
644 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 5, MAY 2000

Using Distributed Object Technologies in
Telecommunications Network Management

George Pavlou

Abstract—The Telecommunications Management Network
(TMN) has been developed as the framework to support ad-
ministrations in managing telecommunications networks. It
suggests the use of OSI Systems Management (OSI-SM) as the
technology for management information exchanges. Distributed
object technologies, such as the Common Object Request Broker
architecture (CORBA), address the use of software application
program interfaces (API’s) in addition to interoperable protocols.
Their use in TMN has been the subject of intensive research in
recent years, with most approaches focusing on interoperability
aspects with OSI-SM. In this paper we examine the issues behind
using distributed object technologies in TMN via a native fashion,
with network elements supporting distributed objects directly,
e.g., a “CORBA to the switch” approach. The proposed solution
tries to maintain the full OSI-SM expressive power in a way
that other solutions have not attempted before. Performance and
scalability issues are considered, while the approach has been
validated through implementation.

Index Terms—CORBA, distributed objects, ODP, OSI-SM,
TMN.

I. INTRODUCTION

T HE TELECOMMUNICATIONS Management Network
(TMN) [1] has been developed as the framework to

support administrations in managing telecommunications
networks. It suggests the use of OSI Systems Management
(OSI-SM) [2] as the technology for management information
exchanges. The latter follows an object-oriented approach in
terms of information specification, but leaves aspects related
to the software structure of relevant applications unspecified.
Distributed object technologies address the use of software
application program interfaces (API’s) in addition to interop-
erable protocols. Their ease of use, generality, and ubiquity
implies that they might also be used in telecommunications
network management.

Since the early inception of Open Distributed Processing
(ODP) [3], a number of related technologies tried to provide
a uniform and ubiquitous framework for building distributed
applications. The latest and most powerful of those technolo-
gies is the Object Management Group (OMG) Common Object
Request Broker Architecture (CORBA) [4]. Given the fact
that the TMN is a large scale distributed system, it is valid to
consider the use of CORBA as its base technology, replacing

Manuscript received April 1, 1999; revised December 14, 1999. This work
was undertaken by the ACTS REFORM and FlowThru projects, supported in
part by the Commission of the European Union.

The author is with the Center for Communication Systems Research, School
of Electronic Engineering and Information Technology, University of Surrey,
Guildford, Surrey GU2 5XH U.K. (e-mail: G.Pavlou@eim.surrey.ac.uk).

Publisher Item Identifier S 0733-8716(00)02763-3.

OSI-SM [2] and the OSI Directory [5]. The relationship
between OSI-SM and CORBA has attracted considerable
attention from the research community in recent years. Most
approaches have focused on interoperability aspects with
OSI-SM, assuming the latter will be used in elements and
the TMN element and network management layers. In this
paper we propose a solution that maintains the full expressive
power of OSI-SM and provides a smooth migration path
toward a CORBA-based TMN. Although CORBA is used as
the representative distributed object technology, the proposed
framework is general enough to be applicable to other similar
technologies.

Key motivations for using CORBA in TMN environments
are the following. OSI-SM was conceived as an object-oriented
management technology in the absence of a general purpose
distributed object-oriented framework. CORBA provides ex-
actly such a framework, with a superior distribution paradigm
in which every object could be potentially distributed. Its
performance could also be better than OSI-SM due to a more
lightweight protocol stack—this assertion is assessed in this
paper. Finally, CORBA exhibits multiple standard mappings to
O-O programming languages while most OSI-SM platforms
support mainly C API’s. On the other hand, OSI-SM
exhibits a more expressive object model, superior object access
which allows multiple operations in a single request through
scoping and filtering, and a scalable event dissemination
model based on fine-grain event selection criteria. As such, the
mapping of OSI-SM to CORBA presents a difficult technical
challenge.

The solution proposed in this paper relies on the initial Joint
Inter-Domain Management (JIDM) work for the static mapping
[6] of the OSI-SM Guidelines for the Definition of Managed
Objects (GDMO) [7] to the CORBA Interface Definition Lan-
guage (IDL) [4]. The issues behind this mapping and its impli-
cations are discussed in Section II. An initial mapping of the
OSI-SM model to CORBA is presented in Section III. This is
enhanced to a complete mapping in Section IV which retains
the full OSI-SM/TMN expressive power. Section V discusses
design, implementation, and OSI-SM to CORBA migration as-
pects. Section VI investigates performance and scalability as-
pects. Finally, Section VII presents a summary.

II. M APPING OSI SYSTEMS MANAGEMENT TO OPEN

DISTRIBUTED PROCESSING

A. Mapping OSI-SM to ODP

Since the early days of ODP, there have been various at-
tempts to describe OSI-SM in ODP terms. The first attempt is

0733–8716/00$10.00 © 2000 IEEE

PAVLOU: DISTRIBUTED OBJECT TECHNOLOGIES IN TNM 645

described in [9], considering managed and managing1 objects as
ODP objects. This implies that functionality of OSI-SM agents
needs to be supported via ODP mechanisms, i.e., through spe-
cial server objects similar to the CORBA common object ser-
vices [10].

