
1

Accuracy-Aware Adaptive Traffic Monitoring
for Software Dataplanes

Gioacchino Tangari, Marinos Charalambides, Daphne Tuncer, and George Pavlou

Abstract—Network operators have recently been developing
multi-Gbps traffic monitoring tools on commodity hardware,
as part of the packet-processing pipelines realizing software
dataplanes. These solutions allow the execution of sophisticated
per-packet monitoring using the processing power available on
servers. Although advances in packet capture have enabled the
interception of packets at high rates, bottlenecks can still arise
in the monitoring process as a result of concurrent access
to shared processor resources, variations of the traffic skew,
and unbalanced packet-rate spikes. In this paper we present
an adaptive monitoring framework, MONA, which is resilient
to bottlenecks while maintaining the accuracy of monitoring
reports above a user-specified threshold. MONA dynamically
reduces the measurement task sets under adverse conditions, and
reconfigures them to recover potential accuracy degradations. To
quantify the monitoring accuracy at run time, MONA adopts
a novel task-independent technique that generates accuracy
estimates according to recently observed traffic characteristics.
With a prototype implementation based on a generic packet-
processing pipeline, and using well-known measurements tasks,
we show that MONA achieves lossless traffic monitoring for
a wide range of conditions, significantly enhances the level of
monitoring accuracy, and performs adaptations at the time scale
of milliseconds with limited overhead.

Index Terms—Network monitoring; Software packet process-
ing; Dynamic resource allocation

I. INTRODUCTION

Recent advances in network management allow for dynamic
resource reconfigurations in response to a variety of events
concerning network utilization, security, and changing user
demand. This capability poses strict requirements on traffic
monitoring, which cannot be satisfied by existing techniques
such as SNMP, packet sampling tools [2], or OpenFlow coun-
ters [3][4], given their coarse report granularity and frequency.

To facilitate a detailed view of network-wide events, the
research community has been recently investigating solutions
where sophisticated measurement tasks are executed on a per-
packet basis within the packet-processing pipeline, without
relying on sampling or passive trace analysis, thus enabling
timely reports of fine granularity [5]. In particular, network
operators have embraced the deployment of fine-grained traf-
fic monitoring on commodity hardware, incorporated in the
software packet-processing pipelines, also known as software
dataplanes [42] [43]. This allows for enhanced flexibility at
a low cost since traffic monitoring can exploit the processing
power of servers to execute complex per-packet measurements.

Gioacchino Tangari, Marinos Charalambides, and George Pavlou are
with the Department of Electronic and Electrical Engineering, University
College London, London WC1E 7JE, UK. Daphne Tuncer is with the
Department of Computing, Imperial College London, London SW7 2AZ, UK.

Achieving lossless packet processing while performing traf-
fic monitoring in software is a challenging task. On one
hand it needs to cope with increasing data rates supported
by network cards (10+ Gbps), which squeeze the admissible
packet processing times to a few tens of nanoseconds. On
the other hand, it should satisfy the operator’s requirement of
assigning limited resources to the monitoring process (e.g., 1
processor core per 10 Gbps [5]) while performing advanced
measurement tasks on a per-packet basis. Recent packet cap-
ture engines [10][9], hardware technologies such as Receive-
Side Scaling (RSS)[11], and multi-core packet scheduling
architectures [19][20] allow to cope well with packet capture
at wire-speed. However, short-lived bottlenecks can still arise
in the monitoring process, leading to potential loss of packets
in the input buffer(s). This occurs when unbalanced packet
rate spikes, affecting one or a subset of CPU cores, compress
the available per-packet time, or when variations of traffic
skew [12], or concurrent access to shared server resources [15]
inflate the packet-processing latencies.

Our previous work in [1] proposed an adaptive traffic
monitoring approach for software dataplanes, which respon-
sively reconfigures the measurement operations in the face of
bottlenecks so as to avoid packet loss. The main idea of [1]
is to dynamically restrict the sets of monitoring operations for
portions of the input packet stream, so that all packets can
be inspected in time. This involves (i) frequent estimations of
the available processing time, coupled with extensive offline
analysis of the different per-packet latencies involved in the
monitoring process, and (ii) timely reduction of the monitoring
operation sets for portions of the active flows’ population.

In this paper we extend the approach in [1] by proposing
MONA (Adaptive MONitoring with Accuracy-Awareness),
a traffic monitoring framework based on software packet-
processing, which is resilient to bottlenecks while keeping the
accuracy of monitoring reports above a user-defined threshold.
Jointly achieving zero packet loss and accurate reporting is a
hard problem. In particular, it is difficult to know the impact of
monitoring reconfigurations on the reports’ accuracy a-priori
[6][28], as this depends on traffic characteristics and on the
monitoring operations logic.

MONA overcomes these issues by decoupling the adap-
tation functionality proposed in [1] from accuracy control.
The latter progressively redistributes subsets of the active
traffic flows between the measurement tasks running in the
system, so that monitoring reports can be generated at the
desired accuracy. To quantify accuracy degradations, MONA
estimates at run time how many events (e.g., heavy hitters,
traffic bursts) remain undetected after the measurements sets

2

have been reduced in part of the flows. This is obtained
through a novel, task-independent, technique which ensures
high levels of confidence by computing estimates according
to recently observed traffic characteristics.

MONA is not the first design where monitoring is dy-
namically configured to achieve accuracy goals, but it is the
first that is fully tailored to a software dataplane. Existing
solutions rely on approximate measurement techniques such
as sketches [6][30][36] and top-k counting [39][13], mainly
geared towards reducing memory usage, while for software
packet-processing the stringent constraint is on CPU-time. In
contrast to these approaches, MONA operates with simple
hash-tables [5][12][38], with enough space to store (error-free)
results for all active flows. This not only shifts the focus of
the design from memory to CPU-time consumption, but also
allows for more heterogeneous traffic analysis, e.g., beyond
volume and connectivity-based results of sketches [34].

In [1] we showed that the adaptation functionality reduces
the risk of packet loss under variations of traffic rate/skew, or
due to concurrent access to memory and processor caches.
Compared to [1], in this paper we further investigate the
benefits of MONA focusing on the monitoring report accuracy.
To this end, we implement MONA along with a set of widely-
used measurement tasks that adopt the same reporting period
used in [5] (10ms). Our evaluation shows a general improve-
ment on the accuracy level. In particular, MONA enhances the
monitoring task accuracy – in terms of the task satisfaction
metric proposed in [28] – by a factor of 2 compared to the
traditional static monitoring approach, and by a factor of 3
compared to the initial adaptive solution in [1]. Finally, we
demonstrate that MONA can operate in short time-scales while
incurring only a small CPU-time overhead (≈1-2%).

In summary, the contributions of this paper beyond [1] are
the following:
• A novel design introducing adaptive monitoring func-

tionalities for software-packet processing, which involves
online estimation techniques coupled with timely recon-
figurations of the measurement operation sets.

• A task-generic monitoring accuracy estimation technique,
which guarantees high levels of confidence by providing
estimates tailored to recently-observed traffic characteris-
tics.

• An extensive evaluation of MONA focusing on through-
put and resilience in the face of bottlenecks, accuracy
performance of representative measurement tasks, and
computational overhead.

The remainder of this paper is organized as follows. We pro-
vide background information on software-based traffic mon-
itoring in Sec.II. We describe our proposal in Sec.III-V and
evaluate its performance in Sec.VI. Related work is discussed
in Sec.VII and final remarks are presented in Sec.VIII.

II. TRAFFIC MONITORING IN SOFTWARE DATAPLANES

The research community has recently embraced the use
of commodity hardware to realize a wide range of network
functions, as this entails improved flexibility and reduced
costs. Traffic monitoring, in particular, is a good candidate for

such an implementation, as it can benefit from the processing
capability of powerful servers in order to perform complex
measurement tasks at the granularity of a single packet,
without the need to employ sampling techniques.

Compared to monitoring operations in hardware switches,
where memory availability (TCAM space [44] in particular) is
the main shortage, traffic measurements on commodity hard-
ware are constrained by the CPU-time and the working set, i.e.,
the data most frequently accessed for the measurements [12].
This clearly reflects on the design choices for such monitoring
tools. Instead of using more complex measurement techniques
like heap-based [13] solutions and sketches [35][7][14][34],
which reduce the total memory usage, traffic monitoring for
software dataplanes can just rely on simple hash tables for
storing the traffic flow statistics, as they guarantee the best
performance in terms of CPU-time and working set [12][5].

A. Measurement Tasks
We target well-known measurement tasks that monitor the

packets stream and collect traffic statistics over short time in-
tervals (e.g., 10ms), called time-windows. Each task analyzes
the packets and collects per-flow results in the flow (hash)
table. Flows are defined based on the packet’s 5-tuple1. At
the end of a window, each task generates a report containing
all the events found in the flows it processed. We focus on
four measurement tasks extensively studied in the literature
[28][6][34][40][41][5].

Heavy Hitter detection (HH): discovers traffic aggregates
exceeding a bytes threshold, where each aggregate is the sum
of all flows with same source IP.

Bursty flow detection (Bursty): checks if at least x% of the
packets of a flow arrived in bursts, i.e., with an interarrival
time below y milliseconds. If so, the flow is tagged as bursty.

Latency Change detection (LatChange): checks if the cur-
rent round-trip-time (RTT) of a flow falls outside the interval
[mean(rtt) − β · stddev(rtt),mean(rtt) + β · stddev(rtt)],
where β is a small integer value. If so, it increases the count
of latency changes for that flow.

ReTransmission detection (RTx): counts for each flow
the number of retransmissions (repeated acknowledg-
ment/sequence numbers).

A wide range of analyses can be performed with the
statistics collected by these tasks. Heavy hitters are used for
anomaly detection and for supporting load balancing deci-
sions. Bursty flows serve the diagnosis of congestion, while
retransmissions can reveal reachability problems between two
virtual machines (VM) or servers. The results can also be
combined to detect network misbehaviors or to guide network
management decisions, for traffic engineering or VM migra-
tion, for instance. An operator can identify TCP flows with
significant loss (high retransmissions) and correlate them with
heavy hitters in order to detect short-lived congestions [17].
Alternatively, LatChange can be used to track unresponsive
servers and Bursty results are analyzed to check if latency
changes are due to bursts (e.g., spikes of requests).

