
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016 407

Flexible Traffic Splitting in OpenFlow Networks
Daphne Tuncer, Marinos Charalambides, Stuart Clayman, and George Pavlou

Abstract—Traffic engineering (TE) functionality aims to
control and fine-tune the routing configuration and bandwidth
allocation in order to optimize the use of network resources and
avoid the build-up of congestion. The performance of a given TE
scheme is, however, strongly influenced by the degree of flexi-
bility offered in distributing the traffic load. Multipath routing
coupled with arbitrary traffic splitting are two essential ingredi-
ents for achieving the desired flexibility. Current proposals for
multipath routing in OpenFlow have mostly focused on equal
splitting solutions, which impose limitations in terms of the level
of control that can be achieved. In this paper, we investigate
a new approach, which exploits the properties of bit-masking
operations to enable flexible TE in OpenFlow networks. The
proposed solution relies on the matching entry feature and the
multiple table pipeline capability of OpenFlow, and as such, is
in line with the current standard. Based on empirical evaluation,
we illustrate the influence of the considered masking parameters
and how these can be configured to achieve the desired traffic
splitting ratios. The results demonstrate that our solution can
achieve a similar level of splitting accuracy as the one obtained
with a hash-based approach. However, in contrast to current pro-
posals, it does not require complex extensions to the OpenFlow
protocol and can be easily implemented in an OpenFlow
environment.

Index Terms—Software defined networking, OpenFlow,
resource management.

I. INTRODUCTION

OVER the last few years, significant efforts have
been invested in the development of Software-Defined

Networking (SDN) solutions, which are seen as enablers for
reducing the management complexity of today’s networks.
One of the key features of such solutions is the ability to
re-program the data plane through a well-defined interface
and automatically configure it to meet resource management
objectives. In the SDN paradigm, OpenFlow [1] has progres-
sively become the de facto standard to realize the southbound
interface between the control and data planes. The current
version of the OpenFlow protocol, however, has limitations
when it comes to implementing the functionality of flexible
traffic engineering (TE) applications (e.g., for traffic load-
balancing [2], [3], energy management [4], etc.), which require
multipath routing and unequal traffic splitting capability.

Manuscript received February 11, 2016; revised May 9, 2016; accepted
June 9, 2016. Date of publication June 14, 2016; date of current version
September 30, 2016. This research was funded by the EPSRC KCN project
(EP/L026120/1) and by the Flamingo Network of Excellence project (318488)
of the EU Seventh Framework Programme. The associate editor coordinating
the review of this paper and approving it for publication was F. De Turck.

The authors are with the Department of Electronic and Electrical
Engineering, University College London, London WC1E 7JE, U.K. (e-mail:
d.tuncer@ee.ucl.ac.uk).

Digital Object Identifier 10.1109/TNSM.2016.2580666

In an early proposal for multipath forwarding support in
OpenFlow [5], the authors discussed the use of the group
option defined in the OpenFlow protocol to enable equal traf-
fic splitting. For unequal splitting, however, the number of
rules required to achieve the desired splitting proportions may
become excessive, thus incurring scalability limitations. To
overcome this issue, the alternative solution discussed in the
proposal concerns the use of hashing functions. Hash-based
traffic splitting mechanisms have been widely used in the TE
literature (e.g., [2] and [6]) as they provide the ability to split
the load at a fine level of granularity. The decision on which
outgoing interface to forward each incoming packet is based
on the result of a hashing function applied to the value of
some of the fields extracted from the packet header.

Despite these advantages, we believe that the choice of
implementing hash-based schemes as features of OpenFlow
switches is not in line with the main principle of the pro-
tocol. As shown in previous work [6], [7], using a direct
mapping between the hashed values and the outgoing inter-
faces is in general not sufficient to achieve a good level of
splitting accuracy. A table-based hashing approach implement-
ing a two-level mapping should be used instead. In this case,
the traffic flows are first split into a set of bins based on the
hashed value of flow parameters and the bins are then mapped
to the outgoing interfaces based on an allocation table. Such
an approach however involves a number of challenges in prac-
tice. To control the traffic load distribution, a mechanism is
required to configure the allocation table (i.e., mapping of the
bins to the outgoing interfaces). Not only does this presup-
pose the availability of a programming language to define
and configure the mapping, it also requires a run-time engine
to execute the code, which are not trivial issues. In addi-
tion, this may encourage different vendors to implement their
own proprietary hash-based schemes (i.e., traffic splitting and
load allocation strategies),1 forcing the protocol to be bound
to specific vendor implementations and making it difficult
for network operators to have control over the functionality
implemented in the physical devices.

In this paper, we investigate an alternative approach which
exploits the properties of bit mask operations and match-
ing functions to enable flexible traffic splitting in OpenFlow
and, as such, facilitate the implementation of resource man-
agement applications in an OpenFlow enabled-network. The
proposed solution builds upon the basic primitives of network-
ing and matching features of OpenFlow switches to decide
how to partition incoming traffic flows into multiple sets of

1It is worth highlighting that the choice of the hashing function itself is
not the main issue here. As long as the functions have high-quality hashing
properties [8], they will achieve similar splitting performance.

1932-4537 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

d.tuncer@ee.ucl.ac.uk
http://www.ieee.org/publications_standards/publications/rights/index.html

408 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

arbitrary size. More specifically, in our approach, partition-
ing is realized by logically grouping the flows based on their
destination IP address, so that one flow set is defined per
outgoing interface. At the switch level, this involves imple-
menting a set of matching entries in a multi-entry table, where
each entry corresponds to a specific address pattern. Compared
to traditional longest prefix match operations employed in
IP routing, a more flexible matching function, which relies
on a combination of two masks, is used to perform packet
matching. To be supported, our approach requires some small
extensions to the current protocol (i.e., ability to express
matching field in a more flexible and generic way and to select
matching operations, in particular). However, in contrast to
previous proposals, these extensions are in line with the cur-
rent standard and can easily be implemented. In addition, our
approach also follows recent research initiatives which call
for programmable and flexible protocol-independent packet
processing functionality [10], [11].

The main contributions of this work are as follows. We
first elaborate on the types of masking operations and struc-
tures required to perform unequal traffic splitting. We then
demonstrate the capability of the proposed traffic partitioning
mechanism based both on theoretical analysis and empirical
evaluation of its performance with respect to the level of con-
trol it can achieve over the splitting of incoming flows. In
addition, we explain how the proposed scheme can be prac-
tically implemented in an OpenFlow switch to achieve the
objective of realistic load-balancing applications. The results
of the evaluation show that, by configuring the masking param-
eters, it is possible to control the proportion according to
which traffic can be split, and, as such, perform flexible load-
balancing. Comparison to a table-based hashing scheme [6], in
terms of splitting accuracy performance, further demonstrates
that the proposed solution constitutes a promising alternative
for traffic splitting in an OpenFlow environment.

The remainder of this paper is organized as follows.
Section II provides background information. Section III
presents the proposed traffic partitioning approach. Section IV
describes how this can be implemented in an OpenFlow
switch. The results of the empirical evaluation are presented
in Section V and further discussed in Section VI. Section VII
presents related work. Finally, conclusions are provided in
Section VIII.

II. BACKGROUND

In this section, we provide background information on
multipath TE and on the current proposal for multipath for-
warding with OpenFlow. We also review the main principles
of masking operations in networking.

A. Multipath Traffic Engineering

Over the years, there have been significant research efforts
focusing on the development of TE approaches that exploit
the features of multipath routing to adapt the distribution
of traffic load in the network according to changing condi-
tions, e.g., [12] and [13]. Based on the configuration of n

paths, the traffic demand between any source-destination (S-
D) pair of nodes is logically partitioned into n independent
sets at the source node. Each traffic set is then assigned to
one of the n paths and routed accordingly. In the proposed
approaches, the volume of traffic on each path is driven by
splitting ratios that are precomputed according to the traf-
fic demand in order to optimize the utilization of network
resources. Solutions for multipath TE have been proposed both
in the context of MPLS networks [13], [14] and ordinary IP
environments [2], [12], exploiting in particular the features of
Multi-Topology Routing (MTR), e.g., [3], [15], and [31].