A similar approach has been more recently standardized
in the Open Distributed Management Architecture (ODMA)
[8], which is the ISO/ITU-T approach to describe OSI-SM in
ODP terms. ODMA tries to provide a generic management
framework that can be mapped to either ODP-based object
technologies or to OSI-SM communication protocols. OSI
managed and managing objects map onto ODP objects and
interfaces, while the ODP trader is used for discovering inter-
face references, according to desired object properties. Object
creation is supported through factory interfaces, which can be
also discovered through the trader. In the case of an ODP-based
supporting platform, managing and managed objects commu-
nicate directly with each other. When the underlying platform
is OSI-SM-based, the OSI agent becomes an “operation dis-
patcher” in the engineering viewpoint that performs operations
to managed objects. It also becomes a “notification dispatcher”
that forwards notifications to managing systems.

This ODP view of OSI-SM implies that the resulting frame-
work does not support scoping, filtering, and multiple opera-
tions to managed objects. In addition, if CORBA is used as
the underlying platform, notifications should be disseminated
using relevant mechanisms, i.e., OMG event servers and chan-
nels. When OSI-SM based platforms are used, the relevant pro-
tocols and supporting engineering concepts such as agents and
notification dispatchers should be hidden behind the ODP plat-
form API’s. The intention is to allow for the specification of
management systems from an information and computational
perspective in an engineering-neutral fashion.

We could characterize the above approach as a “least common
denominator” one, in which the OSI-SM framework is “pruned”
to fit the ODP model. Despite its ODP orientation, [8] recog-
nizes the fact that multiple object access through scoping and
filtering and event dissemination through filtering and event for-
warding discriminators may need to be exposed in the compu-
tational viewpoint. This leaves open the possibility for other po-
tential mappings between OSI-SM and ODP. We present such
an approach and explain in detail the relevant issues during the
rest of this paper.

B. Mapping OSI-SM GDMO Objects to IDL Interfaces

Mappings between GDMO and CORBA IDL have been
addressed by JIDM. Although the main intention behind this
work was to result in the specification of generic gateways be-
tween different management technologies, the same principles
and mappings can be used to support native CORBA-based
management systems, preserving the large body of existing
GDMO specifications for a number of different network
technologies. The JIDM work started in 1993, and the first

1The term “managing object” is used rather loosely, since OSI-SM defines
only the term “manager” [2], with objects in the manager system not defined.
ODMA though refers to managing objects [8].

important outcome was the comparison of the Internet SNMP,
OSI-SM, and OMG CORBA object models described in [11].
The specification translationaspects followed [6], including
the generic mapping of GDMO to CORBA IDL.

While IDL interfaces have attributes similar to GDMO ob-
jects, it is not possible to map GDMO to IDL attributes directly.
This is because IDL attributes have onlygetandsetproperties,
while GDMO attributes have additionalsetToDefault, add,
andremoveproperties. In addition, it is not possible to define
specific exceptions associated with access to attributes in IDL,
while this is possible in GDMO. As such, GDMO attributes
should map to access methods in accordance with the relevant
properties, e.g., attr get, attr set, attr setToDefault,
attr add, and attr remove.

GDMO actions can be naturally mapped to IDL methods with
input argument the action information and output argument the
action result. Action parameters, which signify action-specific
errors, are mapped to IDL exceptions. GDMO notifications can
be mapped to separate interfaces that should be supported by
managing objects and event channels. Two separate interfaces
should be generated for the notifications of a managed object
class—one for the “push” and one for the “pull” model. It should
be noted that the OSI-SM notification model corresponds to the
CORBA “push” model, although a “pull” model could be emu-
lated through logging [13] and subsequent access of log records.

A key difference between GDMO and CORBA IDL con-
cerns the dynamic binding of functionality to managed object
instances through conditional packages. This is a key feature of
GDMO, used very often by information model designers, while
it is not supported in IDL.

The only solution is to make the functionality of GDMO
conditional packages “mandatory” from a specification point
of view. Their presence, however, will become an implemen-
tation issue. CORBA supports a standardnot implementedex-
ception which will be raised whenever a method of a nonsup-
ported package is invoked. An interface should “advertise” the
supported conditional packages through thepackagesattribute
of the top interface, which will result from the translation of
the OSI-SMtop class [14].

Given the rules for GDMO to IDL translation, it is possible
to map OSI-SM GDMO managed objects to CORBA IDL in-
terfaces and preserve all the work that has gone into the rele-
vant OSI-SM/TMN specifications. The relevant translation may
support gateways between CORBA and OSI-SM/TMN appli-
cations. It may be also used to support thenativeoperation of
management systems entirely in CORBA, as it is investigated
in this paper. The equivalent IDL interfaces follow exactly the
same inheritance lattice as in GDMO, while thetop interface
is equivalent to the OSI-SMtop class [14]. The i top interface
inherits from the ManagedObjectone, which in turn inherits
from CORBA’s Object, as do all the IDL interfaces. The re-
sulting inheritance hierarchy is depicted in Fig. 1.

The i ManagedObject interface may support functionality
common to all the managed objects, such as getting an object’s
name, accessing a number of attributes with one operation,
evaluating a filter, and returning the interface references of
its superior or of its immediately subordinate objects in the
containment hierarchy.

646 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 5, MAY 2000

Fig. 1. Inheritance hierarchy resulting from GDMO to IDL mapping.