15-tuple fields include source and destination IP, source and destination
port, and protocol

3

��

���

����

����

����

����

� ��� ��� ���

�
�
�
�
�
��
���

�
�
��
�
�

����������������������������

(a) vs. cache references rate

��

���

����

����

����

����

����

� ��� ��� ��� ��� ���

�
�
�
�
�
��
���

�
�
��
�
�

��������������������

(b) vs. traffic skew

Fig. 1: Packet processing time

B. Analysis of Potential Bottlenecks

To satisfy the operator’s requirements, traffic monitoring
on commodity hardware has to combine three main features:
handling high traffic rates at a limited cost (e.g., 1 core for 10
Gbps [5]), achieving zero packet loss and supporting diverse,
sophisticated forms of analysis. Collectively meeting these
requirements is not a trivial task. In order to sustain high
throughputs (10+ Gbps), the monitoring process should ensure
total packet processing times in the order of few tens of
nanoseconds, e.g., no more than 70 ns for 10 Gbps of 64-byte
packets. Current state-of-the-art practices, such as RSS and
capture engines (frameworks like DPDK and Netmap) provide
essential support by ensuring packet capture at wire-speed.
While these techniques can get packets from the network card
to the monitoring process at a high rate, they only solve half
the challenge since monitoring bottlenecks can emerge after
packets have been captured. These are described below.

Traffic rate variations High-speed packet processing
servers use multiple cores and RSS to deal with multi-Gbps
traffic. However, these setups are still prone to performance
degradation. If the amount of resources devoted to monitoring
is limited (e.g., in small-scale deployments), a single core
can still face unsustainable workloads at high traffic rates. In
addition, events such as fast variation of user demand [16],
sub-second congestion [17], or DoS attacks [5] can result
to traffic rate spikes affecting one or more cores, even for
deployments with multi-queue packet capture (such as RSS).
Variations of the input packet rate affects the monitoring
process. Intuitively, if the rate increases by x%, the available
time for processing each packet drops by x%, or more if
additional overheads are included for packet acquisition.

Shared resource contention A monitoring process usually
coexists with other tasks on the same machine, often on the
same processor, including other monitoring processes running
on different cores. Resulting hardware resource contention
[15] involves caches, the memory controller and buses. Among
these, the L3 cache, shared by multiple cores in modern
platforms, accounts for most of the performance degradation
in traffic monitoring, since measurement tasks are particularly
aggressive in terms of L3 references per second [15]. As-
suming that on a n core processor the monitoring process
executes on core 1, variation in data access patterns of other
processes running on cores 2 to n can affect the monitoring
time per packet due to cache entry replacements, resulting in

Flow
5-tuple

Monitoring
State

Statistics
Buffer

…
...

…
...

…
...

Time
Estimation

Offline
Profiling

Adaptation
Routine

Run time operating
conditions

New mon.state
configuration

Packets

Hashing
Monitoring
Pipeline

Adaptation

Accuracy
Estimation

Accuracy Gaps
Recovery

Accuracy
Control

Partial monitoring
 results

Adjust mon.state
configuration

Fig. 2: Overview of MONA

a higher miss ratio. As depicted in Fig.1a2, the increase of
cache reference rate on cores 2 to n (initially ≈ 0) can double
the per-packet latency.

Change of traffic skew The skewness of the traffic distri-
bution plays a key role at run time as it defines the monitoring
working set. For traffic with lower skew a higher fraction of
packets cannot be served from the processor caches, resulting
in higher packet processing latencies. As an example, we
measure the packet completion time of a simple monitoring
process that updates packet and byte counts using packet traces
with different skewness.3 As shown in Fig.1b2, reductions
of the skew factor α can double the per-packet latency and
generally make it less predictable.

III. MONA

Bottlenecks in the monitoring process, resulting from the
aforementioned conditions, translate into longer queues in the
packet capture stack, which lead to higher chances of packet
loss. This is an important problem given also the reduced size
of RSS queues (no more than 4K packets) and packet I/O
rings [18], enough to absorb only less than one millisecond of
traffic at 10 Gbps. To ensure resilience to potential bottlenecks,
the operator can either count on resource overprovisioning,
or restrict the available monitoring tasks to a minimal set,
e.g., packet and byte counting only. However, the former
approach violates the requirement of only devoting a limited
amount of resources for monitoring and the latter penalizes
the granularity and expressivity of monitoring reports.

To overcome these limitations, we introduce MONA, a
traffic monitoring framework for software dataplanes, that
dynamically configures the measurement operations sets based
on emerging conditions. From a logical view, MONA is the
combination of two functions. The first function, referred to as
Adaptation, is aimed at lossless traffic monitoring, i.e., it ad-
justs the monitoring process so that all packets are processed in
time. This is achieved through (i) online detection of changes
in the operating conditions, and (ii) timely reconfigurations
(in 10ms) of the monitoring operations on part of the input
packet stream, to obtain more light-weight processing under
strict time constraints. In contrast to existing approaches that
use multi-core packet scheduling [19][20], MONA tackles the
challenge of lossless traffic monitoring from a different angle,
by realizing adaptations in the monitoring process itself, at the
level of a single CPU core.

2The server hardware and configurations used are detailed in Sec. VI.
3We use a Zipf distribution and 105 flows

4

Reductions of the packet-processing time are achieved by
preventing certain measurement tasks to execute for subsets
of the active flow population. For example, by moving the
active flows from a configuration where all tasks presented
in Sec.II-A are executed (approx. 200ns per packet consump-
tion), to one where only HH and RTx are active (approx. 100ns
per packet consumption), MONA can handle a packet rate
increase from 5 to 10Mpps. Adaptations of the monitoring
operations can however result in missed events, e.g. undetected
bursty flows, which penalizes the accuracy of the monitoring
reports. To deal with accuracy degradations, MONA executes
a second function, referred to as Accuracy Control, that re-
adjusts the flow allocation after adaptations have been executed
to ensure that a user-specified level of accuracy is satisfied
for all tasks. This is achieved by (i) tracking the monitoring
report accuracy at run-time by estimating the number of
events missing for each task, and (ii) recovering the identified
accuracy gaps by iteratively re-allocating flows so as to meet
the desired accuracy objective for all tasks.

MONA Design An overview of MONA is shown in Fig.2.
The traffic monitoring process is modelled as a packet-
processing pipeline based on a single hash table, where
incoming packets are hashed on their 5-tuple to match a
corresponding flow-entry. Flow-entries contain an identifier,
called the Monitoring State, that indicates which measurement
tasks to perform for each packet of the flow. The reason
for aggregating tasks in monitoring states is two-fold. It
simplifies the design of applications where transitions between
monitoring configurations are decided within the dataplane,
e.g, based on the outcome of recent measurements and using
a finite state machine [31][25]. It also enables settings in which
multiple tasks share part of their data to save CPU cycles.

The Adaptation and Accuracy Control functions operate
together with the monitoring pipeline, as part of the same
process, to avoid additional resource usage (i.e., more cores)
as well as synchronization overheads. As shown in Fig.2,
the two are however decoupled. This design choice is a
consequence of a well-known problem in software-defined
measurements [28][6]: determining a priori the effects of the
set of flows processed by a task on the accuracy of its report
is hard4. This difficulty is further amplified by the fact that
the impact of adaptation decisions on the report accuracy
differ between tasks as this depends on the task-to-monitoring
state mapping. Even in the case where the same decision
is applied to all tasks, they can each experience different
degrees of accuracy degradations. Take the example of an
adaptation that prevents both tasks Bursty and HH to run on
a flow subset containing small but very bursty flows. While
this causes a large fraction of bursty flows to be missed (low
accuracy for Bursty), it results in only few missed heavy hitters
(high accuracy for HH). These differences are not only due
to traffic characteristics but also depend on the thresholds
used by measurement tasks to trigger new events, e.g., the
bytes threshold for a heavy hitter. In MONA, Adaptation and
Accuracy Control are executed separately on the same time-

4An optimization-based approach could be used otherwise to process all
packets in time while minimizing accuracy losses.

window basis. At the end of each time-window, the former
estimates the available packet-processing time and determines
the new assignment of flows to Monitoring States, while the
latter estimates accuracy degradations and decides how to best
recover them. Reconfigurations, if any, are enforced over the
following window(s) based on the functions’ joint outcome.

The design of MONA addresses three main challenges. It
first ensures that the overhead incurred at run time is limited.
All the involved procedures time-share the CPU with packet
processing since they operate on the same core. As such, all
operations in MONA are designed so that (i) they generate
limited CPU-time overhead (≈ 1ms), and (ii) they all run
to completion in short times (no more than 10µs) to avoid
starvation in the packet capture queue. In addition, it enables
the operational conditions to be accurately estimated by only
employing light-weight tools that provide high levels of confi-
dence. Finally, it supports reactive monitoring reconfigurations
by making sure that each component of the proposed solution
works with time-windows as small as 10ms.

IV. MONITORING ADAPTATION

As shown in Fig.2, the Adaptation function relies on a three-
phase procedure. The first phase, Offline Profiling, runs at the
initialization of the monitoring pipeline, before the start of
an incoming packet stream. Its role is to profile the various
processing times involved in the monitoring pipeline. The
other two, namely Online Estimation and Adaptation Routine,
execute at run time. In each time-window, the Online Esti-
mation procedure extracts the current run time conditions of
the monitoring pipeline using limited additional measurements
and a few key results from the Offline Profiling phase. At
the end of each time-window and based on the extracted
knowledge, an estimate of the available monitoring time per-
packet is generated, which is set as the target for the next
window. The Adaptation Routine takes this value as input
and, if the monitoring configuration exceeds the target time, it
adjusts the set of measurement tasks for subsets of the flow-
table entries to ensure all packets can be processed on time.

Expected time per packet The total expected time associ-
ated with each packet in the monitoring pipeline depends on
whether the packet belongs to a new flow, for which no entries
exist in the flow-table, or to an existing flow. In the first case,
this represents the total processing time for a new-flow packet
(including the new flow-entry insertion), denoted here as Ti.
In the second case, the time can be decomposed in two main
components: the retrieval time Tr, i.e., the time for retrieving
the measurement data for the packet, including hashing and
accessing the matching flow-table entry, and the processing
time Tp, i.e., the time needed to perform the operations in the
current Monitoring State of the matching flow-entry (i.e., the
associated measurement tasks). The total expected packet time
Tpkt can then be estimated based on the following equation:

Tpkt = (1− λf)(Tr + Tp) + λfTi (1)

where λf represents the ratio of packets belonging to new
flows over the total number of packets processed in the current
time-window. Based on the findings reported in [15][12],
which show that the probability of retrieving data from L3

5

processor cache is by far the dominant factor affecting the
retrieval time, Tr can be further decomposed as:

Tr = THr · P + TMr · (1− P) (2)

where THr and TMr represent the retrieval time in case the
data is accessed from the processor cache and from memory,
respectively. P is the probability of cache hit (i.e., the match-
ing flow-table entry is retrieved from the cache), and (1−P)
is the probability of cache miss (i.e., access to memory) 5.
Combining equations (1) and (2), the time per packet Tpkt is
given by:

Tpkt = (1− λf)[THr · P + TMr · (1− P) + Tp] + λfTi (3)

As observed from equation (3), Tpkt can be obtained based on
the estimation of six variables. To keep the run time adaptation
cost as low as possible, the best approach to determine these
values is to perform the estimation offline, for example based
on benchmarking. While this works well for Tp, THr , TMr
and Ti, it cannot apply to P and λf given that both variables
strongly depend on the run time conditions. In this case, an
online procedure is required.

