
Computer Networks 103 (2016) 67–83

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Efficient Hash-routing and Domain Clustering Techniques

for Information-Centric Networks

Vasilis Sourlas ∗, Ioannis Psaras , Lorenzo Saino , George Pavlou

Department of Electronic and Electrical Engineering, University College London (UCL), UK Torrington Place - London WC1E 7JE, UK

a r t i c l e i n f o

Article history:

Received 25 June 2015

Revised 6 January 2016

Accepted 1 April 2016

Available online 8 April 2016

Keywords:

Information-centric networks

Cache aware routing

Off-path in-network caching

Nodal clustering/partitioning

Hash routing

a b s t r a c t

Hash-routing is a well-known technique used in server-cluster environments to direct content requests

to the responsible servers hosting the requested content. In this work, we look at hash-routing from a

different angle and apply the technique to Information-Centric Networking (ICN) environments, where

in-network content caches serve as temporary storage for content. In particular, edge-domain routers

re-direct requests to in-network caches, more often than not off the shortest path, according to the hash-

assignment function. Although the benefits of this off-path in-network caching scheme are significant

(e.g., high cache hit rate with minimal co-ordination overhead), the basic scheme comes with disadvan-

tages. That is, in case of very large domains the off-path detour of requests might increase latency to

prohibitive levels. In order to deal with extensive detour delays, we investigate nodal/domain clustering

techniques, according to which large domains are split in clusters, which in turn apply hash-routing in

the subset of nodes of each cluster. We model and evaluate the behaviour of nodal clustering and re-

port significant improvement in delivery latency, which comes at the cost of a slight decrease in cache

hit rates (i.e., up to 50% improvement in delivery latency for less than 10% decrease in cache hit rate

compared to the original hash-routing scheme applied in the whole domain).

© 2016 Elsevier B.V. All rights reserved.

1

l

i

n

1

f

i

a

c

p

a

a

t

t

t

w

l

N

i

t

d

v

c

n

B

c

t

t

f

r

c

[

l

a

j

f

h

1

. Introduction

Internet usage patterns have been constantly changing over the

ast decades, reaching a situation that was not foreseen when

t was originally designed. The engineering principles underpin-

ing today’s Internet architecture were created in the 1960s and

970s with the assumption that Internet would be mainly used

or host-to-host communications. Instead, nowadays, the Internet

s increasingly being used for content dissemination and retrieval

nd this trend is forecast to continue in the foreseeable future [1] .

This mismatch between the original design assumptions and

urrent usage patterns has partially been addressed through ap-

lication layer solutions such as Content Delivery Networks (CDN)

nd Peer-to-peer (P2P) overlays, which have retrofitted some desir-

ble content-aware functionalities on top of the existing architec-

ure. However, the lack of native network support for content dis-

ribution restricts the efficiency of such approaches, and also po-

entially hinders the evolution of the Internet as a whole.

This has created a trend towards content-oriented networking,

hich has recently been realised through the Information-Centric
∗ Corresponding author. Tel.: +447502586298.

E-mail addresses: v.sourlas@ucl.ac.uk (V. Sourlas), i.psaras@ucl.ac.uk (I. Psaras),

.saino@ucl.ac.uk (L. Saino), g.pavlou@ucl.ac.uk (G. Pavlou).

c

n

t

ttp://dx.doi.org/10.1016/j.comnet.2016.04.001

389-1286/© 2016 Elsevier B.V. All rights reserved.
etworking (ICN) paradigm. Information-Centric Networking, sim-

larly to P2P and CDNs, puts content itself in the forefront of at-

ention when it comes to content delivery. That is, content can be

elivered from any network location/device, provided that this de-

ice holds a valid copy of the requested content.

Extending the P2P paradigm, where mainly end-user devices

an serve requests for content, the ICN paradigm also includes in-

etwork devices, that is router caches, as potential content servers.

ased on this principle, a new field of research has emerged

oined “in-network caching”. The challenges of addressing con-

ent temporarily stored in router-caches (from now on referred

o as routers, or caches), resolving the location of this cache and

etching the content from the corresponding network location has

ecently attracted considerable attention [2] . Such challenges in-

lude caching redundancy, efficiency in utilising in-network storage

3] and replacement of content in caches according to their popu-

arity [4] , to name a few. Last but not least, an ICN network oper-

tes based on packet-sized content chunks , instead of content ob-

ects (or files), as is the norm in case of overlay/proxy caching. This

act adds one more requirement to the operation of in-network

ontent caches - that of line speed operation .

In this paper, we deal with the resolution of requests to in-

etwork content caches in domain-wide environments and the op-

imisation of the resolution process in order to increase cache hits,

http://dx.doi.org/10.1016/j.comnet.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.04.001&domain=pdf
mailto:v.sourlas@ucl.ac.uk
mailto:i.psaras@ucl.ac.uk
mailto:l.saino@ucl.ac.uk
mailto:g.pavlou@ucl.ac.uk
http://dx.doi.org/10.1016/j.comnet.2016.04.001

68 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

Fig. 1. Hash-routing Functional Architecture and Symmetric/Asymmetric options for Request and Content Routing.

m

i

(

b

f

a

n

b

t

b

r

i

m

c

fi

n

r

f

l

l

i

t

f

1

t

s

i

a

c

b

w

t

a

c

[

n

c

u

n

c

n

i
but also keep the latency needed to reach the cache under cer-

tain limits. Our cache-aware routing scheme utilises hash-routing

techniques, which have been proposed in the past for mapping

requests to physically co-located servers [5,6] . According to hash-

routing, each element within the network (be it servers in server-

racks, or routers within a domain network) are assigned with a

range of the hash space and store the content items whose hashed

identifiers fall within the node’s hash space. In contrast to al-

ternative architectural proposals according to which extra resolu-

tion steps are essential (e.g. , [7–9]), this operation avoids complex

request-to-cache resolution and minimises signalling overhead (the

only overhead is the calculation of the hash function itself).

1.1. Background on hash-routing

Similar to the work in [10] , we also target here domain-wide

ICN deployments, where a content naming scheme, flat or hier-

archical, is in place. Also, the edge-domain routers implement a

hash function that determines both the content placement and

the request-to-cache routing process. In particular, when an edge

router receives a content request, calculates the hash of the con-

tent identifier and redirects it to the responsible cache. If the re-

quested content is cached in the corresponding router, the content

is returned to the client, otherwise, the request is forwarded to-

wards the original server. In a similar way, incoming content items

responded for the origin server are forwarded for caching (or not)

according to the hash of their identifier. As it is described in [10] ,

the main concept underpinning our approach is that a content can

be opportunistically found in a domain only in the cache calculated

by the hash function .

The hash-routing schemes proposed in this paper require edge-

domain routers and cache nodes to implement a hash function

which maps content identifiers to cache nodes. This function is

used: (i) by cache nodes to identify the set/range of content iden-

tifiers or names that they are responsible for, and (ii) by edge

routers to route requests to the corresponding cache node (see

Fig. 1 (a)). As a result of this approach, each content object can

be cached in a domain at most once, thus preventing redundant

replication of cached content and resulting in more efficient util-

isation of cache space. This approach also allows edge routers to

forward content requests to the designated cache directly, without

performing any lookup. In addition, the intra-domain forwarding

procedure is performed without requiring any sort of inter-cache

co-ordination since the hash function can be computed in a dis-

tributed manner by edge routers and caches, thus being scalable

to any domain size.

The hash function maps a content identifier (flat or hierarchical)

to a caching node of the domain. Such function does not need to

produce a cryptographic hash. In fact, it is desirable for its output

to be produced with minimal processing as long as it is capable of
apping content items to cache nodes so that the load of caches

s evenly spread.

For example, in case of human-readable identifiers, like URLs

RFC 3986, [11]), content items can be mapped to caching nodes

y hashing their identifiers using fast non-cryptographic hashing

unctions such as Murmur, Jenkins, xxHash, CityHash and CRC32

nd then applying modulo hashing over the number of caching

odes. In case of binary content identifiers, such as those defined

y RFC 6920 [12] , modulo hashing can be applied directly on con-

ent names.

Consistent hashing [6] may also be used to minimize the num-

er of items to be remapped as a result of failures or additions or

emovals of caching nodes. The choice of the specific hash function

s out of the scope of this paper, since it does not affect the opti-

isation process proposed here, and each network manager can

hoose the one that fits its own specifications.

In [10] , we have designed and evaluated the performance of

ve different algorithms that take advantage of hash-routing tech-

iques in ICN environments. The differences between the five algo-

ithms proposed in [10] lie in the routing and replication process

ollowed for requests and content objects, respectively. In particu-

ar, it is clear from Fig. 1 (b) that hash-routing techniques can fol-

ow symmetric or asymmetric paths to deliver the content. In the

nterests of space, we omit the details of the different hash-routing

echniques investigated in [10] and refer the reader to that paper

or further details.

.2. Contributions

Hash-routing falls in the group of off-path in-network caching

echniques, as opposed to on-path in-network caching (e.g. , [3,13] -

ee further discussion in Section 2), according to which content

s fetched from caches, only if the request “hits” the content

long the path to the content origin. Although on-path in-network

aching techniques by definition do not require any co-ordination

etween cache nodes, they result in suboptimal performance, as

e have already demonstrated in [10] . In contrast, off-path caching

echniques improve performance in terms of cache hits, but come

t the cost of extra coordination, e.g., [7,14] .

Hash-routing techniques clearly improve the performance of the

ache network in terms of cache hits, as shown extensively in

10] and at the same time require minimal co-ordination among

etwork nodes. However, this increase in cache-hits comes at the

ost of increased latency caused by the detouring required to look

p the responsible cache. This tradeoff is clearly affected by the

umber of extra hops to be travelled off-path to find the cached

ontent. In case of a small network/domain, this latency might be

egligible, but as the size of the network increases (and depend-

ng also on topological characteristics, such as the density of the

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 69

n

c

t

n

t

“

n

m

d

i

l

f

a

t

o

m

2

t

G

p

d

r

e

t

c

2

n

i

a

i

b

c

c

h

o

“

t

t

2

c

t

c

P

o

r

r

p

C

c

f

t

o

c

2

s

c

f

c

t

f

l

p

t

i

t

t

[

r

d

t

r

c

c

i

t

p

c

2

c

m

a

o

r

i

c

h

t

b

[

t

c

t

w

t

c

c

o

e

b

r

r

h

u

r

h

W

a

t

w

a
etwork graph, its diameter, etc.), the increase in latency might be-

ome prohibitive.

