, the certi�cation authority (CA). If the communicating

parties do not share the same CA then there must be trust between their respective CAs. We say that

the CAs have cross-certi�ed each other, if some direct (possibly out-of-band) communication between

the CAs has occurred to establish this trust. However, public-key systems can also set-up certi�cation

paths that are links of certi�cates between CAs that extend until a common point of trust between

the communicating parties (i.e. a trusted CA) is reached. This sophisticated arrangement is required,

ultimately, to establish trust between the communicating parties. Bringing the point of trust as close as

possible to the communicating parties is a prime factor in achieving goals G1 and G2. The shared-key

approach tries to reduce the complexity of the trust relationship to a minimum by assuming that trust

exists directly between the communicating parties rather than being established via a trusted third party.

Public-key systems allow trust to be established between parties who may never before have communicated

with each other. This is not possible with the kind of shared-key system described in this paper. However,

in a well organised and well structured network, there is a high probability that network management

system will consist of a known set of applications that are likeley to interact with each other in a well

de�ned manner. In this case, the use of a secret-key based system to realise goals G1 and G2 may well

have considerable advantages.

25

7.4 Hybrid architectures for security

Given the relative advantages and disadvantages of public-key versus shared-key systems, one must think

carefully where they are to be used. One may consider the partitioning of the problem to take account of

the existing structure of the network or system to be managed. For instance, we can consider the notion

of a network domain as part of a network. A domain consists of network resources that can be logically

grouped together in some way, for example, by all being the responsibility of a particular administrative

body. We may look at the security requirements in terms of inter-domain communication and intra-

domain communication, for example, in the general telecommunications management network

(TMN) [36]. The information architecture for the TMN is depicted in Figure 3 showing interfaces

between di�erent functional blocks.

In this model we may consider that the X-interface is an inter-domain interface. As such, it may be likeley

that the applications that communicate with this TMN at the X-interface will be external to the TMN and

possibly unknown to it. Therefore, the use of public-key based security at this interface may be favoured.

However, the Q3-interface is an intra-domain interface, and at this interface we may have some con�dence

in at least the physical security of the network and so we can opt to use lightweight mechanisms. Here,

we would gain performance advantages from using a shared-key based approach.

If we look at the G-interface and F-interface, we are faced with a slightly more complex problem. These

two interfaces allow communication with entities outside the domain, but are bridged by a workstation

function (WSF) that is on the domain boudary; it is likeley that the users of the WSF will be human

administrators. At these interfaces we may decide to use either public-key or shared-key based approach,

depending on the kind of applications or users we expect to use these interfaces.

The performance gains in using a shared-key system would be particularly signi�cant when we consider

that the TMN functional hierarchy depicts a layered architecture where many connection set-ups may be

required between management applications at lower functional layers in response to a single management

request submitted at a higher functional layer.

One thing that we have not considered in this paper is the existence of security policy within the

system to control security related decisions. In our work, the decision functions are 'hard-wired' and the

26

F

Q3
Q3

Qx Qx

X

F

M

Q3

QAF NEF

OSF

MF

G

Q3

TMN telecommunications management network

WSF workstation function

OSF operations system function

MF mediation function

QAF Q adaptor function

NEF network element function

interface to a TMN reference point

WSF

TMN

Qx

Figure 3: The TMN model

mechanisms have no real capabilities that allow us to tailor the use of the security features. For instance,

at the G/F-interface, we may allow shared-key access during normal o�ce hours when responsible network

personnel are at hand, but only public-key access at other times when it would be abnormal for sta� to

be administering the network.

27

8 Summary and future work

We have designed, implemented and used a shared-key based security mechanism that provides authen-

ticated associations, con�dentiality of the PDUs and integrity checks for the PDUs. The mechanisms

impelemented are relatively simple to use yet counter many kinds of security threats. In designing and

implementing our system, our main goals were achieved, namely to produce a simple, lightweight, fast

and self-contained system. The mechanisms are fairly general allowing the use of di�erent algorithms; we

have implemented them using the DES encryption standard and the MD5 hash algorithm. We have tested

the performance of the system and found that the overheads incurred for the use of the security features

are reasonable, and compares very favourably with previous work we have conducted that uses public-key

methods. However, shared-key systems su�er from some major drawbacks, particularly in scaling, and so

we believe they are best used in tightly coupled, well de�ned systems. The performance of the system

could be improved greatly by the use of hardware implementations of the cryptographic algorithms used.