To avoid issues associated with out-of-order packet delivery,
most of the TE approaches proposed in the literature have
focused on flow-level traffic splitting, which is also the case in
this paper. With this approach, packets that belong to the same
TCP flow are always assigned to the same path and no further
adjustments are permitted along the route. The implications of
flow-level traffic splitting are further discussed in Section VI.

B. Multipath Forwarding With OpenFlow

A proposal for multipath routing, which relies on the group
option defined in the OpenFlow protocol, has been presented
in [5]. This builds upon the existing features of OpenFlow
which provide the ability to force one port to point to a set of
other ports. In the case of multipath forwarding, this involves
sending incoming packets to one port selected out of a group
of available ports. The mechanism used to choose the rele-
vant port depends on the type of selection to apply. The case
where each of the ports is selected with equal probability (i.e.,
equal splitting) can easily be achieved based on a round-robin
mechanism. In the case of non-equal cost multipath splitting,
however, an approach that allows a finer level of control is
required. One of the most practical options discussed in the
proposal relies on the use of hashing functions. This implies
that a hashing scheme such as, for example, the one proposed
by Cao et al. [6], should be implemented in the switch and
parametrized for each traffic flow. Although employing a hash-
ing scheme may have the advantage of providing control at a
fine level of granularity, we believe that such a design choice
is not in line with the general principles of OpenFlow. First,
this assumes the availability of a mechanism to program the
hashing scheme at run time (i.e., a programming language),
which is not a trivial issue. In addition, the protocol may be
bound to specific vendor implementations, as vendors may opt
for implementing their own proprietary hashing schemes and
their own language. In contrast, the OpenFlow paradigm calls
for open control functionality, which can provide flexibility,
scalability and adaptability.

C. Masking Operations

In network engineering, masking operations are traditionally
used to check if a given vector of bits V exhibits a particular
pattern. The input vector V is compared to a second vector M
(usually referred to as the mask), which represents the consid-
ered pattern, based on bitwise operations. The outcome of the
comparison is positive if V follows the pattern represented by
M, in which case V is said to match M.

TUNCER et al.: FLEXIBLE TRAFFIC SPLITTING IN OPENFLOW NETWORKS 409

Masking operations are used in traditional IP routing, where
the destination addresses extracted from incoming packets
are compared against prefix entries maintained in the rout-
ing tables. Let’s consider the IP address 144.82.111.20 of
the URL www.ucl.ac.uk as an example. In binary form,
this is expressed as 10010000-01010010-01101111-00010100.
Let’s also consider the netmask of length 16, i.e., 11111111-
11111111-00000000-00000000. The result of the masking
operation between the considered address and netmask gives
the prefix 10010000-01010010-00000000-00000000, which
represents the subnet 144.82.0.0.

Packet processing operations implemented in OpenFlow
switches also rely on masking. In this case, values extracted
from the header of incoming packets are compared against
matching fields of the entries maintained in the flow tables. In
both cases, a match between the input data and the existing
entries is defined as a perfect match, i.e., the input sequence
strictly follows the considered pattern. While this has the
advantage of enabling strict control on the required bit pat-
tern, the rigidity of a perfect match makes it inadequate as a
splitting solution for TE purposes. In this paper, we show how
alternative, more flexible, matching functions can be used to
realize unequal traffic splitting.

III. TRAFFIC PARTITIONING

As described in Section II-B, the ability to perform unequal
splitting relies on the availability of a mechanism which can
logically partition the incoming flows into sets of arbitrary
size. In this paper, we investigate a splitting approach based
on the IP addresses of the traffic flows, which exploits the
properties of masking operations. In this section, we demon-
strate the principles of the proposed mechanism based on the
destination IP address. It is worth noting that our approach
can also work with source IP addresses.

A. Definitions

We first define formally some key principles that were used
to develop the proposed splitting approach.

1) IP Address: Each IP address2 is represented as a 32-bit
vector X =< xi >i∈[1,32] where each element i indicates the
value of the i − th bit in the address,3 i.e.,

∀i ∈ [1, 32], xi ∈ {0; 1}
We denote X as the set of all IP addresses.
2) Mask: We define the mask of parameter r > 0 as the

32-bit vector M =< mi >i∈[1,32] where r is the number of
bits set to 1, while all other bits are equal to 0. We define
parameter r as the masking range and we denote Mr as the
set of all masks of masking range r. Formally, this can be
formulated as follows:

M ∈ Mr iff
32∑

i=1

mi = r.

2We focus on IPv4 addresses only in this paper.
3Based on mathematical conventions, we index the bit positions

from 1 to 32.

An example mask with masking range r = 3 is 00001011-
00000000-00000000-00000000.

3) Matching Function: The main idea of the splitting
approach proposed in this paper is to group the incoming
traffic flows based on the bit pattern exhibited by their destina-
tion IP address. This can be achieved by comparing the input
addresses to a set of masks M based on a matching function.
To enable unequal traffic splitting, however, it is essential to
have flexibility in configuring the operations performed by the
matching function (i.e., bitwise operations and comparison).

Given a bitwise operator O and a test condition T, we define
the matching function fO,T as the function of two 32-bit vectors
V1 and V2 which applies the operator O between V1 and V2 and
compares the outcome based on test condition T. Bitwise oper-
ators can be of any type (e.g., AND, OR, XOR, NOT etc. [9])
and typical examples of test conditions include equality/non-
equality. The configuration of the matching function can be
used to control how strict the match between an input address
and a mask should be. To support flexible partitioning, we
consider the function f&,!=0 with O being the “AND” operator
(denoted &) and T the test condition defined as “not equal to
zero” (denoted ! = 0).

Definition 1: For all IP addresses X in X , X is said to match
mask M in Mr with respect to matching function f&,!=0 if and
only if X & M != 0.

Based on the vector representation, this can be formalized
by the following equation:

32∑

i=1

xi · mi �= 0. (1)

According to the function f&,!=0, a match between an
address and a mask occurs if only a subset of the bits at the
position of the r masking bits are equal to 1 in the address.
This relaxes the constraint on the bit pattern which needs to
be exhibited by the address.

B. Direct Masking Approach

We first consider a masking approach which builds upon the
mask range to partition incoming traffic flows. To illustrate
the property of such an approach, we consider a hypotheti-
cal scenario where the range of destination IP addresses of
the incoming flows received at a given OpenFlow switch cov-
ers the entire address space. Furthermore, we assume that the
flow size, as well as the rate and frequency at which traffic
flows are received, follow a uniform distribution. Under these
assumptions, we can represent each traffic flow by its desti-
nation IP address. It is worth noting that in a real scenario,
traffic flows are unlikely to follow a uniform distribution (i.e.,
elephant vs. mice flows [32]). This assumption is used here to
simplify the demonstration; the implications of non-uniform
traffic distribution are discussed in detail in Section V.

Let qM(r) be the proportions of IP addresses X in X so that
X matches mask M in Mr according to Definition 1. Under the
assumption of uniform distribution, we can show that the pro-
portion of IP addresses matching an arbitrary mask of masking
range r with respect to the function f&,!=0 is independent of the

www.ucl.ac.uk

410 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 1. Proportion of matching addresses according to the masking range r.

position of the r masking bits in the mask. For all r ∈ [1, 32],
we have the following property:

Property 1: ∀M ∈ Mr, qM(r) = q(r)
Proof: The property can easily be shown from Eq. 1 which

states that a successful match is obtained when the outcome
of the masking operation is strictly positive.4

Based on Property 1, we can determine the theoretical
proportion of matching addresses q(r), and, by extension,
matching flows, based on the following equation.

