Self-Adaptive Decentralized Monitoring
in Software-Defined Networks

Gioacchino Tangari, Daphne Tuncer, Marinos Charalambides, Yuanshunle Qi, and George Pavlou

Abstract—The Software-Defined Networking (SDN) paradigm
can allow network management solutions to automatically and
frequently reconfigure network resources. When developing SDN-
based management architectures, it is of paramount importance
to design a monitoring system that can provide timely and
consistent updates to heterogeneous management applications.
To support such applications operating with low latency re-
quirements, the monitoring system should scale with increasing
network size and provide precise network views with minimum
overhead on the available resources. In this paper we present
a novel, self-adaptive, decentralized framework for resource
monitoring in SDN. Our framework enables accurate statistics to
be collected with limited burden on the network resources. This is
realized through a self-tuning, adaptive monitoring mechanism
that automatically adjusts its settings based on the traffic dy-
namics. We evaluate our proposal based on a realistic use case
scenario, where a content distribution service and an on-demand
gaming platform are deployed within an ISP network. The
results show that reduced monitoring latencies are obtained with
the proposed framework, thus enabling shorter reconfiguration
control loops. In addition, the proposed adaptive monitoring
method achieves significant gain in terms of monitoring overhead,
while preserving the performance of the services considered.

Index Terms—Network monitoring, Software-Defined Net-
works, Self-adaptation.

I. INTRODUCTION

Efficient resource monitoring is a fundamental requirement
for any network management system. Accurate and timely
updates are needed to support resource reconfigurations and
to warrant precision when troubleshooting failures or detect-
ing anomalies. Over the last few years existing practices in
network management have been challenged by the advent
of Software Defined Networks (SDNs). SDN technologies
have emerged as promising solutions to improve and simplify
the operator’s tasks [2] as they enable the development of
applications that reconfigure the network automatically [4][5].
These advances pose new requirements on the monitoring
functionality especially in terms of measurement frequency
and information granularity.

Recent research on SDN monitoring focused on the imple-
mentation of task-specific measurements [14][15] and investi-
gated how to allocate finite hardware resources (in particular
switch memory) to different monitoring operations [16][17][6]

This research was partly funded by the EPSRC KCN project
(EP/L026120/1). The work of Daphne Tuncer is supported by the Imperial
College Research Fellowship Scheme.

Gioacchino Tangari, Marinos Charalambides, Yuanshunle Qi, and George
Pavlou are with the Department of Electronic and Electrical Engineering,
University College London, London WCIE 7JE, UK. Daphne Tuncer is with
the Department of Computing, Imperial College London, London SW7 2AZ,
UK.

under heterogeneous traffic workloads and for different op-
erator’s objectives. These monitoring solutions can however
fall short in supporting management applications with short
latency requirements [8][12].

First, these approaches mainly rely on the assumption of
a centrally-managed network, which is an important limit-
ing factor for the case of large-scale networks, i.e., with
a large number of geographically dispersed nodes. As the
network diameter grows, the associated latencies can become
considerable, penalizing the responsiveness of the network
management system. Also, monitoring a large number of
nodes can generate unsustainable loads on the central con-
troller/manager due to the increasing amount of measurement
traffic converging to it, with the effect of inflating the network
configuration times [7]. Decentralized solutions for SDN have
been proposed in the literature, e.g., [7][11][10], but their
main focus is on the control plane (i.e., routing functionality),
devoting less attention to monitoring, which is reduced to
periodically synchronizing topology databases. In addition,
monitoring solutions for SDN generally extract information
from the network devices based on regular measurement
intervals, e.g., based on a fixed switch query period. As
such, they can fail in detecting short-lived network episodes,
especially if the switch query rate is too low, or can saturate
the switch control bandwidth when measurements are too
frequent. Although adaptive SDN monitoring approaches exist
in the literature [17][26][18], they all require some complex
parameter tuning and need continuous adjustments under dy-
namic traffic patterns.

In this paper we extend our previous work presented in [1]
in which a decentralized monitoring architecture for SDN was
proposed to satisfy the monitoring needs of large-scale net-
works. Our solution was designed to overcome the limitations
of existing distributed monitoring frameworks which are not
directly applicable to the domain of software-defined networks
due to i) the shift towards new measurement enablers, and ii)
the monitoring requirements of applications that reconfigure
the network at a faster pace and at a finer granularity (e.g., up
to a single TCP flow).

Compared to [1], we provide a comprehensive description of
the proposed modular monitoring architecture and complement
it with new functionality. In particular, we introduce a config-
urable interface for the synchronization of monitoring data be-
tween local managers operating within a distributed manage-
ment environment. We show how our architecture can support
the monitoring requirements of a wide range of management
applications and effectively aggregate measurement tasks to
reduce the amount of resources consumed at the switches.

To enable efficient extraction of monitoring information, we
also extend our previous work by proposing SAM (Self-tuning
Adaptive Monitoring), a novel adaptive monitoring method
that guarantees timely and accurate reconfigurations of the
switch query rate. As opposed to previous solutions, such
as [26] and [17], SAM requires minimal tuning effort as
the algorithm parameters are automatically updated based on
the evolution of the traffic shape. Through a comparative
evaluation, we show that SAM always provides more pre-
dictable/reliable results in terms of both monitoring precision
and resource consumption with respect to existing approaches.
Moreover, we show that SAM can always match — and in some
cases even outperform — the best-case accuracy of previous
methods [26] [17], i.e., the one obtained with the optimal
parameter settings, while using less amount of resources. SAM
can be used in a wide range of monitoring systems, both with
a centralized or distributed structure, as long as they rely on
explicit switch polling. In this paper, we focus on applying
SAM to the proposed decentralized architecture, and on the
performance benefits derived from its efficient switch polling
scheme.

In our previous work [1], the benefits of the proposed
monitoring system were investigated using a realistic use case,
where a distributed management application coordinates a
content distribution service in an ISP network. In this paper,
we further extend the work by investigating an additional
scenario, in which the operator runs an on-demand gaming
service by offering processing resources (e.g., specialized
hardware) as part of the network infrastructure. To evaluate the
performance of the decentralized monitoring approach in terms
of monitoring latency, as well as traffic overhead, we compare
against a centralized solution based on two realistic network
topologies. In addition, we extensively evaluate the effect of
monitoring operations on the two use case services by focusing
on the impact of monitoring data extraction (through the use
of SAM), as well as monitoring information synchronization.
The results show that our decentralized monitoring approach
can reduce the monitoring delays by up to 60% compared to
a centralized one, which translates to more reactive control
loops. They also highlight that SAM can produce significant
benefits on the use case services at a reduced cost in terms
of utilization of the switch resources. Finally, the evaluation
shows that although relaxing the synchronization of mon-
itoring information can impact the service performance, it
is possible to achieve substantial reductions in monitoring
overhead while minimizing potential service disruption.

The remainder of this paper is organized as follows. Sec. II
provides background information on the distributed network
management framework considered in the paper and presents
the main SDN monitoring approaches. In Sec. III, we describe
in detail the design of the proposed architecture. In Sec. IV,
the SAM approach is presented and extensively evaluated. Sec.
V describes the use case services considered for the evaluation
of our solution. Experiment setup and evaluation results are
presented in Sec. VI. Sec. VII describes related work and Sec.
VIII concludes the paper.

Local ger X Monitoring inf i Local er z
onitoring information
L " nchronization |—
C—— % 1
\\ II . .
{\ . Local y, A Distributed
0 O [P - Management
N \
‘|| \\ — B ' Monitoring and Control
. ' information
! VR ce H ! \ .
o . I ' extraction
‘|| \reconﬁguratlonl’ “‘\\ \
||| \\ RARY N \ =
Physical
— Network
Infrastructure

1 Management applications
1 Monitoring functionality

O Forwarding node
[Southbound interface

Fig. 1: Distributed resource management framework.

II. BACKGROUND

In this section, we provide background information about
the SDN-based resource management framework considered
for the design of our monitoring solution, as well as an
overview of the techniques used for performing measurements
in SDN infrastructures.

A. Distributed Resource Management Framework

In [8], co-authors of this paper present a novel SDN-based
network management and control framework that supports
dynamic resource management applications in fixed backbone
infrastructures. In this paper we adopt the design principles
of the relevant architecture, which separates management and
control functionality, allowing the two to evolve independently.
A set of local managers (LMs), distributed over the network,
hosts various management applications (MAs) that implement
the necessary logic to decide on network (re)configurations.
MAs are instantiated on the local managers as modules em-
bedding information data structures and running on a common
execution environment offered by the LMs. Each MA can
execute in all LMs or in a subset of them (e.g. ones operating
at edge network nodes). Configuration decisions taken by
LMs are translated into sets of commands, transmitted to
the forwarding hardware through a southbound interface (e.g.,
OpenFlow), which defines the sequence of actions to be
enforced for updating the network parameters.