We have yet to investigate fully the use of particular security mechanisms in particular network environ-

ments, e.g. how best to integrate the use of both shared-key and public-key systems. We would also like to

consider the use of security policies that can be interpreted and acted upon by the management applica-

tions and how these might a�ect the mechanisms in use. We are also currently working on access control

mechanisms which could be used with the work presented in his paper to provide a complete security

system for management systems. Indeed, access control policy would play an important role in de�ning

TMN information model views, as the various interfaces in that model take into account management

information visible at the interface to a particular functional block, and these views could be subject to

constraints laid down in security policy.

References

[1] ISO/IEC 9596, Information technology { Open Systems Interconnection { Common management

information protocol speci�cation, May 1990.

[2] CCITTRecommendation X.800, Security Architecture for Open Systems Interconnection for CCITT

Applications, Geneva, 1991

28

[3] Network Management Forum, Application Services: Security of Management, OMNIPoint

Network Management Forum 016, Bernardsville, NJ, August 1992.

[4] G. Knight, S. N. Bhatti, L. Deri, Secure Remote Management in the ESPRIT MIDAS Project, Proc.

IFIP TC6/WG6.5 International Working Conference on Upper Layer Protocols, Architectures and

Applications, Barcelona, Spain, 1 - 3 June 1994, [Elsevier Science B.V., Amsterdam, July 1994] pp

77-86

http://www.cs.ucl.ac.uk/staff/S.Bhatti/papers/1994/ifip-ulpaa/paper.ps

[5] S. N. Bhatti, G. Knight, D. Gurle, P. Rodier, Secure Remote Management, Proc. Fourth Inter-

national Symposium on Integrated Network Management 1995, 1 - 5 May 1995, Santa Barbara,

California, USA, editors A. S. Sethi, Y. Raynaud, F. Faure-Vincent, pp 156-169 [Chapman & Hall]

http://www.cs.ucl.ac.uk/staff/S.Bhatti/papers/1995/isinm4/security/paper.ps

[6] G. Knight, S. N. Bhatti, Some experiences with secure management, Proc. JENC6 - 6th Joint

European Networking Conference, 15 - 18 May 1995, Tel Aviv, Isreal, editors J. Barbera & J. Kiers,

pp 322/1-9.

http://www.cs.ucl.ac.uk/staff/S.Bhatti/papers/1995/jenc6/paper.ps

[7] CCITT Recommendation X.509, The Directory { Authentication Framework, Geneva, March 1988.

[8] P. R. Zimmermann, The O�cial PGP User's Guide, pp 216, [MIT Press 1995]

[9] C. Kaufman, DASS { Distributed Authentication Security Service, Internet RFC 1507, 10 September

1993.

[10] D. Maughan, B. Patrick, M. Schertler, Internet Security Association and Key Management Protocol,

work in proress, IPSEC Working Group, draft-nsa-isakmp-01.ps, 6 July 1995.

[11] P. Karn, W. A. Simpson, The Photuris Session Key Management Protocol, work in progress, Internet

Draft, Network Working Group, draft-ietf-ipsec-photuris-02.txt, July 1995.

[12] J. Galvin, K. McCloghrie, Security Protocols for version 2 of the Simple Network Management

Protocol (SNMPv2), RFC1446, 3 May 1993.

[13] J. D. Case, J. Galvin, K. McCloghrie, M. T. Rose, S. Waldbusser, Security Protocols for Version

2 of the Simple Network Management Protocol (SNMPv2), work in progress, Internet Draft, draft-

ietf-snmpv2-sec-ds-02.txt, 31 May 1995.