Proposition 1:

∀r ∈ [1; 32], q(r) = 1 − 1

2r
. (2)

Proof: To get a match, at least one of the bits at the posi-
tion of the r masking bits in the mask needs to be set to
1 in the input IP addresses. The number of possible combi-
nations of bits satisfying this constraint is 2r − 1 (the case
with all considered bits set to 0 needs to be disregarded). For
each combination, the number of corresponding IP addresses
is 232−r. The total number of matching addresses is therefore
(2r − 1) · 232−r. Since the size of the address space is 232,
the percentage of matching addresses is equal to (2r−1)·232−r

232 ,
which reduces to q(r) after simplification.

The evolution of the function q(r) is depicted in Fig. 1 (the
values are shown as percentages). The figure shows that only
a small set of values ranging from 50% to 100% are available
to partition the addresses into different sets. The granularity at
which splitting can be realized is therefore very limited. As can
be observed, the proportion of matching addresses increases
as the value of r increases. The higher the number of bits set
to 1 in the mask, the better the chances for a match with an
input IP address. In particular, the mask with all bits set to
1 (i.e., r = 32) matches all the addresses, while the masks
with just one bit set to 1 (i.e., r = 1) will match 50% of the
addresses (i.e., the considered bit is either set to 0 or 1 in the
IP address).

Two main observations can be made from these results.
First, they show that by configuring a set of masks against
which the destination addresses of the incoming flows are
compared, it is possible to partition the flows in different pro-
portions. In addition, the results provide interesting insights

4Although, strictly speaking, Eq. 1 states that the sum needs to be non-
equal to zero, this can easily be translated into “strictly positive” given that
both xi and mi are always either equal to 0 or 1.

Fig. 2. Example bit pattern.

regarding the partitioning granularity which can theoretically
be achieved. For example, it is not possible to find a combina-
tion of masks based on which traffic flows can be partitioned
into four strictly independent subsets, each representing 25%
of the address space. To overcome these important limita-
tions, in the next subsection we investigate an alternative
approach which can enable a finer level of control in terms of
partitioning granularity.

C. Prefix Pattern Masking

The approach described in the previous subsection directly
compares each mask to all possible IP addresses. Given that
the number of matches is independent of the position of the r
masking bits, this restricts the number and size of the partitions
that can be computed. One way of increasing the range of
available partitions is to limit the number of addresses each
mask should be compared against. This can be achieved by
considering only the addresses that exhibit a pre-determined
bit pattern.

More specifically, let’s consider the IP address with the bit
pattern depicted in Fig. 2. A bit marked as x means that it is
either equal to 0 or 1 (free bit), while the bits marked as 0 are
strictly equal to 0. In other words, for an address to follow
the considered bit pattern, a set of its bits must be equal to
0, while there are no constraints on the others (we disregard
the very specific case of address 0.0.0.0). In the example, bits
in the intervals [1, 16] and [24, 28] are free, while bits in the
intervals [17, 23] and [29, 32] are set to 0.

The position of the free bits (and conversely the non-free
ones) in the example bit pattern is defined over two non-
overlapping continuous intervals. More generally, we define
three index parameters L, VL and VH representing the bound-
aries of the bit position intervals, as depicted in Fig. 2. For
each L, VL and VH , we denote as C(L, VL, VH) the bit pattern
category so that bits in the interval [L, VL−1] and [VH +1, 32]
are equal to 0, while bits in the intervals [1, L−1] and [VL, VH]
are free. An IP address X is said to fall within category
C(L, VL, VH) if it follows the relevant bit pattern. In prac-
tice, the indexes L, VL and VH can be used to control the bit
pattern of input addresses. The larger L and VH are, the less
constrained the pattern is. In contrast, the smaller L and VH

are, the stricter the pattern is (i.e., larger number of 0 bits).
The configuration with VH = 32 and VL = L = 1 represents
all possible addresses, while the configuration with VH = 32
and VL = L ≥ 1 is equivalent to the case of a prefix of length
32−L. Although different approaches could be used to decide
on the position of the free/non-free bits (by varying the num-
ber of intervals), such a four-part bit pattern offers a good
trade-off between flexibility and simplicity in controlling how
constrained the pattern is (i.e., through a limited number of
index parameters).

TUNCER et al.: FLEXIBLE TRAFFIC SPLITTING IN OPENFLOW NETWORKS 411

Fig. 3. Distribution of the proportion of matching addresses.

In a similar fashion to Section III-B, we can determine,
under the assumption of uniform traffic flow distribution, the
theoretical proportion of addresses following a specific bit
pattern that match any mask of masking range r, so that
the r bits are in the interval VL and VH , with respect to
the function f&,!=0. We denote v as the difference VH − VL

and l as the difference 32 − L. The proportions of match-
ing addresses, denoted as q(l, v, r), is given by the following
equation.

Proposition 2:

∀l ∈ [1; 32], ∀v ∈ [1; l], ∀r ∈ [1; v], q(l, v, r) = (2r − 1)

2l−v+r
.

(3)

Proof: As explained in the proof of Eq. 2, the number
of possible combinations which gives a match is 2r − 1.
In this case, however, the number of addresses associated
with each combination is 232−l+v−r. As such, the total num-
ber of matching addresses in category C(L, VL, VH) with
VH − VL = v is given by (2r − 1) · 232−l+v−r. The percent-
age of matching addresses compared to all possible addresses
is therefore (2r−1)·232−l+v−r

232 , which reduces to q(l, v, r) after
simplification.

The evolution of the function q(l, v, r) for all possible values
of l, v and r is depicted in Fig. 3. The tuples (l, v, r) on the
x-axis are ordered by increasing l, v and r. In contrast to the
results depicted in Fig. 1, the number of distinct proportion
values for address matching is higher and spans over a larger
interval (from 0 to 100%), which shows that partitioning can
be achieved at a finer level of granularity. In addition, the
plot exhibits a regular pattern, which indicates that identical
performance can be achieved with different combinations of
parameters.

Fig. 4 shows the influence of each parameter, by varying one
parameter at a time. Given the size of the input space, only
representative values5 are depicted. Fig. 4a shows that the pro-
portion of matching addresses is independent of the values of
VL (and by extension of VH) and as such is not influenced
by the position of the r masking bits. In Fig. 4b, where l is
varied, the proportion of matching addresses decreases as the
value of l increases. As the value of l increases, the number of
bits which need to be equal to 0 in the address is larger. The

5The same conclusions were drawn with all other values.

relevant address space is therefore more constrained and less
addresses can match. In Fig. 4c, where the varying parame-
ter is v, the proportion of matching addresses increases as v
increases. The number of free bits increases as the value of
v increases. The address space is less constrained and more
addresses can match. Finally, in Fig. 4d, where the varying
parameter is r, the proportion of matching addresses increases
as r increases. The chances of obtaining a match improve when
the number of bits set to 1 are increased (i.e., larger masking
range).

From the results, it can be observed that multiple parti-
tions with a wide range of possible sizes can be computed by
configuring a set of masks. In contrast to the direct masking
approach (Section III-B), however, we show that by consid-
ering only those addresses that follow a particular bit pattern,
more flexible and finer splitting can be achieved. The results
also indicate that the partitioning degree can be controlled
through different parameters. In practice, the choice of the
parameter(s) to tune can be driven by the characteristics of
real traffic flows. We elaborate on the parameter settings in
Section V.

IV. UNEQUAL TRAFFIC SPLITTING

In the previous section on Prefix Pattern Masking, we show
that comparing an input mask with masking range r, where the
r bits set to 1 are positioned in the interval [VL, VH], to only
a subset of the addresses that follow a specific bit pattern, can
provide more flexibility on how addresses and, by extension,
traffic flows, can be partitioned. This section describes how
this can be practically implemented.

A. Matching Procedure

Based on the Prefix Pattern Masking model presented in
Section III-C, a successful match occurs if the address follows
the required bit pattern and if it matches the considered input
mask according to Def. 1. From an implementation point of
view, the verification of the two conditions can be realized
based on two masking operations. Let’s consider the bit pattern
presented in Fig. 2.