Monitoring is an essential component of LMs. First, it is
concerned with extracting raw statistics from the physical
resources and generating useful information for applications.
In this context, each LM needs to implement the necessary
capabilities to collect the status of variables (e.g., links, traffic
flows) within its local scope and make this information avail-
able to local MA instances. Second, since MA instances oper-
ating at different locations may need monitoring data gathered
from outside their local scope, the monitoring functionality is
also concerned with disseminating network state updates to
remote LMs. In a SDN environment such a synchronization
phase is essential for reconfiguring the network parameters
based on a global, unified network view. This information can
be exchanged between instances of a distributed MA through
the signaling framework proposed in [36], which provides
a communication protocol and the necessary primitives to

share the monitoring information and to coordinate decisions
between two or more MA instances.

Fig. 1 depicts a simplified representation of the resource
management framework considered in this paper. The forward-
ing nodes are partitioned in clusters, each under the control of
a LM. The monitoring functionality initially retrieves raw data
from the forwarding nodes, which is subsequently processed
(e.g., filtered, aggregated) to form knowledge, and is made
available to local MA instances, i.e., the ones operating on the
same LM. In addition, a subset of the generated knowledge
can be shared with a remote manager (e.g., between LM z and
LM x in Fig. 1) on a communication channel established using
the signaling protocol in [36]. Using the synchronized infor-
mation, a remote manager (LM x in Fig. 1) can reconfigure
its own partition of the network infrastructure by interacting
with the forwarding nodes in the cluster.

B. Monitoring Software-Defined Networks

Compared to traditional computer networks, where moni-
toring solutions require ad-hoc software installation / configu-
ration and low-level tools, SDN has introduced a set of simple
and reusable primitives for the collection of network variables
at different granularity levels, which make them suitable to a
wide range of management tasks. SDN flow-based switches
(e.g., OpenFlow enabled devices) allow network operators to
flexibly specify the flows to monitor based on different packet
fields (e.g., source and/or destination IP addresses), and to
count the number of bytes or packets for these flows. Counters
are fetched by polling a switch using ad-hoc Read State
messages. The switch flow rules can be adapted or replaced
depending on the analysis performed on the corresponding
counters or according to predefined expiration timeouts.

This measurement approach is affected by several hardware
technology issues. First, flow-based counters are maintained in
expensive and power-hungry TCAMs and, as such, only a lim-
ited number of entries can be used for measurements. Another
issue is the limited bandwidth between the switch and the SDN
controller, which limits flow fetching to no more than a few
thousand per second [30]. Finally, SDN-enabled switches may
also exhibit inaccuracies when updating the flow counters. For
example, as discussed in [33], some devices do not update the
counters every time a new packet matches a rule, but perform
the updates periodically instead. Furthermore, devices from
different vendors introduce different biases in measurements
and may even present some limitations in terms of protocol
support. Despite these open issues, our proposal relies on
the counting approach — i.e., polling the network devices for
raw counters — due to its implementation simplicity, the wide
support by different vendors, and configuration flexibility in
terms of information granularity and measurement frequency.
Alternative methods, which implement hashing techniques
(e.g., sketches) on the network hardware [21], or require
enhanced programmability (i.e., beyond OpenFlow) of the
forwarding plane [22] [23] [24], still have very limited support
on devices, which makes their applicability uncertain. At the
same time, solutions based on stream processing [40] [39] can
pose a much higher processing burden on local managers, e.g.,
in the case of large-scale networks with a limited number of

LMs, and are unsuitable for many management applications
due to the adoption of packet sampling [31].

ITI. SYSTEM ARCHITECTURE

This section presents the proposed monitoring system and
motivates the design principles of the associated architecture.
Our solution leverages a decentralized approach where each
of the local managers described in Sec. II hosts a monitoring
entity, called the monitoring module (MM), which is respon-
sible for gathering information within the scope of the LM.
Scalability for coping with a large number of network devices
and their geographical span was the main driver for selecting
a distributed approach.

A. Design Requirements

Effective design of distributed monitoring functionality has
to take into account a number of key issues. If very intrusive,
monitoring operations can adversely affect the network perfor-
mance. At the same time, these operations need to be frequent
and fast to enable management applications to operate at short
timescales. In addition, they should provide accurate and high-
granularity information to support configuration decisions. The
impact of these issues is amplified in the case of large-scale
SDNS, since configuration decisions might be taken far away
from the locations where monitoring is performed. We identify
below the three main requirements that have been taken into
account for the design of the proposed monitoring approach.

Scalability: The monitoring system should be able to cope
with a large number of information sources. As the number of
physical resources under the scope of a single MM increases,
the monitoring traffic converging to it, as well as the associ-
ated computational load, could drastically impact the system
reactivity, as was shown in [10][30]. While in dense networks
with small diameter (e.g., data centers) this drawback can be
mitigated through replication or by investing more CPU cycles
and memory, in wide area networks (WANs) the monitoring
responsiveness is significantly affected by network latencies.
Based on the same motivation for distributing the SDN
control plane [7], i.e.,, switch-to-controller latency reduction,
we consider a decentralized monitoring solution for reducing
monitoring delays and avoiding processing bottlenecks.

Programmability: The frequency and granularity of mea-
surements have to be highly configurable based on the re-
quirements of heterogeneous management applications. While
some applications, such as elephant-flow detection, need fine-
grained flow-based measurements, others only require aggre-
gate statistics. In such a case, low-granularity measurements,
which can be retrieved at a lower cost are preferable (e.g.,
switch port measurements as opposed to individual flow mea-
surements).

Responsiveness: MAs can change their monitoring require-
ments based, for example, on the analysis of measured metrics.
The MM should be responsive in adapting measurement
parameters, such as the polling frequency or the flow-level
granularity, according to new requirements. Fast adaptations,
as argued in [26][17], are essential for warranting acceptable
information accuracy and can additionally reduce the monitor-
ing overhead.

Management Applications

Load Balancing‘ | Anomaly Detection | |

Monitoring Module 1
| Requirements Processor
Sync. equirements| | Low-Level Results
Interface Table Targets Processor

Persistent Data
Repository

l Port Stats
Scheduler Hash Table
Flow Stats
Hash Table

Network
Topology

Event 1 Event 2

| Thread 1 | | Thread 2 |

|

| Measurements Engine |
|

!

| Southbound Interface

Paths

Fig. 2: Monitoring module architecture.

B. Monitoring Module

Fig. 2 presents the architecture of the MM, which sits
between MA instances and the southbound interface. Appli-
cations use a common interface, e.g., a RESTful interface,
offered by the MM for both injecting new monitoring require-
ments and receiving the corresponding measurement results.

Each MM relies on a modular composition to maximize the
system extensibility and improve the overall flexibility of the
solution. The modular structure allows to decouple the logic
involved in the processing of the application requirements
from the one operating on the raw measurement primitives.
This reduces the deployment effort when new types of require-
ments need to be supported, or new measurement mechanisms
become available. The various components of the MM are
described below.

1) Persistent Data Repository This component maintains
network information which is not updated frequently, such as
the topology graph representation (e.g., switches and links) and
the current setup of paths between pairs of edge nodes. Such
information can be represented through transactional databases
and can be flexibly accessed/modified by a SQL-like querying
mechanism.

2) Requirements Processor The first task of this com-
ponent is to parse new monitoring requirements received
from applications. These are registered in a local data store
(Requirements Table, c.f- Fig. 2), with each requirement rep-
resented as a tuple:

< Reqg_id, MA_id, Task, HL_targets, Mon_times >

Req_id and MA_id are the unique identifiers of the monitoring
requirement and the requesting management application. Task
represents the overall goal of the measurements, for example
the utilization of one or a set of links. HL_targets is the list of
targets (high-level identifiers in the application’s abstract view
of the network) of the monitoring task, for instance, in case
of a path utilization request, the corresponding list of paths.
Mon_times can be a single parameter, i.e., the polling period,
or an explicit sequence of measurement intervals. In Sec.
IV, we present an adaptive polling mechanism (SAM) where
the measurement rate is continuously adjusted based on the

network traffic behaviour. When this mechanism is enabled,
the MA instance only needs to provide, under the attribute
Mon_times, the boundaries for the measurement rate, i.e., the
interval of acceptable monitoring frequencies [fmin, fmaz)-

The next procedure performed by this component is a
translation routine, based on the Task specification, that maps
each new table entry into one or more Low-level targets. Each
low-level target (LL_target) can identify a specific physical
resource, e.g., a switch port, or map a set of flow rules, i.e.,
a specific subset of the switch flow table. These entities are
stored in the Low-level targets table with the following format:

< LL_target, Op_type, [Reqg_id], Sched_state >
Op_type indicates what type of measurement operation should
be performed, for example collecting the average traffic rate
of a specific switch interface. [Req_id] is the list of pointers
to the corresponding application requirements, used for the
reverse translation. Sched_state is a flag indicating whether the
low-level target refers to a new monitoring requirement (i.e.,
measurement operations have to be scheduled from scratch),
or to a previous task for which some adaptation is required
(i.e., operations have to be re-scheduled).

