
1

Framework and Algorithms for
Operator-managed Content Caching

Lorenzo Saino, Member, IEEE, Ioannis Psaras, Member, IEEE, and George Pavlou, Fellow, IEEE

Abstract—We propose a complete framework targeting
operator-driven content caching that can be equally applied to
both ISP-operated Content Delivery Networks (CDNs) and future
Information-Centric Networks (ICNs). In contrast to previous
proposals in this area, our solution leverages operators’ control
on cache placement and content routing, managing to consider-
ably reduce network operating costs by minimizing the amount
of transit traffic and balancing load among available network
resources. In addition, our solution provides two key advantages
over previous proposals. First, it allows for a simple computation
of the optimal cache placement. Second, it provides knobs for
operators to fine-tune performance. We validate our design
through both analytical modeling and trace-driven simulations
and show that our proposed solution achieves on average twice as
many cache hits in comparison to previously proposed techniques,
without increasing delivery latency. In addition, we show that
the proposed framework achieves 19-33% better load balancing
across links and caching nodes, being also robust to traffic spikes.

Index Terms—Cache placement; caching; ICN; CDN;

I. INTRODUCTION

INTERNET traffic has been growing exponentially over the
past few years mainly fuelled by the dramatic increase of

content distribution [1]. This trend has made it necessary for
content providers to use geographically distributed caches to
serve their content, in order to improve user-perceived latency
and throughput as well as to reduce transit costs. As a result,
Content Delivery Networks (CDNs) have rapidly grown in
terms of both presence and overall traffic carried and are
expected to grow steadily for the foreseeable future.

Two key trends are expected to influence content distribution
in both the short and long term. The first one, with short
term impact, is represented by the rapid growth of Network
CDNs, i.e., CDNs managed by network operators (see, for
example [2], [3], [4]), which is driven by both technological
and commercial incentives. The second one, with longer term
impact, is the increasing momentum gained by the emerging
Information Centric Networking (ICN) paradigm within both
the research and operator/vendor community. This paradigm
revisits the Internet architecture targeting content distribution
as one of the main use cases. The most prominent ICN archi-
tectures, i.e., CCN [5] and NDN [6], envisage the deployment
of ubiquitous packet caches in network routers.

Both trends are leading to a scenario in which network
operators (i.e., ISPs) will be in charge of operating a networked
caching infrastructure, which will likely be very complex,

Lorenzo Saino is with Fastly, Inc. Ioannis Psaras and George Pavlou are
with the Department of Electronic and Electrical Engineering at University
College London. Contact addresses: Lorenzo Saino (lsaino@fastly.com), Ioan-
nis Psaras (i.psaras@ucl.ac.uk), George Pavlou (g.pavlou@ucl.ac.uk).

comprising several nodes and carrying a considerable amount
of traffic. In a different fashion to traditional CDNs, whose
main objective is to improve the performance of content dis-
tribution for their customers, network operators also have the
additional objective of minimizing the operating cost of their
network. This includes reducing the amount of interdomain
traffic crossing transit links and ensuring homogeneous utiliza-
tion of resources by evenly spreading traffic across network
links and caching nodes. With its knowledge of topological
characteristics, an operator can exert more control on network
routing and cache placement, which it can use to better design
and operate its distributed caching infrastructure.

The general problem of designing caching systems for
content distribution has received considerable attention in the
past (see Sec. II for an overview of previous work). However,
very little work addressed the specific requirements of network
operators (e.g., reduction of network operating costs) while
leveraging their strengths (i.e., knowledge of topology and
control on routing and cache placement). More importantly,
all previously proposed solutions exhibit two fundamental
limitations. First, they do not address the problem of how to
optimally place caches, which is of fundamental importance
for building cost-effective caching infrastructures. Second,
their rigid designs give operators limited ability to fine-tune
performance according to their requirements.

In this paper we fill this gap by proposing an integrated
framework to achieve efficient operator-driven caching that
can be equally applied to both Network CDNs and, in the
longer term future, to ICNs. Our solution builds upon our
previous work in this area [7] and leverages managing hash-
routing techniques: the latter have been proposed in the past
to route requests among caching nodes co-located in the same
physical facility (see, for example [8], [9], [10]) but were never
considered for geographically distributed environments. Hash-
routing maps each content item to a specific node of a cluster
based on a hash function. When a content request reaches a
domain node, it is redirected to the responsible caching node
by computing the result of a hash function on the URI (or any
other unique identifier) of the requested content item.

Overall, our proposed framework provides the following
advantages over state-of-the-art caching techniques:
• Greater cache hit ratio, resulting in minimized inter-

domain traffic and subsequent transit cost savings.
• Predictable performance, making the caching infrastruc-

ture easy to model and optimize.
• Tunable performance in terms of latency, cache hit ratio

and robustness to demand variation, giving operators
greater flexibility.

2

• Inherent load-balancing across links and nodes, robust
against localized hotspots and flash crowd events.

We evaluate the performance of our framework with trace-
driven simulations using real ISP topologies and real traffic
traces. Our evaluation shows that our framework achieves
a 2x cache hit ratio in comparison to previously proposed
techniques without affecting delivery latency. In addition, it
provides a 19-33% better load balancing across network links
and caching nodes, which is robust to local traffic spikes and
flash crowd events. We make the code required to reproduce
these results publicly available in [11].

II. IN-NETWORK CONTENT CACHING

In this section, we examine the distributed content caching
problem and review the main techniques proposed so far,
pointing out their shortcomings that our framework addresses.

According to RFC 7929 [12] the in-network caching prob-
lem can be partitioned into three well-defined subproblems:
• Content placement and content-to-cache distribution,

which deals with the problem of deciding which content
items to place in which caching node and how to dis-
tribute them to those nodes.

• Request-to-cache routing, which deals with how to route
content requests from a requester to a suitable caching
node that holds a copy of the requested content.

• Cache placement, which deals with deciding/optimizing
the placement and sizing of caching nodes.

Following this classification and given that our framework
provides solutions for the above three areas, we discuss the
state of the art for each of them in turn. We specifically focus
on techniques applicable to the case of operator-controlled
caches, which is the use-case investigated in this paper.

A. Content placement and distribution

Content items can be placed in caches in either a proactive
or a reactive manner.

With proactive content placement, caches are pre-populated
during off-peak traffic periods. The placement is normally
computed by an off-line optimization algorithm on the basis
of historical data and/or future predictions and repeated peri-
odically. Many algorithms have been proposed to determine
optimized content placement under a variety of objective
functions and constraints [13, 14, 15, 16, 17, 18, 19].

Instead, with reactive content placement, content items are
stored in caches as a result of cache misses in a read-through
manner. Within a caching node, content items can be replaced
according to policies such as Least Recently Used (LRU) or
First In First Out (FIFO) or more sophisticated policies [20]. If
a request traverses multiple caches before hitting the content,
the simplest content placement strategy is to leave a copy of
the content in every node traversed, which is known as Leave
Copy Everywhere (LCE). However, this strategy causes a high
degree of redundancy as all caches along the path consume
resources to hold identical items. To mitigate this issue, a
number of meta algorithms have been proposed to selectively
cache each delivered content in a subset of the nodes of the
path, such as LCD [21], CL4M [22] and ProbCache [23].

There is consensus that proactive placement is preferable to
reactive placement only in the case of workloads characterized
by a limited content catalogue and predictable request varia-
tions, such as Video on Demand (VoD) [15], [24]. Netflix, the
world’s largest VoD content provider, uses proactive content
placement in their video caching infrastructure [25].

All other types of traffic are characterized by rapid vari-
ations of content popularity that would obliterate the gains
provided by an optimized proactive placement [16]. Therefore,
to the best of our knowledge, all CDNs for Web traffic
populate their caches reactively [26], [27], [28]. This is also the
placement strategy selected by all ICN architectures proposing
ubiquitous packet caches in network routers [5], [6].

In the light of these considerations, we designed our
framework to operate based on reactive content placement
principles.

B. Request routing

Request routing strategies can be broadly ascribed into
two categories: opportunistic on-path and coordinated off-path
routing.

With on-path request routing, content requests are routed
over a network of caches towards the content origin using
shortest path routing and are served from a cache only if the
requested content item is available at a node on that path.
This routing strategy is highly scalable as it does not require
any coordination among caching nodes. However, it normally
suffers reduced cache hits, as any item outside the shortest
path will never be hit.