III. A N INITIAL MAPPING OF THEOSI-SM MODEL TO CORBA

A. Object Discovery Through Hierarchical Naming and
Containment Relationships

This approach assumes the same hierarchical naming scheme
as in OSI-SM/TMN systems, based on the GDMO name bind-
ings in “agent” domains and on the OSI Directory global name
schema specified in X.750 [15]. For example, the name of the
root object in a CORBA managed object cluster that constitutes
a TMN Operations System (OS) could be

This is now an instance of the CORBA CosNaming::Name IDL
type as specified by the OMG Name Service [10]. Both OMG
and OSI-SM names are ordered lists oftype valuecomponents,
so there can be a direct mapping between the two. The OMG
{ id, value} tuple can map to an X.500/OSI-SM Relative Dis-
tinguished Name (RDN). The key difference is that the OMG
name space is generally a graph instead of a hierarchical tree.
Since we are adopting the TMN hierarchical naming principles,
the OMGmanagementname space becomes a hierarchical tree.

The first four components of the above example name denote
naming contexts. The fifth component, i.e., systemId=NM-OS,
is a name bound to the compound context structure defined
by the previous four. These contexts and the relevant name
will be registered with the CORBA naming service [10]. A
client or manager object will be able to resolve the object’s
name to an interface reference through the naming server.
In addition, the client will be also able to discover all the
management applications running in the UniS CCSR do-
main by performing alist operation on the naming context

. This architecture
provides discovery functionality similar to that of the OSI Di-
rectory in OSI-SM/TMN environments [15], but it is supported
through the use of naming services [10].

Having presented the system discovery aspects, we also need
to address discovery facilities within a Management Informa-
tion Tree (MIT) cluster. Every managed object is aware of its
name, which will be passed to it by its “factory” at creation time.
In addition, every managed object is aware of its superior and

subordinate objects. Those object references form now a “vir-
tual” MIT, since the relevant managed objects may be physically
distributed across different network nodes. The superior refer-
ence is passed to an object at creation time. The subordinate ref-
erences are passed to an object by the subordinate objects them-
selves, which update their superior at creation and deletion, and
maintain the “referential integrity” of the MIT. Code 1 (Fig. 2)
shows a potential IDL specification of the iManagedObject
interface that supports this functionality. TheaddSubordinate
method is used by factory objects when the superior is in a dif-
ferent ODP “capsule,” i.e., distributed program implemented as
an operating system process, containing CORBA objects. Simi-
larly, theremoveSubordinatemethod is used by a superior object
during object deletion when the subordinate is in a different cap-
sule. Finally, thedestroymethod implements CMIS M-Delete
semantics.

Every managed object provides access to the references of
its superior (getSuperior) and first level subordinate objects in
the MIT (getSubordinates). Through the resolve method, it can
resolve a subordinate name to a reference; this is possible by
retrieving the relative names at every MIT level and comparing
them to the expected relative name for that level.

Manager objects may discover the exact structure of the MIT,
starting from the root object and using these facilities. This ap-
proach is in fact similar to the OSI-SM/TMN one, apart from
scoping and filtering. The key advantage of the approach is that
managed objects other than the MIT root do not have to register
with the name service; this results in fewer interactions across
the network and faster operation.

We could have added scoping at least to the iManagedObject
interface, since it can be easily supported by traversing the “con-
tains” relationship through the getSubordinates method. The
problem, however, is one of “culture”: scoping is a facility re-
lated to the OSI-SM Common Management Information Ser-
vice (CMIS) [16] while the iManagedObject interface is totally
unrelated to CMIS as an access method. Adding scoping, fil-
tering, and the full OSI-SM access functionality to the proposed
framework will be considered in Section IV.

B. Object Lifecycle and Event Dissemination Aspects

In every “agent” domain, there will exist afactory finderob-
ject, bound to the domain naming context, e.g., cnNM-OS.
A client will be able to obtain its name from the name server
through a “list” operation, and resolve it subsequently to an in-
terface reference. A further optimization can be achieved by
agreeing in advance on the relative name of the factory finders,
e.g., factoryFinderId NULL, since there will always exist a
single instance in a domain. The factory finder will provide ac-
cess to specific factories for a particular type of interface as ad-
vocated by the CORBA lifecycle services [10]. Specific factory
interfaces will exist for every GDMO class that hascreateprop-
erties. A factory interface will take parameters according to the
GDMO class specification, which may include the name of the
object to create, its superior’s name, a “reference” object, and
initial values for attributes. A factory interface bears similarities
to the CMISm-createprimitive, but initial attribute values can
be strongly typed. Managed object deletion is supported through
thedestroymethod of the iManagedObject interface.

PAVLOU: DISTRIBUTED OBJECT TECHNOLOGIES IN TNM 647

Fig. 2. Code 1: The i_ManagedObject IDL Interface.

The final important point for a complete CORBA-based ar-
chitecture is event dissemination. This can be based on the ex-
isting OMGevent services[10]. In every “agent” domain, there
will exist achannel finderobject, in a similar fashion to the fac-
tory finder one. This will provide access to event channels that
serve specific event types. Managed objects that generate no-
tifications will register with the corresponding event channels
as “event suppliers.” Manager objects will get access first to the
channel finder through the naming service and then to the partic-
ular event-specific channels, registering as “event consumers.”
Generated notifications will be sent to the corresponding chan-
nels and will be subsequently passed to the manager objects
using the push or pull model. The fact that event channels cor-
respond to specific event types can support strongly typed event
dissemination. Event type specific push and pull interfaces will
be produced for every GDMO notification and will be supported
by the relevant channels.

C. The Proposed Architecture

The relevant architecture is depicted in Fig. 3, showing the
various interactions as described before. The key advantage of
using CORBA is that the managed objects that constitute a log-
ical “agent” cluster may be distributed across different “cap-
sules,” i.e., operating system processes, which may in turn be
distributed across different network nodes. The event channel
finder and event channels will be located in the same capsule.
The managed object factories will be located in the capsules
where the relevant interfaces will be created.