The acquisition of statistics from a switch poses a sub-
stantial burden on the device in terms of both processing
and control bandwidth [30] [33]. As a result, for each time
unit only a limited amount of statistics can be reported by
the switch to the MM. Any data exceeding the limit can be
lost or considerably delayed, which penalizes the accuracy of
MA operations. To mitigate this issue, our solution aggregates
different monitoring tasks, when possible. In other words,
before the insertion of a new low-level target, the table is
looked up for similar entries. An existing entry is similar if
the target is equivalent or included, e.g., two targets with the
same Task and Mon_times attributes are similar if one refers
to the flows matching source IP address 128.40.200.1 and the
other corresponds to the flows for any source IP in the subnet
128.40.200.0/24. In such a case, the MM merges the two
low-level targets and the corresponding measurement times
is updated accordingly to satisfy both requests. Such a feature
reduces the consumption of switch resources, especially for
different MAs requiring flow measurements at similar times,
and/or for similar portions of the switch flow space. The
result is a more sustainable monitoring (reduced monitoring
load) when measurements compete with other control plane
operations, such as new flows setup, for accessing the switch
resources.

Resource saving through aggregation. To show the
gain that can be achieved through aggregation, we consider
a scenario where 3 monitoring requirements mj, Mo, M3 are
registered at the same time and on the same MM by three
different MAs. The execution of the measurements associated
with each m; results in fetching a fixed number of flow
table entries k at a period p; € [1,2,..7,8] from the same
switch. Two parameters « and [are associated with each set.
Parameter « represents the level of temporal concurrency of
the required measurements, which ranges from 0 (lowest level
of concurrency, e.g., [p1,p2,ps] = [6,7,8]) to 4 (maximum
level of concurrency, ie., p1 = ps = ps3). Parameter 3

Q0000
mnannn
OoO=NWH

N

N

N

Control bandwidth reduction (%)

Fig. 3: Reduction of switch control bandwidth based on
aggregation.

represents the level of overlap in terms of similar flow entries
required from the switch, and also ranges from 0 to 4. 3 =0
represents the case of no overlap. For § = 1, there exists
an overlap of 50% between the requirements of two MAs.
For § = 2, the three MAs share 50% of requests. For § = 3,
two MAs have completely overlapping requirements and share
50% with the third one. 3 = 4 represents an overlap of 100%
between the three MAs. Fig. 3 shows the resulting gain in
terms of switch control bandwidth. The case S = 0 is not
depicted as it does not result to any savings.

Significant reductions can be achieved when S > 2. For
example, for = 2, an average reduction close to 20% is
obtained. Such savings can allow the overall measurement
rate to increase, thus enhancing the resource reconfiguration
reactivity. For instance, assuming a fully saturated bandwidth
between the switch CPU and the local manager, aggregation
can allow an increase of the monitoring rate by up to a factor
of 3 (ie., a = =4).

3) Scheduler This component is in charge of generating
and managing the individual measurement procedures (e.g.,
the ones requiring a single message exchange with a switch),
which are executed as threads. It is called on every insertion
in the Low-level targets table, and on any modification of
existing tuples involving the measurement times. Scheduling
new measurements indiscriminately can lead to none of them
getting enough switch resources. As such, once invoked, the
scheduler executes an admission control routine, in which it
verifies, depending on the current measurement load, whether
the measurement procedures for the new low-level target can
be performed. In case there are not enough resources available
to accommodate the new measurement procedures, these are
rejected and the corresponding MAs are notified so that mon-
itoring requirements can be re-negotiated. The measurement
load for a specific switch is defined by the expected monitoring
bandwidth, which is estimated on a time-window basis given
the list of the low-level targets already scheduled. This metric
depends on the current measurement rates (i.e., the average
polling frequency) and on the number of flow (or switch
port) records returned for each measurement procedure in the
corresponding OpenFlow Statistics Reply messages. In this
respect, our approach differs from recent proposals, which
focus on the limited flow table TCAM space [16] rather than
the control bandwidth. The amount of resources required by
an incoming measurement procedure is quantified using the
Mon_times indication from the monitoring requirements. If

the adaptive polling mechanism presented in Sec. IV (SAM)
is enabled, maximum and minimum resource requirements are
obtained using the query rate boundaries fiin, fmaz-

Once accepted, the new low-level target is mapped onto a
set of events, each one associated with a timer to trigger the
new measurement thread. The way this mapping is executed
depends on the switch polling algorithm used by the MM.
In case of fixed frequency measurements, the mapping is
executed all at once, and all timers are recorded in the
scheduling table. When SAM is enabled, the measurement
events and timers are generated one by one, based on the
feedback (e.g., the new value of a low-level target) provided
by the Results Processor upon receiving fresh monitoring data.

4) Measurements Engine This component, called every
time a new measurement thread is triggered, operates as an
interface between the measurement thread under execution and
the measurement mechanisms implemented on the southbound
interface. It assigns individual measurement procedures to
one of the available primitives offered on the interface and
supported by the underlying device. Such an interface is
essential to allow most of the monitoring operations to remain
independent of specific implementations.

5) Results Processor This component receives the raw
measurement results, for example messages of type OpenFlow
statistic reply. These are parsed (e.g., into JSON format) and
the Low-level targets table is looked up for the corresponding
target(s). Based on the operation type specified in matching ta-
ble entries, the measurements are filtered to select the required
counters. These are stored in corresponding data structures
(hash-tables) and used for computing the metrics of interest.
Finally, the processed results are associated to the relevant
high-level targets and delivered to MAs through update mes-
sages. In case the MM adopts an adaptive monitoring scheme
like the one presented in Sec. IV, the Results Processor also
generates a call to the Scheduler, so that new measurement
events can be adaptively scheduled based on variations of the
relevant metrics over time.

6) Synchronization Interface In addition to the afore-
mentioned components, the MM offers an extensible inter-
face for the synchronization of monitoring information in
a distributed management plane. Using the methods of this
interface, instances of MAs can forward monitoring reports
through signaling channels as described in [36]. The interface
provides different solutions for the exchange of monitoring
data. In the simplest case, this can take place periodically or
every time new statistics are available locally. More advanced
solutions consist in exchanging new values only when they
differ substantially from the previously reported ones. These
techniques can improve the synchronization efficiency, as they
allow management applications to strike the right tradeoff
between accuracy and overhead in monitoring data dissem-
ination.

IV. ADAPTIVE QUERY MECHANISM

Querying a network switch for updated statistics involves
a tradeoff between accuracy and overhead. On one hand,
continuous pulls of fresh statistics impose a considerable
burden on the switch hardware, e.g., on its scarce control

channel bandwidth [30], and can overflow the network capac-
ity with monitoring overhead. On the other hand infrequent
measurements fail in capturing transient events, such as short-
lived congestion, due to sampling and averaging bias. To
reduce the monitoring load while ensuring timely and precise
reports, adaptive monitoring mechanisms by which the query
frequency is dynamically reconfigured are needed. In this
section, we propose a novel approach that produces precise
reconfigurations of the measurement rate, between boundaries
Sfmin and fi,q., With minimal parameter tuning effort. The
use of boundaries f,,;, and [y, is essential as it allows the
operator to maintain some control on resource utilization, thus
influencing the resource/accuracy tradeoff associated with the
measurements. Provided by the operator in the specification
of monitoring requirements, these values are used by the
Scheduler at run time as constraints for the generation of
measurement events/threads.

A. State-of-the-Art and Limitations

Two main techniques have been proposed in the literature
to adapt the switch query rate: i) threshold-based approaches
[26] and ii) prediction-based approaches [17]. The objective
of these approaches is to adapt the period at which switch
variables are queried based on network traffic behavior. While
in the case of threshold-based approaches, the adjustment
is based on threshold conditions, a linear prediction of the
evolution of the variable value is used in the case of prediction-
based approaches to update the period. The advantage of these
techniques is that they can easily apply to different monitor-
ing operations — for instance, flow size and link utilization
estimation. Other methods exist but they are bound to specific
measurement tasks, e.g., flow autocorrelation [18].

Threshold-based adaptive monitoring The principle of
Threshold-based Adaptive Monitoring (TAM) is to adapt the
monitoring period (i.e., rate at which the switch is queried)
based on the variation of the variable values between two con-
secutive measurements. If the difference is above a threshold
thi, the monitoring period is divided by a constant d, while
if it is below a threshold ths, the period is multiplied by a
second constant m. In essence, the sharper the variation, the
shorter the period and hence the more intense the polling.

Prediction-based adaptive monitoring In contrast to the
threshold-based approach, Prediction-based Adaptive Moni-
toring (PAM) uses an history of the last set of collected
measurements (not only the last one) to decide how to adjust
the monitoring period. More specifically, based on the previ-
ous N collected values of monitored variable xz, denoted as
21, ..., Ty, a predictor x, of the next value of z is computed.
When the actual new value z,4; of x is fetched, z mean
and standard deviation are updated and the real variation
(Tp41 — o) is compared to the predicted one (x, — x,).
If the predicted variation is substantially higher than the real
one, ie., for x, > mean(z) + « - std(z), the monitoring
period is increased by a factor equal to d. In this case, the
prediction is overestimating the change. Otherwise, if the
value of z is changing much faster than predicted, i.e., for
zp, < mean(z) — o - std(z), the period is divided by d. In

both cases, o is a small integer constant. In all other cases,
the period remains unchanged.

The main issue with TAM and PAM is that to efficiently
adapt the period, they both require some complex parameter
tuning, i.e., thresholds thq, thy and multipliers m, d for TAM,
and selection of sample queue size N and factor o for PAM.
This is specifically evident under periods of bursty traffic,
where accurate reconfiguration of the query rate is essential.
In particular, changes in the traffic burst patterns (e.g., burst
amplitude, duration, inter-arrivals) are likely to require new
settings given that for a specific pattern, only a small subset
of setups guarantees efficient statistics collection.