1) Prefix Pattern Validation: The objective of the first oper-
ation is to check whether the input address has the required
pattern. In this example, it means that bits in the intervals
[1, 16] and [24, 28] are free, while bits in the intervals [17, 23]
and [29, 32] must be equal to 0. This can be achieved by com-
paring the address to a prefix pattern mask MP with respect to
the matching function f&,=0 of operator “AND” and test con-
dition “Equal to zero”. We refer to this operation as the prefix
pattern validation operation. The prefix pattern mask for the
example bit pattern is defined below:

28 24 17
MP : 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this case, the address X is said to match mask MP if and
only if X & MP == 0. More generally, we define the prefix
pattern mask of a given bit pattern as the 32-bit vector so
that bits in the intervals [1, L − 1] and [VL, VH] are set to 0,
while bits in the intervals [L, VL − 1] and [VH + 1, 32] are set

412 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 4. Distribution of the proportion of matching addresses based on different parameter combinations.

to 1. This is designed to determine whether the address has at
least one of its bits set to 1 in the positions forced to 0 in the
considered masking pattern, in which case the address does
not follow the required pattern. In fact, the proposed prefix
pattern masking method can be thought as a generalization of
the prefix length matching procedure employed in traditional
routing. In contrast to the latter, which has the top N bits set
to 1, this provides more flexibility in the choice of the pattern
structure and, as such, it can enable finer granularity traffic
splitting.

2) Range-Based Masking: The objective of the second
masking operation is to check whether the address matches
the mask with masking range r, where the r bits set to 1
are in the interval [VL, VH], based on the matching function
presented in Def. 1. We refer to this operation as the testing
operation and call the relevant mask the testing mask (denoted
MT). An example testing mask for the considered example is
depicted below:

28 24 17
MT : 0 0 0 0 1 0 1 1 0

3) Summary: The main steps of the matching procedure
can be summarized as follows:

• Define both the prefix pattern mask and the testing mask.
• Compare the input address to the prefix pattern mask with

respect to matching function f&,=0 and to the testing mask
with respect to matching function f&,!=0.

• The outcome of the matching procedure is considered
successful if the input address satisfies both the conditions
of the prefix pattern validation and the testing operations.

To illustrate the procedure, we consider a simple exam-
ple based on the IP address presented in Section II-C, i.e.,
144.82.111.20. The objective is to compare the address against
the following prefix pattern of configuration VH = 32,
VL = 29, L = 25 and testing masks with r = 2:

MP : 0 0 0 0 1 1 1 1 0

MT : 1 0 0 1 0

In this case, the outcome of the masking operation between
the address and the prefix pattern mask MP is equal to 0 and
between the address and the testing mask MT is not equal to 0.
The matching procedure is therefore successful.

B. Traffic Engineering-Based Multipath Forwarding

In this subsection, we explain how the proposed masking
operations and matching procedure can be used to realize
multipath unequal traffic splitting and, as such, support the
load-balancing objective of a traffic engineering application.
As explained in Section II-A, based on the path diversity pro-
vided by an underlying routing/forwarding mechanism, the
traffic demand between each S-D pair of nodes is logically
partitioned between the available paths according to precom-
puted splitting ratios to optimize the utilization of network
resources.

The proposed traffic splitting solution consists of comput-
ing a combination of 2-tuple masks (prefix pattern and testing
masks) for each S-D pair. Each 2-tuple is associated with one
of the available paths and the configuration of the mask param-
eters in each tuple is driven by the relevant splitting ratio. In
an ideal scenario, masks should be configured in such a way
to avoid an input address matched by more than one 2-tuple.
However, such a condition may severely constrain the prob-
lem and may be difficult to implement in practice. To resolve
potential multiple match conflicts, we leverage the priority rule
of OpenFlow and associate each 2-tuple with a priority. In this
case, the matching tuple is defined as the one with the highest
priority. In a similar fashion, the lowest priority tuple is used
to ensure that there is always a match and is therefore defined
as a wildcard on both the prefix pattern and testing masks.

Based on the OpenFlow principles, the prefix pattern mask
and the testing mask can be represented, at the switch level,
by a multi-entry table, where each entry is associated with a
match field, a priority and a set of instructions components [1].
In the proposed approach, the match fields component con-
cerns the 2-tuple masks against which the destination address
extracted from the incoming packet is compared. In particular,
the matching operation can be logically expressed as follows:

@ & MP == 0 && @ & MT ! = 0 (4)

where @ represents a 32-bit address, MP is the prefix pattern
mask, and MT the testing mask. In addition, & represents the
bitwise operator “AND” and && the logical “AND” condition.

The current OpenFlow specification defines only one table
type. The latest version identifies 45 match fields and matching
operations are considered as a perfect match [1]. To support
the proposed approach, extensions to the protocol are required.

TUNCER et al.: FLEXIBLE TRAFFIC SPLITTING IN OPENFLOW NETWORKS 413

Fig. 5. Packet processing operations.

First, the ability to express match fields in a more generic way
should be supported. This would enable the implementation of
different types of tables and, as such, extend packet processing
options. In addition, the protocol should allow to configure
matching operations. This would enable the programmability
of processing operations and, as such, offer more flexibility
in controlling network resources. To be realized, basic bitwise
operators and test conditions built into the switch processor
can be used.

The packet is then forwarded to the relevant interface based
on the selected path.

C. Example Application

To illustrate the sequence of actions which need to be per-
formed at the switch level, we exemplify the packet processing
operations based on the MTR-based load-balancing applica-
tion that we developed in our previous work [3]. Based on
path diversity provided by configuring the MTR planes, the
objective of the management application is to balance the traf-
fic load in order to minimize the overall network utilization.
This is achieved by controlling the volume of traffic between
each S-D pair of nodes sent across each plane according to
splitting ratios which are periodically adjusted based on net-
work conditions. In [16], we developed a distributed approach
to implement the proposed load-balancing application. In this
approach, load-balancing decisions are taken by a set of man-
agers which supervise the network edge nodes6 and control
the splitting ratios applied to incoming traffic flows. New
configurations (i.e., splitting ratios) are passed to the relevant
controllers, which are responsible for planning and applying
the required changes in the switches under their control.

The set of operations that need to be executed at the network
level in order to achieve multipath routing and unequal traf-
fic splitting depends on the role of the switch. As explained
in [16], switches can operate as source or transit based on
how they process incoming packets. A switch operates as a
source for incoming packets if a) it is an edge switch, and
b) packets belong to one of the switch’s local traffic flows.

6We refer to network edge nodes as the set of nodes generating and
absorbing traffic, while we call core nodes all the other nodes.

A switch operates as a transit for incoming packets if a) it is
an edge switch but incoming packets do not belong to one of
the switch’s local traffic flows, or b) it is a core switch.

In the case of a source switch, three main actions need to
be performed: 1) Determine to which local traffic flow the
packet belongs, 2) Determine the MTR plane on which to
route the packet, and, 3) Forward the packet according to
the configuration of the selected MTR plane. In case of a
transit switch, only steps 1 and 3 are executed. In this case,
the packet is already marked with the relevant MTR plane
identifier (MT-ID). The sequence of actions is depicted in
Fig. 5. The main idea behind the proposed packet process-
ing mechanism relies on the multiple table pipeline feature of
OpenFlow, which enables multi-processing packet operations.
Each incoming packet is sequentially matched against mul-
tiple tables in the pipeline so that, at each step, instructions
encoded in the matching entry of the current table are applied
to the packet. The three main actions involved are detailed
below.

Step 1 - Identify the relevant source-destination pair:
Given that splitting decisions are taken for each S-D pair, the
objective of the first step is to determine to which S-D pair
the incoming packet belongs. This can easily be realized based
on standard OpenFlow packet processing operations. Source
and destination IP addresses extracted from the packet header
are matched against the matching fields of the entries of a first
flow table, which maintains information for each S-D pair (i.e.,
source node and destination node IP prefixes). In this case, the
actions associated with the matching entry redirect the packet
to a second table defined for each S-D pair.