Building on this tradeoff, in this paper, we investigate the po-

ential of partitioning the network using node clustering tech-

iques to keep the latency under certain bounds. We introduce

he system model in Section 3 . We make use of the well known

k -split clustering” [15,16] and “k -medoids clustering” [17] tech-

iques and we also introduce a new “Bin packing content assign-

ent function” (Section 4). Our results show that by splitting large

omains in clusters the latency to hit and deliver cached content

ndeed drops. Inevitably and expectedly, this comes at the cost of

ower cache hit rates (up to 50% improvement in delivery latency

or less than 10% decrease in cache hit rate). The choice of whether

n ISP makes use of hash-route clustering and which clustering

echnique to use depends on the interests and the business model

f the particular ISP. We finally lay down the options different ISPs

ight have according to domain sizes.

. Related work

The topic of in-network content caching has received wide at-

ention recently in the context of Information-Centric Networks.

enerally speaking, and according to [2] , the in-network caching

roblem can be split in three distinct subproblems, which we next

iscuss in turn. These are the allocation of caches to network

outers and the economic incentives of ISPs and other market play-

rs to adopt the new networking paradigm; the placement of con-

ent into the caches and the subsequent discovery and retrieval of

ontent from the network caches.

.1. Cache allocation and economic incentives

First and foremost comes the issue of allocating cache space in

etwork routers. This includes both the capital expenditure needed

n order to place cache memory in routers, but also the decisions

s to where should memory be allocated inside the network.

The economic implications of in-network caching have been

nvestigated in recent studies, focusing on the incentives needed

y ISPs and content providers to deploy and operate in-network

aches [18–20] . Furthermore, inter-ISP issues related to in-network

aching (e.g., savings from transit traffic) and new pricing models

ave been investigated in [20–22] . Motivated by similar concerns

n the cost implications of caching, the authors in [23] design a

Cost-Aware cache decision policy”, based on which caches hold

he content that will bring the most savings to the ISP in terms of

ransit traffic.

.2. Content placement

The content placement problem deals with the placement of

ontent in caches. The placement can be either proactive or reac-

ive . In proactive content placement , the operator decides on which

ontent should be cached where in an offline manner [24–26] .

roactive caching has been extensively used in CDN networks and

verlay cache networks. In Information-Centric Networks, instead,

eactive content placement is the dominating strategy. Among other

easons, this is because caching and data retrieval operations hap-

en at line-speed. This is in contrast to CDN settings, where the

DN operator can place/cache and migrate content proactively ac-

ording to expected demand. As such, most works in this area have

ocused on placing content in in-network caches in order to op-

imise traditional caching metrics such as delivery latency based

n content popularity assessment [4,27] , content locality [28] , or

ache redundancy and cache resource management [3,13] .
.3. Request to cache routing

After proactively or reactively placing content in caches, the

ystem needs to poses the right mechanisms in order to direct

ontent requests to the right cache. Request to cache routing can

ollow one of two approaches, either opportunistic on-path , where

ontent is searched on-path as the request is travelling towards

he content source, or co-ordinated off-path , where requests are

orwarded off the shortest path to some designated cache that is

ikely to hold this content. The most prominent solution to this

roblem is to hold an extra routing table which maches requests

o content items cached in nearby nodes. Representative proposals

n this space are [29–31] and [32] .

The techniques proposed in [7,8] and [14] use co-ordination

echniques between the data and the control plane to place con-

ent and re-direct requests to the corresponding caches. Finally, in

33] two methods are proposed to route requests to the nearest

eplica of a content by either flooding requests or meta-requests to

iscover the content location. We argue that such approaches in-

roduce considerable amounts of overhead and delay and as such

esult in inherently less scalable solutions. Last but not least, re-

ently, the authors in [34] have proposed scoped flooding-based

ontent discovery. The proposal includes a ring model, which lim-

ts the spread of the flood to the neighbourhood. The results show

hat although there is some overhead, the scoped-flooding ap-

roach is far from prohibitive and can in fact scale and achieve

onsiderable gains.

.4. Balancing tradeoffs

Both on-path and off-path caching present trade-offs. On-path

ontent caching requires less co-ordination and management, but

ay provide limited gains. Conversely, off-path content placement

nd retrieval can attain higher hit rates at the cost of extra co-

rdination and communication overhead. Co-ordination overhead

efers to the decision making process of where to cache incom-

ng content, as well as to the forwarding rules that (re-)direct in-

oming requests to cached content [35,36] . Communication over-

ead, on the other hand, refers to the redirection of requests and

he retrieval of content from off-path caches, which involve possi-

ly traversing longer paths and therefore, increasing network load

7,35–37] .

Hash-routing techniques are off-path caching techniques, but

he adoption of a hash function to determine the location of

ached content eliminates the need for inter-cache co-ordination

ypical of other off-path caching techniques. Hash-routing is a

idely used technique in the context of Web caches [5,6] , but only

o route requests among co-located nodes.

In [10] , we showed that hash-routing techniques can be suc-

essfully used in a domain-wide ICN environment to maximise

ache hits without any co-ordination requirement. Subsequent to

ur work, similar techniques have been proposed. CoRC [9] , for

xample, proposes to route content requests based on their hash,

ut with the specific purpose of reducing the size of routing tables

ather than improving caching efficiency.

In this work, we further extend the state of the art in hash-

outing techniques by providing a practical way to bound latency,

ence making it suitable for topologies of arbitrary size. In partic-

lar, we argue that in case of large network domains, the hash-

oute-based re-direction of requests results in very long paths,

ence, prohibitively increasing the latency to reach cached content.

e therefore, introduce domain clustering techniques, which are

pplied in an offline manner and split the domain in smaller clus-

ers. In turn, each cluster is in charge of a separate hash-function

hich only applies to the specific nodes in that cluster. We argue

nd show that domain clustering reduces excessive latency, due to

70 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

c

c

S

s

w

m

t

T

p

i

w

w

r

r

P

N

t

o

i

a

u

s

i

a

c

a

i

t

t

(

i

M

r

h

t

t

l

t

c

c

D

c

u

r

D
hash-routing, but at the same time achieves considerable cache hit

rate performance.

3. System model and problem formulation

We consider an information-centric network of arbitrary topol-

ogy, which can be represented as a graph G = (V, E) . Let V denote

the set of ICN routers and E the set of communication links con-

necting them. Let also C v be the storage capacity (in bits) of router

v ∈ V . Throughout the paper we will use the calligraphic letters to

denote sets and the corresponding capitals for cardinality; for ex-

ample |V| = V .

Let M denote a given and fixed set of M content items that

have to be delivered over the network. Throughout this paper, we

assume that all items are of equal size and all nodes have the

same storage capacity (C v = C, ∀ v ∈ V) 1 . We normalise the size of

each item to one unit with respect to node’s storage capacity (s m =
s = 1 , ∀ m ∈ M) and, hence, each node can hold up to C different

unit-sized items. Note that the NDN [38] information-centric archi-

tecture segments content items into smaller, individually-named,

pieces to allow flexible distribution and receiver-driven flow con-

trol.

Upon receipt of a request, an edge router calculates the hash of

the content identifier and forwards it to the responsible cache. In

the case of cache hit, the content is returned to the client, other-

wise the request is forwarded towards the original server. We de-

note by o = { o 1 , . . . , o M } the set of origin servers for every content

item, where o m / ∈ V the origin server regarding information item

m ∈ M (typically a node outside the examined domain). We also

denote with e = { e 1 , . . . , e M } the egress nodes for every content

item, where e m ∈ V is the domain node through which a request

will be forwarded towards the item’s origin server o m .

Content requests are generated with rate r v = { r 1 v , . . . , r
M

v } ,
where r m

v denotes the aggregate incoming request rate (in requests

per second) generated by users attached at node/cache v for item

m . Vector r v is an estimate of the actual request pattern based on

observed, historical content access data (within a given time win-

dow). This estimate is used as a prediction for the future number

of requests addressed to each node. The optimal way to perform

this estimation is out of the scope of this paper, but we adopt

an approach similar to [39] , using an exponential moving average

function in each measurement window.

We approximate item popularity by a Zipf law distribution of

exponent z [40,41] . Generally, the popularity of each content item

may differ from one geographic location to another, a phenomenon

that is referred to as locality of interest (spatial skew in [42]). In

our model, this is captured through a localised request genera-

tion model, where the aggregate request pattern r v is different

across regions. We assume V different regions each served by an

ICN router. All regions are characterised by the same value for the

Zipf distribution exponent which captures the global popularity of

items and at each region the ranking/order of the items within the

Zipf distribution is different, which captures the different locality

of interests.

A given hash assignment function ρ maps a content item iden-

tifier to a cache/node in the domain. Let binary matrix Y (ρ) ∈
{0, 1} M × V denote hash mapping y m

v (ρ) ∈ { 0 , 1 } on whether con-

tent item m is mapped to node v according to the hash assign-

ment function ρ . Ideally, the used hash function should be capable

of mapping content items to caches so that the load of caches is

evenly spread and the items are cached as close as possible to the

requesting users. In order to increase the utilisation of the intra-

domain cache space, we assume that each content item can be
1 In the evaluation section we also consider a scenario with different storage ca-

pacities among the nodes of the network.

o

D
ached in a domain at most once, thus preventing redundant repli-

ation of the items and increasing the cache hit within the domain.

o in this paper we assume that
∑

v ∈V y m

v (ρ) = 1 , ∀ m ∈ M . The

ame equation also holds in the partitioned domain (see Section 4),

herein this case an item is cached at each cluster/sub-domain at

ost once.

We denote by p m

v (t) ∈ { 0 , 1 } the probability of finding informa-

ion item m cached in the domain’s node v at time t , where y m

v = 1 .

his probability is a function of the dynamics of the content item’s

opularity assigned to the corresponding cache node, the dynam-

cs of the popularity of all the items assigned to the same node, as

ell as the cache size of the corresponding node. In other words:

p m

v (t) = f (̂ r m

v , r
′ , Y (ρ) , P v (ρ) , C) (1)

here: (1a)

ˆ

m

v =

∑

j∈V
r m

j , (1b)

′ =

{ ∑

j∈V
y 1 j r

1
j , . . . ,

∑

j∈V
y M

j r
M

j

}

, (1c)

 v (ρ) =

M ∑

i =1

y i v . (1d)

ote that P v (ρ) is the set of items that the hash assignment func-

ion ρ has assigned to node/cache v , and P v (ρ) is its cardinality.

