
1

Management Application Interactions in
Software-based Networks

Daphne Tuncer, Marinos Charalambides, and George Pavlou

Abstract—To support the next wave of networking technologies
and services, which will likely involve heterogeneous resources
and requirements, rich management functionality will need to
be deployed. This raises questions regarding the interoperabil-
ity of such functionality in an environment where potentially
interacting applications operate in parallel. Interactions can cause
configuration instabilities and subsequently network performance
degradation, especially in the presence of contradicting objectives.
Detecting and handling these interactions is therefore essential. In
this paper we present an overview of the interaction management
problem, a critical issue in software-based networks. We review
and compare existing solutions proposed in the literature and
discuss key challenges towards the development of a generic
framework for the automated and real-time management of these
interactions.

I. INTRODUCTION

Today’s communication networks are highly complex in-
frastructures that are challenging to manage. On one hand,
they support a wide range of services with various charac-
teristics, from basic connectivity to ultra high-definition on-
line video streaming or time-critical applications for cyber-
physical systems. On the other, they require the configuration
of heterogeneous resources that not only include links and
routers but also storage [1] and computation [2]. In addition,
to operate the infrastructure and the services running over it,
these systems call for rich network management functionality.
Reducing the complexity associated with network management
is thus crucial.

The emergence of novel networking models in the recent
years, with initiatives such as software-defined networking
(SDN), as well as promising advances in the domain of network
programmability (e.g., P4 1) and abstraction, have opened up
new perspectives for the development of solutions that simplify
management tasks. In particular, through dynamic adaptation
of the forwarding plane configuration, SDN coupled with
network programmability has the potential to offer flexibility
in managing the network resources at run-time. In addition,
the development of new abstractions facilitates the deployment
of more complex management functionality by exposing a
simplified view of the infrastructure to the management system.

Daphne Tuncer (corresponding author) is with the Department of
Computing, Imperial College London, London SW7 2AZ, UK (e-mail:
dtuncer@ic.ac.uk). Marinos Charalambides, and George Pavlou are with the
Department of Electronic and Electrical Engineering, University College
London, London WC1E 7JE, UK (e-mail: marinos.charalambides@ucl.ac.uk;
g.pavlou.ucl.ac.uk)

1https://p4.org/ [accessed-30-Jan-2019]

In software-based networks the management functionality is
executed through the management layer that hosts a set of
management applications (MAs) implemented as independent
modules, each responsible for a specific resource configuration
function. Modularity is a key feature of the well-known SDN
architecture and mainly applies to decision-making functions
and control plane implementations. By enabling a clear separa-
tion of concerns between different functionalities, not only does
it simplify the integration/update/removal of the components of
the system, it also allows different vendor implementations to
be used together and facilitates extensibility.

Despite these significant advantages, the use of modular
structures for the implementation of MAs raises questions
regarding their interoperability. Due to potential overlaps in
the resources being managed, incompatible objectives or syn-
chronization issues, interactions can occur between seemingly
independent applications operating in the same environment.
Although interactions can be harmless under some conditions,
in other cases their existence constitutes a critical problem given
that they can have an adverse impact on the operation of the
network. In fact, interactions can not only lead to performance
degradation, they can also be the source of instability, which is a
primary concern for network operators. Detecting and handling
interactions is therefore essential.

Current practices for the management of interactions mostly
rely on manual and static solutions that, in addition to being
challenging to implement, are also not well-suited for the
requirements of flexible, adaptive and extensible management
systems that software-based networks aim to support. Mecha-
nisms that enable interactions to be detected and mitigated in an
automated way and in real-time are instead needed. Developing
such mechanisms is however not trivial given the wide range
of applications (e.g., traffic engineering, security management,
server selection), their implementation complexity, and the time
constraints within which their operation should be harmonized.

In this paper we aim at drawing the attention on a critical is-
sue concerning the management of software-based networks by
studying the interaction problem between MAs. Our work lies
within the research context addressing modular programming in
SDN, e.g., [3] [4], complementing these efforts by specifically
focusing on the management layer. To this end, we review the
state-of-the art, discuss and classify existing mitigation solu-
tions, and present a qualitative evaluation of various strategies.
Based on this analysis, we propose a model for the implemen-
tation of the interaction management functionality that enables
the best mitigation strategy to be automatically selected given

2

TABLE I
MANAGEMENT APPLICATION CATEGORIES.