Edge caching is also a (simpler) case of opportunistic on-
path routing. In edge caching, requests are routed to the closest
cache but in case of a cache miss they are forwarded directly
to the content origin. This is for example how Google Global
Cache operates [28].

With off-path coordinated routing, requests can be served by
a nearby node even if not on the shortest path to the origin.
This, however, comes at the cost of higher coordination to
exchange content availability information among caches. Off-
path routing can be implemented using a centralized or dis-
tributed content-to-cache resolution process. In a centralized
resolution process, a (logically) centralized entity with a global
view of cached contents is queried before routing a content
request and it returns the address of the closest node storing the
requested content item. This approach is however suitable only
for systems operating under proactive content placement. For
reactive caching systems with high rate of content replacement
(which also include ICN architectures, where items are cached
at a chunk-level granularity), a number of more scalable off-
path request routing algorithms have been proposed [29], [30].

Request routing design presents a clear tradeoff between
scalability and efficiency. The limited scalability of off-path
routing particularly limits the availability of design choices
for reactive caching systems and ICN architectures, which
are of our interest. Our proposed framework addresses this
tradeoff by enabling off-path request routing without any
coordination, since the content-to-cache mapping is computed
in a distributed manner by a hash function. However, this

3

comes at the cost of traffic detours, introducing longer paths
and hence, possibly, greater latency, especially in tail and worst
case scenarios, where content items are fetched from origin.
Nonetheless, as we show later, with careful cache placement
and content routing, it is possible to effectively address the
side effect of detours achieving low average latency while
maintaining great scalability and cache hit ratio.

C. Cache placement

Optimal cache placement is dependent on content place-
ment, request routing, the network topology and the content
request patterns.

Several studies have investigated the optimal cache place-
ment and sizing with notable results [31], [32], but only for
the specific case of proactive content placement, which, as
discussed in Sec. II-A, is a suitable approach only for VoD
applications.

The problem is considerably more complex in the case of
reactive content placement, which instead has much wider ap-
plicability. Networks of caches operating under common cache
replacement policies, such as LRU and FIFO, are difficult to
model. The main source of complexity comes from modeling
the behaviour of caches receiving miss streams from other
caches [33], [34]. In fact, although there exist analytical mod-
els capturing well the behavior of common cache replacement
policies in a single cache or tandem configurations [35], [21],
[36], extending this analysis to arbitrary network topologies
is very hard and methods proposed so far are computationally
very expensive and fairly inaccurate [37]. All this makes the
optimal cache allocation problem hard to solve.

To the best of our knowledge, only two works have inves-
tigated the optimal cache placement and sizing in the case
of reactive content placement in arbitrary network topolo-
gies, although both focus on the specific case of on-path
request routing with content placement in every node, which
is known to generally yield poor caching performance. In
[38], Rossini and Rossi investigate the performance of a
heuristic approach which assigns cache capacity to nodes
proportionally to certain centrality metrics. They concluded
that these simple optimizations do not bring considerable
performance advantages though. In [39], Wang et al. formulate
the optimal cache allocation problem as a standard knapsack
problem with constrained cumulative cache size. Despite their
solution is not provably optimal, they reported that for the
scenarios investigated, this cache allocation strategy improved
upon the heuristics proposed in [38].

In the specific case of edge caching, since each request
traverses a single cache, the problem is significantly simplified.
In this situation, the optimal cache placement can be mapped
to a p-median location-allocation problem [40].

Our proposed framework, similarly to edge caching, can
be easily modeled since each request traverses only a single
cache. As a result, our proposed approach has predictable
performance and is also robust to variations in traffic patterns.
In addition, as we show in section VI, the optimal cache
placement problem can be solved optimally and in polynomial
time for arbitrary topologies.

III. OVERALL FRAMEWORK DESIGN

Our proposed framework comprises two types of functional
entities: Caching Functions (CF) and Proxy and Routing
Functions (PRF). CF and PRF entities can be physically
separated or co-located, but since, at least in principle, they
provide separate functionalities we describe them separately.
• Caching Functions (CF) are simply in charge of storing

the content items mapped to them by a shared hash
function and serving incoming requests.

• Proxy and Routing Functions (PRF) are the first entities
traversed by content requests when entering the cache
network and they are in charge of forwarding them to
relevant CF instances. They have knowledge of all CF
instances in the network and their addresses (but do not
need to know which content items are stored at each
CF) and share a common hash function to map content
identifiers to CF instances. Such a hash function does not
need to be collision-resistant. Instead, it is desirable for
its output to be produced incurring minimal processing
overhead. Consistent hashing [10] may also be used in
order to minimize the number of content items being
remapped as a result of CF addition or removal.

The operation of the framework is illustrated in Fig. 1a
and is named symmetric because content delivery follows the
reverse path of request routing. Extensions of the framework
for asymmetric and multicast operation are depicted in Fig.
1b and Fig. 1c respectively and are presented in Section IV-A.
Any request is initially forwarded to the closest PRF. The PRF
identifies the CF responsible for that content by computing the
hash function on the content identifier and forwards the request
to that CF. If the latter has the requested content, it returns
it to the user. Otherwise, the request is forwarded towards
the content origin through an egress PRF without looking
up any other cache along the path. When the content item
is returned by the content origin, the egress PRF forwards it
to the authoritative cache that stores it and finally forwards
it to the requesting user. We remark that the only form of
coordination required by this system is that PRFs and CFs
need to know how to reach all CFs deployed in the ISP, which
are expected to be in the order of 102 or at most 103, but not
need to keep any per content item state. This coordination can
be achieved trivially with standard techniques.

This framework can be easily implemented in both the
Network CDN and ICN cases using common techniques. In
the Network CDN case, user requests are forwarded to the
closest PRF as a result of a DNS lookup, as commonly
done in current CDNs [41]. Both PRFs and CFs are simply
reverse HTTP proxies with persistent TCP connections among
them, which are used to relay HTTP requests and responses.
Differently, in the ICN case, user requests are forwarded to
the closest PRF through name-based routing, which can be
achieved by inserting appropriate forwarding entries in the
FIBs of access ICN routers. A PRF can then redirect a request
to the authoritative CF by encapsulating the request packet
with a header containing a name that identifies the authoritative
cache. For example, if a request needs to be forwarded to CF
A, the PRF can prepend a request header for name / cache/ a.

4

REQUESTER ORIGIN

(a) Symmetric

REQUESTER ORIGIN

(b) Asymmetric

REQUESTER ORIGIN

(c) Multicast

PRF CF AUTH CF REQUEST DATA

Fig. 1: Hash-routing content routing schemes. With symmeteric routing (a), content is routed to the requester via the authoritative
cache. With asymmeteric routing (b), content is routed to the requester via the shortest path. With multicast routing (c), response
is multicast to the authoritative cache and to the requester.

All ICN routers on the path are configured to route names with
the / cache/ a prefix to the location of CF A. When CF A
receives the request packet, it removes the prepended header
and processes the encapsulated packet. This is a standard
approach, commonly used in ICN request routing to steer
packets through instances of network functions [42]. Content
packets are forwarded on the reverse path taken by request
packets, and hence through the authoritative cache, using state
information stored in intermediate routers.

The design of this hash-routing framework exhibits two
interesting properties. First, since a content item can be cached
only by the CF instance resulting from the hash calculation,
a specific content item can be cached at most in one node
of the network. This maximizes the number of distinct items
cached within the ISP network, reducing redundancy, and
therefore reducing also inter-domain traffic and load at origins.
Second, localized spikes in traffic occurring in a network
region are implicitly spread across links and caching nodes by
the hash computation in a way similar in principle to Valiant
Load Balancing (VLB) [43]. In Sec. VII-C we show that our
scheme can indeed achieve very good load balancing under
real operational conditions.

A possible deployment model would consist in co-locating
of PRFs and CFs at (a subset of) the operator’s PoPs. PRFs
could also be deployed separately from CFs. For example, they
may be deployed in the access network (e.g., in an eNodeB
in the case of an LTE network or in a DSLAM or BRAS in
an xDSL fixed broadband access network) as part of a mobile
edge computing deployment. In this case, the PRFs deployed
at the edge may also be equipped with a small caching space
which is operated autonomously, i.e., it can cache any content.
We elaborate on this in Sec. IV-B.

We model this framework analytically in Sec. V. In the
following section we present a set of content placement and re-
quest routing algorithms that can be applied to this framework
to support additional desirable properties and provide knobs
to fine-tune its performance. These extensions add complexity
to the overall design and cannot, as such, be easily turned
into a practical and tractable analytical model using known
techniques from the literature. Therefore, their performance is
only evaluated with trace-driven simulations.