When the capacity of a cache node v is larger than the total size

f the content items that the utilised hash function has assigned to

t (C ≥ P v (ρ)), then the p m

v (t) probability is always equal to one. In

 real scenario, however, the total cache capacity of the domain is

sually smaller than the total size of the information space and as

uch the hash function assigns to a cache more items than those

t can permanently store. Generally, the amount of items that are

ssigned by a hash function at each cache is a function of the total

apacity of the domain. For example, a modulo-like hash function

ssigns P v ≈ C v
M ∑

v ∈V C v
=

M

V items at each cache node v ∈ V, assum-

ng equal cache capacity among the network nodes. In those cases

he probability of finding an item at a cache is a time varying func-

ion that depends on various network dynamics as shown in Eq.

1) . The evolution of an information item cached in a node assum-

ng an LRU replacement strategy can be modelled as an absorbing

arkov chain; in [43] we provide a thorough analysis of the time

equired for an item cached at a node to be discarded. On the other

and, an exact formula for probability p m

v (t) cannot be exported by

he analysis of such a Markov chain, since this relies not only on

he dynamics of the items assigned to a cache but also on the evo-

ution of an item within the cache itself (e.g. , in which position is

he item located and which items are in front or behind it in the

ache) [44] .

A request for content item m generated at node u at time t , in-

urs a cost equal to D vu (t), if served by node v (y m

v = 1). Parameter

 vu (t) captures the cost (e.g., latency, monetary cost) of transferring

ontent from node v to node u when the request is issued from a

ser attached at node u at time t . In this work, we consider the

etrieval latency as one of our basic metrics and we have:

 v u (t) =

{
d v u if p m

v (t) = 1 ,

d e m u + d o m e m if p m

v (t) = 0 ,
(2)

r else

 v u (t) = d v u · p m

v (t) + (d e m u + d o m e m) · (1 − p m

v (t)) , (3)

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 71

Fig. 2. Per item average cache hit probability for various number of items assigned at a node of given storage capacity and for two skewness parameters for the input

Zipf-distributed demand.

w

W

t

n

f

c

a

l

v

r

o

m

t

o

D

a

f

(

s

a

C

a

t

c

f

t

q

v

c

i

s

T

i

a

t

m

w

a

p

m

T

d

m

c

b

t

b

t

t

l

t

a

i

K

i

b

a

Z

o

f

p

c

r

a

n

m

h

m

d

w

p

r

m

t

I

a

n

4

b

c
here d vu is the actual latency (in ms) between nodes v and u .

hen an item is not cached within the domain it is fetched from

he corresponding origin node through the corresponding egress

ode.

From Eq. (3) it is obvious that the incurred latency is also a

unction of the capability of a domain to cache content, the effi-

iency of the used hash function (how far is the requested item

ssigned from the area of interest) and the size of the domain (the

arger the domain, the larger the distance between its nodes).

The main contribution of this paper is based on this last obser-

ation. Since the distance that a request has to travel before it can

each the node responsible for caching the hashed identifier depends

n the size of the domain, we address this issue by splitting large do-

ains in smaller hash-routing clusters. In the following, we discuss

he algorithms used for domain clustering, as well as the specifics

f the hash-assignment functions used in this study.

iscussion

Deriving an exact, closed-form equation for p m

v (t) is subject of

 separate study and hence, out of the scope of this paper. There-

ore, here, in order to better understand the correlation between:

i) the storage capacity of a node, (ii) the population of items as-

igned at each cache, and (iii) the probability of finding an item

t a cache, we use the analysis presented in [45] (also known as

he’s approximation), for obtaining approximate hit/caching prob-

bilities of the LRU replacement algorithm. Che’s approximation in-

roduces the concept of characteristic time ct m

of each item m in a

ache, which corresponds to the time spent by an item in a cache

rom insertion to eviction. In other words is the time needed for

he P v − 1 remaining items stored in a cache (above m) to be re-

uested C v times and thus evict item m from the cache of node

 , given that item m is not re-requested within this interval. The

haracteristic time is a random variable specific to each item, but

n [45] a mean field approximation is used to derive a single con-

tant characteristic time for all items of a cache (ct m

= ct, ∀ m ∈ P v).

his approximation has been shown to be very accurate under var-

ous conditions [46] .

The characteristic time ct of a cache v of size C v items subject to

 stationary demand of the items �v = { π1
v , π

2
v , . . . , π

m

v , . . . , π
P v
v } is

he value ct for which:

P v ∑

 =1

1 − e −πm
v ct = C v ⇒

P v ∑

m =1

e −πm
v ct = P v − C v , (4)

here πm

v is the request probability of item m .

The characteristic time can then be used to compute the aver-

ge cache hit probability for each item. For example, the cache hit

robability of item m at cache v assuming an LRU cache replace-
ent strategy is:

p̄ m

v = 1 − e −πm
v ct . (5)

he above approximation is for LRU caches, but in [47] authors

emonstrated its applicability to a large variety of cache replace-

ent policies including FIFO, Random and k -LRU.

Although Che’s approximation is a tractable and remarkably ac-

urate approximation, it does not allow to express cache hit proba-

ility in a closed form. This is because Eq. (4) cannot be formulated

o as a function of the characteristic time, which instead needs to

e computed numerically. A closed-form formula for the compu-

ation of the average cache hit probability is derived in [48] , al-

hough it is valid only under the assumption that content popu-

arity is Zipf-distributed. The closed form formula is the solution

o a K -order polynomial equation, which can be solved in arbitrary

ccuracy by increasing K . Due to space limitations, we refer the

nterested reader to [48] for the exact formula when K = 2 and

 = 3 . Instead, here, we present in Fig. 2 the hit probability of each

tem for a given storage capacity per node and for different num-

er of items P v assigned at each node. We present the hit prob-

bility for two skewness parameters, z = 0 . 1 , z = 0 . 7 for the input

ipf-distributed demand.

From Fig. 2 , as well as from the analysis presented above we

bserve that as we increase the number of items that are assigned

or caching at each node (due to limited number of nodes to ap-

ly the hash function) the corresponding cache hit probability de-

reases significantly. According to Eq. (3) , this leads to increased

etrieval latency. Despite the fact that the analysis in [48] requires

 power law demand for the set of items that are assigned at each

ode and, hence, cannot be directly applied here, it is a useful

echanism to better comprehend the trade-off between the cache

it ratio and the incurred retrieval latency. This will become even

ore clear in the performance analysis later on. Note here that

ue to the strict requirement for power law demand distribution

e cannot use the analysis in [48] as an alternative and further

rovide the possible performance gaps to be obtained between the

esults from a general case and that from the Zipf-distributed de-

and. The closed form formula in [48] can only be used in the ex-

reme case where we partition a network of V nodes in V clusters.

n that extreme scenario all the items are assigned at each node

nd the power law demand distribution of the requests at each

ode is the same with the demand at the corresponding cache.

. Nodal partitioning and hash routing

From the above analysis it is evident that there exists a trade-off

etween the cache hit ratio (probability of finding a requested item

ached within the domain i.e., Eq. (1)) and the incurred latency for

72 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

f

t

w

i

o

w

l

E

t

t

a

o

t

c

Algorithm 1 k -split Algorithm

Require: V : number of nodes

k : number of clusters

I: matrix with pairwise similarity metrics of nodes (v 1 , v 2)
Ensure: The contents of each cluster K i { i th cluster}

v j {node j}

h i {first node/head of cluster i }

SET h 1 = v 1 ; K 1 ← { v 1 , . . . , v V }
for l = 1 to k − 1 do

FIND d ← max { I(h j , v i) | v i ∈ K j and 1 ≤ j ≤ l}
LET v i the node that has the maximum distance d

PLACE v i to K l+1

SET h l+1 = v i { v i is the first node/head of cluster l + 1 }

for v t ∈ (K 1 ∪ · · · ∪ K l) do

LET j is the cluster that v t ∈ K j
if I(v t , h j) ≥ I(v t , v i) then

PLACE v t from K j to K l+1

end if

end for

end for

RETURN (K 1 , . . . , K k)

Algorithm 2 k -medoids Algorithm

Require: V : number of nodes

k : number of clusters

I: matrix with pairwise similarity metrics of nodes (v 1 , v 2)
B : matrix with the betweenness centrality of nodes (or avr. distance)

Ensure: The contents of each cluster K i { i th cluster}

v j {node j}

m i {first node/medoid of cluster i }

for l = 1 to k do

FIND argmax
v j

(B) {find the nodes with the largest bet. centr.}

SET m l = v j and B j = 0 {assign the medoids of the clusters}

PLACE v j to K l
end for

for j = 1 to V do

SET D = [0 , 0 , . . . , 0] { D has k entries}

for l = 1 to k do

SET D (l) = I(m l , v j)
end for

FIND argmin
l

(D) {the cluster that the node is closer to its medoid}

PLACE v j to K l
end for

RETURN (K 1 , . . . , K k)
the retrieval of an item (i.e., Eq. (3)). In particular, for a given hash

function ρ and a given total amount of cache deployed in some do-

main, the larger the domain, the larger the overall cache capacity

(assuming equal cache capacity among the network nodes), which

means less items assigned to each node (P v (ρ) , ∀ v ∈ V) something

that in turn increases the overall cache hit ratio (i.e., p m

v , ∀ v ∈ V
and ∀ m ∈ M). On the other hand, larger domains implies larger

intra-domain distances/latencies between the node issuing a re-

quest and the node where the item is assigned.

In this section we describe a method to significantly decrease

the retrieval latency of a content item at the expense of a tolera-

ble decrease in the cache hit ratio for a given hash function. We

also introduce a new offline centralized content assignment func-

tion (in Section 4.2) that further reduces the content retrieval la-

tency and enhances the load balancing capabilities of the under-

lying routing scheme at the cost of increased cache co-ordination

among nodes, retaining at the same time similar cache hit ratio

performance with other more distributed hash functions (e.g., ran-

dom or modulo hash functions).

4.1. Domain clustering/partitioning techniques

We make use of algorithms originally proposed in the area of

data mining to leverage the above mentioned trade-off. Specifically,

partitioning/clustering of the domain into clusters/sub-domains

based on certain similarity metrics can both significantly reduce

the average retrieval latency of an item and retain a large cache

hit ratio.

Partitioning a domain of V nodes into N clusters facilitates hash

routing at cluster-level. Thus, it can substantially reduce the size

of the sub-domains decreasing in that way the distance between

the requesting and the serving nodes. On the other hand, the ap-

plication of a hash function at a smaller set of nodes means that a

larger set of items is assigned at each node, something that might

decrease the cache hit ratio of the system, deteriorating the effi-

ciency of the hash routing technique.

4.1.1. k -split domain clustering

The problem of clustering a set of nodes in a set of N clus-

ters is generally NP-hard [49] . Here, we use a well defined low-

complexity clustering scheme from the literature as one of our

partitioning techniques. Particularly, we adopt the k -split cluster-

ing algorithm proposed in [15] and [16] in order to partition the

initial domain. The k -split algorithm clusters the domain into k

clusters and its objective is to minimise the maximum inter-cluster

distance based on a similarity metric. This means that initially

a representative similarity index I (metric) has to be derived for

the nodes of the domain in order to partition the nodes in sub-

domains. In this paper we use two different similarity metrics

alongside with the k -split algorithm.