The disadvantages of this approach in comparison to OSI-SM
are the following.

• There is no support for multiple attribute access.
• There is no support for multiple object access through one

management operation.
• Object discovery facilities do not support scoping and fil-

tering.
• Events are disseminated based on the event type, i.e., there

is no support for filtering.
• There is no support for logging.

In the next section we will examine how to address those
disadvantages, reproducing the full OSI-SM functionality over
CORBA.

Fig. 3. A basic architecture for OSI-SM to CORBA mapping.

IV. A COMPLETE MAPPING OF THEOSI-SM MODEL TO

CORBA

A. Related Research Work

We will examine first the most important related research
work, presenting it in chronological order. Reference [17] dis-
cusses the application of the TINA ODP-based architecture to
management services. It presents the view that management ap-
plications should be modeled by OSI-SM-like agents, which are
computational objects with IDL interfaces. Managed objects do
not have their own computational interface, but are specified as
information objects and mapped to engineering objects within
the agent.

The GDMO-to-CORBA IDL mapping presented in [6] ad-
dresses the static translation aspects. The architecture of a man-
agement environment based on the resulting CORBA specifica-
tions is another issue. Reference [18] presents the first research
work on such an architecture as a proposal to the JIDM group.
The first version of this work appeared in 1995 and tries to reuse
as much as possible the existing OMG services.

The author’s initial approach (circa 1996) was to model
OSI-SM agents as computational entities with CMIS-like IDL

648 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 5, MAY 2000

Fig. 4. Code 2. Multiple Attribute Access and Filtering.

interfaces, based on the initial ideas in [17], but taking those to
completion. The first version of the relevant architecture and
specification was produced in the ACTS VITAL project which
validated the TINA framework.

Reference [21] proposes that managed objects are grouped
together in “agent” clusters and named using TMN-based hier-
archical naming principles. In addition, it proposes those to be
administered by a Management Broker (MB), which is a com-
putational entity similar to an OSI-SM agent. The latter offers
a CMIS-like interface which supports multiple attribute access
and multiple object access through scoping and filtering. Event
reporting and logging are supported through Event Forwarding
Discriminator (EFD) and log managed objects.

The author architected a very similar approach which could
be realized based on the OSIMIS environment [22] and its
reusable software components. A first implementation of a
generic gateway between CORBA and OSI-SM was produced
in 1996. A second implementation followed in 1997, with
native CORBA-based management agents [20] as described
here.

Finally, [19] influenced mostly the official JIDM approach.
While different from the other initial JIDM proposal [18], it
combines elements of the other approaches. Managed objects
are organized in “agent” domains and are named hierarchically.
Event dissemination is handled through a specialization of the
OMG event service, using event channels in both manager and
agent domains. Multiple attribute and multiple object access is
supported through the JIDM iManagedObject interface which
is CMIS-like. This approach is different from both [20] and [21],
and requires many more interactions across the network, in con-
trast to the approach presented here.

B. Multiple Attribute Access and Filtering

Accessing multiple attributes with one operation is an impor-
tant management requirement. In addition, many applications

use the CMIS “get all attributes” facility, which should also
be supported. The obvious place to put this functionality is the
i ManagedObject interface.

The key problem is knowing what the attributes of a man-
aged object instance are. The iManagedObject part of an MO
instance could interrogate the CORBA interface repository for
the attributes of every derived interface, and access them locally
through the DII. Unfortunately, this approach will not work.
The problem is that, as a result of the GDMO-to-IDL trans-
lation, the notion of attributes is lost, which means that the
CORBA interface repository cannot be used. An alternative ap-
proach would be to provide “shared management knowledge”
about the information of a GDMO-derived IDL interface. For
example, this information is stored in adiscoverymanaged ob-
ject in OSI-SM/TMN environments [15]; [18] proposes such an
approach.

A third and most efficient approach would be similar to that
of most TMN platforms: every derived implementation class
should pass the names of its attributes to the iManagedObject
part of an instance at creation time. The only problem with this
approach is that this code will need to be handwritten, which
is both tedious and error prone, while in TMN platforms it is
automatically produced by GDMO compilers. A way around
this problem would be the existence of special “JIDM-aware”
IDL compilers which could produce this code automatically.
The method signature for getting multiple attributes is shown
in Code 2 (Fig. 4). A similarsetAttributesmethod could also be
provided.

The next aspect to consider is filtering, which is a much
more difficult proposition. Reference [18] proposes to use the
OMG property service, together with “shared management
knowledge” which provides access to the GDMO MATCHES
FOR properties of attributes, a solution which is very complex.
Reference [19] specifies filtering as part of the CMIS-like
access methods of the iManagedObject interface, but does

PAVLOU: DISTRIBUTED OBJECT TECHNOLOGIES IN TNM 649

not discuss at all how it is going to be provided. Supporting
filtering in CORBA to OSI-SM gateways is easy since the filter
will be actually evaluated in the target OSI-SM agent; this is
not the case in native CORBA environments.