To illustrate this issue we implemented the two approaches
to measure the size of a bursty flow over a period of 5
minutes and compared the obtained results with the actual flow
size, denoted as ground-truth, measured every millisecond. To
emulate a bursty profile, the size of the flow is modulated
between 0 and 10 Mbps by injecting traffic bursts with arrivals
modeled as Poisson(0.1), height (in Mbps) and duration (in
seconds) as Uniform|0,5]. Fig. 4 shows the performance
of the two approaches for different parameter setups with
thl,th2 in [10%,20%,..100%]; m,d in [2,4,..10]; N in
[2,3,...30]; « in [1,2, 3]. For each configuration, the accuracy
is quantified using the Root Mean Square Error (RMSE)
between the value collected by monitoring and the ground-
truth, while the resource consumption is given by the average
switch query rate. The results are shown in Fig. 4.

The first main observation is that, for both approaches,
different setups can produce widely different outcomes in
terms of precision, as depicted in Fig. 4.a. More surprisingly,
Fig. 4.b shows that different parameter configurations can lead
to significantly different accuracy levels even when consuming
exactly the same amount of resources. For instance, with
a mean polling rate 0.5 Hz, the TAM approach can either
produce RMSE=1.9 or RMSE=1.5. At the same time, different
resource usages can result in the same monitoring precision,
e.g., RMSE=14 can be obtained with both 1 and 2 Hz
average query rate with the PAM approach. In all cases,
the performance with respect to the accuracy vs. query rate
tradeoff strictly depends on how well parameters are tuned.
In practice, however, determining the optimal setups is hard.
This not only requires long (preliminary) periods of traffic
observation but also necessitates adjusting the setups to match
emerging traffic characteristics (e.g., new traffic burst patterns).

In the next subsection, we present a novel self-tuning
adaptive monitoring approach that addresses the limitations
of existing solutions.

B. Self-Tuning Adaptive Monitoring

The proposed Self-tuning Adaptive Monitoring (SAM) ap-
proach allows to achieve the right tradeoff between accuracy
and consumed resources, without requiring complex parameter
tuning as it automatically refines the algorithm parameters
based on the evolution of the traffic shape.

More specifically, the objective of the proposed solution
is to continuously adapt the timeout 7', i.e., the time to the
next measurement. In a similar fashion to prediction-based
approaches [17], SAM uses linear prediction to predict the

25 T
Best N—

: Average 5=

[l Worst —— .

RMSE
RMSE

05 Frrn B d

1.
0 02040608 1 12141618 2 2224
TAM PAM Measurement rate (Hz)

(a) Monitoring accuracy (RMSE) (b) Accuracy(RMSE) vs. average query rate

Fig. 4: Performance of state-of-the-art approaches.

next value x,, of a variable x based on the value of its previous
measurements. When the new value x,,; of x is collected,
the normalized deviation D of the predicted variation (x, —
Zy) from the real one (x,41 — x,) is computed. When the
value of D is negative, the prediction of the variation of x
is underestimated. For instance D = —0.5 indicates that the
predicted variation is 50% of the real one. In this case, the
behavior of x is more dynamic than expected and 7' is reduced
proportionally to D, so that the larger the deviation, the faster
the query rate. In contrast, when D is positive, the prediction is
overestimating the variation of z, e.g., D = 1.0 corresponds to
100% overestimation. In this case x is changing less (or less
quickly) than expected (the behavior of x tends to become
more stable) and 7' is increased proportionally to D.

After each measurement, the linear prediction is automat-
ically reconfigured by tuning the length N of the sample
queue used to compute x, based on an Additive Increase
Multiplicative Decrease (AIMD) scheme. In particular, IV is
increased by one when 7,., > T and halved otherwise.
Intuitively, the length is shortened when traffic becomes more
dynamic (e.g., when a traffic burst starts) so that the next
decision on T' only involves the most recent history of z. It
is progressively expanded as the behavior of becomes more
stable.

The pseudo-code of the proposed algorithm is shown in
Alg.1. It takes as input the latest timeout 7" and the current
sample queue length NN, and returns as output the time
to the next measurement 7)., and the new sample queue
length N,,¢,,. Compared to the TAM and PAM approaches,
the proposed solution requires minimal tuning effort. The
only parameter needed for the algorithm setup is the initial
value of NV, whose impact is strictly limited to the algorithm
startup phase. In addition, unlike previous approaches [26]
[17] for which the switch query period is only modified when
large variations of x are observed, our solution continuously
adjusts the timeout 7". Although this may lead to rescheduling
measurement tasks more frequently (incurring thus increased
burden on the monitoring module scheduler), it can prevent
situations where the variations of = are undetected, e.g., when
the fluctuations of x are periodic and “phase-locked” [41] to
the switch polling rate (i.e., same frequency but out of phase).

C. Evaluation

We evaluate the performance of SAM by implementing it to
measure the bitrate (in Mbps) of traffic generated using both

Algorithm 1: COMPUTE NEXT QUERY TIMEOUT
Input: Current timeout 7', Current sample queue length

N
Output: Next timeout 7T},.,,, New sample queue length
Nnew
At . _ tn—tn_1 Tit1—Ti
1 Compute prediction z: T, = T, + =5 2 Tt

2 Retrieve value ;41

3 Compute deviation of (z, — x,,) from (2,11 — zp):

D — ('Tp_wn)_(x'n{»l—xn) _ Tp—Tn41
Tn4+1—Tn Tn4+1—Tn
4 if D < 0 then
1
5 ‘ Tnew = max(m, Told -D- Told)
6 else
. 1
7 L Thew = mln(m, Tog+D- Told)

8 Add x,1 to sample queue
9 Update sample queue Nye, = AIMD(N)
10 return 7;,c,, Npew

synthetic and real traffic traces and compare the results to the
ones obtained with TAM and PAM. To test the performance
under different traffic conditions, we use two synthetic traces
with the same duration (5 minutes) and bitrate range (between
0 and 10 Mbps) but different levels of burstiness.

The first trace, referred to as Highly Bursty Traffic, em-
ulates a bursty traffic flow with burst arrival modeled as
Poisson(0.1) (on average one in 10 seconds), burst height
in Mbps as Uniform|0,10] and burst duration in seconds
as Uniform|0,1]. The second trace, referred to as Slightly
Bursty Traffic, corresponds to a more stable traffic flow
with burst arrival modeled as Poisson(0.02), burst height as
Uniform|0,5] and bust duration as Uniform[l,10]. Com-
pared to the first profile, bursts in the second trace are less
frequent, have a longer duration and exhibit smaller variation
of the traffic rate. In addition to the synthetic traces, we also
use two real 15 minute traffic-packet traces from a 100 Mbps
link of a Japanese operator [42], representing peak time (JP-
2pm) and off-peak time (JP-2am) traffic, respectively.

For all traces we evaluate the performance based on a
wide range of parameter setups. In particular, for the TAM
approach we use all combinations of thresholds ¢hl,th2 in
[10%, 20%, ..100%], with thl > th2, and query rate constant
factors m,d in [2,4,..10]. For the PAM approach, we select
the sample queue length N in [2,3,...30] and the constant «
in [1,2,3]. Finally, for the proposed self-tuning approach we
vary the initial value of NV in the range [2, 3,...30]. The same
minimum (f;,,;,) and maximum (f,,,,) query rate boundaries
are applied for the three approaches, with fp,;, = 0.1Hz
and f,4x = 10Hz. In a similar fashion to the example in
Fig. 4, we use the monitoring precision, given by the RMSE
with respect to the ground-truth traffic rate, and the resource
consumption, represented by the average switch query rate
over each experiment run, as the two main performance
indicators.

The results are depicted in Fig. 5 and 6. Fig. 5 shows that
the performance of the self-tuning approach is in general more
predictable in terms of precision and resource consumption

RMSE

RMSE

RMSE

RMSE

RMSE

o

- N WA OO N ®©

TR TR SRS NN TS MU BUNOE OSNE

1.2
02040608 1 12141618 2 2224

25

Measurement rate (Hz)
(a) Highly Bursty Traffic

1
04 06 08 1

1214 16 18 2
Measurement rate (Hz)
(b) Slightly Bursty Traffic

1 2 3 4 5 6 7 8 9 10

Measurement rate (Hz)
(c) JP-2pm

1 2 3 4 5 6 7 8 9 10
Measurement rate (Hz)
(d) JP-2am

Fig. 5: Adaptive monitoring precision and resource consumption.
T T 2 T T T 10 T T 10 T T T
. Best Wu—— Best W— _ Best Wu— Best W—
: . Average 5= 181 [T Average 5=~ | 9 [Average 5SS) 9 " Average 5~ 7|
e Worst —— 16 F Worst —— .| 8 Worst —— .| 8 Worst —— |
14 7 7 7o
w t2r T w 6 1 w 6 B A h
%) 1r - g 5 - ‘é) 5 R\ | B
T T T :
i 08 - i 4 gl :
06 - | 3 J 3 N -
i 04 - i 5 R NI
02 g 1 1 1 ' . I
0 0 0
TAM PAM SAM TAM PAM SAM TAM PAM SAM TAM PAM SAM
(a) Highly Bursty Traffic (b) Slightly Bursty Traffic (c) JP-2pm (d) JP-2am

Fig. 6: Best-case, Worst-case and Average monitoring precision.

compared to the two state-of-the-art solutions. For example,
the RMSE obtained with our approach only oscillates between
1.35 and 1.5 for the first trace (Fig. 6a), and between 1.05 and
1.25 for the second one (Fig. 6b), while for PAM the distance
between the best and worst case accuracy is twice the one
obtained with our algorithm, and it can even be three times
greater for TAM. The same applies to the average switch query
rate. For example, for the first trace (Fig. 5a) our solution
queries the switch with mean rate between 1Hz and 1.5H z,
while the two state-of-the-art approaches operate with an
average query frequency between 0.5H 2 and 2.5H z. Similar
observations can be made for the experiments with real traffic
profiles (Fig. 6¢ and Fig. 6d), where SAM approach achieves
more predictable results compared to previous solutions.