Similarity metrics

In its simplest form, the actual topological latency/distance be-

tween two domain nodes can be considered as a single dimen-

sional feature for clustering. In this case, similarity of two nodes

v 1 and v 2 is captured by their topological distance (e.g., hop count,

latency, etc.) as,

I dist (v 1 , v 2) = d v 1 v 2 . (6)

The usage of the above metric alongside with the k -split cluster-

ing algorithm produces sub-domains, where the distance of a node

v that belongs at cluster n ∈ N from the other nodes within the

same cluster n is always smaller than the distance of the same

node v from any other node belonging to any of the rest of the

clusters N \ { n } .
Generally though, calculating similarity over a more detailed

eature set captures characteristics more precisely and enables us

o address the spatial variation of request rates r v . In this direction,

e consider a hybrid similarity metric based both on the topolog-

cal distance as above, but also on the pairwise Euclidean distance

f the content popularity at each node of the network, i.e.,

I w . pop (v 1 , v 2) = (1 − w)
d v 1 v 2

max
v ∈V

(d v 1 v 2)

+ w

(√ ∑

m ∈M

(
r m

v 1 − r m

v 2

)2

)−1

max
v ∈V

(√ ∑

m ∈M

(
r m

v 1 − r m

v 2

)2

)−1
,

(7)

here w ∈ [0, 1] is a weight for favouring either the relative topo-

ogical distance between the nodes of the network or the relative

uclidean distance between the content popularity (request pat-

ern) at those nodes. The usage of the Euclidean distance of con-

ent popularity transforms the Euclidean space of popularity into

 metric space that can be combined with the topological distance

f two nodes in the network.

Summarising, the k -split domain clustering algorithm enabling

he above metric (I w.pop) forms clusters where the nodes of each

luster are not only in close proximity to each other, but also

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 73

g

w

4

g

m

d

d

g

r

m

t

o

s

n

e

t

i

t

a

m

s

d

r

p

o

D

g

t

c

a

w

t

a

w

g

o

s

k

i

d

m

c

t

p

s

g

t

k

o

i

u

t

c

4

c

i

t

t

d

o

s

t

c

c

p

s

t

i

s

t

n

g

n

a

n

s

i

c

s

a

t

p

s

d

S

B

o

fi

c

q

a

d

w

p

b

f

t

t

R

r

b

m

o

u

t

w

c

I

t

r

m

o

(
roups users with similar request patterns as well. In Algorithm 1

e present in pseudo-code the k -split clustering algorithm.

.1.2. k -medoids domain clustering

We also make use of a second well-defined low-complexity al-

orithm for the partition of the domain. Particularly we use the k -

edoids clustering algorithm [17] , which attempts to minimise the

istance between nodes belonging to the same cluster and a node

esignated as the centre of that cluster. To run the k -medoids al-

orithm, we need to initially select the k nodes that will play the

ole of the centre of each cluster. Here we use the graph-based

etric of betweenness centrality in order to find the k cluster cen-

res. We remind that the betweenness centrality is an indicator

f a node’s centrality in a network. It is equal to the number of

hortest paths from all vertices to all others that pass through that

ode. A node with high betweenness centrality has a large influ-

nce on the transfer of items through the network. After electing

he k nodes with the largest betweenness centrality and assign-

ng them as the centre of each cluster, we associate each one of

he rest of the nodes (V − k) to the closest medoid, based on their

ctual topological distance (i.e., d uv). If a node is equally close to

ore than one cluster centres, we assign it to the cluster with the

mallest population of nodes.

Originally, the k -medoids algorithm (a.k.a. PAM algorithm) ran-

omly select k out of the V nodes as the medoids and clusters the

est of the nodes according to the selected similarity metric. This

rocedure is followed iteratively for every combination of k out

f V nodes and the configuration with the lowest cost is selected.

ue to the exhaustive search approach though, the k -medoids al-

orithm can significantly affect the complexity of the network par-

itioning procedure and for that reason we used the betweenness

entrality attribute of the nodes, for the election of the medoids

s a way to further reduce its complexity. For comparison reasons

e also present in the performance evaluation section another al-

ernative for the election of the medoids. Particularly, we use the

verage distance of a node towards every other node in the net-

ork as the metric for the election of the k cluster centrers, but in

eneral we left for future investigation the performance analysis of

ther variations of the used clustering algorithms, as well as other

imilarity metrics. In Algorithm 2 we present in pseudo-code the

 -medoids clustering algorithm.

Clustering of large data sets into subsets, where the members

n a cluster are more similar to each other than the members in

ifferent clusters, is a well investigated issue in the area of data

ining. According to the method adopted to define clusters, the

lustering algorithms can be broadly classified into four types (Par-

itional, Hierarchical, Density-based and Grid-based). For the pur-

ose of this paper partitional clustering is the most suitable type,

ince the algorithms of this type attempt to determine an inte-

er number of partitions that optimise a certain criterion func-

ion. Also, the two used members of this type (i.e., k -means and

 -medoids) are the most commonly used and they provide near

ptimal clustering, presenting at the same time low complexity of

mplementation. Of course, different clustering algorithms can be

sed for the partitioning of the domain, but due to space limita-

ions this is left for future investigation. An overview of existing

lustering schemes can be found in [50] .

.2. Content-to-cache mapping function

Once the sub-domains have been determined, an appropriate

ontent-to-cache mapping function ρ should assign the content

dentifier of each item to a node of each sub-domain. As men-

ioned earlier, such function does not need to produce a cryp-
ographic hash. In fact, it is desirable for its output to be pro-

uced with minimal processing. For example a modulo hashing

f the content identifier is a suitable candidate and it is the ba-

ic hash function that we use in the performance evaluation sec-

ion. Such a simplistic hash function allows the routers where the

ontent requests are issued to forward them to the designated

ache directly, without performing any lookup. In addition, this is

erformed without requiring any sort of inter-cache co-ordination

ince the hash function is computed in a distributed manner by

he routers, thus achieving great scalability.

An ideal hash function should be capable of mapping content

tems to cache nodes so that the load of the caches is evenly

pread. Also, an ideal hash function should incorporate the spa-

ial characteristics of the content popularity at each region of the

etwork and assign a content item as close as possible to the re-

ion of maximum interest. In that case a request for an item will

ot have to travel far within the network achieving smaller aver-

ge retrieval latency. Also, by equally spreading the load across the

etwork nodes, we can load-balance the network traffic and reduce

ignificantly the stress of each link.

Unfortunately, a distributed hash function, like the modulo one,

s not possible to achieve the above goals. To address these short-

omings we propose a new Bin packing-like content-to-cache as-

ignment function whose objective is to evenly spread the load

cross the caches and at the same time assign content closer to

he area of maximum interest. Of course, this is done at the ex-

ense of increased inter-cache coordination, since a coordination

cheme should be adopted by the nodes of the network in or-

er to compute the hash mapping matrix described previously in

ection 3 .

in packing content assignment function (Bin)

We remind that in a bin packing problem (e.g., [51,52]) items

f different volumes (content popularity) should be assigned to a

nite number of bins each of specific volume (equal load in our

ase). Particularly, we assume that a load of ≈
∑

v ∈V
∑

m ∈M

r m v
V re-

uests should be assigned to each cache of a network of V nodes,

ssuming equal capacity among the nodes of the network. In or-

er to enhance the efficiency of the proposed assignment function

e allow each node v to accommodate items of total request ca-

acity up to R v = (1 + b)
∑

v ∈V
∑

m ∈M

r m v
V , where b ≥ 0 is a trade-off

etween evenly spreading of the load and increased network per-

ormance (i.e., smaller retrieval latency or smaller link stress). So,

he Bin packing assignment function assigns items to a cache of

he network until a total of

 v = max

{
max

v ∈V,m ∈M

(∑

v ∈V
r m

v

)
, (1 + b)

∑

v ∈V
∑

m ∈M

r m

v
V

}
(8)

equests have been assigned. Eq. (8) ensures that every item will

e assigned to a cache even if the “even load distribution” require-

ent is violated. The first argument in the maximisation function

f Eq. (8) ensures that in the case that an item is of very high pop-

larity it can still be assigned to a node of the network.

The Bin packing assignment function is similar in rationale to

he Greedy-global offline placement algorithm proposed in [53] ,

hich also uses workload information such as distance from the

aches and request rates to assign content items to the caches.

n particular, the newly proposed algorithm initially assumes that

he hashing map Y (ρ) is empty. Then, at each iteration, the algo-

ithm assigns each item m ∈ M to the node u ∈ V that yields the

aximum average latency gain, starting from the most important

ne according to the item’s relative popularity g m =

∑

v ∈V r m v ∑

v ∈V
∑

i ∈M

r i v
the item’s total request rate over the total request rate of every

74 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

Table 1

Examined routing schemes.

Scheme HR Assig. func. Dom. Clust. Metric

Single domain HR Yes Bin pack No –

k-split dist. cl. HR Yes Bin pack k -split I dist

k-split w. pop. cl. HR Yes Bin pack k -split I w.pop

Bet. centr. cl. HR Yes Bin pack k -medoids I dist

Avr. distance cl. HR Yes Bin pack k -medoids I dist

On-path no-HR No – No –

Single domain HR mod. Yes Modulo No –

k -split dist. cl. HR mod. Yes Modulo k -split I dist

k -split w. pop. cl. HR mod. Yes Modulo k -split I w.pop

Bet. centr. cl. HR mod. Yes Modulo k -medoids I dist

Avr. distance cl. HR mod. Yes Modulo k -medoids I dist

5

5

m

t

t

r

o

t

p

w

w

[

t

s

p

d

v

u

[

l

f

t

c

a

p

a

t

t

Z

j

g

r

T

1

t

m

o

c

d

o

a

i

≈
content item in the network):

u = arg max G

m (9)

where G

m = { G

m

1 , . . . , G

m

V } , (9a)

and G

m

u =

∑

v ∈V
r m

v d v u , (9b)

s.t.
∑

v ∈V

∑

m ∈M

r m

v y
m

v ≤ R u . (9c)

The algorithm continues for as long as not more that R u re-

quests (i.e., Eq. (9c)) have been assigned to this node. The algo-

rithm iterates until all the content identifiers have been assigned

to exactly one cache. Note that, in contrast to a modulo-like as-

signment function, the Bin packing assignment does not necessar-

ily assign the same number of items to each cache. Instead, items

are assigned to each node, so that all caches are evenly loaded. The

proposed algorithm could be either executed centrally by a central-

ized manager which collects all the necessary information from the

nodes of the network, or it could be executed in a distributed man-

ner where a set of cooperating managers are strategically placed

in the network. This set of managers can be introduced in the net-

work through a mechanism similar to the one presented in [54] ,

but the actual realization of this approach is out of the scope of

this paper.