Let us revisit first how filtering is supported in OSI-SM
environments. Filter assertions on a particular attribute are
evaluated by the attribute itself, while the ASN.1 compiler
produces comparison methods. The problem with CORBA is
that attributes are not “first class citizens” of the framework.
Defining an attribute in an IDL interface results in nothing more
than access methods being produced, without special support
for the relevant data type. As such, there is no automatic support
for equality comparison, and subsequently for the evaluation
of filter assertions. One solution to this problem would be for
OMG to consider providing such support through a special
extension to IDL. Types preceded by some special keyword,
e.g., attribute , could be treated specially, deriving from
a generic attribute class and supporting equality and other
comparisons. However, this requires the modification of both
the IDL and the relevant programming language mappings. In
summary, it is not easy to provide filtering in native CORBA
environments as the mapping of IDL types to concrete lan-
guage classes is not rich enough, and is lacking support for
comparison.

C. Fine-Grain Event Dissemination and Multiple Object
Access Through the Management Broker

Given the support for filtering, fine-grain event reporting
and logging can be provided by migrating the relevant OSI-SM
models over CORBA. In every “agent” domain, there will exist
an Event Processing (EP) object. Managed objects will get
access to it through local means, e.g., the factories may pass
its reference to MO’s at creation time. MO’s will subsequently
“push” their notifications to it. The EP object will create
the “potential event report/log record” through the relevant
object factory, evaluate the filters of EFD’s and logs, and may
instruct the latter to send the event or to log it as a log record
accordingly. This is similar to the behavior prescribed in [12]
and [13]. Note that the existence of the EP object is totally
transparent to manager objects that are interested to receive
event reports. Manager objects will request the forwarding of
events by creating EFD’s and setting thedestinationattribute
to contain either their name or object reference.

It should be noted that the OMG has recently complemented
the event service [10] through aNotification Service, which sup-
ports dissemination based on event content filtering. Despite
this, the proposed approach is more lightweight than the opera-
tion of a notification server in a network element. Compared to
the more general case in which a notification server operates in a
node associated to a domain of network elements, the proposed
approach results in direct event dissemination between managed
and manager objects, reducing latency and management traffic.

The last aspect of the OSI-SM/TMN framework that needs to
be provided is support for multiple object discovery and access
facilities based on scoping and filtering. Such access facilities
are certainly “OSI-SM/TMN specific,” and should be provided
in an incremental fashion, without being an integral aspect of the

Fig. 5. A complete architecture for OSI-SM to CORBA mapping.

rest of the framework. A key reason for considering those sepa-
rately is that they do not represent the only way of providing this
type of functionality. For example, in the CMIS/P access model,
containment relationships are navigated first through scoping
with filtering applied at the end of the selection process. Refer-
ence [23] proposes an enhanced model in which any relation-
ship could be navigated, with filtering possibly applied at var-
ious stages of the object selection process. Other mechanisms
may be invented in the future that best suit the needs of partic-
ular management environments.

This is why the author proposes to separate the CMIS-based
access aspects from the rest of the management framework.
As such, CMIS-based access shouldnot be part of the
i ManagedObject interface, but should be supported by a
separateManagement Broker(MB) object. Given the fact that
CMIS is the current access mechanism in TMN environments,
an MB should always exist in an “agent” domain with its name
bound to the domain naming context, e.g.,

.
Managed objects could be accessed either directly or through
the MB. The advantage of MB-based access is object discovery
and multiple object access through scoping and filtering. The
disadvantage is that the relevant access paradigm is weakly
typed: attribute and action values are of the IDLany type. The
architecture of the proposed framework is depicted in Fig. 5,
including the event dissemination through EFD’s. This updates
the architecture presented in Fig. 3.

When an “agent” domain is instantiated, the root MIT MO,
the factory finder, and the management broker register them-
selves with the name service (interactionsin the figure). Man-
ager objects need to know in advance the domain name, e.g.,

. They
may invoke a list operation on the name service and discover the
names and subsequently the references of the MIT root, FF, and
MB objects (interaction). An MO may be created either in a
strongly typed fashion through the relevant factory (interactions

and) or in a generic, weakly typed fashion through the
MB (interactions and). The manager may subsequently
access the object either directly (interaction) or through the

650 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 5, MAY 2000

Fig. 6. Code 3. Generic CMIS-like Managed Object Access in IDI.

MB. In the latter case, it will probably access more than one
MO’s, e.g., to suspend the operation of all its EFD’s (interac-
tions , , and). An MO emits a notification by “pushing”
it to the event processing object (interaction). The latter will
create first a “potential event report,” retrieve an EFD’s filter
(interaction), and evaluate it. The potential event report is
not shown since it is manipulated locally by the EP, i.e., can be
thought of as encapsulated by it. If the filter evaluates to true, it
will instruct the EFD to send the event report (interaction).
The EFD may need to resolve the name of the manager to an
interface reference through the name service (interaction)
and “push” the event to the manager (interaction).

We present a CMIS-like broker below, examining the issues
of mapping CMIS/P to CORBA IDL. The simplest form of
management operations the MB provides are the CMIS m-get,

m-set, m-action, m-delete, and m-create, applied to a single
managed object. These operations are also supported by the
managed objects through the specific IDL interface that results
from the GDMO to IDL translation. The reason for providing
the same functionality through the CMIS management broker
is that the latter may play the role of a CORBA-based manage-
ment agent, with the managed objects being plain engineering
objects, i.e.,without individual IDL interfaces. Code 3 (Fig. 6)
shows (a part of) the specification of the CMIS-like MB.