Another important observation is that our algorithm can
achieve a good tradeoff between accuracy and resource con-
sumption under different traffic profiles. In particular, the
average monitoring accuracy obtained by our solution gen-
erally lies close the best-case precision of the PAM approach,
always using a lower or, in the worst case, similar amount of
resources. For the Slightly Bursty Traffic trace (Fig. 5b), lower
values of RMSE with respect to TAM and PAM are obtained
with a reduced average query rate, while for the case of the
Highly Bursty Traffic trace shown in Fig. 5a, PAM can still
achieve a slightly lower error but by consuming substantially
more resources (by 50% or more). In the case of the peak time
real packet trace (JP-2pm — Fig. 5c), our algorithm obtains
similar performance in terms of precision compared to the
best results of PAM but by consuming approximately 10%
less resources. Finally, in the case of the off-peak time real
packet trace (JP-2am — Fig. 5d), results are in line with the
most precise results obtained with PAM.

V. USE CASE SCENARIO

To demonstrate the capabilities of the monitoring architec-
ture presented in this paper, we consider a distributed SDN
environment on which two different services are deployed by
the network operator. The first one is a content distribution
service, for which a set of content items is cached within
the network. The network management system periodically
updates (e.g., in the order of hours) the content placement
and the paths between user locations and content servers.
Following an approach similar to the one proposed in [34],
it reconfigures the routing of user requests in real-time by
selecting an appropriate path between the user location and
one of the available content servers, based on the current path
utilization.

The second service provided by the operator is an on-
demand gaming (cloud gaming) service, in a similar fashion
to well-known platforms such as Gaikai [43]. The network
provider offers specialized hardware resources, such as GPUs
and fast memory, to support the computation required for the
user game experience, which is offloaded from the end-user
devices. From the network perspective, this service implies a
continuous interaction between the user device and the server,
where the client sends new input data, and in response it
receives chunks of the video stream to be reproduced on the
user device. The network management system can tune this
service at run time by reconfiguring the routing of client and
server traffic, which is performed by selecting a suitable path
from a set of available options. While doing so, the operator
objective is to avoid congestion in the network and, as such,
to prevent potential Quality of Experience (QoE) degradation.
Network congestion will increase the content delivery times
and can lead to user dissatisfaction due to unresponsive client-

Local Manager 1

T

| Monitoring Module I

Southbounf Interface

Local Manager 2

[l

I Monitoring Module l

Southbounf Interface

L ‘ Servers,

User

f
[~ Server s,
location u) @

— »><sl,Path 1>
— 5 <s2, Path 2>

User — > <sl, Path 3>

location u, ——><sl, Path 4>

Fig. 7: Use case illustration.

server interactions in the on-demand gaming service.

When reconfigurations of the two services are generated in
response to congestion episodes, the latest decisions on server
and path selection are enforced using a method similar to the
one proposed in [29]. The programmable (e.g., OpenFlow-
enabled) forwarding hardware at the edge of the network
is instructed in real-time to rewrite fields of the IP packet
header (e.g., the destination address) in order to redirect
traffic transparently to clients and servers. The enforcement
of the path selection decisions is part of the header rewriting
operations. For example, the path selection can be encoded in
the packet ToS field.

Fig. 7 exemplifies the use case. The forwarding nodes
are partitioned in clusters, each under the control of a local
manager. Each manager hosts an instance of a distributed Load
Balancing (LB) application, which implements the necessary
logic for reconfiguring, on a per user location, the content
server from which a requested content is retrieved (for content
distribution) and the path through which client/server traffic
is delivered (for content distribution and cloud gaming). For
simplicity, we assume clients and servers to communicate
on symmetric paths. For each network edge switch mapped
to a user location, the application keeps a list of available
setups (Server, Path) indicating how traffic should be routed.
Each LB instance operates periodically on a short timescale,
i.e., every few seconds, and at each execution it obtains two
statistics from the monitoring system.

The first statistic is the average link utilization for the links
included in the local paths, i.e., the paths emanating from a
client location within the scope of the relevant LM. Statistics
for these links are collected and exposed by the underlying
MM at each execution of the application. The monitoring
of remote links is delegated to the LB instance operating
on the corresponding network partition. This registers the
relevant monitoring requirements on its MM, and periodically
synchronizes the results with the other LB instances.

The second statistic is the average rate of traffic originated
by users in the local network partition. More specifically, each
LB instance obtains the average throughput of all the flows
matching the source IP address of one of the clients and the
destination IP address of one of the servers, or vice versa.
This measurement is used to determine the volume of traffic
by which congested paths can be offloaded.

In case of link congestion (e.g., average utilization exceed-

TABLE I: Network characteristics

Network # Nodes | # Bidirectional Links
Topol | Geant [46] 23 37
Topo2 | Germany50 [47] | 50 88

ing a predefined threshold), the LB application is responsible
for offloading part of the traffic from the congested link in
order to bring its utilization below the threshold. Some flows
are removed from the congested paths (paths including the
congested link) and are (equally) assigned to alternative, non-
congested, options represented by the 2-tuple (Server, Path).
The new configurations are enforced on the ingress OpenFlow
switches. If a congested path spans multiple network parti-
tions, the corresponding LB instances operate iteratively, as
in the solution presented in [35]. The first decision is taken
by the LB instance directly associated with the congested link
based on the bandwidth availability on the alternative paths.
The result is then communicated to the next LB instance until
the process terminates.

VI. EVALUATION

We evaluate our monitoring system based on the use case
described in Sec. V and focus on the performance in terms of
latency and traffic overhead, as well as on the impact on the
two different services. In addition, we investigate the gain that
can be achieved by applying SAM, the self-tuning adaptive
monitoring solution presented in Sec. IV. Experiments are
performed using Mininet to emulate the network topology,
including hosts, i.e., clients and content servers, and OpenFlow
switches. The LM, including the monitoring module and the
LB application logic, is implemented as a set of Python
modules. Finally, we reuse a small set of APIs from the SDN
controller POX [38] to implement the southbound interface
functionality.

A. Experiment Setup

Experiments are performed on the two network topologies,
Topol and Topo2, summarized in Table I, where each node is
an OpenFlow-enabled switch, and all links have 10Mbps band-
width. In Topol the average link latency is 5ms, while the end-
to-end latencies (round-trip) fall in the range [25ms, T0ms].
In the case of Topo2, the link latencies are artificially tuned in
a way that allows us to experiment with increased end-to-end
delays, with round trip latencies between 100ms and 150ms.

In both topologies, clients are distributed over five user
locations. Each client can reach two servers, each being
accessed using three alternative paths. By default, all clients
are initially assigned to the shortest path in terms of hop count.
Each experiment has a duration of 5 minutes and is preceded
by a short startup phase in which paths are installed and the
MM and LB application initialized. The placement of LMs is
provided as an input and used to compute the relevant hop-
count and corresponding latencies between pairs of LMs.

For each experiment, only one of the two services is
emulated. In the case of content distribution, each client
generates content requests following a pattern derived from
the one used in [37]. The content size is scaled down in
accordance to the reduced link bandwidth. In the case of cloud

T T T
Lo o L Centralized XXX |
0.06 2 LM s

3 LMs
0.05 [: Fully distributed

|

Monitoring latency (secs)

Max. distance Min. distance ~ Var. distance

(a) Monitoring latency, Topol

Monitoring latency (secs)

T
Centralized £XXX
2 LMs B0

3 LMs
Fully distributed =2

1

Monitoring traffic per LM

08 [

06 [

04r

02

T
Centralized (=1)
2LMs

3 LMs
Fully distributed

XXX
R

—
A

Max. distance Min. distance ~ Var. distance

(b) Monitoring latency, Topo2

Fig. 8: Performance of the decentralized monitoring approach.

Topo2

(c) Monitoring traffic

gaming we directly emulate the corresponding network traffic
by generating separate client and server-originated packet
streams. In particular, we use the results reported in [45] to
configure the average packet size and packet rate for both
upstream (i.e., client-originated) and downstream (i.e., server-
originated) traffic.