With Bin packing assignment edge nodes are no longer able to

resolve content-cache mappings by computing a hash function as

in the case of modulo hashing. However, this can be still computed

fast and with low memory requirements, for example using Bloom

filters [55] . When the centralized manager (or the distributed man-

agers) computes bin packing assignment offline, it also computes a

set of Bloom filters, one per each caching node, indicating what

content items each caching node is responsible for, and distribute

them to edge nodes. An edge node can then identify the authori-

tative cache for a content by querying the Bloom filters for all the

nodes in its cluster. Since each cluster only has a limited number

of caching nodes, this operation is expected to be executed fast.

In addition, it can also be easily accelerated by parallelization us-

ing SIMD processors, like GPUs. False positives can be addressed

simply by sending an Interest to each caching node for which the

lookup was successful.

The proposed Bin packing- assignment function is a central-

ized offline iterative algorithm which requires M (total number of

items) iterations and has a computational complexity of O(V M)

computations, where V is the total number of nodes in the ex-

amined domain. Note also, that the algorithm yields the opti-

mum solution regarding the assignment of the identifiers to the

nodes of the network since items are assigned only once at each

domain (sub-domain in the clustering case) and no replicas of

each item are allowed. It is obvious that the proposed Bin assign-

ment function presents higher complexity compared to a modulo-

like assignment function. In the evaluation section we examine

both the modulo and the newly proposed assignment function

and we provide a thorough comparison between them for every

partitioning and routing scheme that we use (routing in a single

domain or in the partitioned sub-domains) and for various net-

work performance metrics; we examine how this additional com-

plexity can further improve the performance of the hash routing

framework.
. Numerical evaluation

.1. Evaluation setup

In this Section, we evaluate through simulations the perfor-

ance of hash routing in combination with the offline parti-

ioning/clustering schemes presented in Section 4 . We compare

he performance of clustering techniques with the original hash-

outing proposal [10] applied in the whole network/domain. More-

ver, we examine two different content-to-cache assignment func-

ions namely the modulo assignment function (Mod) and the newly

roposed Bin packing assignment function (Bin). For comparison

e also evaluate the performance of on-path content placement

ith opportunistic request to cache routing initially presented in

38] . According to this scheme, content items are cached as they

ravel through the network by every on-path cache and a request

earches for a cached item on every cache along the resolution

ath. Table 1 depicts the whole spectrum of our methodology.

To carry out our performance evaluation we used Icarus [56] , a

iscrete time event simulator for in-network caching and ICN en-

ironments. In the majority of the experiments presented here, we

se a large network topology of V = 110 nodes (Interoute topology

57]) from the Internet Topology Zoo dataset [58] , whereas in the

ast scenario we experiment with different real world topologies

rom the same dataset. The purpose of this experiment is to inves-

igate whether the performance of the proposed hash routing and

lustering schemes is affected by toplogical characteristics. We also

ssume that in each node of the network a total of λ = 1 request

er second is generated. The requests at each node are generated

ccording to a Poisson process and the corresponding λ parame-

er of the exponential distribution is equal to λ = 1 . This means

hat at node v the request rate r m

v for item m assuming that the

ipf exponent of the item’s popularity is z and the item is ranked

 th out of the M information items within the Zipf distribution is

iven by,

m

v = λ · 1 / j z ∑ M

i =1 1 /i z
. (10)

hus, the request rate for each item at each node varies from 0 to

 req/sec depending on item’s popularity and ranking.

We consider a scenario where M = 100 K content items have

o be assigned by the corresponding assignment functions. Recent

easurement-based studies indicate that a small number of items

ften account for a large portion of traffic, especially for users lo-

ated in certain areas (e.g., a university campus [59]), or embed-

ed in a social network [60] . This advocates that a small portion

f the population of the items available in the network is actu-

lly requested. Additionally, the usage of Zipf distributions for the

tems’ popularity implies that 100 K items may account for the

95% of the total demand considering an information space of ap-

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 75

Fig. 3. The performance gain (Min and Max) of weight value w = 0 . 7 in I w.pop over various values of w vs. the total number of clusters/sub-domains in the network.

p

o

h

o

t

v

a

b

T

a

n

s

l

t

n

t

t

e

w

w

T

s

(

i

e

r

t

o

p

p

w

p

w

n

b

p

t

u

a

d

o

e

f

m

f

a

s
roximately 500 K items. On these grounds, our choice for the size

f the items’ population can be considered fair. This is further en-

anced by recent results in [61] , where authors analysed the traffic

f a leading online video content provider in China (PPTV) over a

wo-week period with more than 196 million viewing instances in-

olving more than 16 million users. Their findings show that, over-

ll, these users watched around 500 K unique videos and the distri-

ution of user access to video content follows a Zipf distribution.

he rest of the items not considered by the assignment function

re assumed to be served directly from the origin server and are

ot considered in the following performance figures. We also as-

ume that the background traffic generated in the network is neg-

igible, and we left for future work the inclusion of this traffic in

he process for the clustering of the network into sub-domains.

We also assume that the latency d ij between two neighboring

odes i, j ∈ V and (i, j) ∈ E in the same administrative domain,

ypically ranges from a few up to 200 ms [62,63] , depending on

he geographical coverage of the network.

For the evaluation of the proposed schemes we initially assume

mpty caches and for a period of T = 6 hours (warm up period)

e allow the system to populate the caches of the network. After-

ards, we monitor the performance of the network for a period of

 = 12 hours (observation period). Based on the request pattern ob-

erved during the warm up period we partition the domain offline

wherever the I w.pop metric is used Eq. (7) and assign the content

dentifiers to the caches (wherever the Bin assignment function is

nabled). In the majority of the experiments we assume that the

equest pattern in the observation period is the same to the pat-

ern in the warm up period, but we present in Section 5.5 a set

f experiments where we have different patterns between the two

eriods in order to examine the resilience/robustness of the pro-

osed schemes.

Our evaluation is based on the following metrics:

t
• The Average Intra-domain Latency (in msec) is the mean transfer

time of a content item from a network cache to the node where

the request was generated.

• The Cache Hit Ratio is the ratio of the content requests that have

found the requested item cached within the network, over the

total number of requests issued during the observation period.

• The Average Link Stress (ALS) (in items / s) is the mean number

of delivered content items that travel through each link of the

network.

• The Maximum Link Stress (MLS) (in items / s) is the maximum

number of delivered content items that travel through the most

constrained/congested link of the network. This metric along

with the Average Link Stress metric is indicative of the load bal-

ancing capabilities of each examined scheme.

In the schemes that use the the hybrid similarity metric I w.pop ,

hich incorporates both the topological distance and the request

attern of the nodes of the network we assume that the weight

 in Eq. (7) is equal to w = 0 . 7 . Due to space limitations we can-

ot depict the performance of this metric for various values of w ,

ut based on the given setup we found that this value (w = 0 . 7)

erforms best among all considered performance metrics. In par-

icular, we depict in Fig. 3 the performance gain (Min and Max)

sing parameter value w = 0 . 7 over twenty different values for w

nd for various values regarding the total number of clusters/sub-

omains in the network. Also, we depict in the following figures

nly the greyed schemes from Table 1 . The greyed schemes that

nable hash routing (HR) use the newly proposed Bin assignment

unction, which generally behaves better than the modulo assign-

ent function. To highlight the extra merits of the Bin assignment

unction, we also present an one-to-one comparison of every ex-

mined scheme that uses the Bin function against the counterpart

cheme that uses the modulo function. Finally, for the schemes

hat enable the Bin assignment function we assume that the

76 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

Fig. 4. The performance of the examined routing schemes vs. the total number of clusters/sub-domains in the network.

Fig. 5. The performance difference of the Bin assignment function over the modulo assignment function vs. the total number of clusters/sub-domains in the network.

a

d

p

s

a

n

e

f

p

c

m

c

8

i

n

s

m

c

t
parameter b in Eq. (8) is equal to b = 0 . 05 , just to ensure that all

items have been assigned in a cache of the network. We leave for

future investigation the examination of the impact of parameter b

in the performance of the network (improved retrieval latency over

uneven load between the caches).

5.2. Impact of the number of clusters

Fig. 4 depicts the impact of the number of clusters N , that the

domain is partitioned in, on the performance of the network. Note

that when a request within a cluster does not find a cached item

at the node which is responsible for the corresponding part of the

hash space it always heads towards the origin node. Another al-

ternative is to assume that a request is sent to other clusters of

the same domain in order to increase the cache hit ratio of the

system. Such an approach though, raises scalability issues since a

node should keep track of the cache assignment in every other

sub-domain. Also, due to the probabilistic nature of caching in ICN

this might explode the transfer time of an item, since there is no

guarantee that an item will be found in any other cluster.
Obviously, the schemes that are applied in a clustered domain

re the only ones affected by the number of clusters. The other two

epicted schemes (i.e., Single Domain HR and On-path no-HR) are

resented for comparison reasons. From Fig. 4 we observe that a

mall number of clusters (3–5) can achieve a reduction in the aver-

ge retrieval latency up to 60% compared to the single domain sce-

ario at the cost of a less than 5% cache misses. On the other hand,

very scheme that assumes hash routing and off path caching per-

orms up to eight times better than the simplistic on-path content

lacement with opportunistic request to cache routing scheme. Of

ourse, the on path scheme retrieves the items cached in the do-

ain faster than off-path caching schemes; this, however, is the

ase only for 16% of the issued requests, whereas the remaining

4% is fetched from the origin node. Furthermore, the schemes that

nvolve clustering manage to better spread/balance the load of the

etwork throughout its links, performing up to 60% better from the

ingle domain cases in terms of both the average and the maxi-

um link stress of the network. By partitioning the domain into

lusters we manage to restrict the requests from travelling far in

he network and despite the fact that each node is responsible for

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 77

Fig. 6. The performance of the examined routing schemes vs. the storage capacity of each ICN router.

Fig. 7. The performance difference of the Bin assignment function over the modulo assignment function vs. the storage capacity of each ICN router.

m

o

b

r

a

s

d

t

o

i

c

t

A

o

p

m

t

t

o

F

t

i

i

i

s

i

p

t

d

d

l

g

t

s

s

n

h

e

t

5

p

t

a

w

t

d

r

o

p

h

e

i

n

u

p

t

t

t

s

r

c

s

c

t

i
ore items than in the single domain hash-routing case, the usage

f the proposed clustering schemes allows the network to utilise

etter its resources with only a small penalty in terms of cache hit

atio.