IV. CONTENT PLACEMENT AND REQUEST ROUTING

A. Asymmetric and multicast content routing

In the base design described above, request and content
paths are symmetric, i.e., in case of a cache miss, a content
item (on its way back from the origin) is forwarded first to the
cache and then to the requester, following the reverse path of
the request. While this routing scheme is simple to implement
and manage, the path stretch resulting from request and
content routing through off-path caching nodes may lead to
increased latency and link load. To address this limitation, we
propose two alternative content routing schemes in addition to
the base one proposed above, which we refer to as Symmetric
(see Fig. 1a). These schemes, denoted as Asymmetric and
Multicast, respectively, differ from the symmetric scheme only
with respect to the delivery of contents entering the network
as a result of a cache miss.

Asymmetric hash-routing (see Fig. 1b) routes contents al-
ways through the shortest path. The content is cached in the
responsible cache only if it is on the shortest path between
origin and requester, otherwise it is not cached at all.

Asymmetric routing reduces the overall network load since
contents are always delivered though the shortest path. How-
ever, CF instances are populated with contents only if they
are on the shortest path from origin to requester. This would
not be a problem if content popularity varies slowly. On the
contrary, it would actually increase cache hit ratio by reducing
the impact of one-timers, as it would statistically require
more requests for a content item to be cached. If, differently,
request patterns exhibit strong temporal locality, a content item
may need to be requested several times before it is actually
cached (especially if the responsible cache is located on an
underutilized path), hence affecting caching performance.

With Multicast hash-routing (see Fig. 1c), when the
egress PRF receives a content, it multicasts (more accurately
twocasts) it to both the authoritative cache and the requester.
The target of multicast is to reduce delivery delay by sending
one copy of the content through the shortest path back to the
client, while leaving at the same time a copy of the content
in the authoritative CF.

Multicast routing achieves the same latency of asymmetric
routing and only requires one request for a content item to

5

AUTHORITATIVE CF

(a) Single replica

AUTHORITATIVE CF

AUTHORITATIVE CF

(b) Multiple replicas

Fig. 2: Single and multiple content replication. In large networks, replicating content only once may cause high path stretch
to route requests and contents via the authoritative cache (a). Replicating content multiple times addresses the problem (b).

be cached, as in symmetric routing. However, since at each
content request, a content item must be forwarded to the
authoritative cache, it leads to greater link loads than the one
achieved by asymmetric routing, especially when cache and
requester paths have limited overlap.

Note that if the authoritative cache happens to be on the
shortest path between content origin and requester, then sym-
metric, asymmetric and multicast schemes operate identically.

All three content routing options have advantages and
disadvantages. The choice of content routing, however, gives
network operators a knob to tune performance. Both multi-
cast and asymmetric routing reduce latency because contents
fetched from the origin are delivered to the requesting user
without any detour. On the other hand, asymmetric routing
caches the content in the domain only if the responsible cache
is on the response path, while multicast, i.e., twocast, routing
increases complexity and traffic on the network. The choice of
the most suitable scheme depends on the operator’s priorities.

B. Hybrid caching

With hybrid caching, a part of the overall caching space is
allocated to operate autonomously, i.e., cache opportunistically
any content, regardless of the content-cache mapping. In this
case, a part of the CF caching space caches any content
traversing it which is not part of the set of designated contents
it has been assigned to cache.

This approach provides two main advantages. First, it allows
a small number of very popular contents to be replicated in
multiple nodes, instead of just one, hence possibly reducing
overall latency and link load. Second, it achieves better load
balancing across caching nodes. In fact, while the base hash-
routing framework evens out localized traffic hotspots by
spreading traffic originated from each requester across caches,
any peak in demand for a specific content item will always be
served by the same cache. In contrast, caching a small fraction
of very popular contents in multiple caching nodes makes the
system robust to variations in content popularity [44]. This
also makes the system more robust to adversarial workloads
targeted at overloading a specific caching node [45].

Additionally, in case asymmetric content routing is adopted,
hybrid caching ensures that any requested content is cached at
some node in the network (i.e., not necessarily the authoritative
CF) the first time it is requested. This is the case even if the

responsible cache is not on the shortest path between origin
and requester.

Performance can be tuned by selecting what fraction of
caching space to dedicate to uncoordinated caching and this is
a provisioning decision that should be made by the operator
according to their priorities. Increasing the uncoordinated
caching space leads to greater robustness towards flash-crowd
events and lower latency in accessing the most popular con-
tents. However, it reduces the amount of cache available to
hash routing and as a result reduces the number of distinct
items cacheable in the network. This affects overall cache
hit ratio (possibly leading to a greater overall latency) and
robustness against localized spikes in traffic.

C. Multiple content replicas
The base design of our framework allows a content item

to be cached at most once in a network domain, hence
maximizing the efficiency of caching space. However, in case
of very large topologies, e.g., of Tier-1 operators, this may
result in high path stretch, possibly leading to high latency
(see Fig. 2a). To address this issue, we propose a content
placement and request routing algorithm where the content-
to-cache hash function maps to k distinct nodes instead of
just one. As a result, multiple nodes (ideally well distributed
over the network) are responsible for each content (see Fig.
2b). This ensures that the worst case path stretch to reach a
responsible cache is reduced.

When a PRF processes a content request and computes
the content hash, it resolves the content to k distinct caching
nodes. The PRF forwards the request to the closest of the k
CFs responsible for the content. In case of cache miss, two
approaches can be adopted:

1) The CF forwards the request directly to the content
origin.

2) The CF forwards the request towards the content origin
through (all or a subset of) the other CFs responsible for
the content, if this can be done with limited path stretch.

Similarly, when a content enters the network after an origin
fetch, several options can be adopted. The content can be
forwarded symmetrically, asymmetrically or with multicast.
In case of symmetric content routing, if several caches are
looked up, contents can be placed using various on-path meta
algorithms such as LCE, LCD [21] or ProbCache [23].

6

The degree of replication k enables the fine-tuning of
performance by trading off latency with cache hit ratio. Hash-
routing operating with multiple content replicas is a hybrid
between hash-routing and on-path caching meta algorithms.
At one extreme (k = 1) the system behaves as pure hash-
routing scheme. At the other extreme (k equal to the number
of caching nodes), the system behaves exactly as the on-path
meta algorithms used for content routing. Sec. VII-E evaluates
the impact of varying k on various performance metrics.

V. SYSTEM MODELING

One advantage of our framework over prior work is its
performance predictability, that makes it considerably simpler
to model and to optimize than other schemes. This section
presents a thorough modeling of the hash-routing framework
presented in Sec. III and derives closed-form expressions for
content retrieval latency. We start by providing a generalized
formulation for an arbitrary topology and then provide simpler
expressions for two special cases: mesh and ring topologies.
The modeling presented here will be subsequently used in the
following section to design a polynomial algorithm for optimal
cache node placement.

Consistently with previous work, we assume that content
items are requested according to the Independent Reference
Model (IRM). This implies that the probability that a specific
item is requested is constant over time and does not depend
on previous requests. We also assume, for simplicity, that all
caches in the system have the same size, operate according
to the same replacement policies and that content items are
mapped to caching nodes uniformly.

We make two further assumptions based on findings from
previous work. First, we assume that as a result of the uniform
hashing, each caching node receives the same number of
requests, independently of skewness in content popularity.
Thaler and Ravishankar [9] show that this assumption holds
as long as the content catalogue is large, which is the case of
our interest. Second, we assume that the network-wide cache
hit ratio is identical to the cache hit ratio yielded by a single
cache with size equal to the cumulative size of all caches in
network operating according to the same replacement policy.
We showed in previous work [44] that this assumption holds
for a variety of common replacement policies, including LRU,
FIFO, RAND and LFU. The goodness of all these assumptions
is demonstrated by the accuracy of the models presented below
which heavily rely on them.