Step 2 - Identify the relevant MTR plane: The objective
of this step is to determine on which plane the packet needs to
routed. As explained in the previous subsection, this is driven
by the splitting ratios whose requirements are translated at the
switch level into a set of 2-tuples masks associated with each
path.

In this step, the instructions associated with the matching
entry consist in marking the packet header with the rele-
vant MT-ID (each entry represents a MTR plane). Although
OpenFlow does not currently support MTR tagging, the lat-
est version of the specifications introduces support for MPLS

414 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

labeling and VLAN tagging [1]. The VLAN identifier field, in
particular, is coded on 12 bits, which represents 4096 options.
In practice, a small number of MTR planes (4-5) is sufficient to
achieve a traffic engineering objective (e.g., [3] and [15]). Two
solutions could therefore be followed to support MTR. The
protocol could either be extended to incorporate a MTR field,
or a small subset of the VLAN identifiers could be reserved
to identify the MTR planes and perform MTR tagging.

Step 3 - Forward the packet to the relevant interface:
The last step involves forwarding the packet based on the
configuration of the selected MTR plane identified by MT-ID.

V. EMPIRICAL EVALUATION

While the results presented in Section III provide interesting
insights regarding the level of control in terms of achievable
traffic splitting, their impact is limited as they rely on the
assumption of traffic uniformity. In a real environment, the
characteristics of the traffic flows are unlikely to follow a
uniform distribution. In this section, we empirically evaluate
the performance of the proposed splitting approach based on
realistic traffic flow settings.

A. Traffic Flow Generator

In the absence of real traffic flow data, we base our evalu-
ation on synthetically generated traces. Although some traffic
flow generators have been proposed in the literature, we could
not directly rely on those as they do not emulate all the nec-
essary characteristics. We have therefore developed our own
traffic flow generator.

The flow information required in this work covers two
dimensions: 1) the flow dynamics (i.e., inter-arrival time, size
and rate), and, 2) the destination IP address distribution. To
take into account both dimensions when generating the traffic
flows, we divide the flow modeling process into flow dynamics
modeling and IP address distribution modeling.

For the flow dynamics modeling part, we follow the method-
ology presented in [17]. Flow arrivals are modeled as a Poisson
process and the input load is controlled by the inter-arrival
rate parameter, which we set to 100. Flow sizes are repre-
sented by a truncated Pareto distribution of scaling parameter
1.3 and vary between 8 Mbytes and 8 Gbytes. Finally, flow
rates are selected from three possible values 0.5Mbps, 1Mbps
and 10Mbps with 30%, 60% and 10% probability, respectively.
The parameters of each distribution are selected in accordance
with the values reported in [17], in which the authors focused
on Internet Service Provider backbone networks.

The objective of the IP modeling part is to decide how
to assign a destination IP address to each generated flow.
To design the address allocation mechanism, we build upon
previous research initiatives (i.e., [18]–[20]), which have ana-
lyzed the characteristics of the IPv4 prefixes maintained in the
routing tables of core networks from different perspectives.
Ganegedara et al. [18] investigated the distribution of the pre-
fix length and showed that, in almost all cases, over 50% of
the prefixes have a length equal to 24 (i.e., represent class C
networks). Based on these observations, they developed a tool
to generate IPv4 prefixes. The tool can be configured to select

TABLE I
EXPERIMENT SETTINGS

the percentage of class A, B and C networks to consider (via
the prefix length) and control the probability of having a 0 or
a 1 at each bit position in the prefix. Unlike [18], the research
efforts presented in [19] and [20] have focused on the distri-
bution of prefix popularity (i.e., how likely is a given prefix
to be hit in the routing table). The results reported in [19]
indicate that, in the considered routing tables, 20% of the pre-
fixes account for 80% of the traffic. The findings were further
extended in [20], which show that prefix popularity can be
represented by a Zipf distribution. With the objective of being
as close to reality as possible, based on the above observations,
we designed the IP address allocation mechanism as follows.

• Pre-processing: We generate a list of 100,000 prefixes
based on the tool developed in [18]. Each prefix is then
randomly assigned a rank which represents its popularity.

• Runtime: For each newly created traffic flow, we select a
prefix from the pre-computed list, based on a Zipf distri-
bution with parameter α = 1. We then randomly compute
an IP address from the selected prefix and assign the
address to that traffic flow.

All the results presented in this section were obtained using
these mechanisms, based on a total of 1 million flows.

B. Influence of Masking Parameters

Based on four experiments, we investigate the influence of
the five masking parameters VH , VL, l, v, and r on the perfor-
mance of the traffic splitting approach. In each experiment, we
consider a scenario where the traffic flows need to be split into
two sets. Each set is represented by a 2-tuple of prefix pattern
and testing masks. The first tuple has the highest priority and
its masks are configured according to some specific parame-
ter settings. The second tuple has the lowest priority and is
defined as a wildcard on both the prefix pattern and testing
masks (Section IV-B). In each experiment, we vary the value
of one of the parameters of the highest priority 2-tuple. The
settings of the parameters for each experiment are reported in
Table I.

In all cases, the position of each of the r masking bits is
fixed in the interval [VH −r+1; VH]. Given the characteristics
of the generated traffic flows, we evaluate the performance in
terms of the volume of traffic flows assigned to each set. The
results are reported in Fig. 6, where the highest priority tuple
is denoted as Mask0 and the lowest priority tuple as Mask1.

Firstly, the results demonstrate that the main conclusion for-
mulated in Section III-C also applies to a realistic scenario:

TUNCER et al.: FLEXIBLE TRAFFIC SPLITTING IN OPENFLOW NETWORKS 415

Fig. 6. Impact of masking parameters on the volume of matching flows.

Fig. 7. Percentage of prefixes with a bit set to 1 at each bit position.

by configuring a set of masks, traffic flows can be split into
multiple partitions of arbitrary size. They also highlight some
differences. For example, in contrast to the theoretical sce-
nario, it can be observed that the volume of matching flows
depends on the value of parameters VH and VL. To explain this
result, we plot in Fig. 7, for each bit position (index varying
from 1 to 32), the percentage of prefixes which have the bit set
to 1 at the relevant position. As observed, bits are more likely
to be equal to 1 at certain positions. For example, the bit at
position 31 is set to 1 in almost 80% of the prefixes, whereas
this represents only 25% of the prefixes in the case of the bit
at position 30. As explained in Section V-A, the percentage
value obtained for each bit position depends on the parameter
settings of the IPv4 prefix generator [18]. In our experiments,
we set these parameters to represent a realistic distribution of
prefixes for core networks. Since parameters VH and VL influ-
ence the position of the r masking bits, these have an influence
on the number of matching flows. Fig. 6b, 6c and 6d corrobo-
rate the findings of Section III-C, i.e., the volume of matching
flows increase with increasing v and r, and decreasing l.

C. Mask Configuration

Based on the results presented in the previous subsection,
we now show how it is possible to control the traffic proportion

according to which traffic should be split by configuring the
prefix pattern and testing masks. To evaluate the splitting accu-
racy, we consider four scenarios. In the first two scenarios, the
traffic is split between two interfaces and, as such, two 2-tuple
masks Mask0 and Mask1 need to be computed. In Scenario 1,
the objective is to split the traffic flows into two sets of equal
size, i.e., splitting ratios 50% / 50%. Scenario 2 represents an
unequal split case with splitting ratios 5% / 95%. In the two
other scenarios, the traffic is split between four interfaces,
thus four 2-tuple masks Mask0 and Mask1, Mask2 and Mask3
need to be computed. In Scenario 3, traffic is split into four
sets of equal size, i.e., splitting ratios 25% / 25% / 25% / 25%,
while Scenario 4 illustrates non-equal splitting with ratios
5% / 10% / 25% / 60%. It is worth noting that the scenarios
described in this paper are chosen as illustrative examples to
present different range of splitting proportions and that simi-
lar performance in terms of accuracy was observed with other
configurations.

In the following, we first explain how the masks are
configured for each scenario and then discuss the results.