V. DESIGN, IMPLEMENTATION, AND MIGRATION ASPECTS

Given the target CORBA-based framework that was depicted
in Fig. 5, we will examine how this can be implemented. We

PAVLOU: DISTRIBUTED OBJECT TECHNOLOGIES IN TNM 651

Fig. 7. DualQ and CORBA agent.

will consider, in particular, a phased approach which reuses ini-
tially parts of the OSI-SM based infrastructure. Since OSI-SM
is currently the base TMN technology, it is important to devise a
phased transition strategy that will ease compatibility and inter-
operability with existing TMN systems, and will reuse as much
as possible existing TMN platform components.

The first step for migrating toward the target framework is to
support only agent discovery and CMIS interactions through
CORBA, without individual IDL interfaces for managed ob-
jects. This essentially means that the management broker will
act as an agent that provides access to managed objects which
are implemented by existing TMN platform infrastructure, i.e.,
GDMO/ASN.1 compilers and relevant API’s. The MB may be
used in conjunction with the existing agent object within an
agent application. In this case, the TMN application in agent
role will have two interfaces: the existing interface and
the CORBA version of the “ ” interface as specified by the
i CMISBroker and iCMISManager IDL interfaces.

This minimal approach is depicted in Fig. 7 and has no im-
pact at all on the implementation of managed objects which are
based on TMN platform technology, e.g., OSIMIS [22]. Ex-
isting OSI-based manager applications will continue to function
while new CORBA-based management applications may be de-
veloped. CORBA manager objects get access to the MB inter-
face reference through the CORBA naming services [10], while
OSI manager objects get access to the presentation address of
the OSI agent through the OSI directory [15]. It should be noted
that two different notations have been used in this figure to de-
pict interactions—one for CORBA using object interfaces and
one for OSI-SM using arrows. This architecture exploits the fact
that the object models are the same in the two frameworks, and
provides a “dual-agent” access paradigm. In this framework, the
managed object GDMO/ASN.1 specifications are translated to
IDL, but the resulting IDL interface specifications are not in-
stantiated: they simply “document” the management broker in-
terface which provides access to those objects in a dynamic,
weakly typed fashion.

A variation of this approach is the gateway approach, in
which the management broker becomes a separate applica-
tion which accesses one or more management agents in the
“back-end” through their interfaces. The gateway approach

is useful to provide adaptation for TMN applications that are
already deployed, in which case it is not possible to add to them
the management broker in a tightly coupled fashion. T. Tin of
UCL, together with the author, first implemented a gateway ver-
sion of the MB in 1996. This was the first CORBA-to-CMIS/P
gateway that provided full OSI-SM functionality. The author
subsequently designed and implemented the tightly coupled
dual agent approach depicted in Fig. 7.

Implementing the gateway was fairly straightforward. The
only difficulty encountered was the bidirectional translation
between ASN.1 and IDL data types. This can be automated
if one has access to a flexible ASN.1 compiler, which could
be customized to produce the equivalent IDL types as well as
the conversion routines in both directions. Implementing the
tightly coupled dual agent version was also straightforward
given the well-defined OSIMIS API’s for accessing managed
objects within an agent application. Based on this approach,
existing OSIMIS agent applications can be made to work over
CORBA by changing a few lines of code in the main program
and relinking them with the management broker library.

The complete CORBA-based framework requires also that
individual managed objects become computational constructs
with IDL interfaces. The difficult aspects regarding this realiza-
tion are the “get all” attributes and the attribute filtering; we ex-
plain how these can be implemented below. Classes for derived
interfaces should pass to their iManagedObject parent class the
names and types of their attributes when an object instance is
created. The iManagedObject part will subsequently access the
attributes of derived parts as if they belonged to separate objects,
through the dynamic invocation interface. This scheme supports
the multiple attributegetandsetmethods.

The only way to deal with filtering is to provide the IDL com-
pare methods by hand, in a hash table indexed by the relevant
type. The iManagedObject part will retrieve the attributes in-
volved in the filter and will invoke the relevantcompareand
traversemethods, getting access to them through the attribute
type which is known from its “repository.” This is far from de-
sirable since it requires handwritten routines for every attribute
type. On the other hand it is the only approach to support fil-
tering at present.

VI. PERFORMANCE ANDSCALABILITY CONSIDERATIONS

One of the key concerns often voiced regarding the use of
distributed object technologies in telecommunications manage-
ment environments is scalability. Managed network elements
and TMN element and network management operations systems
contain a very large number of managed objects. In addition,
TMN OS’s contain many “managing” objects. The question is
whether it is feasible to expose all those objects to the distributed
processing environment as separate CORBA objects. The ad-
vantage of doing this is strong typing and the use of standard
CORBA API’s. On the other hand, an object becomes a “first
class citizen” of a distributed processing environment at a price,
given the additional support required by the underlying infra-
structure. The management broker concept copes well with the
problem of scalability when used essentially as a management
agent, as every agent application needs to expose only a single

652 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 5, MAY 2000

CORBA interface. However, this approach implies that TMN
platform API’s are used for managed object development.

Having implemented the management broker approach
in parallel with an existing agent infrastructure, another
consideration is to assess the performance difference and the
packet sizes in the two approaches—one based on the
interface and the other on its precise equivalent in CORBA
IDL. We conducted a number of experiments on a pair of Sun
Sparc20 workstations running Solaris and connected to a lightly
loaded Ethernet. The protocol stack used operated over
TCP/IP using the RFC1006 method as specified in [24], while
the CORBA protocol used was the Internet Interoperability
Protocol (IIOP) [25]. The OSIMIS research prototype was used
for the interface (OSIMIS) [22] as opposed to a commercial
CORBA implementation which uses the Basic Object Adapter
(BOA). Performance and scalability issues may be different for
the emerging Portable Object Adapter (POA), which will be
supported in the next generation of products.