Category Responsibility Examples

Device management
Control the configuration Hardware power control

of physical devices Firmware upgrade
in the managed infrastructure Device configuration setup

Commodity management

Path management
Control the usage of Virtual machine placement/migration

available commodities Job scheduling
(i.e., bandwidth, CPU, memory) Flow table usage optimization

Content placement

Traffic management
Decisions on the treatment

Traffic engineering

of network traffic
Request redirection (server selection)

Traffic analysis

the types of detected interactions between MAs and current
operating conditions. We further identify key challenges to be
addressed towards the development of a generic framework
for the automated and real-time management of interactions.
We believe that solving these challenges is essential before
software-based networks can be deployed in the real.

II. MANAGEMENT APPLICATIONS AND THEIR
INTERACTIONS

A. Management Applications

The sequence of operations to manage resources is com-
monly represented as a control-loop process involving two key
functions: monitoring and decision-making. The monitoring
functionality is responsible for collecting raw statistics from
the resources and extracting information regarding the current
conditions in the underlying infrastructure. This information
is provided as input to Management Applications (MAs) that
implement the decision-making logic to configure the resources
according to some high-level objectives (e.g., to reduce energy
consumption). Based on the received input, each MA analyzes
the context in which it is operating, decides on the adjustments
to perform and computes new configurations, which are finally
enforced on the underlying infrastructure. Existing MAs can be
classified in three main categories as shown in Table I.

Each MA is represented in the management system as a
software module that can be written in any programming
language. MAs have different characteristics in terms of the
type of resources they manage (i.e., configuration parameters),
the timescale at which they operate and the execution scheme
they follow (proactive vs. reactive). They have also various
requirements with respect to the scope and granularity of
the information they need to make a decision. To decide on
the reconfigurations, MAs take into account values of long-
lived parameters, such as infrastructure static attributes (e.g.,
link/storage/processing capacity etc.), as well as short-lived
parameters, representing the context dynamics (e.g., resource
utilization, demand etc.). These characteristics directly drive

the way in which MAs should be implemented (centralized vs.
decentralized) in the management system. They also influence
the level of abstraction required to implement each MA’s
functionality and to represent the resources on which they
operate.

B. Management Application Interactions

From a formal point of view, interactions occur between
independent applications when commonalities exist in the set
of parameters each one operates on. We can distinguish three
scenarios under which interactions occur between pairs of MAs
operating in the same environment.

1) Shared Access to Configuration Parameters: This con-
cerns interactions arising when two MAs are granted shared
access to the same set of configuration parameters. This type
of interaction can be classified as a conflict since the decisions
taken by one application are overwritten by the other. The MAs
do not need to operate at the same timescale or simultaneously
for the interactions to manifest. They occur when at least one of
the MAs can modify the value of the configuration parameters
computed by the other, which are to be applied over the next
configuration period of that MA.

Adaptive traffic load-balancing (LB) and energy saving (EM)
applications are illustrative examples of cases where such an
interaction can arise, as depicted in Fig. 1a. Here, each applica-
tion needs to decide how to split the 10 Gbps of traffic between
nodes C1 and C4 in order to satisfy its own optimization
objective. To minimize link utilization, LB decides to split it in
equal proportions, i.e., 5 Gbps on each path. In contrast, EM
concentrates all traffic on one path to minimize the number
of active links. As a result, the decisions taken by each MA
individually lead to inconsistent network configurations.

2) Competitive Access to Shared Resources: This concerns
interactions arising when applications, while controlling differ-
ent configuration parameters, affect the same resources. While
this type of interaction can be harmless in situations with
ample resources, it requires special attention when the shared

3

10 10

10 10

10 Gbps

5 Gbps

10 Gbps

Adaptive traffic

load-balancing (LB)

Energy saving

management (EM)

LB decision

EM decision
Link (in Gbps)

5 Gbps

C1

C2

C3

C4

(a) Shared Access to Configuration Parameters

x3

x3

x1 10 Gbps

for x3

10

10

10

10
10 Gbps

for x4 5 Gbps

5 Gbps

10 Gbps

x2

Origin

Server

x4

Internal request

redirection (IRR)
External request

redirection (ERR)

ERR decisions
Link (in Gbps)

IRR decisions

C1

C2

C3

C4

(b) Competitive Access to Shared Resources

10
10

10

10 10 Gbps

MPC decisions

LB decision
Link (in Gbps)

10

5 Gbps

5 Gbps

Adaptive traffic

load-balancing (LB)

Multi-path

computation (MPC)

C1

C2

C3

C4

C5

(c) Functional Dependencies

Fig. 1. Examples of interaction scenarios.

resources are limited as it constitutes, in that case, a resource
contention problem.