A. Offline Profiling

The objective of the Offline Profiling phase is to characterize
the resource utilization of traffic monitoring by analyzing
the execution times Tp, THr , TMr and Ti through a set
of benchmarks. While resource consumption can be easily
derived online in the case of monitoring solutions dedicated
to hardware switches (each monitored flow strictly maps to a
single flow-entry in TCAM), it is a much harder task to achieve
in software deployments where the focus is on CPU time
rather than memory usage. Not only do the processing times
depend on the server hardware (e.g., clock rate), they also vary
based on what monitoring operation must be performed on a
packet. Offline Profiling overcomes this limitation by building
the knowledge with which resource utilization can be tracked
at run time with a limited cost.

Estimating the processing and retrieval times To de-
termine the value of the processing and retrieval times, we
leverage the observation that in practice the processing time
Tp is much more predictable than the retrieval times THr
and TMr . This is due to the lower variability of Tp val-
ues of each monitoring task. Computing the coefficient of
variation for HH, RTx, Bursty, and LatChange, we obtain
0.023, 0.013, 0.028, 0.045, respectively, which is much lower
than TMr (0.225) and THr (0.11). Intuitively, the processing
time for each Monitoring State is proportional to the number
of boolean/arithmetic operations executed in that state. In
contrast, THr and TMr , which are dominated by the flow-entry
retrieval time, can be affected by possible hash collisions, the
use of different processor caches in the available hierarchy, or
unwanted episodes regarding memory access, such as TLB
(Translation Lookaside Buffer) misses, whose impact also

5Retrieving flow-table entries from processor cache or main memory has
a substantial impact on the per-packet time, due to the difference between TH

r
and TM

r . For example, on a 2.7Ghz processor with 3MB L3 cache, TH
r is

on average 90ns, while the mean value of TM
r is close to 200 ns. Assuming

250B packet size, this can result in a 10Gbps difference in throughput.

Normal
(baseline)

Weibull
(BIC to baseline)

Gumbel
(BIC to baseline)

TH
r 0% +1.86% -3%
TM
r 0% +8.1% -7%

TABLE I: Model selection for TH
r and TM

r

depends on the server hardware and kernel configuration (e.g.,
memory page size).

Processing time estimation. Given the predictability of Tp,
the processing time required for each Monitoring State si (T sip)
can be estimated by collecting samples of T sip over a large
packet trace and setting the value of T sip to the sample mean.

Retrieval time estimation. Due to the sensitivity of the
retrieval times, we propose a different approach based on
statistical model fitting to estimate the value of THr and TMr .
The proposed approach works in two steps as described below.

The objective of the first step is to collect two datasets of
time samples, one for THr and one for TMr . When collecting
the relevant datasets, it is essential to ensure that flow entries
reside in either the fast processor caches (for THr) or in
memory (for TMr). This can be achieved by modulating the
size of the monitoring working set used by the input packet
stream (i.e., number of unique flows in each trace). Given the
L3 processor cache size S, with NH and NM denoting the
number of different flows in each trace (i.e., for THr and TMr ,
repectively), and the size of the flow-table entry F , the size
of the monitoring working set should be so that the following
conditions are satisfied: NH .S < L3 (for THr to force cache
hit) and NM .S � L3 (for TMr to ensure cache miss).

Using a standard fitting strategy, the second step selects the
most appropriate statistical model to represent the distribution
of each variable. Although different distributions can be taken
into account, we simplify the process and restrict our choice
to three representative cases capturing well various degrees
of sample asymmetry. In particular, we select the Normal
distribution as the baseline, as well as two distributions char-
acterized by a heavy tail, namely the Weibull and the Gumbel
distributions. We use the Bayesian Information Criterion (BIC)
for the model selection as it shows more consistent results
compared to the maximum likelihood estimation for very large
sample sizes. It is based on −2 log(likelihood), hence the
lower its value the better the fit.

Table II shows the results of the model fitting strategy based
on the considered distributions for the setup of Table I. As
observed, the best fit is obtained with the Gumbel model for
both THr and TMr .

Estimating the flow-insertion time The objective of this
procedure is to extract the total execution time for packets of
new flows Ti. The estimate of Ti is taken as the average of
all Ti values collected from a large packet trace (e.g., approx-
imately 210ns for the setup in Table I) under the assumption
that new-flow packets form a small subset of the total traffic
(e.g., no more than 10%). In cases like SYN attacks, where Ti
becomes dominant, existing resilience mechanisms [5] could
be used in conjunction with our solution. We discuss this
aspect in detail in Section IV.C.

6

�

���

�

���

�

��� ��� ���

��
���

��
��
�
��
��
��
�
�

��� ������� ��� ����������� ���

���� �����
���� �����

Fig. 3: Precision of P estimation

B. Online Estimation

The objective of the Online Estimation phase is to determine
at each time-window the value of λf and P , as well as the
packet arrival rate at the capture engine queue λpkt. The result
is an estimate of the available per-packet time for the next
time-window, which is based on the run time conditions of
traffic monitoring and the value of Tp, Tr and Ti computed
during the Offline Profiling phase.

To estimate λf , we use a simple strategy incurring negligible
overhead that counts the flow-table insertions and divides
this value by the total number of processed packets during
each time window. To derive the packet capture rate λpkt,
we periodically update the count of packets that have been
written in the queue, i.e., each time a new packet burst is
loaded by the packet acquisition library. In DPDK [10], for
instance, this information can be retrieved using the counts in
the rte eth stats and rte ring API.

Several methods can be considered for estimating the value
of the variable P . One possibility is to use an analytical model
to predict the cache miss rate as proposed in [21]. However,
this does not apply well to our solution as: (i) it requires that
the temporal behavior of the application, in terms of reuse
of addresses, has a single profile, which does not apply in
our case; and (ii) it does not consider the effect of co-runner
processes on the cache hit ratio. Other approaches involving
online Miss Rate Curve generation generally incur substantial
overheads (e.g., an additional 230 ms is reported in [22]),
while faster techniques, like the one presented in [23], rely on
cache-related hardware counters that are restricted in current
hardware [24].

In this paper, we propose a simpler approach which is based
on Tr sampling and uses the models of THr and TMr obtained
from the Offline Profiling phase. In each time-window, the
proposed approach periodically samples the flow retrieval time
with a high precision timer. Denoting K as the number of
samples to collect, the sampling period can be approximated
by λpkt/K. For each sample tir, the approach first computes
Prob(Tr > tir|hit), i.e., the probability for the retrieval time
to be greater than tir assuming that the retrieval was from
a hit, and Prob(Tr ≤ tir|miss), i.e., the probability for the
retrieval time to be lower than tir under a miss. Given the
model of THr and TMr computed through profiling, the value
of Prob(Tr > tir|hit) is obtained by 1 − CDFTHr (tir) and
Prob(Tr ≤ tir|miss) is obtained by CDFTMr (tir). Let r
denote the vector of results with each element r(i) equal to:

r(i) =

{
1 1− CDFTHr (tir) ≥ CDFTMr (tir)
0 otherwise

The value of P is approximated as the percentage of non-zero
values in the vector r.

Algorithm 1: Adaptation Routine

1: procedure COMPUTENEWCONFIGURATION (T target
p ,{ni},{si−1})

2: j = 0
3: Compute avg processing time: T j =

∑k
i=1 niT

si
p /

∑k
i=1 ni

4: while (T j > T target
p) do:

5: for each i ∈ (1, .., k) do: Shift all flows in si to si−1

6: j++
7: Update avg processing time: T j =

∑k
i=1 niT

si−1
p /

∑k
i=1 ni

8: Compute residual shift x: x = (T j−1 − T target
p)/(T j−1 − T j)

9: return adaptation decision (j, x)

To illustrate the performance of the proposed approach in
terms of estimation accuracy, we use it to classify 103 different
ground-truth traces (for which P is known - Ptruth) that
we obtained by modulating the traffic skew as explained in
Sec.II. The estimation error is measured as the difference in
percentage between the value of Ptruth and the value of P
computed by the algorithm. As depicted in Fig.3, our method
achieves very high accuracy on average. We also compare its
performance to the one obtained using a naive classification
where each r(i) is set to 1 or 0 by simply using the distance of
each tir from the sample mean of TMr and THr . For K = 103

the error is around 5%, whereas our method achieves < 1%.
Available processing time Given the values of λf , λpkt

and P , and the variables Tp, THr , TMr and Ti, the Online
Estimation procedure finally extracts the average processing
time for the next time-window T targetp by setting:

(1− λf)[THr P + TMr (1− P) + T targetp] + λfTi = 1/λpkt
(4)

C. Adaptation Routine

In case a monitoring configuration exceeds the target time
T targetp , the role of the Adaptation Routine is to decide
which measurement task(s) should be avoided in the next time
window, and for which flows. To this end, available knowledge
on the monitoring pipeline can be exploited, such as the current
average processing time and the time estimations described in
Sec.IV. Based on this information, new monitoring configura-
tions that satisfy the available time constraint can be derived
and enforced in the next time window.

Ideally, a new configuration should be generated by a
convex optimization that assigns each flow entry to a specific
monitoring state, so as to maximize some objective in terms
of monitoring accuracy. In practice, this is not viable for two
reasons. The first is the overhead associated with solving such
a problem per flow entry, and the second is that the impact
of reconfigurations on the monitoring accuracy is not known
a priori.

To overcome these limitations, the proposed Adaptation
Routine takes a different path. Instead of dealing with indi-
vidual 5-tuples or packets, it operates at the granularity of
Monitoring States, as each one maps to a different subset of
the flow-table. In addition, it follows a probabilistic approach,
where random portions of the flow-table are re-allocated to
more light-weight states such that T targetp is achieved. These
two features allow our solution to generate a new monitoring
configuration within a few microseconds.

The pseudocode of the proposed approach is shown in
Alg.1. When invoked at the end of a time-window, it takes

7

s1

s2

s3 ...

Decreasing processing
time T

p

Monitoring adaptation

(More lightweight state)

Fig. 4: Monitoring states graph

as input the count of packets processed at each Monitoring
State si in the last time-window, and a graph mapping each si
to a less time-consuming state si−1 is generated. An example
of such a graph is shown in Fig.4. The way this can be derived
depends on the logic of the monitoring process. For example,
in scenarios like [25][31], each Monitoring State incorporates
the necessary logic in its code for transitions to other states
once specific conditions on flow-entry statistics are met. si−1
is therefore obtained for each si by backtracking in the state
machine until a more light-weight monitoring state is found.