1) Scenario 1 (50% / 50%): To ensure that a match can
always be obtained, Mask1 is configured as the wildcard on
both the prefix pattern and testing masks (it matches 100%
of the flows). To obtain a 50 / 50 distribution, Mask0 should
therefore be configured to match 50% of the traffic. Based
on Fig. 1, we know that a 50% match can be achieved with a
masking range equal to one. Mask0 is then set up with l = 31,
v = 31, r = 1, VH = 32, and VL = 0. In a non-uniform
distribution scenario, the volume of matching flows depends
on the position of the r masking bits. To maximize the chances
of a match, it is therefore better to place the masking bit at a
high bit position - we choose to set it at position 32.

2) Scenario 2 (5% / 95%): As in Scenario 1, Mask1 is con-
figured as the wildcard to match 100% of the traffic. For
Mask0, two approaches can be followed: to find either a con-
figuration that can provide a 5% match or one that can cover
95% of the traffic. We focus on the second option, given
that, for uniform distribution, a 93.5% match can be obtained
with l = 31, v = 31, r = 4 (see Eq. 3). Although this
represents a deviation of 1.5% to the desired 95% split, the
configuration can be regarded as a good candidate given the
non-uniform nature of the address distribution. In a similar
fashion to Scenario 1, we set the masking bits at the highest

416 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 8. Split proportion in terms of volume of matching addresses.

positions (i.e., 29 - 30 - 31 - 32) to maximize the chances of a
match.

3) Scenario 3 (25% / 25% / 25% / 25%): In this scenario,
Mask3 is configured as the wildcard and matches 100% of
the traffic. To achieve the desired proportions, the combina-
tion of Mask0, Mask1 and Mask2 should therefore account for
75% of the traffic. We start by configuring tuple Mask0. From
Fig. 6b, we can observe that the configuration of Experiment 2
with l = 5 is a good candidate to achieve a 25% match. To fur-
ther improve the performance and obtain a ratio closer to 25%,
we can refine the value of parameter v or r (see Section V-B).
Fig. 6d shows that the volume of matching flows increases as
r increases. We therefore increment the value of r compared
to Experiment 2 and set it to 3. For Mask1, we start with the
configuration of Experiment 2 with l = 4. From Fig. 6b, we
can observe that this can match around 40% of the traffic.
Since the position of the masking bit is maintained constant
in Experiment 2, part of the flows matching a tuple config-
ured with l = 5 also matches a tuple with l = 4. As such,
this would result in an actual proportion of around 15% (i.e.,
40% − 25%). To increase the range of masking addresses, we
therefore increment the values of v and r by 1, which gives
a configuration l = 4, v = 4, r = 4 for Mask1. Finally, for
Mask2, we select a configuration which limits the number of
possible matches (through the value of r) but does not con-
strain the prefix pattern (through the value of l and v), i.e.,
l = 31, v = 31 and r = 1. To match a different set of addresses
compared to Mask0 and Mask1, the masking bit of Mask2 is
positioned at bit 32 so that it does not overlap with the ones
used in the two masks with higher priority.

4) Scenario 4 (5% / 10% / 25% / 60%): In this scenario, we
jointly configure the parameters of Mask0 and Mask1 by tar-
geting a 15% match (i.e., 5% + 10%). Based on Fig. 6b, it
can be observed that this can be achieved using a configura-
tion with l = 8, v = 3 and r = 2. To further partition the
set of matching addresses in 5% / 10% proportions, we adjust
the value of the parameters l, v and r, as well as the position
of the masking bits. We use the configuration l = 9, v = 5
and r = 4 with the masking bits on the positions 26 - 27 -
28 - 30 for Mask0 and the configuration l = 9, v = 5 and
r = 2 with the masking bits at positions 29 - 31. For Mask2,
we use the same setting as in Scenario 3, i.e., l = 31, v = 31
and r = 1 with r positioned at bit 32. Finally, in a similar

fashion to all previous cases, Mask3 is configured as the
wildcard.

5) Splitting Accuracy: The proportions in terms of volume
of matching addresses obtained in each scenario are shown in
Fig. 8. As can be observed, in all cases, the achieved split is
very close to the desired one. All the proportions are within
less than 1% to the expected ratios, with a maximum deviation
of 0.87% (for Scenario 1). This demonstrates the potential of
the proposed approach: it can be used to split a realistic traffic
set accurately at a fine level of granularity.

D. Comparison to a Hash-Based Solution

We now compare the performance of the proposed approach
in terms of splitting accuracy to the one obtained using a
table-based hashing scheme [6], based on the four scenarios
described in the previous subsection.

Table-based hashing approaches were shown to offer very
good performance in terms of traffic splitting accuracy,
e.g., [6] and [7]. In these schemes, traffic flows are first split
into M bins based on the hashed value of flow parameters (e.g.,
extracted from the IP header). The bins are then mapped to the
N outgoing interfaces based on an allocation table. To achieve
a fine level of splitting granularity, the number of bins M is
usually set one or two orders of magnitude larger than the
number of interfaces N [6]. In this work, we set the value of
M equal to 500·N (following the settings used in [7]) and apply
the 32-bit Cyclic Redundancy Checksum (CRC32) algorithm
to get the hashed value of the flow characteristics. CRC32
has been reported as one of the most widely deployed hash
functions in hardware equipment [21]. To compare the per-
formance to the proposed mask-based approach, the hashing
function is applied to destination IP address only. The propor-
tions obtained for the four scenarios are shown in Table II,
which also reports the maximum and the average deviation
from the expected split.

It can first be observed that the hash-based approach
achieves very good performance in terms of splitting accuracy,
with the largest maximum deviation being 0.85% (Scenario 4).
More importantly, the results show that the proposed approach
can achieve a similar performance to that of a hash-based
scheme, which provides additional evidence to support the
viability of our solution.

TUNCER et al.: FLEXIBLE TRAFFIC SPLITTING IN OPENFLOW NETWORKS 417

TABLE II
PERFORMANCE COMPARISON

In fact, while partitioning is the common objective of both
schemes, this is realized in two different ways. In the hash-
based approach, the hashed values of destination IP addresses
are uniformly distributed into equal size bins defined over the
whole hash space, and the desired split is realized by grouping
the bins based on the desired ratios. In contrast, partitioning
in the proposed approach is achieved by grouping addresses
with a similar pattern. To enable fine control over the size of
each group, a flexible masking approach is however required,
for instance compared to a prefix-based perfect match strategy,
which simply divides the address in two parts.

Finally, it is worth highlighting that since the splitting
accuracy of any traffic partitioning scheme depends on the
characteristics of a specific traffic set, those characteristics can
influence the results.

VI. DISCUSSION

By nature, the proposed traffic splitting approach depends
on the distribution of the IP addresses. In particular, the results
presented in Section V demonstrate that, although the insights
gained from the theoretical analysis can be useful to decide
how the masks should be configured to achieve some expected
performance, these are not sufficient. They should be aug-
mented with information regarding the characteristics of the
incoming traffic flows, which could be acquired from differ-
ent sources. For example, the distribution of the observed IP
addresses may depend on the type of network. The range of
addresses monitored at an edge network is likely to signif-
icantly differ from the one observed in a core network. As
such, useful information can be provided regarding the type
of prefix patterns to expect. In addition, prediction strategies,
coupled with lightweight learning techniques, could be used
to infer the dynamics and characteristics of the observed IP
addresses. Previous research efforts (e.g., [19], [20], and [22])

have shown that relevant properties, such as the variability of
heavy hitters over time or the burstiness in the occurrence of
prefixes, could be extracted from the traffic flows and have
proposed mechanisms that take advantage of these properties.