A. Arbitrary topology

We start by describing the notation adopted in this section,
which is also used in the formulation of the optimal cache
placement problem of Sec. VI and report it in Tab. I. Let
G = (V, E) be a directed graph with vertices V and edges
E representing the operator’s network and let O be the set
of content items. A set of caches C ⊆ V are deployed
at a subset of network nodes. We assume that all caches
have the same capacity and operate according to the same
replacement policy. Content items are mapped uniformly to
caches. Each node v ∈ V issues requests for content o ∈ O

TABLE I: Summary of notation

Symbol Notation
G, V , E Network graph, set of vertices, set of edges

C Set of caches

O, Ov Set of content items, stored at origin v

λ(v), λ(v)o Request rate from requester v, for item o

Λ Overall request rate

µ(v) Rate of cache misses towards origin v

h, ho Overall cache hit ratio, for content item o

Ps,t Shortest path from s to t

δs,t, δe Latency over path Ps,t, over edge e

with rate λ(v)o . The cumulative rate of requests originated at
node v is λ(v) =

∑
o∈O λ

(v)
o . The network-wide request rate

is Λ =
∑

v∈V λ
(v). Each content item is permanently stored

at one location outside the network and denote Os as the set
of content items stored at origin node s. We denote µ(s) as
the rate of miss requests forwarded towards the content origin
via egress node s. We denote the system-wide cache hit ratio
of content item o ∈ O as ho, which can be estimated using
known techniques (e.g., Che’s approximation [35], [36]) to
model the network of caches as a single large cache [44].
We then denote as δe the average latency of link e ∈ E and
denote as Ps,t ⊆ E the network path from node s to node
t, i.e., the set of edges traversed from s to t. We further
denote as δs,t =

∑
e∈Ps,t

δe the average latency of path
(s, t). We assume that the latency does not depend on the
size of the message, i.e., it is dominated by queueing delay
and propagation delay as opposed to transmission delay.

After discussing the notation, we can now present the la-
tency model. Since we assumed that each cache in the network
has the same cache hit ratio and that load is equally spread
across caching nodes, we can easily derive the cumulative rate
of requests µ(s) served by origin s as:

µ(s) =
∑
v∈V

∑
o∈Os

λ(v)o (1− ho) (1)

We can now determine the average latency perceived by a
user to retrieve a content item D. This value corresponds, in
case of cache hit, to the round-trip time between the requester
r and the responsible cache c, denoted as Dr,c. In the case of
cache miss, latency is increased by the round-trip time between
cache c and content origin s, denoted as Dc,s. Therefore:

D = Dr,c +Dc,s (2)

Each latency component can be easily derived and equals to:

Dr,c =
1

Λ|C|
∑
r∈V

λ(r)
∑
c∈C

(δr,c + δc,r) (3)

Dc,s =
1

Λ|C|
∑
s∈V

µ(s)
∑
c∈C

(δc,s + δs,c) (4)

While this model is relatively simple and provides a closed-
form expression for content retrieval latency, there are some
topologies of practical interest for which a more simplified
formulation can be derived. The following sections provide
simpler models for mesh and ring topologies.

7

B. Mesh topology

We derive a simplified formulation of content retrieval
latency for the case of a full mesh topology, which can be
used to model highly connected network topologies, such as
ISP core networks.

In our model, the network comprises N caching nodes, all
receiving the same demand from a set of requesters attached
via an access link. Content origins are attached to a subset
of M ≤ N nodes. Each content item is stored at one origin
node and each origin is assigned the same number of contents.
We assume that all access, internal and external links have the
same latency, denoted as δa, δi and δe respectively.

Theorem 1. The mean content retrieval latency in a fully
connected mesh topology of N nodes and M ≤ N egress
nodes is:

D = 2

[
δa +

N − 1

N
δi + (1− h)

(
N −M
N

δi + δe

)]
(5)

where h is the overall cache hit ratio and δa, δi and δe are
the latency of access, internal and external links respectively.

Proof. The overall content retrieval latency D comprises three
components, which are the round trip time between (i) re-
quester and authoritative cache Dr,c, (ii) authoritative cache
and egress node Dc,e and (iii) egress node and origin De,o.
The two latter delay components are incurred only in case of
a cache miss.

Since content items are assigned to caches uniformly, the
probability that the ingress node is also the cache responsible
for a given item is 1/N , while the request needs to be
forwarded to another cache, which is connected directly with
a link to the ingress node, with probability N−1

N . Therefore,
the average round trip time between requester and cache is:

Dr,c = 2

(
δa + 0 · 1

N
+ δi ·

N − 1

N

)
= 2

(
δa + δi

N − 1

N

)
(6)

The probability that the egress node corresponds to the author-
itative cache is M

N , while the request needs to be forwarded to
another egress node with probability N−M

N . Then, the round
trip time between the cache and the egress node is:

Dc,e = 2

(
0 · M

N
+ δi ·

N −M
N

)
= 2 δi

N −M
N

(7)

Finally, the round trip time between the egress node and the
origin is, by definition:

De,o = 2 δe (8)

The overall delay can then be computed as:

D = Dr,c + (1− h) (Dc,e +De,o) (9)

Substituting Eq. 6, 7 and 8 into Eq. 9, we obtain Eq. 5

C. Ring topology

Another simple topology of practical interest is a ring. This
can accurately model the case of a metro network.

We make the same assumptions of the mesh case, except
that, in this case, we assume that the network has only one
egress node. This is the common case in real applications of
ring topologies.

Theorem 2. The mean content retrieval latency in a ring
topology of N nodes is:

D = 2
[
δa +H δi + (1− h)(H δi + δe)

]
(10)

where:

H =

{
N2−1
4N , if N is odd

N
4 , if N is even

(11)

and h is the overall cache hit ratio and δa, δi and δe are the
latency of access, internal and external links respectively.

Proof. The proof is similar to the one for the full mesh
case. However, differently to that case, caches are not all
interconnected with direct links.

Let H be the average path length (in terms of hops) between
two randomly selected nodes of a ring, also including the case
where origin and destination coincide. This can be trivially
derived as:

H =
1

N

N−1∑
j=0

min (j,N − j) =
1

N

N−1∑
j=1

min (j,N − j)

If N is odd, H can be further simplified as:

H =
2

N

N−1
2∑

j=1

j =
2

N
· 1

2
· N + 1

2
· N − 1

2
=
N2 − 1

4N

while if N is even:

H =
1

N

N
2

+ 2

N
2 −1∑
j=1

j

 =
1

2
+

2

N

[
N

4

(
N

2
− 1

)]
=
N

4

It can be easily observed that the mean round trip time
between a requester and an authoritative cache Dr,c and
between authoritative cache and egress node Dc,e are identical
and are equal to:

Dr,c = Dc,e = 2
(
δa +H δi

)
(12)

while the round trip time between the egress node and the
origin is identical to the case of a mesh network:

De,o = 2 δe (13)

As in the mesh case, the overall delay can then be computed
as:

D = Dr,c + (1− h) (Dc,e +De,o) (14)

Substituting Eq. 12 and 13 into Eq. 14, we obtain Eq. 10.

8

0.5 0.6 0.7 0.8 0.9 1.0
Content popularity skewness - α

70

80

90

100

110

120

130

140

150

160

La
te

nc
y

[m
s]

Sprint
Telstra
EBONE

Model
Simulation

(a) Arbitrary topology

0.5 0.6 0.7 0.8 0.9 1.0
Content popularity skewness - α

5

6

7

8

9

10

11

12

13

La
te

nc
y

[m
s]

M=1
M=8
M=64

Model
Simulation

(b) Mesh topology

0.5 0.6 0.7 0.8 0.9 1.0
Content popularity skewness - α

0

10

20

30

40

50

60

70

La
te

nc
y

[m
s]

N=16
N=32
N=64

Model
Simulation

(c) Ring topology

Fig. 3: Accuracy of latency models

D. Model validation

To demonstrate the accuracy of the three models presented
above, we show in Fig. 3 latencies measured from simulations
and compare them with results from the models. In Fig. 3a we
show the accuracy of the model for arbitrary networks using
three real ISP topologies from the RocketFuel dataset [46].
In Fig. 3b we show the accuracy of the mesh model using a
mesh of 64 nodes and a variable number of egress nodes M .
Finally, in Fig. 3c we show the accuracy of the ring model
using a ring topology with a variable number of nodes N .

In all scenarios, performance is evaluated using a sta-
tionary workload of 1M content items and Zipf-distributed
content popularity with exponent α varying from 0.5 to 1.
We provision networks with a cumulative cache space equal
to 10% of the content population, i.e., 100K items, equally
distributed among caching nodes, all operating according
to the LRU replacement policy. Simulations were executed
issuing 5M requests to warm up caches followed by further
5M requests over which measurements were collected. We
repeated each simulation 10 times using different random
seeds and computed the 95% confidence interval using the
repetitions method. We did not plot error bars because they
were too small to be distinguishable from point markers.

All graphs show an excellent agreement between model
and simulation results under all parameters considered. This
proves not only the accuracy of the latency models, but also
the goodness of our assumptions about cache hit ratio and load
balancing upon which these models are based.