Our algorithm initially calculates the current average pro-
cessing time T 0 = (

∑k
i=1miT

si
p)/

∑k
i=1mi, where mi is the

number of packets in state si during the last time-window.
Then, it iteratively re-allocates flow-entries to more light-
weight Monitoring States. At each iteration j it computes
the average processing time if all flows were forced to
their previous Monitoring State, i.e., from si to si−1. If
this value, T j , exceeds T targetp , a new iteration is executed.
Otherwise, the procedure takes the monitoring configuration
for T j−1 and forces only a portion x of the flow-table to
an additional step-back in the Monitoring State set, where
x = (T j−1−T targetp)/(T j−1−T j). In practice, x is the ratio
of flows to be further shifted so that the average processing
time can match T targetp .

When the next time-window starts, the new configuration is
applied using the hash of the first new packet for each flow-
entry, which ensures that x is a (pseudo)random portion of
the flow-table. By comparing the hash with x (using a modulo
operation), it decides to update the flow Monitoring State to
j or j − 1 steps back.

V. MONITORING ACCURACY CONTROL

While timely adaptations prevent packets from being
dropped in the monitoring pipeline, they can penalize the
accuracy of the reports computed by each measurement task,
as explained in Section III. In this section, we present a Mon-
itoring Accuracy Control function that aims at re-adjusting
the flow allocation after adaptations have been executed, so
that a global accuracy objective (maintain accuracy above a
threshold) can be satisfied for all tasks. Its design addresses
two non-trivial challenges. It first quantifies the effect of
adaptations on the monitoring report accuracy. Given the lack
of ground-truth information for the monitoring results, this is
achieved using a task-generic solution that generates accuracy
estimates at run-time; prior work e.g. [28][6] is limited to
employing ad-hoc estimation techniques for each task. Based
on the output of the online estimation procedure, an accuracy
gap recovery process is then executed to re-adjust the flow
allocation and alleviate accuracy degradation.

A. Online Accuracy Estimation

The objective of the Online Accuracy Estimation procedure
is to generate accuracy estimates at run-time based on partial
monitoring results. We quantify the accuracy of the reports
computed by a measurement task according to the value of
the Recall [35][39][28][6], i.e., the ratio between the number
of events identified by the task (e.g., number of heavy hitters,
bursty-flows, etc.) and the total number of events in the traffic.
This metric is well-aligned with the logic of the adaptations:
the accuracy degradation is in terms of false negatives (e.g.,
missed heavy-hitters) rather than false positives. We define
Recalliw as the recall of monitoring task i at time-window w:

Recalliw = NFound
iw /(NFound

iw +NMiss
iw)

where NFound
iw is the number of events identified by task i,

while NMiss
iw is the number of events missing with respect to

the input traffic (i.e., ground-truth), which is unknown. NMiss
iw

can be further expanded as:

NMiss
iw = FMiss

iw · E[XMiss
iw]

where FMiw is the number of missing flows for task i at time-
window w (i.e., flows for which task i has been dropped),
which is measured from the output of the Adaptation Routine,
and XMiss

iw the number of events for a missing flow at w,
which is unknown, e.g., the number of retransmissions of a
flow not processed by RTx at time-window w. The objective
is to determine a reliable estimation of XMiss

iw .
Formally, the estimation problem can be modeled using a

decision-theoretic approach. In this work, we express the de-
cisions as risk-taking decisions, where the risk is in generating
poor estimations of XMiss

iw . Let x̂Miss represent a generic
estimator for XMiss

iw . We define a Risk function R(x̂Miss)
associated with the choice of the estimator x̂Miss as:

R(x̂Miss) =

∞∑
l=0

L(xMiss
l , x̂Miss)Prob(XMiss

iw = xMiss
l)

(5)

where the Loss function L(XMiss
iw , x̂Miss) represents the loss

incurred by replacing XMiss
iw with x̂Miss. The best estimator

of XMiss
iw is the one with which R(x̂Miss) is minimized, i.e.,:

x̂Miss
Best = argmin

x̂Miss
R(x̂Miss, L) (6)

As can be observed, x̂Miss
Best depends on the choice of the

loss function L. In practice, different estimators can be used
for XMiss

iw . A possible approach is to replace XMiss
iw with

its worst-case value [28]. However, this solution is prone to
significantly underestimating the accuracy if FMiss

iw is large. In
addition, it is not suitable for some tasks, e.g., the worst-case
number of missing flow retransmissions cannot be known.

In this paper we take a different approach and estimate
XMiss
iw based on the monitoring results observed over the

most recent q time-windows. More specifically, let Xiw =
(xiw1, xiw2, ..., xiwm) be the vector of the results xiwj of task
i, for each flow j, at time-window w. xiwj is equal to the
number of events detected by task i for flow j at time-window

8

w, and undetermined if j is a missing flow for task i. We
model the temporal dependence of Xiw over the most recent
q time-windows as a moving average MA(q) with order q 6:

Xiw = µi + zw + θ1zw−1 + ...+ θqzw−q

where µi and θi are the mean and parameters of the
model, respectively, and zw ... zw−q is Gaussian noise so that
E[Xiw] = µi.

The value of µi can easily be determined by noting that
E[Xiw] = E[Xiw] = µi, where Xiw represents the mean
of vector Xiw. In other words, to characterize the model, it
is sufficient to track the values Xi(w−q) ... Xiw in the last
q time-windows. Given that Xiw are unknown by definition,
we estimate their value using the observed average monitoring
results (i.e., extracted from flows processed by task i), denoted
as xObsi(w−q) ... xObsiw . µi is then obtained by taking the weighted
average of values xObsi(w−q) ... xObsiw as follows:

µi =

√
niw
σ2
iw

xObsiw +
√
ni(w−1)

σ2
i(w−1)

xObsi(w−1)+...+
√
ni(w−q)
σ2
i(w−q)

xObsi(w−q)√
niw
σ2
iw

+
√
ni(w−1)

σ2
i(w−1)

+...+
√
ni(w−q)
σ2
i(w−q)

where niw is the number of available results for task i at
time-window w (i.e., number of flows processed by task i) and
σ2
iw their sample variance. In practice, the more the results

available at time w and the less their variance, the higher the
contribution of time-window w.

Using the average values xObsiw to compute the model
parameters offers several advantages. The state that needs to
be maintained for each monitoring task is drastically reduced
and the computational overhead of the estimation is decreased.

We take into account the model of the evolution of Xiw

values over the last q time-windows to set the loss function
L, so as to make the accuracy estimation more or less
conservative according to run-time conditions. In particular,
these are assessed based on the probability of large accuracy
estimation errors. If the probability is small, L is replaced
with the quadratic loss function, widely-used in testing (e.g.,
least squares techniques), that penalizes large errors more. In
contrast, if the probability is large, L is defined so that only
large deviations from XMiss

iw are penalized. More specifically,
the probability of large estimation errors depends on the
variability of the distribution of the results of task i. This
is captured by the coefficient of variation σi/µi of the mean
values Xiw over the last q time-windows, where σi is the
standard deviation of Xiw (measured based on xObsiw values)7.
We use the ratio σi/µi = 1 as the threshold of high variability8

and define the loss function L as follows:

L =

{
(XMiss

iw − x̂Miss)2 σi
µi
≤ 1

I[|XMiss
iw − x̂Miss| > c] σi

µi
> 1

(7)

where c is an arbitrary value to decide when to penalize
estimation errors in case σi

µi
> 1.

Based on (7), we determine the best estimator x̂Miss of
XMiss
iw that depends on the value of σi/µi, as follows:

6By default we use results from the last 10 time windows, so q = 10
7σ2

i is the variance of the sample mean of Xiw
8This is a standard choice, based on the comparison with the exponential

distribution

x̂Miss =

{ µi
σi
µi
≤ 1

argmin
x̂Miss

Prob(|XMiss
iw − x̂Miss| > c) σi

µi
> 1

(8)
The justification of (8) is provided in the supplementary

material. In case σi
µi

> 1, the equation cannot be solved
if no assumption is made on XMiss

iw . Here we obtain an
approximate bound for the Risk function by applying the
Chebyshev’s inequality to the probability of large estimation
errors Prob(|XMiss

iw − x̂Miss| > c), i.e., Prob(|Xiw − µi| ≥
λσi) ≤ 1

λ2 , from which we can further derive Prob(Xiw ≥
µi + λσi) ≤ 1

λ2 . This gives an estimator of XMiss
iw equal to

µi + λσi in the case of large probability of large estimation
errors, with guarantees that the Risk is no larger than 1/λ2. For
instance, with λ = 3, the Risk of poor estimation is bounded
to 10%.

Summary: The estimation procedure for a generic task i
operates as follows. At the end of time-window w, the number
of available results niw and their sample variance σ2

iw are
updated. These values, together with those obtained in the q−1
previous time windows, are then used to compute µi. The
sample mean of the available results xObsiw are also extracted
and used to update the coefficient of variation of Xiw, i.e.,
σi
µi

. Based on the value of σi
µi

, the loss function L is selected
according to (7). The estimator is finally chosen as µi if σi

µi
≤

1, and as µi + λσi otherwise.
Performance evaluation and discussion: Fig.5a illustrates

the performance of the proposed online accuracy estimation
procedure in terms of Accuracy Estimation Error calculated
as the absolute distance between the Estimated Recall and
Real Recall (extracted from the ground-truth) normalized by
the Real Recall. Experiments are conducted using 100 ground-
truth packet traces derived from [27], with dynamic rate
in [0Gbps, 10Gbps], and the four different monitoring tasks
presented in Sec.II-A. To show the gain achieved by adapting
x̂Miss to the run-time conditions, the performance is also
compared against two baselines approaches, one with an
estimator always given by the mean (mean), and one only
using the upper bound µi + λσi (u-bound).

As can be observed, the estimation error is generally low,
overall 8% on average, and never exceeds 20%. The highest
error (around 17%) is obtained for LatChange, which is the
task producing the least predictable monitoring results in our
experiments. Compared to the two baseline cases, the proposed
approach generally achieves lower error, with substantial gain
in particular for RTx (2x reduction compared to u-bound) and
LatChange (>5x reduction compared to mean).

The observed estimation error can be attributed to two
main factors: i) the number of missing flows, i.e., flows for
which monitoring results are missing due to adaptations and/or
bottlenecks, and ii) the variability of the monitoring results
that can be quantified based on the coefficient of variation
σi
µi

of each monitoring task. The impact of the two factors is
shown in Fig. 5b and 5c. As can be observed, for all tasks,
the estimation error increases as the percentage of missing
flows increases. The higher the percentage of missing flows,
the less the confidence on the accuracy estimation, and the

9

���

�

��

���

�� ��� ������ ���
������

��
��
��
��

��
���

��
��
�
��
��
��
�
� ����

�������
����

(a) Performance of monitoring
accuracy estimation

(b) Accuracy estimation error vs
missing monitoring results

(c) Accuracy estimation error vs
monitoring result variability

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (x10ms)

●

●

●

●

●

●

●

●

●

● ●

●

C
D

F

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

AA
AM
MA
MM

(d) Recovery convergence time
(A=additive, M=multiplicative)

Fig. 5: Accuracy Control

higher the average error. In contrast, the influence of the
coefficient of variation is driven by the type of the monitoring
tasks. As depicted in Fig. 5c, tasks with higher coefficients of
variation (i.e., LatChange and RTx) are associated with higher
estimation errors. This effect can be imputed to how MONA’s
accuracy estimation operates. More specifically, the estimation
procedure is designed such that a conservative estimator is
selected when the results associated with a task manifest a high
degree of statistical dispersion (high coefficient of variation),
i.e., the one providing an upper bound for the Risk function.
This naturally favors under-estimation over over-estimation in
situations of high uncertainty, where over-estimation can leave
accuracy degradations unhandled.