The performance of our approach is also influenced by
the dynamics of the traffic flows themselves (i.e., size and
rate), which is a general issue with any flow-level splitting
approach and is independent of the partitioning scheme [23].
Since the objective is to balance the traffic load over mul-
tiple paths, the traffic dynamics can have an impact on the
volume of traffic sent over each path and, as such, on the
level of load-balancing that can be achieved. As reported by
Rost and Balakrishnan [24] the skewness in the distribution
of flow rates, the grouping flexibility of the mechanisms used
to partition the flows and the burstiness of traffic are key
aspects that can affect the accuracy of splitting. To address
these issues, previous work (e.g., [7]) has proposed the use of
dynamic splitting algorithms that can react to load imbalance
by modifying the algorithm parameters at runtime. Such an
approach could apply to our proposal as well. In this case, a
two-level traffic management process could be implemented in
which a pro-active mechanism would provide the initial mask
configurations based on historical flow information, while a
reactive scheme would adapt to the traffic dynamics by fine
tuning the parameters l, v and/or r.

Most of the TE approaches proposed in the literature have
focused on the use of hashing schemes to enable traffic split-
ting. However, as shown in [23], these schemes themselves
can have their performance significantly affected in terms of
splitting accuracy (e.g., 20% splitting error reported in [23]).
In general we believe that, in the context of SDN, the use of
such schemes - despite their flexibility - poses a number of dif-
ficulties given that different implementations of the hash-based
splitting method are possible, which can also be closed to ven-
dors. Mechanisms (and associated language) to program the

418 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

partitioning scheme are currently not supported by OpenFlow
and their complexity is unknown. In contrast, the approach
proposed in this paper builds upon the basic features and prim-
itives of networking and, as such, requires simpler extensions
to the current protocol. Also, our solution is in line with recent
research initiatives which call for programmable and flexible
packet processing functionality [10], [11]. As a result, although
our approach is more dependent on the characteristics of the
input traffic compared to the hashing method, we believe that,
due to the inherent dynamic nature of the traffic flows, the
trade-off in terms of flexibility and simplicity of implemen-
tation offered by the proposed solution makes it a promising
alternative.

Finally, while the proposed solution focuses on applying
the masks to the IP address, it could theoretically be extended
to any other match field that supports masking (OpenFlow
currently supports arbitrary bitmasking on IP and Ethernet
addresses [1]). A combination of fields could also be con-
sidered as long as this does not increase the complexity of the
approach.

VII. RELATED WORK

Functionality to support flexible allocation of traffic among
multiple alternative paths is currently missing from the
OpenFlow specification. Proposals have mainly focused on
equal-cost splitting solutions based on OpenFlow multipath
forwarding groups [5]. Although these are fairly easy to imple-
ment, they have a limited level of control over the distribution
of traffic and may not allow TE objectives to be effectively
achieved. The same limitation is shared by direct hashing
approaches, e.g., the Internet Checksum algorithm [25], which
can only split traffic into equal amounts. Table-based hashing
schemes on the other hand can split the load at a fine granu-
larity, which is defined by the ratio of bins to outgoing inter-
faces [6], and have been widely used. However, as discussed
in Section VI, we believe that adding hash-based schemes as
a feature of OpenFlow may not be the best design choice.

Wang et al. [26] have proposed an approach to enable
unequal traffic splitting in an OpenFlow environment by tak-
ing advantage of the wildcard rule capability offered by the
protocol. In that work, the authors focus on uniform traf-
fic distribution and show that, for non-uniform cases, their
approach can lead to severe load imbalance (25% deviation
is reported). This is in contrast to our solution which can
achieve accurate split even in the case of non-uniform dis-
tribution. To improve their solution, Wang et al. [26] suggest
to refine the wildcard rule at a finer level. However, as men-
tioned by the authors themselves, this will result in an increase
in the number of rules required in each switch, which can
lead to limitations in terms of scalability. To overcome these
limitations, Kang et al. [33] have recently presented a new ver-
sion of the approach that leverages the metadata tags available
from the switch hardware to group traffic types associated with
similar splitting ratios. Compared to our solution, however, it
may provide less flexibility since the control parameters used
can result to insufficient partitioning granularity, especially in
the presence of heterogeneous addresses. In our approach, the

accuracy is not a factor of the number of mask tuples, which is
only driven by the number of paths between each S-D pair of
nodes. As shown in previous work (e.g., [3], [12], and [15]),
a small number of paths is enough in practice to achieve
near-optimal load-balancing performance (typically between
3 and 5).

Although TE at the packet level [27] can achieve fine gran-
ularity splitting, packet re-ordering issues can falsely signal
network congestion. For this reason, most approaches focused
on flow-based splitting techniques (including the one proposed
in this paper) [2]–[4], [13]. However, due to varying flow sizes
and rates the load may not be balanced well over the available
paths, given that a flow persists on the originally assigned path
during its lifetime. FLARE [23] overcomes this problem by
operating on bursts of packets within a flow, which are care-
fully chosen to avoid reordering. We plan to consider flowlet
level splitting in future extensions of this research.

Traffic engineering in the context of software-defined net-
works was investigated by [28]–[30]. The authors of [28]
focused on ordinary IP networks with partial deployment of
SDN capability and have not considered how unequal traffic
splitting can be realized (ECMP is assumed). The same short-
coming is shared by [29] in which the authors proposed an
SDN-based implementation of MPLS functionality where the
load can be shared between multiple LSPs. The TE approach
in [30] employs a hash-based approach to achieve unequal
traffic splitting and has the implementation shortcomings men-
tioned above. A survey of TE initiatives in SDN has been
recently presented in [34].

In traditional routing, the table matching entry is the one
with longest destination prefix match. In [24] the authors use
prefix matching for the purpose of balancing traffic, which has
two main drawbacks: (1) a perfect match is required, which
makes the approach rather rigid with respect to the granularity
level that can be achieved, and (2) it may not scale due to
the very long tables involved in the process. In contrast, our
solution is more flexible and can achieve finer traffic splitting
granularity. In addition, its complexity is dominated by the
number of S-D pairs and path options to consider, which, in
practice, represent a lower order of magnitude compared to
individual prefixes.

VIII. CONCLUSION

The SDN paradigm has emerged as a promising solu-
tion for reducing the management complexity of network
infrastructures through the creation of a unified control plane
independent of specific vendor equipment. The current ver-
sion of OpenFlow, the prevalent southbound interface, can
only support equal splitting of traffic flows between alternative
paths, which may not allow TE objectives to be success-
fully met. In this paper we propose a new approach based
on bit-masking operations that can enable a fine level of con-
trol over the splitting of incoming flows. We describe how
unequal distribution of traffic can be achieved and demonstrate
through experimentation the capabilities of the approach as
well as the parameters that influence its performance. To fur-
ther demonstrate the potential of our solution, we compare its

TUNCER et al.: FLEXIBLE TRAFFIC SPLITTING IN OPENFLOW NETWORKS 419

performance in terms of splitting accuracy to the one obtained
using a hash-based scheme and show that similar level of
accuracy can be achieved. More generally, we argue that our
approach is a better match for OpenFlow oriented traffic man-
agement compared to hash-based schemes, and also has a
lower implementation complexity.

Future extensions of this research will focus on the imple-
mentation of the proposed solution in a test-bed environment.
In particular, this will involve the development of a manage-
ment application to compute the required masks, integrating
both pro-active and reactive processes. Our objective is to
design an algorithm in such a way that the mask-compute time
will be negligible compared to the frequency of reconfigura-
tions. In addition, we will perform an extensive evaluation of
the overall approach based on a wide range of traffic conditions
and network configurations.

REFERENCES

[1] OpenFlow Specifications V.1.5.0. Accessed on Oct. 26, 2015.
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-switch-
v1.5.0.noipr.pdf

[2] S. Fischer, N. Kammenhuber, and A. Feldmann, “REPLEX: Dynamic
traffic engineering based on wardrop routing policies,” in Proc. ACM
CoNEXT, Lisbon, Portugal, 2006, pp. 1–12.

[3] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang, “DACoRM:
A coordinated, decentralized and adaptive network resource management
scheme,” in Proc. NOMS, Maui, HI, USA, Apr. 2012, pp. 417–425.