From the point of view of the different clustering algorithms

nd the corresponding clustering metrics (again in Fig. 4), we ob-

erve that the k -medoids algorithm (i.e., Bet. centr. cl. HR and Avr.

istance cl. HR schemes) behave slightly worse both in terms of re-

rieval latency and in terms of the cache hit ratio for small number

f clusters than the k-split counterpart. However, its performance

s superior when it comes to the load balancing metrics for more

lusters (similar regarding the delay and the cache hit ratio). Note

hat since the Bet. centr. cl. HR scheme performs better than the

vr. distance cl. HR scheme for every conducted experiment we

nly depict the former one in the rest of evaluated scenarios.

In Fig. 5 we depict the percentage difference of the newly pro-

osed Bin packing assignment function against the modulo assign-

ent function for every scheme that incorporates the hash routing

echnique. Note that both functions perform exactly the same in

erms of the cache hit ratio metric and for that reason we depict

nly their one-to-one comparison for the rest of the metrics. From

ig. 5 , we observe that the Bin assignment function behaves up

o 25% better than the modulo at the cost of increased complex-

ty and coordination between the nodes. As the number of clusters

ncreases the number of nodes within each cluster decreases min-

mising in that case the extra merits of the Bin function. For in-

tance, when N = 30 , the largest cluster has only 6 nodes which

mplies that the assignment function has limited impact on the

erformance of such small sub-domains.

In Fig. 5 we also depict the computational complexity gap of

he Bin packing assignment function over the modulo one. In more

etails, we observe that for small number of clusters (e.g., 5 sub-

omains) the complexity of the Bin function is up to fifty times

arger that the complexity of the modulo function. This complexity

ap decreases as we increase the number of clusters, but as men-

ioned above, so do the merits of Bin function. This figure may also

erve as a benchmark for a network manager to decide which as-
 t
ignment function to enable, since the off-line Bin function can sig-

ificantly improve the performance of the network at a significant

igher computational cost.

Takeaway point(s): A small number of clusters can reduce the av-

rage retrieval latency up to 60% with only a small penalty of less

han 5% in the cache hit ratio.

.3. Impact of the cache size

In Fig. 6 , we depict the impact of the cache capacity on the

erformance of the routing schemes, expressed as the fraction of

he content population that can be cached at each node. We also

ssume that the domain is split into five clusters for the schemes

here partitioning of the domain is applied. Generally, we observe

he same findings to the previous experiment where the clustered

omain schemes perform up to 50% better in terms of the mean

etrieval delay of an item. Also, we observe an exponential increase

f the cache hit ratio of those schemes and for small cache ca-

acities they perform less than 5% worse than the Single domain

ash routing scheme. The on-path routing scheme follows a lin-

ar increase in the cache hit ratio with regards to the increase

n the cache capacity of each node, but it always performs sig-

ificantly worse compared to the hash routing scheme. In partic-

lar, for small values of the cache capacity (≤2% of the content

opulation) the corresponding hash routing schemes perform up

o 10 times better than on-path caching.

The three clustering schemes perform up to 50% better than

he single domain scheme in terms of the average link stress of

he network, and up to 60% better in terms of the maximum link

tress. This performance gap combined with the high cache hit

atio of the domain-clustering schemes (for the cases where the

ache capacity of a node is ≥ 2% of the total item population)

hows that partitioning of the domain into smaller domains in-

reases the Quality of Experience of users (i.e., results in low re-

rieval latency). At the same time, the inter-domain traffic is min-

msed, an issue which is of primary importance to the ISP, in order

o reduce its transit costs.

78 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

Fig. 8. The performance of the examined routing schemes vs. the exponent of the content popularity distribution.

Fig. 9. The performance difference of the Bin assignment function over the modulo assignment function vs. the exponent of the content popularity distribution.

t

t

a

z

u

Z

c

p

m

t

c

c

a

c

f

t

b

p

5

t

t

t

s

f

o

s

c

o

t

i

n

i

e

Fig. 7 , similarly to Fig. 5 , shows that the Bin function per-

forms up to 25% better than the modulo assignment function.

Even for very small cache capacities, the new assignment func-

tion that incorporates the spatial characteristics of the request pat-

tern achieves a significant decrease in the mean retrieval latency

(more than 10%). As discussed before, this performance improve-

ment comes at the cost of extra inter-cache coordination. Of course

in the cases where this extra cost is not tolerable the simplistic and

distributed modulo assignment function is still a reliable solution

since it constantly performs well with respect to every examined

performance metric.

Takeaway point(s): For small cache capacities, typical in real

world scenarios, the proposed hash routing scheme performs up to ten

times better than conventional on path caching. Furthermore, the par-

titioning of the domain further improves the users’ perceived QoE and

the load balancing capabilities of the network.

5.4. Impact of the popularity distribution

In the above scenarios we assumed a specific value for the

Zipf exponent of the items’ popularity. Measurement-based stud-

ies, such as [40] , suggest that the Zipf exponent z for web traffic

lies in the range of 0 . 64 –0 . 84 , while other types of traffic (e.g.,

P2P or video) may follow different popularity patterns [41] . In

particular, in [61] authors found that the distribution of the user

access to video content is a Zipf-like with exponent parameter

z = 1 . 174 .

In this scenario, we examine a wider range of values for the

Zipf distribution. The results are presented in Fig. 8 . Particularly,

for small values of z we observe a behaviour similar to the previ-

ous two experiments. For z ≥ 1.3 the set of the items that account

for the majority of the requests is very small and those items tend

to remain cached for the whole duration of the observation pe-

riod. More in particular, when z = 1 . 5 there is a small number of

items (≈ 0.005 M) that account for the ≈ 97% of the total requests.

Those items can almost always be found within the domain caches.

Furthermore, due to the spatial characteristics of the request pat-
ern, the usage of our sophisticated Bin packing assignment func-

ion allows a request to find them closer to the requesting node,

s shown in Fig. 9 . Particularly, from Fig. 9 we observe that when

 ≥ 1.3 the Bin function performs up to 97% better than the mod-

lo function. Generally, the modulo function is not affected by the

ipf distribution of the request pattern but at the same time it

an not exploit its unique spatial characteristics. Of course, as ex-

lained previously, there is a trade-off between the actual perfor-

ance of the network and the scalability of the assignment func-

ion in use. This means that a network manager might prefer a

entralised offline complex assignment function for specific appli-

ations (like video distribution), as compared to a simple modulo

ssignment function, since this will improve performance at the

ost of extra co-ordination.

Takeaway point: The newly proposed Bin packing assignment

unction can dramatically improve the performance of the content re-

rieval process, when applied in systems where the popularity distri-

ution of the content items is less uniform (e.g., online video content

roviders).

.5. Impact of content popularity dynamics

So far, we have assumed that the content popularity between

he warm up and the observation period is stable and based on

he request pattern observed during the warm up period we par-

itioned the domain (wherever the I w.pop metric is used) and as-

igned the content identifiers to the caches (wherever the Bin

unction is used). Generally, content popularity tends to change

ver time. In this section we assume that the request pattern ob-

erved in the warm up period (and used for the partition and the

ontent assignment) is different to the pattern observed during the

bservation period. We model this modification of request vectors

hrough a popularity alteration factor a . We assume that the rank-

ng of the items within the Zipf popularity distribution at each

ode is altered by a factor a; a · M items have a different rank-

ng at the beginning of the observation period than the one at the

nd of the warm up period.

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 79

Fig. 10. The performance of the examined routing schemes vs. the content popularity alteration factor.

Fig. 11. The performance difference of the Bin assignment function over the modulo assignment function vs. the content popularity alteration factor.

Fig. 12. The performance of the examined routing schemes vs. the content popularity alteration factor for non uniform storage capacities of the caches and non uniform

alteration factor at each node.

o

t

a

c

t

s

i

i

i

i

t

c

q

s

o

t

e

n

t

a

t

h

t

p

e

t

c

m

n

d

o

i

t

A

p

a

o

r

i

h

u

r
Fig. 10 depicts the impact of this factor on the performance

f the examined schemes. From Fig. 10 we observe that this al-

eration factor has limited impact on the performance of the ex-

mined schemes. Although this was an expected result for the

ases of modulo assignment and the clustering schemes that use

he I dist metric, we expected some differences in the case of the

cheme that incorporates the request pattern for the partition-

ng of the domain (i.e., k-split w. pop. cl. HR). Nonetheless, even

n case of “k-split w. pop. cl. HR”, we only observe a very small

mpact in the network performance even if the ranking of the

tems has changed up to 60%. This performance degradation is less

han 8% even for the most vulnerable scheme (i.e., k-split w. pop.

l. HR).

Of course, as depicted in Fig. 11 , outdated knowledge of the re-

uest pattern tends to minimise the extra merits of the Bin as-

ignment function, but in all cases, the schemes that make use

f the Bin packing assignment function still perform better than

hose schemes that use modulo assignment. Definitely though, an

nhanced performance of ≈ 2% in a volatile environment might

ot be enough to justify a centralised and rather complex func-

ion as well as a more sophisticated clustering scheme instead of

 scalable assignment function and a rather simplistic domain par-

itioning scheme. From both figures we deduce that the proposed
 i
ash routing technique (applied in the whole domain or in clus-

ered partitions) is robust against inaccurate estimation of content

opularity and can still operate efficiently even with less accurate

stimates of content popularity, which is a major advantage, given

he difficulty of such estimations.

In order to examine the performance of hash routing and the

orresponding assignment functions to a more realistic environ-

ent, we repeated the above experiment in a network where the

odes have non equal storage capacity and the alteration factor is

ifferent at each node. Particularly, we assumed that the capacity

f each node in analogous to its degree (number of edges). Assum-

ng that g v is the degree of node v and C is the total capacity of

he network, then the storage capacity of node v is C v = C� g v ∑

v ∈Vg v
� .

lso, we assumed that the ranking of the items within the Zipf

opularity distribution at each node is altered by a random factor

′ ; a ′ · M items have a different ranking at the beginning of the

bservation period than the one at the end of the warm up pe-

iod, where a ′ ∈ [−a, a] . The results are depicted in Fig. 12 and are

n perfect alignment with the results of Fig. 10 , which implies that

ash routing and the proposed assignment functions can operate

nder less accurate estimates of content popularity in every envi-

onment (i.e., non uniform storage capacity and non equal changes

n popularity).