An example managed object was used, supporting methods
with various data types in ASN.1 which were mapped to the
equivalent IDL types. While a detailed performance comparison
could be the subject of a separate publication, the key conclusion
was that the CORBA-based access times for method invocations
through the management broker were faster by about 30% on av-
erage compared to CMIS/P-based managed object access. Per-
forming the same operation to the managed object through a di-
rect IDL interface resulted in 45% faster times. In addition, the
initial bind operation through IIOP was about 60% faster than
association establishment using the Q3 protocol stack.

The next experiment concerned the size of packets ex-
changed, which were measured at the TCP payload level using
the Berkeleytcpdumpprogram. Performing an echo operation
of 1 byte to an object in the first level of the MIT incurred
72/88 byte packets for the request/response in the case of

, 177/47 bytes in the case of the management broker, and
101/32 bytes in the case of a direct IDL interface. Performing
an operation asynchronously through the management broker,
which means that an Interoperable Object Reference (IOR)
is exchanged, resulted in 409/97 byte packets. After many
different measurements with different argument types, we came
to the conclusion that IIOP generates a relatively large amount
of traffic in comparison to , especially when IOR’s and
IDL any types are exchanged, since the latter convey CORBA
type-code information.

The final experiment concerned the memory required for
managed objects in both TMN and CORBA platforms. In the
case of CORBA, the ORB which is typically running as a sepa-
rate process requires 2.7 Mb at runtime. The size of a process
containing a single server object and an associated factory
object was about 2.6 Mb. The size of the equivalent OSI agent
was 2.3 Mb, but the latter also contains functionality of name
resolution, scoping, filtering event reporting, and logging. The
key issue, however, is not the size of the infrastructure which is
incurred once, but the data size of managed objects at runtime.
After various experiments and memory size measurements, it
became clear that the data size of a CORBA object is about 2–3
times more than the size of a GDMO object, depending on the
data type of the attributes and the relevant values. In addition,

the particular ORB used seemed to have a problem coping with
very large amounts of managed objects.

These experiments confirmed the fact that IIOP is expected to
perform better than interfaces, yet generating larger amounts
of management traffic. On the other hand, the experiments also
confirmed the fact that the required memory size is bigger for
native CORBA managed objects, which may result in scalability
problems. This reinforces the management broker approach pre-
sented in this paper as an approach that benefits from the better
performance of CORBA without the associated potential scala-
bility problems. The native CORBA-based managed object ap-
proach could be the next step, with more mature, second- or
third-generation ORB products coming to the market.

VII. SUMMARY

Given the emergence of distributed object technologies, with
CORBA being the representative open technology, in this paper
we examined in detail how such technologies can be used as the
basis for future TMN systems. We presented first a minimal ap-
proach which retains the TMN hierarchical naming and contain-
ment relationships but does not support scoping, filtering, mul-
tiple object access, and fine-grain event reporting and logging.
A key aspect of this approach is that only few objects in each
“agent” domain need to export their names to the name server,
which avoids performance problems and reduces the manage-
ment traffic required for managed object discovery.

We then added multiple attribute access and filtering to the
managed objects, and explained how CMIS-like multiple object
access can be supported through the management broker. This
was done in an incremental fashion, without mixing CMIS-like
access aspects with the managed object interfaces. We finally
exploited the filtering capability of managed objects in order to
add EFD-based fine-grain event reporting. The proposed archi-
tecture retains the advantages of OSI-SM, with the drawback
that support for filtering and knowledge about the attributes of a
particular object need to be hand-coded, i.e., they cannot be au-
tomatically supported by IDL compilers. OMG may reconsider
its attribute model in the future and add expressiveness similar to
GDMO; this will solve these problems. An advantage of the pre-
sented approach is that managed objects are not required to have
separate IDL interfaces, which helps scalability for network el-
ements with a large number of managed objects. After the im-
plementation of this approach, the existence of two equivalent
CORBA- and OSI-SM-based TMN platforms led us to conduct
comparative performance experiments. We examined response
times, packet sizes, and run-time memory requirements, and
we found CORBA response times better, packet sizes relatively
larger, and memory requirements much higher.

We should finally answer the question of what is the archi-
tectural impact to the TMN if a distributed object technology
such as CORBA is adopted. The answer is that there should be
no impact at all. The TMN architecture and methodologies will
remain the same. Interface specifications will be produced in
GDMO, given the already large existing base of GDMO spec-
ifications and the fact that it can be seen as a general-purpose
management information specification language. On the other
hand, guidelines should be put in place in order to guarantee

PAVLOU: DISTRIBUTED OBJECT TECHNOLOGIES IN TNM 653

that generic translation to IDL is possible. In addition, the
and X interface profiles will be modified, including CORBA
protocols as valid choices for TMN interfaces; work has al-
ready taken place for X while it is underway for . The use
of CMIS/P-GDMO or GIOP-IDL will become an engineering
issue for implementing the same specifications. Finally, an ad-
ditional benefit of using CORBA is that TMN OS components
could be distributed across different network nodes.

In summary, CORBA seems a very promising technology
which can form the basis of future TMN systems. Its value
compared to OSI-SM is not so much the potentially better per-
formance, but the fact that it may become the ubiquitous tech-
nology for future heterogeneous distributed systems.