VI. OPTIMAL CACHE PLACEMENT

Based on the modeling presented above we designed a
polynomial-time algorithm to compute the optimal placement
of caching nodes across a network given the target number
of caching locations p, the size of a single caching node S
and the global demand. Its objective is the minimization of
the overall latency assuming, consistently with the rest of the
paper, homogeneous cache hit ratio among caches and uniform
load balancing among caching nodes.

The algorithm, which we present using the same notation
used in Sec. V-A is defined in Fig. 4. The overall cache hit ratio
h, which is an input of the problem, can be easily estimated
either analytically using for example Che’s approximation
[35], [36] or via simulation. As it can be easily observed from

its formulation, the algorithm essentially consists in placing
caches into the candidate nodes with lowest weighted latency
towards requesters and origins. This simple formulation is a
results of the hashrouting property that each request traverses
a single cache, which makes modeling of cache dynamics con-
siderably more tractable than algorithms where each request
can traverse an arbitrary number of caches.

Input:
p number of caching nodes to deploy
h overall cache hit ratio of a cache of size pS subject

to global demand
Output:

cache deployment configuration
Procedure:

1) Compute for each cache candidate node v the cost dv
defined as:

dv =
1

Λ

∑
u∈V

λ(u)δu,v + µ(u)δv,u

2) Sort cache candidate nodes according to their cost dv
3) Place caches on the p nodes with lowest cost d

Fig. 4: Optimal cache placement algorithm

We now prove that the solution provided by this algorithm
is optimal and that the algorithm runs in polynomial time.

Proof of optimality. The cost dv corresponds to the average
latency experienced if node v was the only cache in the system
with size pS. This can be proved immediately comparing its
definition with Eq. 3, 4 and 2. As per the assumptions laid out
above, the overall latency D of a network can be computed
as:

D =
1

p

∑
v∈V

dvXv

where Xv ∈ {0, 1} takes value 1 if a cache is deployed in
node v and 0 otherwise. It is obvious that the solution that
minimizes D satisfying the constraint

∑
v∈V Xv = p consists

in setting Xv = 1 for the p nodes with the lowest cost dv and
Xv = 0 for the remaining nodes.

9

TABLE II: Network topologies

ASN Name Region # PoPs # backbone links
1221 Telstra Australia 104 150

1239 Sprintlink US 315 971

1755 EBONE Europe 87 160

3257 Tiscali Europe 161 327

3967 Exodus US 79 146

6461 Abovenet US 138 371

Proof of polynomial time equivalence. The execution of the
algorithm requires in step 1 the calculation of |V|2 sums, in
step 2 the sorting of |V| values that can be done in at most
O (|V|log|V|) or O

(
|V|2

)
steps depending on the algorithm

used and finally in step 3 the assignment of p < |V| variables.
It can be trivially noted that the overall number of steps to be
executed is O

(
|V|2

)
. Therefore the algorithm has polynomial

time complexity with respect to the number of nodes |V|.

The number of caching nodes to deploy, p, is an input
of the optimization problem, which can be set according to
the requirements of the operator. For example, we can use
the smallest p that guarantees that each caching node is able
to handle the expected peak load. In this case, if R is the
overall peak rate of requests expected by the system and r is
the maximum rate of requests that a single caching node can
handle, then we can select p = dR/re.

In our problem formulation we do not account for link
capacity constraints. The rationale for this decision is that
in normal operational conditions, intradomain network links
operate at a small fraction of their capacity, as we learned
from discussions with a large European ISP operating a CDN
infrastructure. Links operate at high load conditions only in the
case of transient traffic spikes, which are implicitly addressed
by our framework. We validate the robustness of our solution
in terms of link load balancing in Sec. VII-C.

VII. PERFORMANCE EVALUATION

In this section we present the results of our performance
evaluation. We investigate the performance of the algorithms
described in this paper and compare them against previously
proposed techniques under a variety of operational conditions.
We also present how effectively our framework helps fine-
tuning performance.

A. Setup and methodology

We evaluate the performance of our proposed framework
with trace-driven simulations, using the Icarus simulator [47].
We make publicly available all code, data and documentation
required to reproduce the results of this paper in [11].

We performed our analysis using various combinations of
real traffic traces and topologies.

We used six PoP-level ISP topologies from the RocketFuel
dataset [46] annotated with inferred link weights and latencies
(see Tab. II). These six topologies provide a good variety of
network sizes (from 79 to 315 PoPs) and refer to different
geographic regions (US, Europe and Australia). We generate
content requests from clients attached to each PoP with equal

TABLE III: Traces

Trace # requests # items Zipf α Duration
Wikipedia 11,566,029 1,834,747 0.99 1d

IRCache (all) 8,278,100 5,240,029 0.70 2d

IRCache (UIUC) 5,925,463 3,964,700 0.70 1w

rate and assume that all content origins are outside the ISP. We
set the cumulative cache size of the ISP to be equal to 0.1%
of the content catalogue size. Each caching node is equipped
with the same cache size and replaces content items according
to the LRU policy.

We used workloads derived from three real traces (see
Tab. III). For each of these traces, we used the first 25%
of requests to warm up caches and measured performance
over the remaining 75% of requests. The first workload we
used is a 1-day trace containing a sample of 10% of all
requests received by Wikipedia [48]. The other two workloads
are from the IRCache dataset [49], which contains all HTTP
requests collected by a set of proxies deployed at several
universities in the United States. We used two traces from
this dataset. The first, which we labeled IRCache all, is a 2-
day trace collecting all requests coming from seven different
sites. The second, labeled IRCache UIUC is a 7-day trace
containing only requests coming from the proxy deployed at
the University of Illinois Urbana-Champaign.

The traces used for our experiments have different char-
acteristics. The Wikipedia trace has a more skewed content
popularity distribution than IRCache ones, as evidenced by
the greater value of Zipf α parameter (0.99 vs. 0.70). All
traces have a similar amount of requests (6M, 8M and 11M)
but over different time periods (1, 2 and 7 days). As a
result, they have different temporal locality characteristics.
Wikipedia is the most stationary while IRCache UIUC is
the most dynamic. Finally, the two IRCache traces, despite
having similar content popularity skeweness, cover a different
geographic area. IRCache ALL encompasses requests from
seven different regions, while the IRCache UIUC only from
one single campus. We believe this mix of traces covers a
large variety of realistic operational conditions.

We report that for each experiment requiring randomized
configuration (i.e., assignment of contents to origin nodes),
we repeated each experiment 10 times and computed the 95%
confidence interval using the repetitions method. We omitted
to plot error bars if too small to be distinguishable from point
markers. Finally, due to space limitations, we present results
for all 18 topology-workload combinations at our disposal
only in Sec. VII-B. In all other cases, we report that we
observed similar results among all combinations. Therefore
we only present results for the Wikipedia workload, which
we selected because this dataset has the largest number of
requests. Instead, the Telstra, Sprint and EBONE topologies
were chosen because they cover three different geographic
areas (Australia, US and Europe) and also have different sizes.
We finally remark that with the code that we make publicly
available in [11], it is possible to reproduce results for all
topology-workload combinations, even those not reported in
this paper.

10

Telstra Sprint EBONE Tiscali Exodus Abovenet
0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
ac

he
 h

it
ra

tio

Edge
LCE

LCD
ProbCache

CL4M
HR Symm

HR Multicast
HR Asymm

(a) Wikipedia

Telstra Sprint EBONE Tiscali Exodus Abovenet
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

C
ac

he
 h

it
ra

tio

Edge
LCE

LCD
ProbCache

CL4M
HR Symm

HR Multicast
HR Asymm

(b) IRCache (all)

Telstra Sprint EBONE Tiscali Exodus Abovenet
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

C
ac

he
 h

it
ra

tio

Edge
LCE

LCD
ProbCache

CL4M
HR Symm

HR Multicast
HR Asymm

(c) IRCache (UIUC)

Fig. 5: Cache hit ratio

Telstra Sprint EBONE Tiscali Exodus Abovenet
0

20

40

60

80

100

120

140

La
te

nc
y

[m
s]

Edge
LCE

LCD
ProbCache

CL4M
HR Symm

HR Multicast
HR Asymm

(a) Wikipedia

Telstra Sprint EBONE Tiscali Exodus Abovenet
0

20

40

60

80

100

120

140

160

180
La

te
nc

y
[m

s]

Edge
LCE

LCD
ProbCache

CL4M
HR Symm

HR Multicast
HR Asymm

(b) IRCache (all)

Telstra Sprint EBONE Tiscali Exodus Abovenet
0

20

40

60

80

100

120

140

160

180

La
te

nc
y

[m
s]

Edge
LCE

LCD
ProbCache

CL4M
HR Symm

HR Multicast
HR Asymm

(c) IRCache (UIUC)

Fig. 6: Latency

B. Base hash-routing

We begin by analyzing the performance of the three content
routing schemes proposed (i.e., symmetric, asymmetric and
multicast) and compare them against other content placement
strategies across various topologies and workloads. Since for
most of the content placement techniques that we use as
baseline there are no optimized cache placement algorithms,
we present the results referring to a dense cache deployment
(i.e., a cache for each PoP). The results presented here are
simply a lower bound of the performance that our framework
can achieve, since, as we show later, optimal cache placement
further enhance performance.