80 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

Fig. 13. The performance difference (gain) of the k-split dist. cl. HR algorithm over the Single Domain HR algorithm for various network topologies from the Zoo dataset and

for various number of clusters/sub-domains in the network. The last plot shows the maximum average retrieval latency gain that it can be achieved for each topology and

the corresponding clustering scheme (sub-domains) assuming a tolerable 10% loss in cache hit compared to the single domain case.

e

n

t

t

c

a

l

g

c

f

c

t

b

u

6

c

p

p

(

b

m

w

i

p

n

b

t
Takeaway point(s): The proposed assignment functions and the

proposed domain partitioning techniques are robust against inaccu-

rate estimations of the content popularity and can be executed in

larger time intervals without significant loss in their inherent merits.

5.6. Impact of the topology size

We have so far experimented using the same real world net-

work topology and examined the performance of the proposed

routing mechanisms for various system parameters. In this sec-

tion, we examine the performance of one of the proposed rout-

ing schemes (k-split dist. clustering hash routing algorithm) against

the Single domain HR algorithm for various network topologies

from the Internet Zoo dataset. Fig. 13 depicts the performance of

the examined routing scheme over the single domain HR scheme

for ten different topologies and for various clustering approaches

(i.e., number of clusters). From Fig. 13 we observe that the exam-

ined clustering scheme significantly improves the average retrieval

latency in every examined topology with a small penalty in the

cache hit ratio. This improvement is subject to the actual charac-

teristics of the underlying topology and can vary from 2% up to

50% in terms of decrease in retrieval latency.

The last plot of Fig. 13 depicts the maximum performance gain

of using the proposed clustering and hash routing scheme over the

Single domain HR when the network manager can tolerate up to

10% loss in the cache hit ratio. In the same plot we also depict

the clustering degree (i.e., number of clusters) under which this

performance gain can be achieved. From this plot it is clear that

the network topology characteristics severely influence the perfor-

mance of the used routing scheme. At the same time, however, it

is also clear that it is difficult to find a closed form formula for

the clustering approach that best fits a given network topology, as

this depends on the specific characteristics of each topology. For
xample the best performance gain for the topology with the 60

odes is achieved when it is clustered in four partitions, whereas

he topology with the 92 nodes performs best when partitioned in

wo sub-domains.

By and large, for topologies of 100 nodes or more, there is a

lear increasing trend of the optimal number of clusters needed to

chieve the best possible performance. In contrast, for domains of

ess than 100 nodes the situation is not clear. For example, for a

roup of topologies comprising of 20, 40, 70 and 84 nodes, two

lusters is the optimal setting, while for the topology of 60 nodes,

our clusters is the optimal and for a topology of 92 nodes, two

lusters are again the optimal clustering scheme.

Takeaway point(s): Hash routing combined with domain parti-

ioning can significantly improve the performance of the network

ut the used clustering scheme should be carefully coupled with the

nique characteristics of each network topology.

. Conclusions

The process of resolving requests to in-network caches has con-

erned the ICN community so far and has resulted in several

roposals to deal with this issue. However, the tradeoff between

erformance (in terms of cache hits) and co-ordination overhead

which raises scalability concerns) is not easy to balance. We

elieve that hash-routing techniques offer a very easy to imple-

ent, efficient and scalable way of assigning content items to net-

ork caches and redirecting content requests to the correspond-

ng cache. Our initial results in [10] revealed significant increase in

erformance, but did not take into account the case of very large

etworks, where the stretch of the detour path can become very

ig.

In this paper we have extended our previous study to deal with

his issue of extensive detour trips indicated by the hash-routing

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 81

f

l

o

w

s

w

t

p

w

s

h

i

c

t

n

a

p

c

c

d

s

i

o

A

t

6

t

S

E

m

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

unction. Our proposal builds on nodal clustering techniques that

imit the number of nodes that a request will have to travel in

rder to reach the corresponding cache in case of very large net-

orks. We report significant reduction in delivery delay with a

light decrease in cache hit rate. In general hash routing combined

ith domain partitioning can reduce the average item delivery la-

ency up to 50% depending on the various system parameters (i.e.,

opularity pattern, cache size, content popularity fluctuations), as

ell as on the actual topological characteristics of the network it-

elf.

The proposed framework requires that ICN architectures adopt

ash-routing as their routing mechanism. On the other hand, and

n order to maintain the inherent characteristics of the on path

ontent placement with opportunistic request-to-cache routing,

he approach presented could be also applied to a partially coordi-

ated caching scheme similar to the one in [63] . In such a scheme,

 fraction of each router’s cache could be used to support the pro-

osed hash-routing framework and the rest of the cache capacity

ould be used opportunistically to cache passing-by items. In this

ase, an interest packet that heads either towards the router in-

icated by the hash assignment function or towards the content

erver, searches at each intermediate router for a matching cached

nformation item. We intend to explore such a hybrid scheme in

ur future work in this area.

cknowledgements

V. Sourlas work is supported by the European Commission

hrough the FP7-PEOPLE-IEF INTENT project, Grant Agreement no.

28360. Also, the research leading to these results was funded by

he UK Engineering and Physical Sciences Research Council (EP-

RC) under grant no. EP/K019589/1 (the COMIT Project) and the

U-Japan initiative under European Commission FP7 grant agree-

ent no. 608518 and NICT contract no. 167 (the GreenICN Project).

eferences

[1] Cisco visual networking index: forecast and methodology, http://www.cisco.
com/c/en/us/solutions/collateral/service- provider/ip- ngn- ip- next- generation-

network/white _ paper _ c11-481360.html .

[2] D. Kutscher , S. Eum , K. Pentikousis , I. Psaras , D. Corujo , D. Saucez , T. Schmidt ,
M. Waehlisch , ICN research challenges, IRTF (2014) .

[3] I. Psaras , W.K. Chai , G. Pavlou , In-network cache management and resource
allocation for information-centric networks, IEEE Trans. Parallel Distrib. Syst.

25 (2014) 2920–2931 .
[4] K. Cho , M. Lee , K. Park , T. Kwon , Y. Choi , S. Pack , Wave: popularity-based and

collaborative in-network caching for content-oriented networks, IEEE INFO-

COM WKSHPS (2012) 316–321 .
[5] K.W. Ross , Hash-routing for collections of shared web caches, IEEE Netw.

(1997) 37–44 .
[6] D. Karger , E. Lehman , T. Leighton , R. Panigrahy , M. Levine , D. Lewin , Consistent

hashing and random trees: distributed caching protocols for relieving hot spots
on the world wide web, ACN STOC (1997) 654–663 .

[7] Y. Wang , K. Lee , B. Venkataraman , R. Shamanna , I. Rhee , S. Yang , Advertising

cached contents in the control plane: necessity and feasibility, IEEE INFOCOM
WKSHPS (2012) 286–291 .

[8] S. Eum , K. Nakauchi , M. Murata , Y. Shoji , N. Nishinaga , Catt: potential based
routing with content caching for icn, ACM ICN Workshop (2012) 49–54 .

[9] H.g. Choi , J. Yoo , T. Chung , N. Choi , T. Kwon , Y. Choi , Corc: Coordinated routing
and caching for named data networking, ACM/IEEE ANCS (2014) 161–172 .

[10] L. Saino , I. Psaras , G. Pavlou , Hash-routing schemes for information centric net-

working, ACM ICN Workshop (2013) 27–32 .
[11] T. Berners-Lee , R. Fielding , L. Masinter , Uniform resource identifier (URI)

generic syntax, RFC 3986 (2005) .
[12] S. Farrell , D. Kutscher , C. Dannewitz , B. Ohlman , A. Keranen , P. Hallam-Baker ,

Naming things with hashes, RFC 6920 (2013) .
[13] W.K. Chai , D. He , I. Psaras , G. Pavlou , Cache “less for more” in information-cen-

tric networks (extended version), Comput. Commun. 36 (2013) 758–770 .
[14] V. Sourlas , L. Gkatzikis , P. Flegkas , L. Tassiulas , Distributed cache management

in information-centric networks, IEEE Trans. Netw. Serv. Manag. 10 (2013)

286–299 .
[15] Y. Chen , L. Qiu , W. Chen , L. Nguyen , R. Katz , Efficient and adaptive web repli-

cation using content clustering, IEEE JSAC (2003) 979–994 .
[16] T.F. Gonzalez , Clustering to minimize the maximum intercluster distance,

Theor. Comput. Sci. (1985) 293–306 .
[17] L. Kaufman , P. Rousseeuw , Clustering by means of medoids, reports of the fac-
ulty of mathematics and informatics, Facul. Math. Inform. (1987) 14 pp .

[18] P.K. Agyapong , M. Sirbu , Economic incentives in information-centric network-
ing: implications for protocol design and public policy, IEEE Commun. Mag. 50

(2012) 18–26 .
[19] G. Dán , Cache-to-cache: could ISPs cooperate to decrease peer-to-peer content

distribution costs? IEEE Trans. Parallel Distrib. Syst. 22 (2011) 1469–1482 .
20] V. Pacifici , G. Dán , Content-peering dynamics of autonomous caches in a con-

tent-centric network, IEEE INFOCOM (2013) 1079–1087 .

[21] F. Kocak , G. Kesidis , T.M. Pham , S. Fdida , The effect of caching on a model
of content and access provider revenues in information-centric networks, IEEE

SocialCom (2013) 45–50 .
22] T.M. Pham , S. Fdida , P. Antoniadis , Pricing in information-centric network in-

terconnection, IFIP Networking (2013) 1–9 .
23] A. Araldo , D. Rossi , F. Martignon , Cost-aware caching: caching more (costly

items) for less (ISPs operational expenditures), IEEE Trans. Parallel Distrib. Syst.

(2015) .
[24] S. Borst , V. Gupta , A. Walid , Distributed caching algorithms for content distri-

bution networks, IEEE INFOCOM (2010) 1–9 .
25] I.D. Baev , R. Rajaraman , Approximation algorithms for data placement in

arbitrary networks, ACM-SIAM Symposium on Discrete Algorithms (2001)
661–670 .

26] V. Sourlas , P. Flegkas , G.S. Paschos , D. Katsaros , L. Tassiulas , Storage planning

and replica assignment in content-centric publish/subscribe networks, Com-
put. Netw. (2011) 4021–4032 .

[27] J. Li , H. Wu , B. Liu , J. Lu , Y. Wang , X. Wang , Y. Zhang , L. Dong , Popularity-driven
coordinated caching in named data networking, ACM/IEEE ANCS (2012) 15–26 .

28] G. Tyson , S. Kaune , S. Miles , Y. El-khatib , A. Mauthe , A. Taweel , A trace-driven
analysis of caching in content-centric networks, ICCCN (2012) 1–7 .

