862

IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 9, SEPTEMBER 2005

Near-Optimal Service Facility Location in
Dynamic Communication Networks

Antonio Liotta, Member, IEEE, Carmelo Ragusa, and George Pavlou, Member, IEEE

Abstract— Systems relying on increasingly large and dynamic
communication networks must find effective ways to optimally
localize service facilities. This can be achieved by efficiently
partitioning the system and computing the partitions’ centers,
solving the classic p-median and p-center problems. These are
NP-hard when striving for optimality. Numerous approximate
solutions have been proposed during the past 30 years. However,
they all fail to address the combined requirements of scalability,
optimality and flexibility. Here we present a novel distributed
algorithm that computes provably near-optimal p-medians in
linear time, exploiting the properties of mobile software agents.

Index Terms— Location on networks, mobile agents, network
partitioning, p-median.

I. INTRODUCTION

ETWORK location problems involve the optimal place-

ment of p service facilities in networks of N nodes.
Service facilities are traffic sources, traffic destinations or both
and are part of a distributed system, application or protocol.
The location problem can be defined as that of 1) partitioning
the network in p sub-partitions; and 2) optimally placing those
facilities within their respective partition. Optimal location in-
volves the minimization of an objective function. The location
problem is termed ‘p-median problem’ when the objective is
to minimize the overall traffic incurred by the service facilities
while it is termed ‘p-center problem’ when the objective is to
minimize the maximum response time.

Because of their importance, the p-median and p-center
problems have been subject of intensive study for over 30
years in a variety of scientific disciplines. In communication
networks, location problems are fundamental to a number
of other problems related to distance minimization. For ex-
ample, scalability can be achieved for the effective moni-
toring and control through network partitioning, leading to
reductions in traffic and response time. Partitioning problems
assume particular relevance in the modern era of mobile
ubiquitous computing, ad hoc networking and dynamically
re-configurable networks. The challenge is to address the
combined requirement of scalability, optimality and flexibility
for dynamic, frequently changing environments.

Manuscript received February 19, 2005. The associate editor coordinating
the review of this letter and approving it for publication was Christos
Douligeris. This work was developed in the context of EPSRC POLYMICS
- Grant GR/S09371/01.

A. Liotta is with the Dept. of Electronic Systems Engineering, University
of Essex, Wivenhoe Park, Colchester, UK (e-mail: aliotta@essex.ac.uk).

C. Ragusa is with the IT Innovation Centre, University of Southampton,
UK (e-mail: cr@it-innovation.soton.ac.uk).

G. Pavlou is with the Centre for Communication Systems Research,
University of Surrey, UK (e-mail: g.pavlou@surrey.ac.uk).

Digital Object Identifier 10.1109/LCOMM.2005.09026.

The p-median and p-center problems are both NP-hard
on general networks [1]. Numerous approximate polynomial
algorithms have been proposed (see extensive survey pre-
sented in [1][2][3]) but none of them suits the aforemen-
tioned combined requirement. The main hurdle of existing
approaches is their intrinsic centralized nature, i.e. they all
require knowledge of the network topology in order to get
the distance matrix according to a particular metric as input
parameter. While this not a problem in offline calculations
over static networks, it becomes a critical issue in the case of
dynamic, large-scale networked systems. In this case, the task
of collecting a real-time snapshot of the network topology is
indeed ambitious. We present here a novel location algorithm
that is distributed, does not require any direct knowledge of
the network topology, and computes near-optimal p-medians
in linear time. The algorithm exploits the key properties
of Mobile Agents (MAs), i.e. autonomous software entities
capable of roaming the network and cloning other MAs [4].

II. LOCATION ALGORITHM

Our algorithm works on the basis of information that
indirectly reflects the status of the network, produced by
distributed IP routing algorithms, i.e. Dijkstra or Bellman-
Ford, which specify — for any node — the estimated distance to
any other remote destination and the related next-hop neighbor
node. This information is externally accessible in network
nodes through the SNMP IP routing Management Information
Base (MIB)[5].