A representative example is the case investigated in [5]
which focuses on the interaction between a traffic engineering
application and a multimedia content server selection appli-
cation. These MAs are particularly relevant in the context of
an Internet Service Provider (ISP)-operated content delivery
service where an ISP deploys caching points within its network
to store popular content items [1]. Here, an internal request
redirection (IRR) application determines the caching point to
which internally served requests should be sent, while an
external request redirection (ERR) application selects the route
for requests redirected to the origin server. The two applications
are directly coupled given that their decisions affect the same
resources, e.g., in terms of link utilization. An example of
a conflicting decision is depicted in Fig. 1b. IRR decides to
redirect the requests for content x3 to the closest caching
location C2. At the same time, ERR decides to equally balance
the requests for x4 between the two paths to the origin server.
Due to uncoordinated decisions, the traffic volume sent over
C1-C2 exceeds the link capacity, resulting in packet losses and
overall performance degradation.

3) Functional Dependencies: This scenario concerns inter-
actions resulting from the existence of functional dependencies
between two MAs. In particular, applications interacting based
on this type are representative of the case where the execution
of one MA is conditional on the execution of the other, i.e., the
input of one MA requires the output of the other MA to operate.
In other words, the MAs need to be composed to manage the
resources.

Interacting MAs, in this case, do not necessarily compete
for shared resources. An example is the composition between a
multi-path computation (MPC) application and an adaptive LB
application as illustrated in Fig. 1c. The paths to the destination
should be computed before LB can decide on the volume
of traffic across each path. The decisions taken by LB have,
however, no impact on the configurations applied by MPC.

Applications with functional dependencies that compete for
access over the same resources are in general strongly coupled.
As such, it is very likely that both are implemented in the

management system. A typical example is a content placement
application responsible for selecting a subset of content items
to store in the network and the IRR application presented
in Section II-B2, both aiming at reducing network bandwidth
usage while controlling different configuration parameters.

An overview of the possible relationships between pairs of
MAs is depicted in Fig. 2. The case where MAs have no
functional dependencies and do not compete for access to
shared resources represents independent non-interacting appli-
cations (type 1.2). Given the nested relationship between some
applications, the type of interaction is defined by the most
specific case, e.g., types 2.1.1 and 2.2.1 where applications do
not only compete for shared resources but also for configuration
parameters.

III. DETECTION AND MITIGATION

Managing interactions involves two operations: i) detection
to determine whether interactions can occur between applica-
tions and if so, identify the interaction type, and ii) mitigation to
compute mitigating actions and handle the detected interactions.
Various approaches have been developed in different contexts
to deal with the detection and resolution of inconsistencies
and/or conflicts that may arise due to multiple decision-making
processes operating in the same environment, e.g., [4] [6]. We
review the main solutions found in the literature with more
emphasis on mitigation since the resulting decisions directly
affect the configuration of network resources.

A. Detection

The main principle of mechanisms developed for the detec-
tion of inconsistent configurations is to analyze dependencies
between interacting components. Detection approaches have
received particular attention in the area of policy-based man-
agement, in which conflicts can arise as a result of contradic-
tory policy-driven operations simultaneously enforced on the
managed system. Various conflict types have been identified in
the literature, which have been broadly classified into domain-
independent and domain-specific. The former are independent

4

2.1 Functional dependency with

competition for access

to shared resources

2.1.1 Shared access to

configuration parameters

2.2 No functional dependency but

competition for access

to shared resources

2.2.1 Shared access to

configuration parameters

1.1 Functional dependency without

competition for access

to shared resources

1.2 No functional dependency and

no competition for access

to shared resources

Fig. 2. Overview of possible relationships between management applications.

of the policy domain, whereas the latter are bound by the con-
straints of the application domain. Most detection approaches
are based on the definition of the conditions under which a con-
flict would arise and the evaluation of those conditions during a
detection process. Although domain-independent conflicts can
be detected by simple syntactic analysis, more specialized in-
consistencies require additional information, which can include
domain- and system-specific knowledge. As reported in [6],
the main detection methods are based on meta-policies, rule
relations, applicability spaces, and information models, each
having its own merits.

Dependencies in the context of interactions between MAs
are determined from the commonalities that exist between MAs
in terms of configuration parameters and/or shared resources.
Detection approaches work in two steps. They are first re-
sponsible for identifying the set of MAs that either modify or
access a common set of environment variables or parameters.
This is achieved with models to represent the environment,
e.g., [7], and mechanisms to derive for each application a set
of descriptors characterizing the information it needs to take
decisions and operate, e.g., [8] [9].

Based on the cartography of such dependencies, the second
step of detection approaches consists in checking for potential
inconsistencies/conflicts and invariants violations (e.g., exceed
capacity constraints), which can either be realized offline based
on static analysis of possible interactions or online. The choice
of the method to use mainly depends on whether the current
state of the managed system needs to be taken into account to
identify and characterize the interactions. In particular, static
analysis can be performed each time a MA is newly introduced
in the system or modified, whereas dynamic analysis should be
executed each time a new decision is computed.