[4] M. Charalambides, D. Tuncer, L. Mamatas, and G. Pavlou, “Energy-
aware adaptive network resource management,” in Proc. IM, Ghent,
Belgium, May 2013, pp. 369–377.

[5] OpenFlow Multipath Proposal. Accessed on Oct. 26, 2015. [Online].
Available: http://archive.openflow.org/wk/index.php/MultipathProposal

[6] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based
schemes for Internet load balancing,” in Proc. INFOCOM, vol. 1.
Tel Aviv, Israel, 2000, pp. 332–341.

[7] R. Martin, M. Menth, and M. Hemmkeppler, “Accuracy and dynamics
of hash-based load balancing algorithms for multipath Internet routing,”
in Proc. BROADNETS, San Jose, CA, USA, 2006, pp. 1–10.

[8] xxHash—Benchmarks. Accessed on Feb. 2, 2016. [Online]. Available:
https://github.com/Cyan4973/xxHash

[9] B. W. Kernighan and D. M. Ritchie, The C Programming Language,
2nd ed. Englewood Cliffs, NJ, USA: Prentice Hall, Mar. 1988.

[10] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

[11] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM
SIGCOMM, Hong Kong, 2013, pp. 99–110.

[12] J. Wang, Y. Yang, L. Xiao, and K. Nahrstedt, “Edge-based traffic engi-
neering for OSPF networks,” Comput. Netw., vol. 48, no. 4, pp. 605–625,
Jul. 2005.

[13] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” in Proc. SIGCOMM, vol. 35.
Philadelphia, PA, USA, Aug. 2005, pp. 253–264.

[14] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proc. IEEE INFOCOM, vol. 3. Anchorage, AK,
USA, 2001, pp. 1300–1309.

[15] N. Wang, K.-H. Ho, and G. Pavlou, “Adaptive multi-topology IGP based
traffic engineering with near-optimal network performance,” in Proc.
NETWORKING, vol. 4982. Singapore, 2008, pp. 654–666.

[16] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
resource management and control in software defined networks,” IEEE
Trans. Netw. Service Manag., vol. 12, no. 1, pp. 18–33, Mar. 2015.

[17] A. Kvalbein, C. Dovrolis, and C. Muthu, “Multipath load-adaptive rout-
ing: Putting the emphasis on robustness and simplicity,” in Proc. ICNP,
Princeton, NJ, USA, Oct. 2009, pp. 203–212.

[18] T. Ganegedara, W. Jiang, and V. Prasanna, “FRuG: A benchmark
for packet forwarding in future networks,” in Proc. IEEE IPCCC,
Albuquerque, NM, USA, Dec. 2010, pp. 231–238.

[19] K. Gadkari, D. Massey, and C. Papadopoulos, “Dynamics of prefix usage
at an edge router,” in Proc. PAM, Atlanta, GA, USA, 2011, pp. 11–20.

[20] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging Zipf’s law for traffic offloading,” SIGCOMM Comput.
Commun. Rev., vol. 42, no. 1, pp. 16–22, Jan. 2012.

[21] N. Hua, E. Norige, S. Kumar, and B. Lynch, “Non-crypto hardware
hash functions for high performance networking ASICs,” in Proc. ANCS,
Brooklyn, NY, USA, 2011, pp. 156–166.

[22] K. Papagiannaki, N. Taft, and C. Diot, “Impact of flow dynamics
on traffic engineering design principles,” in Proc. INFOCOM, vol. 4.
Hong Kong, 2004, pp. 2295–2306.

[23] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load bal-
ancing without packet reordering,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 2, pp. 51–62, Apr. 2007.

[24] S. Rost and H. Balakrishnan, “Rate-aware splitting of aggregate traffic,”
MIT Lab. Comput. Sci., MIT, Cambridge, MA, USA, Tech. Rep., 2003.

[25] USC/ISI, “Internet protocol—Specification,” Internet Engineering Task
Force, Fremont, CA, USA, RFC 791, Sep. 1981. Accessed on
Oct. 26, 2015. [Online]. Available: https://tools.ietf.org/html/rfc791

[26] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” in Proc. Hot-ICE, Boston, MA, USA, 2011, p. 12.

[27] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” in Proc. SIGCOMM, Cambridge, MA, USA, 1995,
pp. 231–242.

[28] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in
software defined networks,” in Proc. INFOCOM, Turin, Italy, Apr. 2013,
pp. 2211–2219.

[29] S. Das, “PAC.C: A unified control architecture for packet and circuit
network convergence,” Ph.D. dissertation, Dept. Elect. Eng., Stanford
Univ., Stanford, CA, USA, Jun. 2012.

[30] S. Jain et al., “B4: Experience with a globally deployed software defined
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14,
Aug. 2013.

[31] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang, “Towards
decentralized and adaptive network resource management,” in Proc. 7th
IEEE/IFIP Int. Mini Conf. Netw. Service Manag. (CNSM), Paris, France,
Oct. 2011, pp. 1–6.

[32] R. S. Prasad and C. Dovrolis, “Beyond the model of persistent TCP
flows: Open-loop vs closed-loop arrivals of non-persistent flows,” in
Proc. 1st Annu. Simulat. Symp. (ANSS-41), Ottawa, ON, Canada,
Apr. 2008, pp. 121–130.

[33] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. CoNEXT, Heidelberg,
Germany, Dec. 2015.

[34] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

Daphne Tuncer received the Diplôme d’ingénieur
degree from Télécom SudParis, Evry, France, in
2009, and the Ph.D. degree from the Department
of Electronic and Electrical Engineering, University
College London, U.K., in 2013, where she is cur-
rently a Post-Doctoral Researcher. Her research
interests are in the areas of software-defined net-
working, network self-management, adaptive net-
work resource management, energy efficiency, and
cache/content management.

Marinos Charalambides received the B.Eng. (First
Class Hons.) degree in electronic and electrical
engineering, the M.Sc. (with distinction) degree in
communications networks and software, and the
Ph.D. degree in policy-based management from the
University of Surrey, U.K., in 2001, 2002, and
2009, respectively. He is a Senior Researcher with
University College London. He has been working in
a number of European and U.K. national projects
since 2005. His current research interests include
software-defined networking, in-network caching,

energy-aware networking, and online traffic engineering. He is on the tech-
nical program committees of the main network and service management
conferences.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
http://archive.openflow.org/wk/index.php/Multipath_Proposal
https://github.com/Cyan4973/xxHash
https://tools.ietf.org/html/rfc791

420 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Stuart Clayman received the Ph.D. degree
in computer science from University College
London (UCL) in 1994. He was a Research Lecturer
with Kingston University and UCL. He is currently a
Senior Research Fellow with the EEE Department,
UCL. He has co-authored over 30 conference and
journal papers. He has been involved in several
European research projects since 1994. He also has
extensive experience in the commercial arena under-
taking architecture and development for software
engineering, distributed systems, and networking

systems. He has run his own technology start-up in the area of NoSQL
databases, sensors, and digital media. His research interests and expertise lie
in the areas of software engineering and programming paradigms, distributed
systems, virtualized compute and network systems, network and systems
management, networked media, and knowledge-based systems.

George Pavlou received the Diploma degree in engi-
neering from the National Technical University of
Athens, Greece, and the M.Sc. and Ph.D. degrees in
computer science from University College London,
U.K. He is a Professor of Communication Networks
with the Department of Electronic and Electrical
Engineering, University College London, where he
coordinates research activities in networking and
network management. He has been instrumental in a
number of European and U.K. research projects that
produced significant results with real-world uptake

and has contributed to standardization activities in ISO, ITU-T, and IETF. His
research interests focus on networking and network management, including
aspects such as traffic engineering, quality of service management, autonomic
networking, information-centric networking, grid networking, and software-
defined networks. He was a recipient of the Daniel Stokesbury Award for
“distinguished technical contribution to the growth of the network manage-
ment field” in 2011. He has been on the editorial board of a number of key
journals in the above areas. He is the Chief Editor of the bi-annual IEEE
communications network and service management series.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