REFERENCES

[1] ITU-T Rec. M.3010, “Principles for a telecommunications management
network (TMN),”, Study Group IV, 1996.

[2] ITU-T Rec. X.701, Information Technology—Open Systems Intercon-
nection,Systems Management Overview, 1992.

[3] ITU-T Rec. X.900, Information Technology—Open Distributed Pro-
cessing,Basic Reference Model of Open Distributed Processing, 1995.

[4] Object Management Group, “The common object request broker: Ar-
chitecture and specification,” CORBA, Version 2.0, 1995.

[5] ITU-T Rec. X.500, Information technology—Open Systems Intercon-
nection,The Directory: Overview of Concepts, Models and Service,
1993.

[6] NMF-X/Open, Joint Inter-Domain Management (JIDM) Specifi-
cations, “Specification translation of SNMP SMI to CORBA IDL,
GDMO/ASN.1 to CORBA IDL and IDL to GDMO/ASN.1,”, 1995.

[7] ITU-T Rec. X.722, Information technology—Open Systems Intercon-
nection,Structure of Management Information—Guidelines for the Def-
inition of Managed Objects, 1992.

[8] ITU-T Rec. X.703, Information Technology—Open Systems Intercon-
nection,Open Distributed Management Architecture, 1997.

[9] S. Proctor, “An ODP analysis of OSI systems management,” inProc.
TINA’92 Workshop, Narita, Japan, Jan. 1992.

[10] Object Management Group, “CORBA Services: Common object ser-
vices specification (COSS),”, rev. ed., 1995.

[11] T. Rutt, Ed., “Comparison of the OSI systems management, OMG and
Internet management object models,” X/Open Joint Inter-Domain Man-
agement Task Force, Rep. NMF, 1994.

[12] ITU-T Rec. X.734, Information Technology—Open Systems Intercon-
nection,Systems Management Functions—Event Report Management
Function, 1992.

[13] ITU-T Rec. X.735, Information Technology—Open Systems Intercon-
nection,Systems Management Functions—Log Control Function, 1992.

[14] ITU-T Rec. X.720, Information Technology—Open Systems Intercon-
nection,Structure of Management Information—Management Informa-
tion Model, 1991.

[15] ITU-T Rec. X.750, Information Technology—Open Systems Intercon-
nection, Systems Management Functions—Management Knowledge
Management Function, 1995.

[16] ITU-T Rec. X.710, Information Technology—Open Systems Intercon-
nection,Common Management Information Service Definition (CMIS),
Version 2, 1991.

[17] L. A. de la Fuente, J. Pavon, and N. Singer, “Application of TINA-C
architecture to management services,” inToward a Pan-European
Telecommunications Service Infrastructure, H.-J. Kugler, A. Mullery,
and N. Niebert, Eds. New York: Springer, 1994, pp. 273–284.

[18] S. Mazumdar, “Mapping of common management informa-
tion services to OMG COSS specification,” AT&T Bell Labs,
TM#BL0112540-96.09.30-02, 1996.

[19] J. Hierro and J. Gonzalez, “Common facilities for systems man-
agement,” Telefonica I+D Submission to the NMF—X/Open Joint
Inter-Domain Management task force, 1996.

[20] G. Pavlou and D. Griffin, “Realizing TMN-like management services
in TINA,” in J. Network Syst. Management (JNSM), 1997, vol. 5, pp.
437–457.

[21] E. Garcia-Lopez, “Distributed management facilities architecture,”,
TINA-C baseline doc. TB_EGL.002_2.1_1996, 1996.

[22] G. Pavlou, G. Knight, K. McCarthy, and S. Bhatti, “The OSIMIS plat-
form: making OSI management simple,” inIntegrated Network Man-
agement IV, A. Sethi, Y. Raynaud, and F. Faure-Vincent, Eds. London,
U.K.: Chapman & Hall, 1995, pp. 480–493.

[23] G. Pavlou, A. Liotta, P. Abbi, and S. Ceri, “CMIS/P++: Extensions to
CMIS/P for increased expressiveness and efficiency in the manipulation
of management information,”IEEE Network, vol. 12, no. 5, pp. 10–20,
1998.

[24] ITU-T Rec. Q.811, Specifications of Signaling System No. 7, Q3 Inter-
face,Lower Layer Protocol Profiles for the Q3 Interface, 1996.

[25] Object Management Group, “Internet inter-operability protocol (IIOP),”
CORBA version 2.0, 1995.

George Pavloureceived the Diploma in electrical engineering from the Na-
tional Technical University of Athens, Greece, and the M.Sc. and Ph.D. degrees
in computer science from University College London, U.K.

He is a Professor of information networking at the Center of Communication
Systems Research (CCSR), School of Electronic Engineering and Information
Technology, University of Surrey, U.K., where he leads the Networks Research
Group. His research interests include protocol performance evaluation, network
planning and dimensioning, traffic engineering and management of ATM and
QoS-based Internet, programmable and active networking, multimedia service
control, and distributed object-oriented platforms. He has contributed to stan-
dardization activities in ISO, ITU-T, NMF/TMF, OMG, and TINA.

Dr. Pavlou serves on the Editorial Board of theJournal of Network and Sys-
tems Management (JNSM)and the IEEE COMMUNICATIONS SURVEYS, and he
is on the program committee of a number of international conferences on man-
agement and control.