The LB application reconfigures the flow routing in case
of link congestion, as described in Sec. V, based on lo-
cal knowledge, including the utilization of local links and
the throughput of local traffic flows (if any), as well as
information about remote links, which is accessed through
periodic synchronization. For simplicity, all LB instances run
simultaneously (same frequency and clock reference). For each
experiment we configure two parameters: p; is the period
of local measurements performed by each MM, and p, the
synchronization period of link status between the LB instances,
with pg > p;. For both services, link congestion is generated
by creating spikes of user demand, which is achieved by
increasing the number of clients over the experiment time.
Another key parameter is the congestion threshold, which has
a direct impact on the flow (re)scheduling operated by LB.
We set it to 85% of the link capacity in accordance to [25].
Such settings allow to avoid excessive route flapping and to
keep the average period of route reconfigurations at least one
order of magnitude higher than the content download times.
These values are in line with traditional end-user redirection
practices [32].

B. Performance of Decentralized Monitoring

In this subsection, we compare our decentralized monitoring
approach with a centralized solution where the full state of
the network is collected by a single management entity. We
first focus on the monitoring latency, a measure of reactivity,
defined as the delay between the time the measurement starts
(e.g., the corresponding procedure is selected by the scheduler)
and the time the requested information is made available to the
LB instance performing the flow routing reconfigurations. We
evaluate the monitoring latency for the link utilization mea-
surements in 4 different setups: Centralized (single manager),
2 LMs, 3 LMs and Fully distributed, in which one LM is
assigned to every switch. For the centralized, 2 LMs and 3
LMs cases, we perform 10 experiments, each with a different
manager allocation, and average the results. We fix p, = py,
i.e., the link status is synchronized between LB instances
with every new measurement, and we configure each LM to
synchronize with every other LM in the topology.

Fig. 8 depicts the average monitoring latency for 3 cases:
i) Minimum distance: reconfigurations are computed close to
where raw statistics are extracted, i.e., by the closest LM; ii)
Maximum distance: reconfigurations are computed by the far-
thest LM from where the statistics are collected and iii) Vari-
able distance: reconfigurations are computed with the same
probability by any of the available LMs. As can be observed,
the performance obtained with the Centralized setup (baseline
scenario) is almost constant as the monitoring information is
always processed at the central manager independently from
where the statistics are gathered. For the decentralized setups,
we observe a significant delay reduction for minimum distance
in comparison to the centralized scenario. The reduction is up
to 57% for Topol, and even more evident (61%) for Topo2,
where paths generally span higher latencies and number of
hops. Smaller latency reductions can be noticed for maximum
distance, up to 17% for Topol and 40% for Topo2. As ex-
pected, the higher the percentage of reconfigurations computed
close to where the relevant knowledge is collected, the higher
the reduction in terms of control-loop delays achieved with
the decentralized approach.

In addition, we evaluate the total amount of monitoring traf-
fic handled by an individual LM in the different decentralized
setups. Results of Fig. 8c are normalized to the ones obtained
in the Centralized case. As observed, the decentralized ap-
proach can drastically reduce the burden on the single LM
since the incoming monitoring traffic decreases, as expected,
proportionally to the number of LMs deployed in the network.

C. Monitoring Information Extraction

In this subsection, we investigate how the extraction of
monitoring information by the monitoring modules can affect
the performance of the use case services (content distribution
and cloud gaming) and the LB application. In particular, we
compare a baseline solution where the switches are queried at
a fixed rate with the self-tuning adaptive monitoring algorithm
(SAM) introduced in Sec. IV. In this section we extend the
analysis of the performance of the SAM approach by focusing
on the tradeoff between application/service performance and
monitoring overhead.

To quantify the performance of the LB application, as well
as the impact on content distribution and cloud gaming, we
take into account three different metrics. The performance
of the LB management application is represented by the
utilization of the congested link [/, obtained by sampling it
at rate 1/p; (i.e.,, every 1 second) throughout the duration of

1.0
L

SAM

0.8
L

Empirical CDF
03 04 05 06 07 08 09 1.0
| . . . | | . .
Empirical CDF
0.6
.

0.4
L

0.2
L

0.0
L

100 200 300 400 500

Download speed (Kbps)

(b)

o 2 4 6 8
Link utilization (Mbps)

(a)

0.8 1.0
L L

Empirical CDF
0.6
.

Empirical CDF
0.4
.

03 04 05 06 07 08 09 1.0
L L L L L L L L

0.2
L

0.0
L

100 200 300 400 500

Download speed (Kbps)

(®

o 2 4 & & 10 0

Link utilization (Mbps)

(e)

Empirical CDF
03 04 05 06 07 08 09 1.0
.

Empirical CDF
03 04 05 06 07 08 09 1.0
.

Monitoring traffic per switch

0 500 1000 1500

Service latency (ms)

©

Monitoring traffic per switch

0 500 1000 1500

Service latency (ms)

()

Fig. 9: Extraction of monitoring information ([a,b,c,d]:Topol; [e,f,g,h]:Topo2)

the experiment. For the content distribution service, we collect
the download speed as a measure of the user’s QoE. Finally,
the performance of cloud gaming is evaluated by measuring
the service latency, i.e., the response time of each individual
user request, which determines how responsive the gaming
service is. To guarantee acceptable performance, the service
latency should not exceed 80ms for highly interactive games
and 150ms for slow-paced games [44].

To represent the monitoring overhead, we consider the mean
monitoring traffic rate produced by individual switches. This
metric is in line with [30] and [33], which show that only a
limited amount of monitoring data can be reported by SDN-
enabled switches for each time unit.

The evaluation is performed by running experiments with
the Fully Distributed setup in which we generate congestion
episodes on a specific network link. For each experiment,
monitoring is configured to query the switch either at a fixed
rate (with frequency 0.5Hz, 1Hz or 10Hz) or using SAM
with query rate varying in the range [0.1Hz,10Hz]. We
also fix p; = p;, so that measurement results are always
synchronized between the LMs. For each test run, download
speed and cloud gaming latency values are recorded for all
clients in the network. Also, for the results of different clients
not to be affected by the different path latencies, the selected
users are served through paths of equal length.

Fig. 9 shows the empirical CDF of link utilization of the
congested link for the different monitoring configurations, as
well as the one of the download speed of content distribution
and of the cloud gaming service latency. In addition, the mean
monitoring traffic (i.e., the monitoring overhead) is reported,
normalized to the one obtained with SAM. As depicted in the
figure, the values of the three performance indicators improve
when increasing the measurement rate as congestion episodes
can be detected more reactively. Interestingly, we observe that

the performance obtained with SAM can generally match the
one obtained with fixed 10H z monitoring. For example, as
shown in Fig. 9c and 9g, the service latency never exceeds the
150ms threshold in both the SAM and fixed 10 H z monitoring
cases. The SAM approach does however produce less than
50% of monitoring traffic compared to fixed 10H z monitoring
as shown in Fig. 9d and Sh. This is because the adaptive
monitoring logic of SAM increases the query rate up to 10H 2
only when needed, i.e., when congestion arises. The only
case in which 10H z monitoring can outperform SAM is for
the download speed but yet the difference in performance is
never substantial. For instance in Topol, where the difference
is more noticeable, the download speed obtained with SAM
is lower in only 20% of the cases, and the speed reduction
never exceeds 40 K'bps, which represents less than 12% of the
maximum speed. This small benefit of fixed 10 H z monitoring
comes furthermore at a huge cost as 150% more monitoring
traffic is produced. Finally, we also consider the case where
the operator adopts a fixed 4Hz measurement frequency, thus
guessing the same average query rate of SAM (Fig. 9d,9h). In
practice, this is unlikely to happen, as no prior knowledge on a
suitable measurement rate is usually available to the operator.
As shown in Fig. 9, even in this case SAM is not outperformed.

D. Monitoring Information Distribution

In the considered decentralized management framework
[8], instances of a distributed application can take decisions
based on information extracted at a remote location. In this
subsection we investigate the effects of the dissemination of
monitoring information between LMs on the performance of
the LB application and its impact on the content distribution
and cloud gaming services. We run experiments with the
Fully Distributed setup in which congestion episodes occur
on a specific link [, located under the scope of a specific
LB instance (local LB), while the offloading decisions are

=10 7 450 3500 ““:i ;
g & 400 23000 = 09 1
2 8 < 350 = 2 08 1
< 3 300 72500 S 07 1
=)
g° 2 250 §2000 2 o6t]
= 2 5 L]
54 @ 200 1500 g osr 1
g g g
:, ks 150 £ 1000 8 o3r]
£ S 100 & 500 g o02r 1
3o 8 58 o g 0.8 LT e
1 2 4 6 8§ 10 1 2 4 6 8 10 1 2 4 6 8 10 0] 1 2 3 45 6 7 8 9 10
Information distribution period (sec.) Information distribution period (sec.) Information distribution period (sec.) Information distribution period (sec.)
(a) (b) © (d
. 5 o
10 & 400 3500 £ :
g § a0 ‘23000 £ o9 1
g 8 < 300 =, 2 08 7
= > 52500 £ o7t 1
@ 51 A
&6 6 3250 52000 £ 06[8
© @ 200 w § o05F 4
g 4 <1500 £ o
g § 150 8 5 o4r]
ER) 2 00 -$1000 o 031]
£ g 5 g 02r]
5o 3 50 o 500 2 041F 5
a — i 5 0 TR R N T N S M
1 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10]

Information distribution period (sec.)