29] S. Guo , H. Xie , G. Shi , Collaborative forwarding and caching in content centric

networks, IFIP Networking (2012) 41–55 .
30] M. Lee , K. Cho , K. Park , T. Kwon , Y. Choi , Scan: Scalable content routing for

content-aware networking, IEEE ICC (2011) 1–5 .
[31] I. Psaras , K. Katsaros , L. Saino , G. Pavlou , LIRA: a location-independent routing

layer based on source-provided ephemeral names, UCL Techical Report (2015) .
32] V. Sourlas , P. Flegkas , L. Tassiulas , A novel cache aware routing scheme for in-

formation-centric networks, Comput. Netw. 59 (2014) 44–61 .

[33] G. Rossini , D. Rossi , Coupling caching and forwarding: benefits, analysis, and
implementation, ACM ICN (2014) 127–136 .

34] L. Wang , S. Bayhan , J. Ott , J. Kangasharju , A. Sathiaseelan , J. Crowcroft , Pro-dilu-
vian: understanding scoped-flooding for content discovery in information-cen-

tric networking, ACM ICN (2015) 9–18 .
[35] R. Tewari , M. Dahlin , H. Vin , J. Kay , Design considerations for distributed

caching on the internet, 19th IEEE International Conference on Distributed

Computing Systems (1999) 273–284 .
36] D. Wessels , K. Claffy , ICP: internet cache protocol, RFC 2186 (1997) .

[37] S. Bhattacharjee , K. Calvert , E. Zegura , Self-organizing wide-area network
caches, IEEE INFOCOM (1998) 600–608 .

38] V. Jacobson , D.K. Smetters , J.D. Thornton , M.F. Plass , N.H. Briggs , R.L. Braynard ,
Networking named content, ACM CoNEXT (2009) 1–12 .

39] T. Janaszka , D. Bursztynowski , M. Dzida , On popularity-based load balancing in
content networks, ITC (2012) 1–8 .

40] L. Breslau , P. Cao , L. Fan , G. Phillips , S. Shenker , Web caching and zipf-like dis-

tributions: evidence and implications, IEEE INFOCOM (1999) 126–134 .
[41] G. Dán , N. Carlsson , Power-law revisited: large scale measurement study of

p2p content popularity, USENIX IPTPS (2010) .
42] S.K. Fayazbakhsh , Y. Lin , A. Tootoonchian , A. Ghodsi , T. Koponen , B. Maggs ,

K. Ng , V. Sekar , S. Shenker , Less pain, most of the gain: incrementally deploy-
able ICN, ACM SIGCOMM (2013) 147–158 .

43] V. Sourlas , G.S. Paschos , P. Mannersalo , P. Flegkas , L. Tassiulas , Modeling the

dynamics of caching in content-based publish/subscribe systems, ACM SAC
(2011) 478–485 .

44] I. Psaras , R.G. Clegg , R. Landa , W.K. Chai , G. Pavlou , Modelling and evaluation
of CCN-caching trees, IFIP Networking (2011) 78–91 .

45] H. Che , Y. Tung , Z. Wang , Hierarchical web caching systems: modeling, design
and experimental results, IEEE JSAC (2002) 1305–1314 .

46] C. Fricker , P. Robert , J. Roberts , A versatile and accurate approximation for LRU

cache performance, ITC (2012) 1–8 .
[47] V. Martina , M. Garetto , E. Leonardi , A unified approach to the performance

analysis of caching systems, IEEE INFOCOM (2014) 2040–2048 .
48] N. Laoutaris, A closed-form method for LRU replacement under generalised

power-law demand., http://arxiv.org/abs/0705.1970 .
49] D. Aloise , A. Deshpande , P. Hansen , P. Popat , NP-hardness of euclidean

sum-of-squares clustering, Mach. Learn. 75 (2009) 245–248 .

50] M. Halkidi , Y. Batistakis , M. Vazirgiannis , On clustering validation techniques,
Intell. Inf. Syst. 17 (2001) 107–145 .

[51] M.R. Garey , R.L. Graham , J.D. Ullman , An analysis of some packing algorithms,
Combinatorial Algor. (1973) 39–47 .

52] E.G. Coffman Jr. , M.R. Garey , D.S. Johnson , Approximation Algorithms for
np-hard Problems, PWS Publishing, 1997, pp. 46–93 .

53] J. Kangasharju , J. Roberts , K.W. Ross , Object replication strategies in content

distribution networks, Comput. Commun. 25 (2002) 376–383 .
54] R. Clegg , S. Clayman , G. Pavlou , L. Mamatas , A. Galis , On the selection of man-

agement/monitoring nodes in highly dynamic networks, IEEE Trans. Comput.
62 (2013) 1207–1220 .

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0046
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0046
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0046
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0046
http://arxiv.org/abs/0705.1970
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0047
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0047
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0047
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0047
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0047
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0048
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0048
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0048
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0048
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0051
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0051
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0051
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0051
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0052

82 V. Sourlas et al. / Computer Networks 103 (2016) 67–83

[55] H. Lim , K. Lim , N. Lee , K.H. Park , On adding bloom filters to longest prefix
matching algorithms, IEEE Trans. Comput. 63 (2014) 411–423 .

[56] L. Saino , I. Psaras , G. Pavlou , Icarus: a caching simulator for information centric
networking, ICST (2014) 66–75 .

[57] The interoute topology, 2010, http://www.topology-zoo.org/maps/Interoute.jpg .
(Online; accessed 02.0615).

[58] S. Knight , H. Nguyen , N. Falkner , R. Bowden , M. Roughan , The internet topology
zoo, IEEE JSAC (2011) 1765–1775 .

[59] M. Zink , K. Suh , Y. Gu , J. Kurose , Characteristics of youtube network traffic at a

campus network: measurements, models, and implications, Comput. Netw. 53
(2009) 501–514 .
[60] X. Bao , Y. Lin , U. Lee , I. Rimac , R. Choudhury , Dataspotting: exploiting natu-
rally clustered mobile devices to offload cellular traffic, IEEE INFOCOM (2013)

420–424 .
[61] Y. Sun , S.K. Fayaz , Y. Guo , V. Sekar , Y. Jin , M.A. Kaafar , S. Uhlig , Trace–

driven analysis of ICN caching algorithms on video-on-demand workloads,
ACM CoNEXT (2014) 363–376 .

[62] K.C. Kang , K.D. Nam , D.J. Jeon , S.Y. Kim , Delay characteristics of high-speed
internet access network, APNOMS (2003) .

[63] Y. Li , H. Xie , Y. Wen , Z.L. Zhang , Coordinating in-network caching in content–

centric networks: model and analysis, IEEE ICDCS (2013) 62–72 .

http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0053
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0053
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0053
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0053
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0053
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0054
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0054
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0054
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0054
http://www.topology-zoo.org/maps/Interoute.jpg
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0056
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0056
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0056
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0056
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0056
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0057
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0057
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0057
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0057
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0057
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0057
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0058
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0059
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0059
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0059
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0059
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0059
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0060
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0060
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0060
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0060
http://refhub.elsevier.com/S1389-1286(16)30099-8/sbref0060

V. Sourlas et al. / Computer Networks 103 (2016) 67–83 83

puter Engineering and Informatics Department, University of Patras, Greece, in 2004 and

om the same department in 2006. In 2013 he received his PhD from the Department of
ly (Volos), Greece. From 2013 to 2014 he was a post-doc research associate at the Centre

 he joined the Electronic and Electrical Engineering Department, UCL, London to pursue

ts are in the area of Information-Centric Networks and Future Internet.

 Electronic Engineering Department of UCL. He is interested in resource management

es with particular focus on routing, replication, caching and congestion control. Before
 Surrey, and Democritus University of Thrace, Greece, where he also obtained his PhD in

 Telecommunications for his diploma dissertation. He has held research intern positions

neering from Politecnico di Milano (Italy) in 2007 and a M.S. in Telecommunications from

ved his PhD from the Department of Electronic and Electrical Engineering at University
h engineer at Orange Labs where he carried out research in various subjects, including

bile cloud computing and information security. He was the recipient of the Orange Labs
h interests include distributed systems and computer networks with particular focus on

in the Department of Electronic and Electrical Engineering, University College London,
ng and network management. He received a Diploma in Engineering from the National

 degrees in Computer Science from University College London, UK. His research interests

 aspects such as traffic engineering, quality of service management, policy-based systems,
d software-defined networks. He has been instrumental in a number of European and UK

al-world uptake and has contributed to standardisation activities in ISO, ITU-T and IETF.
rences and in 2011 he received the Daniel Stokesbury award for “distinguished technical

eld”.
Vasilis Sourlas received his Diploma degree from the Com

the M.Sc. degree in Computer Science and Engineering fr
Electrical and Computer Engineering, University of Thessa

for Research and Technology, Hellas (CERTH). In Jan. 2015

his two years Marie Curie IEF fellowship. His main interes

Ioannis Psaras is an EPSRC Fellow at the Electrical and

techniques for current and future networking architectur
joining UCL in 2010, he held positions at the University of

20 08. In 20 04 he won the Ericsson Award of Excellence in
at DoCoMo Eurolabs and Ericsson Eurolabs.

Lorenzo Saino received a B.S. in Telecommunications Engi

University College London (UK) in 2008. In 2015 he recei
College London, UK. From 2008 to 2011 he was a researc

network mobility, mobile service design, smart cards, mo
best patent of the year award in 2011. His current researc

networked caching systems.

George Pavlou is Professor of Communication Networks
UK where he co-ordinates research activities in networki

Technical University of Athens, Greece and M.S. and Ph.D.

focus on networking and network management, including
autonomic networking, information-centric networking an

research projects that produced significant results with re
He has been the technical program chair of several confe

contribution to the growth of the network management fi

	Efficient Hash-routing and Domain Clustering Techniques for Information-Centric Networks
	1 Introduction
	1.1 Background on hash-routing
	1.2 Contributions

	2 Related work
	2.1 Cache allocation and economic incentives
	2.2 Content placement
	2.3 Request to cache routing
	2.4 Balancing tradeoffs

	3 System model and problem formulation
	 Discussion

	4 Nodal partitioning and hash routing
	4.1 Domain clustering/partitioning techniques
	4.1.1 k-split domain clustering
	 Similarity metrics
	4.1.2 k-medoids domain clustering

	4.2 Content-to-cache mapping function
	 Bin packing content assignment function (Bin)

	5 Numerical evaluation
	5.1 Evaluation setup
	5.2 Impact of the number of clusters
	5.3 Impact of the cache size
	5.4 Impact of the popularity distribution
	5.5 Impact of content popularity dynamics
	5.6 Impact of the topology size

	6 Conclusions
	 Acknowledgements
	 References