In general, the task-generic nature of our solution largely
compensates the impact of the introduced estimation errors,
and provides key advantages compared to recent solutions for
TCAM-based [28] and sketch-based [6] measurements, which
define ad-hoc estimation methods for each monitoring task.
In practice, our approach can be applied to all monitoring
tasks whose output is a count (e.g., how many retransmissions
for flow x?) or a classification (e.g., is aggregate y a heavy-
hitter?). As shown in [5][28][6], tasks detecting network
episodes or anomalies, or serving network management de-
cisions, fall well in these categories. In addition, our solution
can run on a limited time budget as it involves operations that
can be executed at a low cost: all distributions are obtained by
sampling and fast techniques can be used to compute mean
and variance values, e.g., [32].

B. Accuracy Gaps Recovery

An estimate, based on the value of the Recall, is generated
by the Online Accuracy Estimation procedure for each moni-
toring task at the end of each time-window w. The estimates
are further used by an Accuracy Gaps Recovery procedure
to re-adjust the flow allocation so that accuracy degradation
resulting from the Adaption Routine can be alleviated.

Let Aiw denote the accuracy estimate for task i at time-
window w. A task is tagged as poor at time w if Aiw is
below a threshold and as rich otherwise.9 The objective of
the Accuracy Gaps Recovery procedure is to recover the
accuracy gap of a poor task by applying it to a larger set of
flows and compensating the additional CPU time needed with

9For simplicity, the same accuracy threshold was used for all tasks.

controlled degradation of rich tasks. This is achieved using
a rebalancing approach that reallocates subsets of flows to
different monitoring states in an iterative fashion, with one
iteration per time-window. Ideally, all accuracy gaps should
be recovered within one time-window, but this is difficult to
achieve in practice. Not only is the number of flows needed
to meet an accuracy target not known a priori, it is also not
possible to determine the maximum number of flows a task
can donate while keeping the accuracy of its report above the
desired threshold.

More specifically, at each iteration the algorithm presented
in Alg.2 is executed. Let Aw = (A1w, A2w, ..., Akw) denote
the vector of estimates for each monitoring task 1, ..., k and
M a binary n ·k matrix, where n is the number of monitoring
states and k the number of tasks, with the task/state mapping
so that Mij = 1 if state i includes task j, and 0 otherwise.
In addition, let B be a n · n matrix indicating the transitions
of flows between monitoring states due to previous adaptation
decisions, as recorded in the current time-window. Each value
Bij is the ratio of flows that were previously moved by the
Adaptation Routine from state i to j (with j being more light-
weight than i) to save time.

Alg.2 initially selects, from the global set of monitoring
states, a subset of poor states, containing one or more poor
task(s), and a subset of rich states, in which all tasks have
an accuracy higher than the desired threshold with a small
headroom ε. The headroom is used to prevent rich states
becoming poor after a single iteration. For each pair of states
(srich, spoor) a re-balancing action is taken based on a step-
size parameter S. This involves shifting ∆− flows from srich
to the default state (e.g., s1 in Fig.4) and using the resulting
gain in time to revert the monitoring adaptation for ∆+ flows
moved from spoor. The value ∆− is set to S normalized by
the number of poor states, while ∆+ is obtained from ∆−

by imposing the equilibrium condition ”constant CPU time
consumption”:

∆−(trichs − tdefaults) = ∆+(tpoors − E[t̃poors]) (9)

where the values ts are the state execution times, and E[t̃poors]
is the expected execution time for flows moved away from
spoor by the Adaptation Routine, as indicated by B:

E[t̃poors] =
∑
j Bpoor,jt

j
s/
∑
j Bpoor,j

The choice of the step-size S involves a trade-off between

10

Algorithm 2: Recover Accuracy Gaps
1: function UPDATESTEPSIZE(x, Sx)
2: Compute accuracy decrease D = Ax,w−1 −Ax,w

3: Update residual accuracy H = Ax,w − threshold
4: if D > H then return INCREASE(Sx)
5: else return DECREASE(Sx)
6: function REBALANCEBYSTEP(sRich, sPoor, S)
7: Compute ∆− = S/np, where np number of poor states
8: Retrieve E[t̃Poor

s] from TPoor,j , j ∈ 1, .., n
9: Compute ∆+ from equilibrium condition (9)

10: return ∆−,∆+

11: procedure RECOVERYGAPS(Aw,M, Tw)
12: Find set of rich, poor states {sRich}, {sPoor} using Aw

13: if {sPoor} == ∅ or {sRich} == ∅ then return
14: for each x in {sRich} do:
15: Sx = UPDATESTEPSIZE(x, Sx)
16: for each (x, y) with x ∈ {sRich}, y ∈ {sPoor} do:
17: REBALANCEBYSTEP(x, y, S)

stability and convergence time, which is a well-known chal-
lenge of any resource allocation algorithm. While using small
steps may lead to high convergence times, big step sizes can
make measurement tasks oscillate between rich and poor over
consecutive time-windows. The best practice for setting the
value of S is to use an increase/decrease policy [28]. In this
work, we relate the change of S to the accuracy evolution of
each rich state srich, with the objective to converge rapidly
while preventing srich from dropping below the desired ac-
curacy threshold. After each iteration, i.e., at time-window
w+1, the algorithm computes the decrease of srich accuracy
D = Arich,w+1 − Arich,w, as well as its residual accuracy
H = threshold − Arich,w+1. S is increased if H > D and
decreased otherwise.

We evaluate the impact of different standard increase-
decrease policies on the convergence times of Alg.2. The
results are depicted in Fig.5d for the same input traffic used in
Fig.5a and initial S values in [0.25%−10%] of the initial active
flow set. The best performance in this scenario is achieved by
the multiplicative increase-decrease policy (MM).

VI. EVALUATION

We implemented MONA in the C language as part of a
generic monitoring pipeline based on a single flow-table. A
hash table was used to realize the flow-table where collisions
are handled by chaining – a table size of 220 entries was
chosen to limit the risk of hash collisions. We also set the flow-
entry size to 64 bytes such that it can fit within a single cache
line. To generate the input packet streams to the monitoring
pipeline, we take the following approach. Since the focus is
on the bottlenecks arising in the monitoring process, for each
experiment we build a packet trace and pre-load it in memory
and then fetch packets with small bursts at run time so as
to isolate the monitoring pipeline from the packet capture
stack. One second of traffic is pre-loaded, which corresponds
to approximately 1GB allocated memory for 10Gbps of traffic.
The packet trace we use includes only TCP flows and is
derived from recently published results on flow statistics
in data centers [27]. In addition, packet retransmissions are
injected in the trace using the Gilbert-Elliot model [33][8].

s3

s1

s2 s4

s1 s2 s3 s4 s5

“” “”
“”

“”
“”
“”

“”
“”
“”
“”

Fig. 6: Monitoring states Config1 (left) and Config2 (right)

Measurement tasks setup The monitoring pipeline is based
on the tasks described in Sec. II-A. For HH, we use a threshold
of 5MB for a 10ms time-window. Bursty selects those flows
for which at least 10% of packets come with inter-arrival
below 1 ms. LatChange detects an anomaly when the RTT
falls outside the range [mean(rtt)−stddev(rtt),mean(rtt)+
stddev(rtt)].

Monitoring states setup To experiment with the monitoring
pipeline, we define two different monitoring state configu-
rations, namely Config.1 and Config.2. These are presented
in Fig.6, along with their (estimated) processing times Tp.
Both configurations include a default state s1 where only
simple packet counting (Count) is performed. In Config.1,
additional tasks are progressively incorporated in each step
of the monitoring states chain so that the depth of the traffic
analysis increases with higher monitoring states. The process
initially detects large traffic aggregates (s2) and then starts
monitoring the packet loss of these aggregates (s3). For flows
with a high loss, it incorporates burst detection in s4 and
finally looks for RTT changes in s5. In Config.2 flows can be
processed based on three possible monitoring states, inspired
by the use-cases in [5]. The goal of s2 is to identify the
root cause of congestion by correlating lossy TCP flows with
heavy hitters. State s3 identifies loss as a result of bursty
traffic, and s4 detects server imbalance by collectively tracking
latency changes and bursty flows. The two configurations are
used to depict different examples of monitoring applications.
While Config.1 provides a hierarchical model, with some tasks
(e.g., HH) having higher priority compared to others (e.g.,
LatChange), Config.2 reproduces a “flat” configuration with
three different monitoring objectives of equal importance.

The evaluation is conducted as follows. We first analyze
the performance of adaptive traffic monitoring in terms of
packet loss risk and adaptation responsiveness (Sec.VI.A).
We then investigate the impact of monitoring adaptations and
accuracy control on the measurement tasks (Sec.VI.B), explore
the throughput limiting factors for MONA (Sec.VI.C) and
extensively evaluate the overhead of the proposed solution
(Sec.VI.D). Finally, we highlight differences with sketch-based
measurement approaches by comparing MONA to SketchVi-
sor [34] (Sec.VI.E). The experiments have been conducted on
an Intel i7-4790 CPU with 4 physical cores at 3.6 GHz and
shared L3 cache of 8 MB.

A. Lossless Traffic Monitoring

We compare our approach (Adapt) with a more traditional
setup where monitoring operations are not dynamically recon-
figured (No-Adapt). We focus on two metrics that represent the

11

�����
�

����
�

����
�

����
�

����
�

�� ���� ���� ���� ���� ��

�
�
�
�
�
��
�
�
��
�
�
� �����

�������

����
�

����
�

����
�

����
�

����
�

����
�

�� ���� ���� ���� ���� ��

�
�
�
�
�
��
�

�
��
�
�

��������

����������
�����������

�������������
��������������

(a) Rate variation (T = 250ms)

�����
�

����
�

����
�

����
�

����
�

�� ���� ���� ���� ���� ��

�
�
�
�
�
��
�
�
��
�
�
� �����

�������

����
�

����
�

����
�

����
�

����
�

����
�

�� ���� ���� ���� ���� ��

�
�
�
�
�
��
�

�
��
�
�

��������

����������
�����������

�������������
��������������

(b) Rate variation (T = 100ms)

������
������
�����
�����
�����
�����

� ��� ��� ��� ��� �

��
��
��
��
��
��
� ������

�� ������

�����
�����
�����
�����
�����
�����

� ��� ��� ��� ��� �

��
��
��
��

��
��

���� ���

����������
�����������

�� ����������
�� �����������

(c) Shared resource contention

�����
�

�����
�

����
�

����
�

����
�

����
�

�� ���� ���� ���� ���� ��

�
�
�
�
�
��
�
�
��
�
�
� ������

���������

����
�

����
�

����
�

����
�

����
�

����
�

�� ���� ���� ���� ���� ��

�
�
�
�
�
��
�

�
��
�
�

��������

����������
�����������

�������������
��������������

(d) Traffic skew variation
Fig. 7: Packet balance and expected packet loss

risk of packet loss as a result of bottlenecks in the monitoring
process. The first is packet balance, which indicates whether
the number of packets in the trace can be processed during
each time-window – a negative value signifies inability to
cope with the packet rate. The second metric is the expected
packet loss, which quantifies the loss given the size of the input
buffer. We compute this using a queue model for two buffer
sizes: 4096 packets (saturation of a RSS queue) and 1 MB
(maximum size range for circular buffers in packet acquisition
libraries like DPDK and Netmap) [18].