The MA-based location algorithm is depicted in Fig. 1.
The process can start at any node by injecting a single MA
that is initialized with the list of nodes to be partitioned, INV;
the number of target partitions, p; and the tolerance margin
admissible on p, ¢, = (A,/p) x 100 (A, is the absolute varia-
tion admitted on p). Starting from its initial location, the MA
initiates an iterative, distributed procedure that subsequently
creates new partitions and clones new agents (one per new
partition). Every MA has exactly the same logic, i.e. they all
go through the process depicted in Fig. 1. Our stratagem is
to parallelize the partitioning process through a clone-and-
migrate procedure where agent clones take full responsibility
for disjoint subsets of /N and operate independently from each
other. We describe below the individual agent behavior that
leads to the computation of p-medians in linear time.

The main objective of the cloning phase is to determine
whether or not, and how, the agent partition (N C N;) will be
sub-partitioned. Through a “matching operation” of [V, against
the local routing table, the MA discovers, for each target
node, the next-hop neighbor node and the distance. Nodes

1089-7798/05$20.00 (© 2005 IEEE

LIOTTA et al.: NEAR-OPTIMAL SERVICE FACILITY LOCATION IN DYNAMIC COMMUNICATION NETWORKS 863

4 (Set-up phase))
Starting Node: v
List of Nodes: N
Number of Partitions: p
Tolerance on p: £,
\ I /
4 (Cloning Phase ﬁ
All Neighbors
) checked?
5
o
£
=2
[F]
z
% 4
c
=
[5]
@
=
O
5
gu’
Partiion N B3
t c @
N,-N; N, 22
! 1 i
o=z
Create Clone I
\ J
Migration)
Phase Candidate node
selection based on £,
Loop Avoidance -~
c
o
Found Loop? §
yes 2
o
| select node with highest £ | -
¥ 2
| Disable migration and cloning | o7z
o ®
B
o=
Candidate Node = ==
Current Node?,
. J

Fig. 1. Flow-chart diagram of the partitioning algorithm.

are then classified by next-hop address, ¢ and each list V;
(which includes the subset of cluster nodes reachable through
neighbor 7) is submitted to a set of cloning decision conditions
(the agent goes to the migration phase only upon checking
all classes). Intuitively, by satisfying the cloning conditions
of Fig. 1 the system pursues the constraints on the number of
acceptable target partitions (given by p and ¢,). The condition
|Nt| > 2 npin, Where npyi, = round (|N| /p + Ap/2), pre-
vents cluster fragmentation (we do not want partitions having
less than n,;, elements). Then, we have to decide whether or
not the sub-partition N; is large enough (NV; > ny,ipn); but we
also have to make sure that, should N; form a new partition,
the remaining nodes in N, — ie. {N; — N;} — would still
constitute a sufficiently large partition. The latter holds when
|N¢| — |Ni| > nmin- When all conditions are satisfied, IV; is
split in two partitions, {N; — N;} and N;. New clones start
from the beginning but are initialized with N, = N; and
starting node v = ¢. The thread of execution of the main clone

TABLE I
SIMULATION PARAMETERS AND VALUES

| Parameter | Values
|N| 51 102 147 198 258 303 (20 repetitions)
p/ |N| 0.05 0.1 0.150.2 0.25 0.3

Diameter [hops] 111213 14 1516 17
€p 0510152025
Root Node ID All nodes

subsequently tests the other sub-partitions, which may lead to
further cloning. After that, it enters the migration phase.