29

[14] K. McCloghrie, M. T. Rose, G. W. Waters, J. M. Galvin, User-based Security Model for Version

2 of the Simple Network Management Protocol (SNMPv2), work in progress, Internet Draft, draft-

kzm-snmpv2-sec-alt-00.txt, 30 June 1995.

[15] R. Atkinson, Security Architecture for the Internet Protocol, Internet RFC 1825, 9 August 1995.

[16] R. Atkinson, IP Encapsulating Security Payload (ESP), Internet RFC 1827, 9 August 1995.

[17] R. Atkinson, IP Authentication Header, Internet RFC 1826, 9 August 1995.

[18] P. Metzger, P. Karn, W. A. Simpson, The ESP DES-CBC Transform, Internet RFC 1829, 9 August

1995.

[19] A. Ramanov, Simple Authentication Mechanism for SNMP, work in progress, draft-ramov-simple-

snmp-00.txt, 27 June 1995.

[20] G. W. Waters, Security Mechanisms for Version 1 of the Simple Network Management Protocol

(SNMPv1), work in progress, Internet Draft, draft-waters-snmpv1-sec-mech-00.txt, 7 June 1995.

[21] A. I. Walten, Security Encapsulation of SNMP, work in progress, Internet Draft, draft-alten-snmp-

sec-encap-00.txt, 30 July 1995.

[22] R. Rivest, The MD5 Message-Digest Algorithm, Internet RFC 1321, 16 March 1992.

[23] NIST FIPS Publication 180, Secure Hash Standard, National Institute of Standards and Technology,

Federal Information Processing Standards Publication, U.S. Department of Commerce, 11 May 1993.

[24] NBS FIPS Publication 46-1, Data Encryption Standard, National Bureau of Standards, U.S. De-

partment of Commerce, January 1988

[25] P. Rogaway, Problems with Proposed IP Cryptography, work in progress, Internet Draft, draft-

rogaway-ipsec-comments-00.txt, 3 April 1995.

[26] ISO/IEC CD 11586, Information Technology { Open Systems Interconnection { Generic Upper

Layers Security, December 1992.

[27] ISO/IEC CD 10181-1, Information Technology { Open Systems Interconnection { Security Frame-

works in Open Systems { Part 1: Security Frameworks Overview, 13 October 1992.

[28] CCITT Recommendation X.511, The Directory { Abstract Service De�nition, Geneva, March 1988.

[29] CCITT Recommendation X.227, Connection Oriented Protocol Speci�cation for the Association

Control Service Element, September 1992.

30

[30] D. Eastlake 3rd, S. Crocker, J. Schiller, Randomness Recommendations for Security, Internet RFC

1750, 29 December 1994.

[31] ISO/IEC 9072, Information processing systems { Text Communication { Remote Operations, 1989.

[32] G. Pavlou, G. Knight, K. McCarthy, S. N. Bhatti, The OSIMIS Platform: Making OSI Management

Simple, Proc. Fourth International Symposium on Integrated Network Management 1995, 1 - 5 May

1995, Santa Barbara, California, USA, editors A. S. Sethi, Y. Raynaud, F. Faure-Vincent, pp 480-

493 [Chapman & Hall]

http://www.cs.ucl.ac.uk/staff/S.Bhatti/papers/1995/isinm4/osimis/paper.ps

[33] UCL Department of Computer Science, The ISODE User's Manual, Version 8.0, July 1991.

ftp://bells.cs.ucl.ac.uk/src/isode-8.ps.Z

[34] H. Krawczyk, Keyed-MD5 for Message Authentication, work in progress, Internet Draft, draft-

krawczyk-keyed-md5-00.txt, 22 June 1995.

[35] C. Neuman, B. Tung, J. Wray, Public Key Cryptography for Initial Authentication in Kerberos, work

in progress, Internet Draft, draft-ietf-cat-kerberos-pk-init-00.txt, 6 March 1995.

[36] ITU M.3010, Principles for a Telecommunication Management Network, Working Party IV, Report

28, December 1991.

31