()

Information distribution period (sec.)

®

2 3 4 5 6 7 8 9 10
Information distribution period (sec.)

()

Information distribution period (sec.)

(&)

Fig. 10: Synchronization of monitoring information ([a,b,c,d]:Topol; [e,f,g,h]:Topo2)

made outside the local partition by another application instance
(remote LB).

In these experiments, we fix p; = 1 second and let p; vary in
the range (1, 10) seconds in order to increase the inconsistency
between the views of the two LB instances. We quantify the
effects of relaxed synchronization based on the three metrics
presented in Sec. VI-C, i.e., link utilization, download speed
and cloud gaming service latency.

Results are shown in Fig. 10 in the form of boxplots,
with the whiskers extending from the box (first and third
quartile boundaries) to the 95 percentiles. Fig. 10a and 10e
show that the utilization of [is significantly affected by the
synchronization period. For low values, such as ps = 1, 2, the
utilization is below the congestion threshold for more than half
of the total duration of the experiment. Starting from p, = 4,
the inconsistency of views between local and remote LB brings
a noticeable increase to the utilization median, in both Topol
and Topo2. For example, in the case ps = 10, the median
utilization is beyond the congestion threshold (8.5 Mpbs) and
coincides with the link capacity (10Mbps), i.e., the link is in
a congested state for at least half of the experiment duration.

This trend is also reflected on the user perceived quality of
the two use case services. In the content distribution case a de-
crease of the median download speed can be observed, which
can be more or less progressive, e.g., based on the duration of
congestion episodes. The impact of relaxed synchronization is
particularly evident in Topo2, where the download rates are
lower than in Topol due to the higher end-to-end latencies
in this network. For instance, increasing ps from 1 second
to 2 seconds leads to a substantial reduction of the median
throughput that drastically decreases from 300 to 50 Kbps.
In the cloud gaming case (Fig. 10c and 10g), the effect
of infrequent synchronization can be even more disruptive.
In particular, while an acceptable gaming experience can be
guaranteed with ps; = 1, 2 throughout all the experiment time
(the service latency rarely exceeds 100ms), under ps = 8,10
the latency is above 500ms in Topol and above 1sec in Topo2
for approximately half of the cases. This would in practice
make the gaming service inaccessible to clients.

In addition, we evaluate the monitoring overhead that we
define for each experiment as the generated monitoring traffic,

e.g., sum of the size of each packet multiplied by the path
length (number of hops). The overhead is the sum of two
components: i) the measurements overhead, i.e., the traffic
incurred by the collection of the raw statistics from the
physical devices, and ii) the traffic incurred by the distribution
of the link status between the LB instances that linearly
increases with the frequency of the information distribution.
Only the latest is plotted in Fig. 10d and 10h since, as shown
in our previous work [1], the generated traffic is dominated
by the dissemination of monitoring information. As expected,
increasing the synchronization period can lead to substantial
reductions of the overhead that decreases proportionally to p;.

We finally observe that significant overhead reductions can
be obtained by trading off service performance a little bit.
For instance, the overhead can be approximately halved by
choosing ps; = 2 instead of ps = 1, while incurring negligible
disruption on the cloud gaming performance, as shown in Fig.
10c and 10g.

VII. RELATED WORK

The de-facto monitoring standard of today’s IP network is
NetFlow, which is based on packet sampling. Netflow samples
packets with the same probability and aggregates them into
flows. However, as discussed in [31], several studies have
shown the limitations of packet sampling to perform fine-
grained monitoring (e.g., biases toward sampling larger flows)
making it unsuitable for many management applications.

The advent of SDN has empowered network monitoring
with new measurement enablers as OpenFlow switches can
keep track of active flows in the network and update per
flow counters. A number of proposals have recently exploited
this feature to provide direct and precise flow measurements
without resorting to packet sampling. In OpenTM [27] the
SDN controller pulls, at fixed intervals, the switch counters
collected by explicitly polling the switches in order to period-
ically generate traffic matrices. In [28] the authors propose
FlowSense, an approach where the network utilization is
measured using a different, push-based, approach. This uses
the messages generated during the setup and eviction of flows
from the switch flow table. Compared to the technique used
in our paper that takes advantage of explicit switch polling,

the solution in [28] can reduce the measurement overhead but
suffers from limited flexibility since it only works with short-
lived flows.

While most of the recent proposals have focused on spe-
cific measurements or on a very limited set of measurement
tasks, the approaches presented in [21] and [26] provide
a measurement API for supporting a wide range of tasks.
OpenSketch [21] relies on a clean-slate approach where a
novel processing pipeline is used on the switch to support
many different measurement tasks. In addition, a library is
developed for the control-plane to reconfigure the pipeline.
Payless [26] resembles more the approach adopted in this
paper as it provides an API to serve different monitoring
requests, all executed through pull-based measurements.

Adaptive monitoring in SDN has recently attracted several
research efforts. In Payless [26], monitoring adaptations are
performed based on fixed thresholds. In [18], a model for
dynamically updating the switch query timeout is presented,
but it is exclusively tailored to flow covariance measurements.
In a similar fashion to SAM, our proposal, the approach in [17]
reconfigures the query rate based on the outcome of a linear
prediction. It does however require some complex parameter
tuning, an issue that our scheme overcomes through automatic
reconfigurations of the algorithm parameters.

In contrast to our work, all the aforementioned proposals
are mainly tailored to early SDN solutions that rely on a
physically centralized control infrastructure. This assumption
has been questioned in [10] and [7] where distributed control
planes have been proposed to overcome scalability issues such
as processing bottlenecks at the central controller and large
control latencies. However, the main focus of these papers is
on how distributed controllers can unify their local views of the
network, paying little attention to measurement issues. In [7] a
controller-to-controller communication mechanism based on a
pub/sub paradigm is presented. In [10] a distributed database
for the dissemination of slowly changing network state and a
distributed hash table for exchanging volatile information are
proposed. Another important work is [12], which investigates
the main issues posed by state distribution in a logically cen-
tralized, physically distributed SDN architecture. One of these
issues, i.e., the tradeoff between performance optimality and
state distribution overhead, has been considered in Sec. VI-D,
where we have evaluated how the timeliness of synchronized
monitoring information impacts the MA performance and the
overhead in terms of additional monitoring traffic. In a less
recent work [13], the authors introduce a model, called A-Gap,
for adaptive reduction of the traffic overhead in distributed
monitoring based on filtering. However, this technique ad-
dresses a different, hierarchical, monitoring architecture where
the information is aggregated and transmitted on a spanning
tree toward a central management station.

VIII. CONCLUSION

In this paper we have presented a novel monitoring approach
for software-defined networks that can provide heterogeneous
management applications with frequent and consistent net-
work state updates, thus enabling fast and effective resource

reconfigurations. Our solution relies on a decentralized archi-
tecture satisfying the requirements of networks with a large
number of geographically dispersed devices. To reduce the
consumption of the switch control bandwidth, it performs
frequent adaptations of the switch query rate using SAM, our
novel self-adaptive monitoring method. As opposed to existing
approaches, for which complex parameter tuning is needed
under highly dynamic network traffic, the proposed algorithm
can automatically reconfigure itself without any intervention
from the operator.

The evaluation, based on realistic topologies and demanding
use case services, has shown that our decentralized monitoring
framework can improve the reconfiguration reactivity by sig-
nificantly reducing the control-loop delays, in particular when
a large portion of reconfiguration decisions are taken close
to where the relevant statistics are collected. In addition, we
have demonstrated that service performance can significantly
improve by enabling SAM, without incurring additional switch
resource consumption. Finally, although decentralizing the
monitoring functionality involves additional communication
overhead, this can be mitigated by slightly relaxing the syn-
chronization of monitoring data, while maintaining acceptable
service performance.

In future work, we plan to explore new use case applica-
tions, as well as different network topologies. We also plan to
investigate how to dynamically allocate switch resources, in
terms of monitoring bandwidth, to different monitoring tasks
under limited resources. This will involve developing an online
monitoring accuracy estimation tool and its use in conjunction
with SAM query period adaptations.

REFERENCES

[11 G. Tangari, D. Tuncer, M. Charalambides, and G. Pavlou. Decentral-
ized Monitoring for Large-Scale Software-Defined Networks. In Proc.
IEEE/IFIP IM, Lisbon, Portugal, May 2017, pp. 289-297.

[2] H. Kim and N. Feamster. Improving network management with software
defined networking. In IEEE Communication Magazine, vol. 51, no. 2,
Feb. 2013, pp. 114-119.

[3] Y. Yuan, R. Alur, and B. T. Loo. NetEgg: Programming network policies
by examples. In Proc. ACM Hotnets, USA, Oct. 2014, pp. 20-27.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: dynamic flow scheduling for data center networks. In Proc. NSDI,
San Jose, CA, USA, Apr. 2010.

[5] S. Agarwal, M. Kodialam, and T. Lakshman. Traffic engineering in
software defined networks. In Proc. IEEE INFOCOM, Turin, Italy, Apr.
2013, pp. 2211-2219.