Fig. 5 shows that hash-routing schemes achieve a con-
siderably higher cache hit ratio compared to other caching
schemes, across all topologies and workloads considered. This
is expected since hash-routing, differently from other schemes,
maximizes the number of distinct content items cached in the
network. Symmetric and multicast routing achieve identical
cache hit ratio by design, since in both cases each cache
miss results in the insertion of the requested content in the
responsible cache.

On the other hand, asymmetric routing achieves better
cache hit ratio than symmetric/multicast routing in the case of
Wikipedia workload and worse in the case of IRCache work-
loads. This difference is explained by the fact that IRCache
workloads have a lower density of requests and span a larger
time period and hence exhibit a less stationary behavior than
Wikipedia traces. With asymmetric routing, content items are
inserted in cache only for a fraction of cache misses, as if

each caching node operated with probabilistic insertion. This
is known to reduce the impact of unpopular contents on LRU
caches leading to a higher steady-state cache hit ratio but
slower convergence. This justifies the better performance with
more stationary workloads and worse performance with more
dynamic ones.

With respect to latency (see Fig. 6), we notice that perfor-
mance achieved by hash-routing schemes are pretty similar to
those achieved by on-path schemes. Under all workloads and
topologies considered, symmetric routing is slower to deliver
content compared to multicast and asymmetric schemes that
always forward content items over the shortest path to the
requester.

The main takeaway is that, even in an unoptimized cache
placement scenario, hash-routing algorithms perform signifi-
cantly better in terms of cache hit ratio (which also leads to
reduced OPEX as a result of lower interdomain traffic) while
still yielding latency values similar to other schemes.

C. Load balancing

In this section, we evaluate the load balancing properties of
our proposed framework, which is designed to balance load
implicitly by uniformly spreading traffic over caching nodes
similarly in principle to Valiant Load Balancing (VLB) [43].

We focus on load imbalance across network links. In
line with previous work [9], [44], we quantify it using the
coefficient of variation1 of link load across all links of the

1The coefficient of variation of a random variable L is the ratio between
its standard deviation and its mean value: cv(L) =

√
Var(L)/E[L].

11

0.5 0.6 0.7 0.8 0.9 1.0
Content popularity skew factor - α

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

C
v
(L

)

LCE
LCD
ProbCache
CL4M
HR Symm
HR Multicast
HR Asymm

(a) vs. popularity skew, Telstra

0.5 0.6 0.7 0.8 0.9 1.0
Content popularity skew factor - α

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

C
v
(L

)

LCE
LCD
ProbCache
CL4M
HR Symm
HR Multicast
HR Asymm

(b) vs. popularity skew, Sprint

0.5 0.6 0.7 0.8 0.9 1.0
Content popularity skew factor - α

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

C
v
(L

)

LCE
LCD
ProbCache
CL4M
HR Symm
HR Multicast
HR Asymm

(c) vs. popularity skew, EBONE

0.0 0.1 0.2 0.3 0.4 0.5
Spatial skew factor - β

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

C
v
(L

)

LCE
LCD
ProbCache
CL4M
HR Symm
HR Multicast
HR Asymm

(d) vs. spatial skew, Telstra

0.0 0.1 0.2 0.3 0.4 0.5
Spatial skew factor - β

1.9

2.0

2.1

2.2

2.3

2.4

2.5

C
v
(L

)

LCE
LCD
ProbCache
CL4M
HR Symm
HR Multicast
HR Asymm

(e) vs. spatial skew, Sprint

0.0 0.1 0.2 0.3 0.4 0.5
Spatial skew factor - β

1.4

1.6

1.8

2.0

2.2

C
v
(L

)

LCE
LCD
ProbCache
CL4M
HR Symm
HR Multicast
HR Asymm

(f) vs. spatial skew, EBONE

Fig. 7: Load balancing across links vs. popularity and spatial skew

network which we denote as cv(L). In addition to analyzing
how well traffic is balanced across links, we also investigate
robustness against variations in content popularity and geo-
graphic distribution of requests.

In order to investigate load balancing against variations
in content popularity, we run experiments in which each
PoP generates requests with equal rates and content popu-
larity following a Zipf distribution with coefficient α that
we vary between 0.5 and 1.0. The greater the value of α,
the more skewed the content popularity distribution. Instead,
to investigate sensitivity against geographic heterogeneity in
content request rates (and hence against the presence of request
hotspots), we run experiments using the Wikipedia workload
but with the rate of requests generated by each PoP not
uniformly distributed, as in the case above. On the contrary,
rates are assigned to PoPs following a Zipf distribution with
coefficient β that we vary between 0 and 0.5. If β = 0, all PoPs
originate requests with equal rates. Incrementing the value of
β increases the difference between request rates across PoPs.

In Fig. 7, we present the results focusing on three Rock-
etFuel topologies. From the graphs it can be immediately
observed that all three hash-routing schemes achieve consider-
ably better load balancing (i.e., lower coefficient of variation)
than all other caching schemes for all topologies and all values
of α and β considered. Among hash-routing schemes, sym-
metric content routing yields the lowest load imbalance. This
is justified by the fact that, differently from other schemes, in
case of cache miss all contents are always delivered through
the responsible cache, hence leading to a greater scattering
of traffic across network links. Finally, it is also worth noting
that hash-routing plot lines are mostly horizontal, meaning that
load imbalance does not vary significantly as α and β change.

This shows that hash-routing load balancing, in addition
to achieving better performance than previous proposals, is
also robust against variations in both content popularity and
geographic distribution of requests.

D. Optimal cache placement and sparse deployment

In this section we show the latency improvement provided
by an optimal placement of caches according to the algorithm
presented in Sec. VI as opposed to a random placement.

To add a further element of comparison, we also analyze
the latency achieved by edge caching with optimal cache
placement. In this case the optimal placement can be mapped
to a p-median location-allocation. We solve it using the
Adjusted Vertex Substitution (AVS) algorithm [50], which is
a recently proposed improvement of the well-known vertex
substitution/interchange algorithm [51].

Results, depicted in Fig. 8, show first of all that optimal
cache placement strongly reduces latency for all topologies
and number of caching nodes considered. When caches are
deployed over few nodes, the latency achieved by random
placement strongly depends on the specific realization, as
shown by the large error bars, which represent standard
deviation across realizations. As the number of caching nodes
increases, latency variability decreases, as the number of possi-
ble combinations diminishes and converges to the performance
of optimal placement when every PoP has a cache.

In addition, these experiments show that optimized hash-
routing achieves considerably lower latency than optimized
edge caching for all topologies and number of nodes consid-
ered. This in particular demonstrates that hash-routing is a
good solution for both sparse and dense cache deployments.