During migration, agents are driven towards their respective
partition central location. Each agent operates only within
the scope of its sub-partition Ny, computing the weighed
routing costs FE; for each of the neighbor nodes i, where
E; = (C; X |N;]) / (Cy x |N¢|); C; is obtained by adding the
individual routing costs of IV;; and C} is the sum of all C;. F;
provides an estimate of the global distance (in terms of routing
costs) associated to each neighbor (so the agent elects as new
candidate location the neighbor ¢ that has the maximum value
of E;). Intuitively, once the agent reaches the migration stage
its central location is pursued by aiming at reducing the largest
weighed cost, which is in turn achieved by migrating towards
higher-cost locations.

Agents can avoid migrating in loops by retaining the highest
value of E; for all previously visited nodes. So, as soon as the
agent is presented with a candidate node that has previously
been visited, it simply elects the node having the highest value
of E; (among all historical values) and disables migration and
cloning before finally migrating to the target node. After that,
the agent starts the whole process of Fig. 1 all over again, as
it may have to migrate again because of changing conditions,
e.g. faults, topology changes, congestion, etc.

III. EVALUATION METHODOLOGY

The algorithm has been evaluated through an extensive
set of simulations providing an insight into computational
complexity, sensitivity to starting point, optimality, stability
and correctness. The algorithm was run over a set of realistic
Inter-network topologies created with the GT-ITM topology
generator [6], following a well-established methodology by
Calvert and Zegura [7][8]. IP network and protocol behavior
were simulated using the NS-2 simulator [9] that was extended
with MA capabilities. Near-optimality was demonstrated by
comparing our p-medians with those computed by the La-
grangian algorithm [3]. The latter is a classic provably near-
optimal algorithm — i.e. it computes near-minimal total hop-
distances in polynomial time — but does not satisfy the com-
bined requirements of scalability, optimality and dynamicity
because it relies on prior knowledge of full network topology
and the relevant distance matrix.

The simulation parameters are depicted in Table 1. Most
combinations were simulated, involving over 60,000 simula-
tion runs that took over 70,000 hours. We have also verified
that the partitioning process always exits and that agent
migration does not create oscillatory or looping conditions.

864

o 19 102-node Topologies; p/|N| = 0.1 ° 102-node Topologies; Diameter 12
ﬁ §§ @] Averag_e valugs g 8 E m average values
g &2 —— Best Linear Fit o7 —— 3rd degree Polynomial Fit
E 58 95% Confidence Bands g 95% Confidence Bands
3 e S .
& 50 L §5
= 48 B e
T 46— § = 4
T 4.4 i~
¢4 £ o
" 12 13 14 15 16 17 0.05 0.10 0.15 0.20 0.25 0.30
Diameter [Hops] PI/IN|
30.
120- 2 —— 102 nodes
8 1 .) % @ PN =0.2 147 nodes
100- A Near-Optimal p-median 22 198

& % Y 55 nodes
B 0. O Agent-based Partitioning __ g 258 nodes
A 7 X 16
g 60 E 141 ~ 303 nodes
£ s 19 —— 2" degree
= 40 6 il fi
g % 1 polynomial fit
= 0

-2

-0.05 0.00 0.05 0.10 0.5 0.20 0.25 0.30 0.35 0.40 0.45 5 10 15 20 25 30

p/IN| &
;2 @ ® Mean Values é- ;3 E ® Mean Values
51 nodes; p/IN|=0.2;£=15% = 6 51 nodes; p/IN|=0.2; =15%

Partitioning Time [sec]

b

10 15 20 25 30 35 40 45 50
Root Node ID

[mr—

i S

15 20 25 30 3 40 45 50 = 5
Root Node ID

A

5 10

Fig. 2. Sample of results.

Due to space limitations we present below a representative
selection of results (Fig. 2).

IV. RESULTS

The first important result is linearity with network diameter
(Fig. 2A), which makes the algorithm suited to large-scale
systems. The algorithm is typically computed in fractions of
a second, whereas the slope is determined by the efficiency
of the MA platform (typical time-to-hop between two nodes
is in the order of hundreds of msecs). We have also studied
scalability vs. number of nodes, number of partitions, and
average node degree, finding that computational time is not
significantly affected by them when the network diameter is
kept constant. Fig. 2B is a representative result demonstrating
a very high level of parallelism (observe the plateau over a
large range). Intuitively, independent processes are forked at
each level of the network routing tree as required. Hence,
computational time is upper-bound by the tree depth.