[6] X. Liu, M. Shirazipour, M. Yu, Y. Zhang. MOZART: Temporal Coordi-
nation of Measurement. In Proc ACM SOSR, USA, Mar 2016.

[7]1 A. Tootoonchian and Y. Ganjali. HyperFlow: a distributed control plane
for OpenFlow. In Proc. USENIX INM/WREN, USA, 2010, pp. 3-9.

[8] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou. Adaptive
resource management and control in software defined networks. In /IEEE
TNSM, vol. 12, no. 1, Mar. 2015, pp. 18-33.

[9] Shan-Hsiang Shen, Aditya Akella. DECOR: A distributed coordinated
resource monitoring system. In Proc. IEEE IWQoS, Coimbra, Portugal,
Jun. 2012, pp. 1-9.

[10] T. Koponen et al. Onix: a distributed control platform for large-scale
production networks. In Proc. USENIX OSDI, Vancouver, BC, Canada,
Oct. 2010, pp. 351-364.

[11] P. Berde, et al. ONOS: towards an open, distributed SDN OS. In Proc.
ACM HotSDN, Chicago, Illinois, USA, Aug. 2014, pp. 1-6.

[12] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann.
Logically centralized?: State distribution trade-offs in software defined
networks. In Proc. ACM HotSDN, Helsinki, Finland, Aug. 2013, pp. 1-6.

[13] A. Gonzales, and R. Stadler. Adaptive distributed monitoring with
accuracy objectives. In Proc. ACM INM, Pisa, Italy, Sep. 2006, pp. 65-70.

[14] N. Van Adrichem, C. Doerr, and F. Kuipers. OpenNetMon: network
monitoring in openflow software-defined networks. In Proc. IEEE/IFIP
NOMS, Krakow, Poland, May 2014, pp. 1-8.

[15] C. Yu et al. Software-defined latency monitoring in data center networks.
In Proc. PAM, New York, NY, USA, Mar. 2015, pp. 360-372.

[16] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Dream: dynamic
resource allocation for software-defined measurement. In Proc. ACM
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 419-430.

[17] T. Zhang. An adaptive flow counting method for anomaly detection in
SDN. In Proc. ACM CoNEXT, Santa Barbara, USA, Dec. 2013, pp. 25-30.

[18] Z. Bozakov, A. Rizk, D. Bhat, and M. Zink. Measurement-based
Flow Characterization in Centrally Controlled Networks. In Proc. IEEE
INFOCOM, San Francisco, CA, USA, Apr. 2016, pp.1-9.

[19] Y. Yu, C. Quien, X. Li. Distributed collaborative monitoring in software
defined networks. In Proc. ACM HotSDN, USA, Aug. 2014, pp. 85-90.

[20] N. McKeown et al. OpenFlow: enabling innovation in campus networks.
In ACM SIGCOMM CCR, vol. 38, no. 3, Apr. 2008, pp. 69-74.

[21] M. Yu et al. software defined traffic seasurement with OpenSketch. In
Proc. USENIX NSDI, Lombard, IL, USA, Apr. 2013, pp. 29-42.

[22] C. Kim et al. In-band network telemetry via programmable dataplanes.
In Proc. ACM SIGCOMM, London, UK, Aug. 2015, Demo Session.
[23] P. Bosshart et al. P4: programming protocol-independent packet proces-
sors. In ACM SIGCOMM CCR, vol. 44, no. 3, Jul. 2014, pp. 87-95.
[24] P. Bosshart et al. Forwarding metamorphosis: fast programmable match-
action processing in hardware for SDN. In Proc. ACM SIGCOMM, Hong

Kong, China, Aug. 2013, pp. 99-110.

[25] D. Tipper et al. An analysis of the congestion effects of link failures in
wide area networks. In IEEE JSAC, vol. 12, Jan. 1994, pp. 179-191.
[26] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba. PayLess: a low cost
network monitoring framework for software defined networks. In Proc.

IEEE/IFIP NOMS, Krakow, Poland, May 2014, pp. 1-9.

[27] A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: traffic matrix
estimator for OpenFlow networks. In Proc. PAM, Zurich, Switzerland,
Apr. 2010, pp. 201-210.

[28] C. Yu et al. FlowSense: monitoring network utilization with zero
measurement cost. Proc. PAM, Hong Kong, China, Mar. 2013, pp. 31-41.

[29] M. Wichtlhuber, R. Reinecke, and D. Hausheer. An SDN-based
CDN/ISP collaboration architecture for managing high-volume flows. In
IEEE TNSM, vol. 12, no. 1, Mar. 2015, pp. 48-60.

[30] J. C. Mogul et al. Devoflow: cost-effective flow management for high
performance enterprise networks. In Proc. ACM Hotnets, Monterey, CA,
USA, Oct. 2010, pp. 1-6.

[31] V. Sekar, M. K Reiter, and Hui Zhang. Revisiting the case for a
minimalist approach for network flow monitoring. In Proc. ACM IMC,
Melbourne, Australia, Nov. 2010, pp 328-341.

[32] A. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante. Drafting behind
Akamai. In IEEE/ACM TON, vol 17, no. 6, Dec. 2009, pp. 1752-1765.

[33] L. Hendriks, R. Schmidt, R. Sadre, J. Bezerra and A. Pras. Assessing
the quality of flow measurements from OpenFlow devices. In Proc. TMA,
Louvain La Neuve, Belgium, Apr. 2016.

[34] 1. Poese et al. Enabling content-aware traffic engineering. In ACM
SIGCOMM CCR, vol. 42, no. 5, Oct. 2012, pp. 21-28.

[35] D. Tuncer, M. Charalambides, G. Pavlou, N. Wang. DACoRM: a
coordinated, decentralized and adaptive network resource management
scheme. In Proc. IEEE/IFIP NOMS, Westin Maui Maui, HI, USA, Apr.
2012, pp. 417-425.

[36] D. Valocchi et al. Extensible signaling framework for decentralized
network management applications. In Proc. IEEE/IFIP NOMS, Istanbul,
Turkey, Apr. 2016, pp. 153-161.

[37] M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latre, G.Pavlou,
F. De Turck. Hybrid multi-tenant cache management for virtualized ISP
networks. In Journal of Network and Computer Applications, vol. 68,
issue C, Jun. 2016, pp. 28-41.

[38] POX OpenFlow controller. http://www.noxrepo.org.

[39] OpenConfig project. http://www.openconfig.net.

[40] T. Jirsik, M. Cermak, D. Tovarnak, P. Celeda.Toward Stream-Based IP
Flow Analysis. In IEEE Communications Magazine, Volume 55, Issue 7,
2017, pp 70-76.

[41] F. Baccelli, S. Machiraju, D. Veitch, J. Bolot. The Role of PASTA in
Network Measurement. In Proc. ACM SIGCOMM, Italy, Sep. 2006.
[42] 100 Megabit Ethernet anonymized packet traces without payload:

WIDE-TRANSIT link. http://mawi.wide.ad.jp/mawi/ditl/dit12007/.

[43] Gaikai video game streaming platform. https://www.playstation.com/en-
gb/explore/playstation-now/?smcid=psnow-vanityurl.

[44] S. Choi, B. Wong, G. Simon, C. Rosemberg. A hybrid edge-cloud
architecture for reducing on-demand gaming latency. In Journal of
Multimedia Systems, Issue 5/2014, pp. 503-519.

[45] M. Manzano, J.A. Hernandez, M. Uruena, E. Calle. An empirical study
of Cloud Gaming. In Proc. Netgames, Venice, Italy, Nov. 2012, pp. 1-2.

[46] The GEANT Topology, 2004. http://www.dante.net/
server/show/nav.007009007

[47] The Germany50 Topology, 2004. http://sndlib.zib.de

Gioacchino Tangari is a PhD student in the De-
partment of Electronic and Electrical engineering
at University College London. His main research
interests include network monitoring in the context
of programmable networks, and high-speed packet
processing on commodity hardware. He has been
working as a research intern in Nokia Bell Labs in
2014, Paris, and Telefonica Research, Barcelona, in
2017.

Daphne Tuncer is a Research Fellow in the De-
partment of Computing at Imperial College London,
UK. She received her Ph.D. from University College
London (UK) in 2013 and a Diplome d’ingenieur de
Telecom SudParis (France) in 2009. Her research
interests are in the areas of software-defined and
programmable networks, adaptive network resource
management and multimedia content distribution.

Marinos Charalambides is a senior researcher at
University College London. He received a BEng
in Electronic and Electrical Engineering, a MSc
in Communications Networks and Software, and
a Ph.D. in Policy-based Network Management, all
from the University of Surrey, UK, in 2001, 2002
and 2009, respectively. His research interests include
network programmability, adaptive resource man-
agement, content delivery and network monitoring.

Qi Yuanshunle is a BEng student in the Department
of Electronic and Electrical Engineering at Univer-
sity College London. His research interests are in
computer networks.

George Pavlou is Professor of Communication Net-
works in the Department of Electronic and Electrical
Engineering, University College London, UK. He
received a PhD in Computer Science from University
College London, UK. His research interests focus
on networking and network management, including
aspects such as autonomic networking and software
defined networks. He is the chief editor of the bi-
annual IEEE Communications network and service
management series and in 2011 he received the
Daniel Stokesbury award.