12

20 40 60 80 100
nodes

60

65

70

75

80

85

90

95

100

La
te

nc
y

[m
s]

Hash-routing (Optimal)
Hash-routing (Random)
Edge (Optimal)

(a) Telstra

50 100 150 200 250 300
nodes

70

80

90

100

110

120

130

140

La
te

nc
y

[m
s]

Hash-routing (Optimal)
Hash-routing (Random)
Edge (Optimal)

(b) Sprint

10 20 30 40 50 60 70 80
nodes

55

60

65

70

75

80

85

90

La
te

nc
y

[m
s]

Hash-routing (Optimal)
Hash-routing (Random)
Edge (Optimal)

(c) EBONE

Fig. 8: Performance of cache placement algorithms, Wikipedia workload

1 2 4 8 16 32 64
Degree of replication - k

0.1

0.2

0.3

0.4

0.5

C
ac

he
 h

it
ra

tio

Symmetric
Multicast
Asymmetric

(a) Cache hit ratio

1 2 4 8 16 32 64
Degree of replication - k

75

80

85

90

95

100

105

La
te

nc
y

[m
s]

Symmetric
Multicast
Asymmetric

(b) Latency

1 2 4 8 16 32 64
Degree of replication - k

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

Li
nk

 lo
ad

 [r
eq

s/
s]

Symmetric
Multicast
Asymmetric

(c) Link load

Fig. 9: Performance of multiple replicas, Sprint topology and Wikipedia workload

E. Multiple replicas

The path stretch incurred by hash-routing schemes for
routing traffic through off-path caches may impact latency,
especially in very large topologies. Although the results de-
picted in Fig. 6 show that even in large topologies hash-routing
latencies are comparable to those achieved by other caching
schemes, we argue that it would be beneficial to have knobs
allowing operators to further reduce latency, possibly trading
off cache hit ratio. For this reason, we proposed in Sec. IV-C a
mechanism enabling multiple caching nodes to be responsible
for each content. In this section, we evaluate the performance
of hash-routing schemes with multiple content replicas and
show that by replicating content items more than once it is in
fact possible to improve latency by trading cache hit ratio.

The problem of efficiently assigning content items to caches
with multiple replicas is considerably more complex than
the single replica case. For practical purposes, we propose a
simple placement algorithm to allocate content replicas. First,
we set the degree of replication k (i.e., the number of caching
nodes responsible for each content items). Then we group
nodes in clusters in such a way that the latency among nodes
of the same cluster is minimized. We do so by applying the
Partitioning Around Medoids (PAM) clustering algorithm [52].
Then we map content items to each cluster independently, so
that in each cluster there is one cache responsible for each
content and, therefore, in the entire network there are k caches
responsible for each content, one per cluster. It should be noted
that this algorithm does not ensure that each cluster has the
same or even a comparable number of nodes.

We experimented applying this placement to the largest

topology of the RocketFuel dataset (i.e., Sprint) and testing
it with the Wikipedia workload. We investigated two routing
options: (i) querying all responsible caches on the cluster-level
shortest path from requester to origin and (ii) querying only
the responsible cache belonging to the same cluster of the
requester and, in case of a miss, routing the request to the
origin without querying any other cache.

We observed (but do not present here due to space limi-
tations) that the first option generally yields poor results as
it provides only a marginal reduction in path stretch, not
sufficient to compensate the loss in cache hits. As a result,
increasing the number of clusters leads to both a reduction of
cache hits and an increase of latency and link load. Neverthe-
less, we do not rule out the possibility that a more sophisticated
content-to-cache assignment algorithm could provide better
results. We reserve this analysis for future work.

On the other hand, the second option, i.e., querying only the
responsible cache, provides very interesting results, which we
plot in Fig. 9. As shown in the figure, increasing the number
of replicas reduces the cache hit ratio. This is expected since
the number of distinct content items that the domain can cache
declines. An interesting aspect is that symmetric and multicast
content routing do not necessarily yield identical cache hit
ratios if k > 1. This occurs because, in case of a cache
miss, content items are inserted in the responsible cache of the
cluster to which the requester belongs as well as responsible
caches on other clusters if they occur to be on the delivery
path. This opportunistic insertion in caches of other clusters
depends on the content path, which differs between symmetric
and multicast routing.

Regarding latency, we identify a local minimum correspond-

13

ing to k = 4 for asymmetric and multicast and k = 8 for
symmetric content routing. Further increasing the number of
clusters leads to worse latency because decreasing cache hit
ratio is no longer offset by a substantial reduction in path
stretch.

Link load also decreases by increasing the value of k.
However, differently from the case of latency, there is a local
minimum only for asymmetric routing (for k = 16), while for
symmetric and multicast routing, link load always decreases
as the number of clusters increases.

The main takeaway is that multiple replication of contents
is effective in providing a knob to trade off cache hit ratio with
latency. A small degree of replication is sufficient to achieve
a substantial latency reduction even using simple placement
algorithms such as the k-medoid clustering we proposed.

VIII. RELATED WORK

While we already discussed work related to content caching
and cache placement in Sec. II, we provide here a brief
overview of previous work specifically regarding hash-routing
techniques to better understand the context of our contribution.

As already discussed, hash-routing is a well known tech-
nique widely used in Web caches albeit only in the context
of co-located caches [8], [53]. In this context, a number of
studies focused on designing hash functions that minimize the
number of content items to be remapped as a result of servers
being added or removed to a cluster. Notable proposals include
rendezvous hashing [9] and consistent hashing [10]. These
techniques achieve similar results but using different methods
and can be equally applied to the case of geographically
distributed caches.

Subsequent to our previous work [7], further proposals
have investigated the application of hash-routing techniques
to distributed environments, albeit limitedly to the context of
ICN. Among those there is CoRC [54], which proposes to
use hash-routing techniques among ICN routers of a domain
like our framework, but with the objective of reducing the
size of a forwarding table that each router needs to store by
partitioning it across routers. Saha et al. [55] proposed the use
of hash-routing for cooperative caching but focusing on the
specific use case of inter-AS caching without taking intra-AS
design considerations into account, such as load balancing and
optimization aspects, which our proposal addresses. Therefore
their approach is complementary to ours which focuses on
intra-AS caching. Finally Wang et al. [56] formulated an
optimization algorithm for the assignment of multiple content
replicas to caching nodes operating under symmetric hash-
routing. However, their work requires all caches to operate
according to the LFU replacement policy, which is in practice
scarcely utilized due to its poor reactivity to changes in con-
tent popularity. Differently, the modeling and optimal cache
placement of our framework is applicable to a wider range of
commonly used cache replacement policies, including LRU,
FIFO, RANDOM and also LFU.

IX. SUMMARY AND CONCLUSIONS

We presented a framework for optimal cache and hash-
routing techniques for use in geographically distributed net-

works of caches. We showed that content hash-routing
schemes provide several advantages in comparison to state-
of-the-art techniques.

We showed that the proposed solution achieves excellent
cache hit ratio, hence reducing transit costs and also con-
tributes to reduced content retrieval latency. However, most
importantly and differently from other schemes, hash-routing
techniques have a set of key advantages. First, they are
extremely robust against rapid variation of traffic patterns and
traffic spikes, both in terms of specific cache locations and in
terms of popular content. Second, they distribute traffic evenly
across a network domain, de facto eliminating the possibility
of hot spots. Third, they are easier to model and as a result
provide predictable performance and make cache placement
easier. Their performance predictability and robustness makes
it easier for operators to meet SLAs agreed with customers.
Finally, they provide several knobs to fine-tune performance
metrics depending on the target topology, deployment models
and expected workloads.

Our proposed content placement and routing framework
allows the operator to decide among different variations of
content caching and routing within its domain (symmetric,
asymetric, multicast), potentially assign a part of the caching
space for opportunistic caching in a hybrid fashion together
with the targetted content caching proposed by our framework,
and in the case of a large topology, e.g. for Tier-1 ISPs,
potentially support multiple content replicas to reduce latency.
We believe this to be a holistic framework applicable to both
emerging operator-provided CDNs and also to future ICNs if
these see deployment in the longer term future.

REFERENCES

[1] “Cisco Visual Networking Index (VNI),” https://www.cisco.com/c/en/us/
solutions/service-provider/visual-networking-index-vni/index.html.

[2] “Verizon Digital Media Services,” https://www.verizondigitalmedia.
com/.

[3] “AT&T CDN Services,” http://goo.gl/KxmVAm.
[4] “Level3 Content Delivery Network,” http://goo.gl/p9AyhC.
[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in Proceedings of
the 5th International Conference on Emerging Networking Experiments
and Technologies (CoNEXT’09). New York, NY, USA: ACM, 2009,
pp. 1–12.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.

[7] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for in-
formation centric networking,” in 3rd ACM SIGCOMM workshop on
Information-Centric Networking (ICN’13), Hong Kong, China, Aug.
2013.

[8] K. Ross, “Hash routing for collections of shared Web caches,” IEEE
Network, vol. 11, no. 6, pp. 37–44, Nov 1997.

[9] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings to
increase hit rates,” IEEE/ACM Transactions on Networking, vol. 6, no. 1,
pp. 1–14, Feb. 1998.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web,” in Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC’97). New York, NY, USA: ACM, 1997, pp. 654–663.

[11] “Hash-routing code,” https://www.dropbox.com/s/0x3p0lxxl8u7fri/
hashrouting-code.zip?dl=0.