Fig. 2C illustrates near-optimality indipendently of the
number of service facilities - the total-hop distance (the sum
of the distances between partition centres and their respective
nodes) is upper-bound by the one achieved by the Lagrangian
algorithm. We also studied the ability of the system to control
the actual number of target partitions. Fig. 2D illustrates a
level of controllability that is perfectly acceptable for typical
p-median problems. Finally, Fig. 2E and 2F demonstrate the
algorithm independence from the initial conditions.

V. CONCLUDING REMARKS

This article motivates the use of MAs to provide a ‘dis-
tributed’ solution to the p-median problem that is traditionally

IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 9, SEPTEMBER 2005

tackled only by ‘centralized’ algorithms. Efficiency is achieved
through a combination of distribution, code mobility and
simple use of network routing information. We proposed a
near-optimal algorithm that does not require the reconstruction
of the network distance matrix and is characterized by linear
computational complexity. Our approach outweighs existing
algorithms which are polynomial of 2"¢ and 3"¢ degree and

do require a complete knowledge of the network topology.
In addition, our approach is adaptive to the dynamics of
communication networks since agents keep operating even
after their initial deployment and can reposition themselves
when the conditions change, e.g. because of faults, congestion
and so forth.

We have also performed an in depth viability study in
the context of IP networked systems, assessing the level
of maturity of the required infrastructure. Lightweight code
mobility frameworks are being standardized by the IETF (e.g.
Script MIB defines an SNMP-compliant MIB for code pushing
[10]) so code transport in routers is not problematic nowadays.
Also our system does not dictate code mobility support in
every node. Code execution in routers is also viable — e.g.
Cisco routers run Tcl scripts that have SNMP MIB object
access [11]. Regarding the size of those agents we have a full
implementation of the algorithm of Fig. 1 in Tcl — agent size
is 50Kbytes and 1-hop migration time is 400msec. We have
not specifically tackled the security and safety issues related to
code mobility given our relaxed requirements (our algorithm
merely needs read-only access to routing table) and the ample
literature available in the subject.

We are currently applying our system to practical case
studies including distributed monitoring, peer-to-peer systems,
network overlays, application-level multicast, and content
adaptation networks.

REFERENCES

[1] O. Kariv and S. L. Hakimi, “An algorithmic approach to network
location problems,” SIAM J. Appl. Math., vol. 37, pp. 539-560, Mar.
1979.

[2] F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley, 1990.

[3] M. S. Daskin, Network and Discrete Location. Wiley, 1995.

[4] A. Fuggetta et al., “Understanding code mobility,” IEEE Trans. Software
Engineering, vol. 24, pp. 342-361, May 1998.

[5] W. Stallings, SNMP, SNMPv3 and RMON. Addison Wesley, 1998.

[6] GT-ITM code, available at www.cc.gatech.edu/projects/gtitm

[7]1 E. W. Zegura et al., “A quantitative comparison of graph-based models
for Internet topology,” IEEE Trans. Networking, vol. 5, pp. 770-783,
Dec. 1997.

[8] K. L. Calvert, M. B. Doar, and E. W. Zegura, “Modeling Internet
Topology,” IEEE Commun. Mag., vol. 35, pp. 160-163, June 1997.

[9] NS code and manual, available at www.isi.edu/nsnam/ns/

[10] J. Schonwilder et al., “Building distributed management applications
with the IETF script MIB,” IEEE J. Select. Areas Commun., vol. 18,
pp. 702-714, May 2000.

Cisco I0S Scripting with Tcl, http://www.cisco.com/univercd/cc/td/doc/
product/software/ios123/123newft/123t/123t_2/gt_tcl.htm

[11]