For these experiments we use Config.1 and we initially as-
sign 1/5 of the flows to each state. The monitoring adaptation
time-window is set to 10ms. To study the performance of
our solution under the emergence of bottlenecks we perform
three types of experiments, which reproduce the three main
conditions described in Sec. II.B.

Traffic rate variations In these experiments we test our
solution against multi-million packets per second (Mpps) vari-
ations of the input rate, which are realized by tuning the rate of
exponential packet inter-arrivals in the trace. In particular, we
evaluate the responsiveness of monitoring adaptations in the
case of short rate spikes. To emulate the spikes, we generate
packet-rate oscillation between 0 and 14.8 Mpps based on
the function sin(t/T), where T is the oscillation period. Two
representative cases, T = 250ms and T = 100ms are depicted
in Fig.7a and 7b, respectively. For T = 250ms, monitoring
adaptations always provide a response to emerging bottlenecks
in time, before packet loss occurs. In the case of T = 100ms,
large packet rate variations, up to the equivalent of 3Gbps for
64-byte packets, are generated in the time-span of a single
monitoring adaptation time-window (10ms). As such, some
losses can occur before the new monitoring configuration is
applied, i.e., in the 10ms time-window preceding the adapta-
tion. Even for such intense and short-lived spikes our approach
significantly outperforms No-Adapt in terms of loss, with a
reduction of more than 50% for both buffer sizes.

Shared resource contention The objective of the next
experiments is to assess how monitoring adaptations handle
variations of the operating conditions in terms of concurrent
access to shared resources. To emulate concurrency we use
the approach proposed in [15]: we run our solution on core

1, and co-run other processes on cores 2, 3 and 4. Each co-
runner is defined as a special monitoring process that only
retrieves flow-entries, so as to maximize the number of L3
cache references per second. As depicted in Fig.7c, we split
the 1-second experiment into three intervals of length 1/3s
each. In the first interval we execute 1 co-runner (on core
2), in the second interval we execute 2 co-runners (on cores
2 and 3), and in the last interval we execute 3 co-runners
(on cores 2, 3 and 4). As shown in Fig.7c, increasing levels
of concurrency lead to performance degradation in terms of
packets processed per time-window, and considerable loss for
the No-Adapt setup with 3 active co-runners, regardless of the
input buffer size. This is due to the inflation of retrieval times
Tr as a result of increasing L3 cache misses. In contrast, our
solution achieves minimal loss since concurrency variations
are detected at run time through P estimation (see Sec.IV-B)
and a new monitoring configuration is provided within 10ms.

Change of traffic skew We finally evaluate the performance
of our solution under variations of traffic skew. To reproduce
these variations we split the input packet trace into smaller
intervals of 20ms and for each interval we assign packets to
flows (5-tuples) based on a Zipf distribution with parameter α
(flow population size of 2.5 ·105). We start with α = 1.5 (high
skew) at t = 0s and we gradually decrease the skew factor
until α = 1 at t = 1s to obtain more uniform traffic. The
packet rate has been fixed at 10 Mpps. As expected, smaller
values of α lead to a significant performance drop since less
packets are served with flow-entries from the L3 cache. As
shown in Fig.7d, our solution can sustain 10 Mpps on a single
core under considerable skew variations, and prevents losses
at much lower skew factors, α ≈ 1.1 (t = 0.9), compared to
the No-Adapt case, which starts starving packets in the input
buffers for α ≈ 1.25.

B. Monitoring Report Accuracy

We now evaluate the impact of our solution on the mon-
itoring report accuracy to investigate how the report quality
is preserved under bottleneck conditions. To this end, we
measure the real accuracy, in terms of Recall, of each task
running in the system. This is obtained by comparing the

12

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(a) Config.1, HH

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(b) Config.1, RTx

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(c) Config.1, Bursty

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(d) Config.1, LatChange

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(e) Config.2, HH

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(f) Config.2, RTx

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(g) Config.2, Bursty

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(h) Config.2, LatChange

Fig. 8: Measurement task satisfaction (Median ◦, Max �)

monitoring results of the system against the respective ground-
truth, which is extracted from offline analysis of the traces.

To control the accuracy we use a threshold of 75% for all
tasks, which is inline with the one used in [28]. For simplicity,
traffic flows are assigned randomly to any available monitoring
state with equal probabilities. Finally, to generate bottlenecks
and thus trigger adaptations, we use a dynamic input packet
rate in the range [5, 11] Mpps, which is obtained by tuning
packet inter-arrivals in the trace.

Fig.8 presents the monitoring accuracy results in terms of a
Satisfaction metric similar to the one used in [6] and [28].
This represents the fraction of time a task has its Recall
above the threshold. Intuitively, 100% satisfaction for all tasks
means that the global accuracy goal is fully achieved. The
minimum and median satisfaction is shown from a set of
100 experiments, for the two monitoring states configurations
(Config.1, Config.2). As depicted in Fig.8, we compare the
performance obtained with accuracy control (Acc.Ctrl) against
two baselines: No-Adapt which is the standard setup without
dynamic adaptations and accuracy control; and Adapt which
executes adaptations without accuracy recovery in place.

As shown in Fig.8, both Adapt and No-Adapt incur serious
accuracy degradations, with the satisfaction dropping even
below 20% for some tasks. For the Adapt case this is due
to accuracy-unaware adaptations, while in the No-Adapt case,
the reduced satisfaction depends on the amount of packets
never entering the monitoring pipeline, as they are starved in
the buffers under increasing packet rates. In contrast, Acc.Ctrl
drastically improves the report accuracy, raising the overall
median satisfaction to 75%; 2x and 3x impovement compared
to No-Adapt (38%) and Adapt (23%), respectively.

The satisfaction generally demonstrates similar trends for
the two configurations. When comparing different measure-
ment tasks, although Acc.Ctrl always achieves a considerable

gain, the results show that the performance of MONA in terms
of satisfaction depends on the monitoring task. For instance,
in the case of Config.2 we observe the median satisfaction at
the maximum packet rate oscillating between 60% and 100%.
The reason of these differences is two-fold.

The accuracy estimation errors can have an influence on
the satisfaction of a monitoring task. Considering RTx and
LatChange, with errors ≈ 10% and ≈ 20%, respectively (see
Fig.5a), we obtain a satisfaction of 80/95% for the former
and 70/60% for the latter. It is also evident that the very low
estimation error for Bursty (less than 1% in Fig.5a) relates to
its very high median satisfaction. In addition to this, the joint
effect of tasks with under- and over-estimated accuracy can
penalize the fairness of the Accuracy Gap recovery process
as it may result in competition for resources. This issue
specifically emerges in situations where under-estimation is
calculated for rich tasks while the accuracy of poor tasks
is over-estimated. In this case, rich tasks are less prone to
redistribute their resources to the poor ones, preventing part
of the resources to be reassigned when the accuracy falls below
a threshold, and thus leading to lower satisfaction.

The different satisfaction ranges also reflect the different
resource/accuracy trade-offs of different tasks. The amount of
monitoring information losses due to missing flows is gen-
erally not the same for the different monitoring tasks, which
affects the Recall and hence the satisfaction. Fig. 9a shows
the effect of the percentage of missing flows on the Recall for
each task in the form of curves of diminishing returns [28].
As can be observed, tasks are associated with curves depicting
different slope and concavity properties. These properties
cannot be known a priori as they not only depend on the
characteristics of a task, i.e., aggregation function used to
trigger a new monitoring event (e.g., SUM of 5-tuple flows
by src IP address in the case of HH) and associated threshold

13

25 50 75
Missing flows (%)

0.0

0.2

0.4

0.6

0.8

1.0
R
ec

al
l

HH
RTx
Bursty
LatChange

(a) All monitoring tasks

20 40 60 80
Missing flows (%)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

HH (5MB)
HH (500KB)

(b) HH using different thresholds

Fig. 9: Curves of diminishing returns

(e.g., aggregate size threshold in Bytes for HH - see Fig. 9b),
but also on the current traffic. This effect explains for instance
the difference of HH compared to other tasks. When a high
threshold is used (5Mb for 10ms), the concavity of the curve
is such that few missing flows can translate to a high ratio
of undetected heavy hitters (i.e., low Recall) given that these
events are evaluated based on the total size of multiple flows.

C. MONA Throughput Limiting Factors

In this section, we investigate throughput limiting factors
not captured by MONA’s adaptation logic, as opposed to the
conditions discussed in Section VI.A. Specifically, we evaluate
the effects of hash collisions and uniform traffic distributions.
Impact of hash collisions Hash table collisions in MONA are
resolved through chaining with the use of additional linked
lists. This prevents measurement data stored in the flow table
to be corrupted or lost in case of collisions. However, high
collision ratios result into larger per-packet processing times
due to inflated table look up and flow insertion times, which
may translate into increasing risk of packet starvation/loss. To
address this issue, MONA keeps collision rate low by over-
provisioning the flow table in terms of hash-table slots/buckets.
Fig.10 shows the effects of collisions on packet loss probabil-
ity and accuracy reductions (using the Recall metric) under
challenging traffic conditions, i.e., low skew (α = 1.1), high
speed (10Gbps), and 1000 new flow arrivals every 10 ms.
By choosing an appropriate hash table size (5 · 105 slots),
MONA avoids both collision-induced packet loss (Fig.10a)
and accuracy drops (Fig.10b). In our implementation, this
bound corresponds to approx. 100 MB total memory consump-
tion. While it is significantly more than what consumed by
sketch-based approaches, e.g., [34], this does not constitute
a main limiting factor given the large memory availability in
today’s multi-core servers and the fact that packet-processing
in software is mainly constrained by available CPU-time.
Impact of uniform traffic As discussed in Section VI.A,
MONA can cope with much lower levels of traffic skew
compared to a non adaptive monitoring designs. However,
there are cases where traffic shows a “uniform” distribution
(i.e., with extremely low skewness), especially when denial
of service attacks aim at exhausting the resources of the
monitoring system [5]. Uniform traffic can produce bottle-
necks in the monitoring pipeline due to high sparsity in data