[12] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,
T. C. Schmidt, and M. Waehlisch, “Information-Centric Networking
(ICN) Research Challenges,” RFC 7927, Jul. 2016.

14

[13] T. Bektaş, J.-F. Cordeau, E. Erkut, and G. Laporte, “Exact algorithms
for the joint object placement and request routing problem in Content
Distribution Networks,” Comput. Oper. Res., vol. 35, no. 12, pp. 3860–
3884, Dec. 2008.

[14] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for
data placement problems,” SIAM J. Comput., vol. 38, no. 4, pp. 1411–
1429, Aug. 2008.

[15] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakr-
ishnan, “Optimal content placement for a large-scale VoD system,” in
Proceedings of the 6th International COnference on Emerging Network
Experiments and Technologies (CoNEXT’10). New York, NY, USA:
ACM, 2010, pp. 4:1–4:12.

[16] A. Sharma, A. Venkataramani, and R. K. Sitaraman, “Distributing
content simplifies ISP traffic engineering,” in Proceedings of the ACM
SIGMETRICS/International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS’13). New York, NY, USA: ACM,
2013, pp. 229–242.

[17] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” in Proceedings of the 29th IEEE In-
ternational Conference on Computer Communications (INFOCOM’10),
March 2010, pp. 1–9.

[18] Y. Li, H. Xie, Y. Wen, C. Chow, and Z. Zhang, “How much to
coordinate? optimizing in-network caching in content-centric networks,”
IEEE Transactions on Network and Service Management, vol. 12, no. 3,
pp. 420–434, Sept 2015.

[19] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas, “Distributed
cache management in information-centric networks,” IEEE Transactions
on Network and Service Management, vol. 10, no. 3, pp. 286–299,
September 2013.

[20] S. Imai, K. Leibnitz, and M. Murata, “Statistical approximation of
efficient caching mechanisms for one-timers,” IEEE Transactions on
Network and Service Management, vol. 12, no. 4, pp. 595–604, Dec
2015.

[21] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Perform. Eval., vol. 63, no. 7, Jul. 2006.

[22] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more” in
information-centric networks (extended version),” Computer Communi-
cations, vol. 36, no. 7, pp. 758 – 770, 2013.

[23] I. Psaras, W. Koong Chai, and G. Pavlou, “In-network cache manage-
ment and resource allocation for information-centric networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 11, pp.
2920–2931, Nov 2014.

[24] D. Tuncer, V. Sourlas, M. Charalambides, M. Claeys, J. Famaey,
G. Pavlou, and F. D. Turck, “Scalable cache management for ISP-
operated content delivery services,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 8, pp. 2063–2076, Aug 2016.

[25] D. Fullagar, “Designing Netflix’s Content Delivery System,” 2014,
uptime Institute Symposium. [Online]. Available: https://youtu.be/
LkLLpYdDINA

[26] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 3, pp. 52–
66, Jul. 2015.

[27] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C.
Li, “An analysis of Facebook photo caching,” in Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP’13). New
York, NY, USA: ACM, 2013, pp. 167–181.

[28] “Google Global Cache,” https://peering.google.com/about/ggc.html.
[29] E. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort

content location in cache networks,” in Proceedings of the 28th IEEE In-
ternational Conference on Computer Communications (INFOCOM’09),
April 2009, pp. 2631–2635.

[30] G. Rossini and D. Rossi, “Coupling caching and forwarding: Benefits,
analysis, and implementation,” in Proceedings of the 1st International
Conference on Information-centric Networking (ICN’14). New York,
NY, USA: ACM, 2014, pp. 127–136.

[31] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “Joint object place-
ment and node dimensioning for Internet content distribution,” Inf.
Process. Lett., vol. 89, no. 6, pp. 273–279, Mar. 2004.

[32] ——, “On the optimization of storage capacity allocation for content
distribution,” Computer Networks, vol. 47, no. 3, pp. 409 – 428, 2005.

[33] N. Belfari Melazzi, G. Bianchi, A. Caponi, and A. Detti, “A general,
tractable and accurate model for a cascade of LRU caches,” IEEE
Communications Letters, vol. 18, no. 5, pp. 877–880, May 2014.

[34] P. R. Jelenković and X. Kang, “Characterizing the miss sequence of
the LRU cache,” SIGMETRICS Perform. Eval. Rev., vol. 36, no. 2, pp.
119–121, Aug. 2008.

[35] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas of Communications, vol. 20, no. 7, pp. 1305–1314, Sep. 2006.

[36] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to
the performance analysis of caching systems,” in Proceedings of the
33rd IEEE International Conference on Computer Communications
(INFOCOM’14), April 2014, pp. 2040–2048.

[37] E. Rosensweig, J. Kurose, and D. Towsley, “Approximate models
for general cache networks,” in Proceedings of the 29th IEEE Inter-
national Conference on Computer Communications (INFOCOM’10),
March 2010, pp. 1–9.

[38] D. Rossi and G. Rossini, “On sizing CCN content stores by exploiting
topological information,” in Proceedings of the 1st IEEE Workshop on
Emerging Design Choices in Name-Oriented Networking (NOMEN’12),
March 2012, pp. 280–285.

[39] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Design and evaluation
of the optimal cache allocation for content-centric networking,” IEEE
Transactions on Computers, vol. PP, no. 99, 2015.

[40] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 568–582,
Oct. 2000.

[41] F. Chen, R. K. Sitaraman, and M. Torres, “End-user mapping: Next gen-
eration request routing for content delivery,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM’15). New York, NY, USA: ACM, 2015, pp. 167–181.

[42] M. Arumaithurai, J. Chen, E. Monticelli, X. Fu, and K. K. Ramakr-
ishnan, “Exploiting ICN for flexible management of Software-defined
Networks,” in Proceedings of the 1st International Conference on
Information-Centric Networking (ICN’14). New York, NY, USA: ACM,
2014, pp. 107–116.

[43] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel
communication,” in Proceedings of the 13th Annual ACM Symposium on
Theory of Computing (STOC’81). New York, NY, USA: ACM, 1981,
pp. 263–277.

[44] L. Saino, I. Psaras, and G. Pavlou, “Understanding sharded caching
systems,” in Proceedings of the 35th IEEE International Conference on
Computer Communications (INFOCOM’16). IEEE, 2016.

[45] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache,
big effect: Provable load balancing for randomly partitioned cluster ser-
vices,” in Proceedings of the 2nd ACM Symposium on Cloud Computing
(SOCC’11). New York, NY, USA: ACM, 2011, pp. 23:1–23:12.

[46] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topolo-
gies with Rocketfuel,” in Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’02). New York, NY, USA: ACM, 2002,
pp. 133–145.

[47] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator for
information centric networking (ICN),” in Proceedings of the 7th In-
ternational ICST Conference on Simulation Tools and Techniques, ser.
SIMUTOOLS ’14. ICST, Brussels, Belgium, Belgium: ICST, 2014.

[48] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp.
1830–1845, Jul. 2009.

[49] “The IRCache project,” http://ircache.net/.
[50] J. Ashayeri, R. Heuts, and B. Tammel, “A modified simple heuristic for

the p-median problem, with facilities design applications,” Robotics and
Computer-Integrated Manufacturing, vol. 21, no. 4–5, pp. 451 – 464,
2005.

[51] M. B. Teitz and P. Bart, “Heuristic methods for estimating the general-
ized vertex median of a weighted graph,” Operations Research, vol. 16,
no. 5, pp. pp. 955–961, 1968.

[52] L. Kaufman and P. J. Rousseeuw, Partitioning Around Medoids (Pro-
gram PAM). John Wiley & Sons, 2008, pp. 68–125.

[53] V. Valloppillil and K. W. Ross, “Cache array routing protocol v1.0,”
Internet Draft draft-vinod-carp-v1-03.txt, February 1998.

[54] H.-g. Choi, J. Yoo, T. Chung, N. Choi, T. Kwon, and Y. Choi, “CoRC:
Coordinated Routing and Caching for Named Data Networking,” in
Proceedings of the 10th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS’14). New York, NY,
USA: ACM, 2014, pp. 161–172.

[55] S. Saha, A. Lukyanenko, and A. Yla-Jaaski, “Efficient cache availabil-
ity management in information-centric networks,” Computer Networks,
vol. 84, pp. 32 – 45, 2015.

[56] S. Wang, J. Bi, J. Wu, and A. Vasilakos, “CPHR: In-network caching
for information-centric networking with partitioning and hash-routing,”
Networking, IEEE/ACM Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