104 105 106

Table size [slots]

0.0

0.2

0.4

0.6

0.8

R
at

io

Hash collision
Pkt loss

(a) Hash collision and pkt loss ratio

104 105 106

Table size [slots]

0.7

0.8

0.9

1.0

Av
g

re
ca

ll

(b) Average task accuracy (recall)

Fig. 10: Impact of hash collisions

5 6 7 8 9 10
Traffic rate [Gbps]

0.0

0.2

0.4

0.6

0.8

1.0

Pk
t

lo
ss

 r
at

io

No DoS
40% DoS
60% DoS
80% DoS
80% DoS, filter

(a) DoS-induced packet loss

6 8 10
Traffic rate [Gbps]

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

re
ca

ll

No DoS
40% DoS
60% DoS
80% DoS
80% DoS, filter

(b) Accuracy (recall) reductions

Fig. 11: Impact of DoS traffic

accesses (P ≈ 0) and, more importantly, to increasing flow
insertion rates. To evaluate the performance of MONA under
uniform traffic, we apply a SYN flood (DoS) attack – a worst-
case scenario since each new packet triggers a new flow
insertion. In particular, we mix DoS traffic with legitimate
traffic (from the trace in use) using different ratios. As shown
in Fig.11, high percentages of DoS traffic induce significant
packet loss (Fig.11a) especially for high traffic speeds, with
average accuracy reductions reaching 40% (Fig.11b). This
is because MONA’s formulation of the available per-packet
time assumes no more than 10% of packets triggering a new
flow-insertion (Sec.IV.A). The effects of uniform traffic can
be mitigated by applying the resilience mechanism proposed
in Trumpet [5] in conjunction with MONA. This mechanism
involves the matching of packets against an additional filtering
table, a small buffer accessed before the “main” flow-table.
The filtering table tracks a new flow while its size is below
x, where x is a small user-defined threshold in bytes. If
the flow exceeds x, it is tagged as legitimate and accepted
in the main table, otherwise discarded (i.e., in the case of
malicious SYN flows). As depicted in Fig.11, adding this filter
to MONA allows to tolerate high DoS ratios (e.g., 80%). This
can however sacrifice up to 10% of MONA throughput due to
the additional overhead introduced by the filtering table, and it
can also penalize the accuracy since flows smaller than x are
discarded. The latter can be mitigated by activating the filter
only when extremely adverse traffic conditions are detected or
by dynamically updating x based on available (online) time
estimations [5].

14

TABLE II: Total overhead (x = % of CPU time)

#Tasks #States #A.Flows Traffic
(bps/pktSize)

Overhead < x
x = 1% x = 2%

10 10 1000 10G/64B 3 3
20 20 1000 10G/250B 3 3
40 20 1000 10G/250B 7 3
40 40 1000 10G/250B 7 7
40 40 500 10G/250B 7 3

D. Monitoring Adaptation Overhead

We evaluate the cost of our solution in terms of run time
overhead. To this end, we consider (i) the execution time of the
main procedures running at the end of a time window, and (ii)
the additional CPU time consumed throughout a time-window
for the estimations presented in Sec.IV-B,V-A and for applying
adaptation and accuracy control decisions. The latter implies a
reduction in the sustainable packet-rate, while the former also
translates to spikes of packets waiting at the input buffers.

Adaptation execution time This time corresponds to the
adaptation routine completion. As depicted in Fig.12a, the
worst-case (i.e., adaptation minimizes per-packet processing
time) execution time in O(k2), with k being the number of
monitoring states. However, even for a large value of k, e.g.,
k = 64, the routine can still run to completion within a short
period, in the range of 10µs, resulting to only 100-150 packets
being temporarily held at the input queue for 10 Gbps (much
below the packet capture buffer size).

Accuracy control execution time This time is dominated
by the completion of the accuracy recovery procedure. As
shown in Fig.12b, this increases linearly with the number of
measurement tasks k (O(k)), with the slope depending on the
number of monitoring states defined. For a large number of
tasks (e,g., 50) and using 10 different monitoring states, this
time is kept within the range of 10µs.

Estimation overhead This metric groups different overhead
components: (i) the time for counting the number of packets
processed according to each monitoring state; (ii) the online
estimation of P (probability of fast flow-entry retrieval) and
(iii) the time consumed to compute µi and the loss function L.
Results are shown in Fig.12c, where the consumed CPU time
is expressed as a percentage of the 10ms time-window. While
an increasing trend can be observed, the overhead is generally
low and it exceeds 1% only for a large number of monitoring
states (e.g., 64) with constant 10Gbps traffic of 64B packets.

Reconfiguration overhead Fig.12d shows the additional
time required to apply reconfigurations of the monitoring
pipeline due to the adaptation routine or the accuracy recovery
procedure. This overhead linearly depends on the number of
monitoring states. Also, it relates to the number of active
flows in the 10ms time window since the reconfigurations are
enforced only once per flow. We can observe that this overhead
exceeds 1% only for the maximum level of flow concurrency
(1000), and for a large number of monitoring states (> 40). It
should be noted that the range considered here for the number
of active flows matches the statistics reported in [26] and [27].

Overall, the total overhead is a function of the number
of measurement tasks and monitoring states, the packet rate
and size, and the flow concurrency. Table III summarizes the
feasibility range of our solution given two maximum overhead

constraints, 1% and 2% of the CPU time. As shown in the
table, the total overhead exceeds 1% only under very large
numbers of tasks and monitoring states, such as 40-40, and
maximum traffic intensity. However, the requirement can be
still met by relaxing the overhead constraint from 1% to 2%,
which is acceptable, or by slightly reducing the hypothesis on
traffic characteristics.

E. Comparison with a sketch-based approach

Recent research [34][45] has applied sketch-based mea-
surements to software packet-processing pipelines in order to
achieve high throughputs with reduced memory consumption.
We evaluate here the extent to which MONA matches the per-
formance of state-of-the art sketch-based traffic measurements.
We compare against SketchVisor [34] due to its adaptive na-
ture and performance-oriented design. SketchVisor augments
sketch-based measurements in the software dataplane with a
fast path, activated under high traffic load, which reduces the
tracking of small flows to increase throughput. For the compar-
ison, we restrict the measurement task set to HH detection only
– this task is common to MONA and SketchVisor. This setup
is particularly adverse for MONA: (i) HH detection is a perfect
fit for SketchVisor fast-path as small flows contribute less to
HHs; and (ii) executing a single monitoring task penalizes
MONA as it exacerbates the impact of flow-entry retrievals
(time Tr in Section IV) on the total per-packet time.

We run over 100 experiments and set the HH threshold
to 0.05% of the input rate multiplied by the epoch length
(10ms) as in [34]. Fig. 13a shows that SketchVisor achieves
a high throughput (17.5 Gbps median). The performance of
MONA is 25% lower in case of maximum accuracy, and 7%
lower when meeting 100% task satisfaction. With regards to
accuracy, MONA achieves maximum accuracy for traffic rates
close to 10 Gbps (thus satisfying the goal of 10 Gbps traffic
for a CPU core), while for rates above 15Gbps SketchVisor
performs better. In general, the throughput reductions obtained
by MONA are largely compensated by its key advantages in
terms of adaptive traffic monitoring capability. While sketches-
based approaches are mainly restricted to size-based (e.g., HH
detection) and cardinality-based (e.g., superspreader detection)
measurements, MONA allows for a much larger range of
monitoring operations including packet interarrival analysis
(e.g., Bursty) and TCP diagnosis (e.g., LatChange, RTx). In
addition, MONA adaptations are not only triggered by traffic
rate increases, but also follow shared-resource concurrency and
traffic distribution. Overall, MONA provides a more flexible
alternative for network measurements, at the cost of (limited)
packet-processing efficiency reductions.

VII. RELATED WORK

A number of recent proposals [29][28][6] have focused on
the development of adaptive monitoring frameworks with the
objective of supporting measurements under dynamic traffic
patterns and resource availability. A novel adaptive flow count-
ing approach was introduced in [29] to enable anomaly detec-
tion with low overhead. Dynamic resource allocation solutions
for traffic monitoring have been proposed in [28] and [6]

15

(a) Adaptation execution time (b) Accuracy control execution time (c) Estimation overhead (d) Reconfiguration overhead

Fig. 12: Overhead evaluation

MONA
(Max.Acc.)

MONA
(Satisf.)

SketchVisor5

10

15

20

Th
ro

ug
hp

ut
 [G

bp
s]

(a) Throughput performance

10 15 20
Rate [Gbps]

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

MONA
SketchVisor

(b) Monitoring accuracy (recall)

Fig. 13: Comparison between MONA and SketchVisor

based on OpenFlow counters and sketch-based measurements,
respectively. Our approach also reconfigures monitoring pa-
rameters at run time to achieve efficient resource usage, but in
contrast to the aforementioned solutions it focuses on software
deployments.

With the advent of packet processing on commodity hard-
ware, previous efforts such as [19][20] investigated how to
take advantage of multi-core architectures to minimize the
packet processing times for sophisticated measurement tasks.
While [19] relies on RSS and parallel threads to analyze
multi-Gbps traffic, [20] uses multiple cores with the support
of GPUs to perform complex intrusion detection operations.
In addition, the recent packet-rate increase at the NIC raises
new challenges, especially with respect to zero-loss guarantees
under jitter in packet processing and unbalanced or unexpected
traffic bursts. In contrast to our solution, existing approaches
mainly address these challenges by enhancing either the packet
capture or the packet scheduling. In [18], the authors pro-
pose to temporary store traffic in large buffers (1GB), which
improves resilience at the cost of additional resource usage.
The approach in [15] uses adaptive scheduling to mitigate
performance drops due to resource contention.

Orthogonal to scheduling and packet capture enhancements,
recent solutions [34][36][12][5] address the problem of sus-
tainable packet-processing in software by directly reconfigur-
ing the monitoring process, as in the case of MONA. However,
[34] and [36] focus on sketch-based measurements instead
of hash tables where the main goal is to process all packets
with fixed-size memory. [34] augments the dataplane with a
separate fast path that provides fast but slightly less accurate
measurements under high traffic load, and recovers missing
information via compressive sensing. [36] learns the statistical

distribution of the sketch and uses it to separate large and small
flows so as to reduce the impact of hash collisions. Instead of
focusing on sketches, MONA relies on simple hash tables for
various reasons. One is the increased flexibility, as it enables
more heterogeneous measurement tasks [5] and facilitates the
design of stateful monitoring applications.

In a similar fashion to our solution, the methods presented
in [12] and [5] also address the case of monitoring systems
using simple hash tables to store flow statistics. In [12] the
authors propose to adjust the size of the monitoring data-
structure according to changes in the traffic properties. This
can, however, incur significant time overhead for large flow-
tables (structure size). The adaptive approach in [5] monitors
only flows whose size exceeds a dynamic threshold, so as to
handle denial of service attacks. While in [5] adaptations affect
only new flows, reconfigurations in our work are applied to
all operations in the monitoring process, responding thus to a
wider range of emerging conditions.

VIII. CONCLUSION

Traffic monitoring on commodity hardware can starve pack-
ets at the packet capture buffers and thus lead to packet loss
when changes in the operating conditions create bottlenecks.
In this paper we proposed MONA, an adaptive monitoring
framework that guarantees resilience to bottlenecks while
preserving the accuracy of monitoring reports according to
user-specified accuracy thresholds. We showed that MONA
achieves lossless traffic monitoring under various conditions
such as packet rate spikes and skew variations, and guarantees
significant enhancements of the accuracy ranges for widely-
used measurement tasks. Moreover, we demonstrated that
MONA is able to compute new monitoring configurations
every 10 ms, without needing additional processor core(s) and
with minimal CPU-time overhead (≈ 1-2%), even for 10 Gbps
traffic of small packets. Future work will extend our evaluation
to investigate possible bottlenecks induced by the NIC (e.g.,
bursty packet arrivals, polling inefficiencies, etc.) and potential
performance degradations arising from end-to-end testing.

REFERENCES

[1] G. Tangari, M. Charalambides, D. Tuncer and G. Pavlou. Adaptive traffic
monitoring for software dataplanes. In Proc. International Conference on
Network and Service Management (CNSM), Tokyo, 2017, pp. 1-9.

[2] V. Sekar, M. K Reiter, and Hui Zhang. Revisiting the case for a minimalist
approach for network flow monitoring. In Proc. ACM IMC, Melbourne,
Australia, Nov. 2010, pp 328-341.

16

[3] L. Hendriks, R. Schmidt, R. Sadre, J. Bezerra and A. Pras. Assessing the
quality of flow measurements from OpenFlow devices. In Proc. TMA,
Louvain La Neuve, Belgium, Apr. 2016.

[4] J. C. Mogul et al. Devoflow: cost-effective flow management for high
performance enterprise networks. In Proc. ACM Hotnets, Monterey, CA,
USA, Oct. 2010.

[5] M. Moshref, M. Yu, R. Govindan, A. Vahdat. Trumpet: timely and precise
triggers in data centers. In Proc. ACM SIGCOMM, Florianopolis, Brasil,
Aug. 2016, pp 129-143.

[6] M. Moshref, M. Yu, R. Govindan, A. Vahdat. SCREAM: sketch resource
allocation for software-defined measurement. Proc. ACM CoNEXT, Hei-
delberg, Germany, Dec. 2015.

[7] Z. Liu et al. One sketch to rule them all: rethinking network flow
monitoring with UnivMon. In Proc. ACM SIGCOMM, Florianopolis,
Brasil, Aug. 2016, pp 101-114.

[8] M. Ghasemi, T. Benson, J. Rexford. Dapper: data plane performance
diagnosis of TCP. In Proc. ACM SOSR, Santa Clara, CA, USA, Apr.
2017, pp. 61-74.

[9] L. Rizzo. NETMAP: A novel framework for fast packet I/O. in Proc.
Usenix ATC, Boston, MA, USA, Jun. 2012, pp. 1?9.

[10] DPDK. Available: http://dpdk.org/.
[11] Receive Side Scaling. Available: https://www.kernel.org/doc/ Documen-

tation/networking/scaling.txt
[12] O. Alipourfard, M. Moshredf, M. Yu. Re-evaluating measurement algo-

rithms in software. In Proc. ACM Hotnets, Nov. 2015.
[13] A. Metwally, D. Agrawal, A. El Abbadi. Efficient computation of

frequent and top-k elements in data streams. In Proc. ICDT, Edinburgh,
UK, Jan. 2005.

[14] M. Yu et al. software defined traffic seasurement with OpenSketch. In
Proc. USENIX NSDI, Lombard, IL, USA, pp. 29-42, Apr. 2013.

[15] M. Dobrescu, K. Argyraki, S. Ratnasamy. Toward predictable perfor-
mance in software packet-processing platforms. In Proc. USENIX NSDI,
San Jose, CA, USA, Apr. 2012, pp 11-24.

[16] B. Atikoglu et al. Workload analysis of a large-scale key-value store. In
Proc. ACM Sigmetrics, London, UK, Jun. 2012, pp. 53-64.

[17] Y. Chen, R. Griffith, J. Liu, R. H. Katz, A. D. Joseph. Understanding
TCP Incast throughput collapse in datacenter. In Proc. ACM WREN,
Barcelona, Spain, Aug. 2009, pp. 73-82.

[18] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, D. Rossi. Traffic
analysis with off-the-shelf hardware: challenges and lessons learned. In
IEEE Communications Magazine, Vol 55, Mar 2017, pp. 163-169.

[19] F. Fusco, L. Neri. High speed network traffic analysis with commodity
multi-core systems. In Proc. ACM IMC, Melbourne, Australia, Nov. 2010,
pp.218-24.

[20] M Jamshed et al. Kargus: a highly-scalable software-based intrusion
detection system. In Proc. ACM CCS, Raleigh, NC, USA, Oct. 2012.

[21] F. Guo, Y. Solihin. An Analytical Model for Cache Replacement Policy
Performance. In Proc. ACM Sigmetrics, Saint Malo, France, June 2006.

[22] D. Tam, R. Azimi, L. Soares, M. Stumm. RapidMRC: approximating
L2 miss rate curves on commodity systems for online optimizations. In
Proc. APLOPS, Washington DC, USA, Mar 2009, pp. 121-132.

[23] R. West, P. Zaroo, C. Waldspurger, X. Zhang. Online cache modeling
for commodity multicore processors. In Proc. ACM SIGOPS Operating
System Review, vol 44, Dec. 2010, pp.19-29.

[24] L. Zhao et al. Cachescouts: Fine-grain monitoring of shared caches in
cmp platforms. In Proceedings of the conference on Parallel architectures
and compilation techniques (PACT), 2007.

[25] G. Bianchi et al. Open Packet Processor: a programmable architecture
for wire speed platform-indipendent stateful in-network processing. Avail-
able: https://arxiv.org/pdf/1605.01977.pdf, 2016

[26] M. Alizadeh et al. Data Center TCP (DCTCP). In Proc. ACM SIG-
COMM, New Delhi, 2010.

[27] A. Roy et al. Inside the social network’s (datacenter) network. In Proc.
ACM SIGCOMM, London, UK, Aug 2015, pp. 123-137.

[28] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Dream: dynamic
resource allocation for software-defined measurement. In Proc. ACM
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 419-430.

[29] T. Zhang. An adaptive flow counting method for anomaly detection in
SDN. In Proc. ACM CoNEXT, Santa Barbara, CA, USA, Dec. 2013.

[30] X. Yu et al. CountMax: A lightweight and cooperative sketch mea-
surement for Software-Defined Networks. In IEEE/ACM Transactions on
Networking, vol. 26, no. 6, pp. 2774-2786, Dec. 2018.

[31] J. Boite et al. Statesec: Stateful monitoring for DDoS protection in
software defined networks. In Proc. IEEE NetSoft, Bologna, IT, 2017,
pp. 1-9.

[32] D.Knuth. The Art of Computer Programming. Vol 2, page 232, 3rd
edition.

[33] G.Hasslinger, O.Hohlfeld. The Gilbert-Elliott Model for Packet Loss
in Real Time Services on the Internet. In Proc. GI/ITG Measurement,
Modelling and Evalutation of Computer and Communication Systems

[34] Q. Huang et al. Sketch Visor: Robust Network Measurement for Soft-
ware Packet Processing. In Proc. ACM SIGCOMM, Los Angeles, CA,
USA, Aug. 2017.

[35] G.Cormode and M. Hadjeleftheriou. Finding Frequent Items in Data
Streams. In Proc. PVLDB, Aug. 2008.

[36] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketchlearn: relieving
user burdens in approximate measurement with automated statistical
inference. In Proc. ACM SIGCOMM, Budapest, Hungary, Aug. 2018.

[37] Xuemei Liu, Meral Shirazipour, Minlan Yu, and Ying Zhang. 2016.
MOZART: Temporal Coordination of Measurement. In Proc. ACM SOSR,
Santa Clara, USA, Mar. 2016.

[38] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lock-
wood. 2005. Fast hash table lookup using extended bloom filter: an aid to
network processing. SIGCOMM Comput. Commun. Rev. 35, 4 (August
2005), pp. 181-192.

[39] J. Moraney and D. Raz. On the Practical Detection of the Top-k Flows.
In Proc. International Conference on Network and Service Management
(CNSM), Rome, Italy, 2018, pp. 81-89

[40] A. Gupta et al. Sonata: query-driven streaming network telemetry. In
Proc. ACM SIGCOMM, Budapest, Hungary, Aug. 2018.

[41] S. Narayana et al. Language-Directed Hardware Design for Network
Performance Monitoring. In Proc. ACM SIGCOMM, Aug. 2017.

[42] D. Barach et al. Batched packet processing for high-speed software data
plane functions. In Proc. IEEE INFOCOM, Honolulu, HI, 2018.

[43] M. Dobrescu and K. Argyraki. Software Dataplane Verification. In Proc.
Usenix NSDI, Seattle, WA, USA, 2014.

[44] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. CacheFlow:
Dependency-Aware Rule-Caching for Software-Defined Networks. In
Proc. of ACM SOSR, 2016.

[45] Z.Liu et al. NitroSketch: Robust and General Sketch-based Monitoring
in Software Switches. To appear in Proc. ACM SIGCOMM, 2019.

Gioacchino Tangari is a PhD student in the Department of Electronic and
Electrical engineering at University College London. His main research inter-
ests include network monitoring in the context of programmable networks,
and high-speed packet processing on commodity hardware. He has been
working as a research intern in Nokia Bell Labs in 2014, Paris, and Telefonica
Research, Barcelona, in 2017.

Marinos Charalambides is a senior researcher at University College London.
He received a BEng in Electronic and Electrical Engineering, a MSc in Com-
munications Networks and Software, and a Ph.D. in Policy-based Network
Management, all from the University of Surrey, UK, in 2001, 2002 and 2009,
respectively. His current research interests include network programmability,
adaptive resource management, content distribution,and network monitoring.

Daphne Tuncer is a Research Fellow in the Department of Computing at
Imperial College London, UK. She received her Ph.D. from University College
London (UK) in 2013 and a Diplome d’ingenieur de Telecom SudParis
(France) in 2009. Her research interests are in the areas of software-defined
and programmable networks, adaptive network resource management and
multimedia content distribution.

George Pavlou is Professor of Communication Networks in the Department
of Electronic and Electrical Engineering, University College London, UK.
He received MSc and PhD degrees in Computer Science from University
College London, UK. His research interests focus on networking and network
management, including aspects such as traffic engineering, quality of service
management, information-centric networking, and software-defined networks.