B. Mitigation

Techniques to mitigate interactions can be grouped in four
categories: i) avoidance, ii) ordering, iii) precedence and iv)
harmonization.

1) Avoidance-based Strategies: Their objective is to avert
the occurrence of interactions between applications. Proposed
solutions revolve around two approaches:

• Resource Partitioning that aims at isolating MAs from
each other by allocating a dedicated slice of the available
resources on which they have exclusive access. This pre-
vents interactions to occur given that the sets of parameters
associated with each application are by design disjoint.

• Single Optimization that replaces individual applications
with a single one to avoid configuration decisions being
taken independently by different MAs. The principle of
these strategies is to model the resulting application as
a global optimization problem, using for instance Multi-
Objective Optimization (MOO), and define the global
configuration objective as a combination of each individual
objective (e.g., weighted sum).

2) Ordering-based Strategies: Their objective is to deter-
mine the order according to which applications should be
executed. Given that two MAs can access the network resources
and change their configuration parameters at different instants
in time, a traditional approach is to use a Temporal Decompo-
sition to order the applications. This solution is particularly well
suited when the applications operate at different timescales. In
this case, the shorter timescale application operates within the
constraints set by the longer timescale one.

3) Precedence-based Strategies: A popular approach for
mitigating interactions is to establish precedence between ap-
plications. The objective is to assign MAs with priorities in
order to determine which one should prevail in the event of
inconsistent decisions. Two rationals can be followed to decide
on the priorities.

• Time-based The choice of the prevailing application is
based on the time at which the MAs’ configuration de-
cisions are received. A typical example is the last-writer
win strategy used in [7] that selects the decisions of the
MAs with the most recent new configuration.

• Condition-based Priorities are computed so that the pre-
vailing MA is the one whose execution is concomitant to
the occurrence of some network events/conditions.

4) Harmonization-based Strategies: Their objective is to
harmonize the decisions taken by each MA so that individual
objectives can be satisfied. The goal is not only to ensure that
the resulting configurations can guarantee the overall system
consistency but also that acceptable levels of performance are
maintained for each application.

• MOO-based A trade-off is applied between the objectives
of each MA by either considering their weighted sum or
through the introduction of priorities. In this case, the
resulting configuration is such that optimal performance
is achieved for the highest priority objective, whereas
only acceptable performance levels can be guaranteed for
the rest. In contrast to Single Optimization, configuration
decisions are taken individually by each MA.

• Game-theory based The joint optimization problem is
modeled as a game between multiple players where each
player, representing an application, tries to improve the
value of its own objective.

5

TABLE II
MITIGATION STRATEGY COMPARISON.

Technique Strategy Extensibility Scalability Configurability Fairness Complexity

Avoidance
Resource Partitioning - - - - o
Single Optimization - - - + -

Ordering Temporal Decomposition + + + - +

Precedence
Time-based + + + - +

Condition-based + + + - +

Harmonization
MOO-based o o + + o

Game-theory-based o o + + o

C. Mitigation Strategy Comparison

The execution time and overhead to compute remedy actions
is an important factor for the network resource management
system. An efficient solution for the mitigation of interactions
is expected to satisfy five desirable properties:

• Extensibility: The impact of the addi-
tion/removal/modification of MAs on the mitigation
strategy should be minimal. The smaller the impact, the
more extensible the strategy.

• Scalability: The time needed by the strategy to compute
mitigation actions should at most increase proportionally
with the number of interacting MAs. The less the increase
in time, the more scalable the strategy.

• Configurability: The task of changing the logic by which
interactions are handled (e.g., changing priorities) should
be performed through simple parameter tuning. The easier
the task, the higher the configurability. The degree of
configurability of a strategy accounts both for its flexibility
and adaptability.

• Fairness: The mitigation solution computed by the strategy
should be impartial to the requirements of the interacting
MAs. The less partial the solution, the fairer the strategy.

• Complexity: The cost for the strategy to compute a so-
lution should be minimal. The lower the cost, the less
complex the strategy.

In Table II we compare the different strategies presented
in Section III-B by assessing their quality with respect to the
aforementioned properties. For each strategy, we mark as (+)
the properties that have a positive attribute and as (-) the ones
that have a negative attribute. The symbol (o) is used when
strategies are neutral with respect to a property.

Avoidance-based strategies do not perform well and should
only be used in cases where it is possible to eliminate inter-
actions at the design phase of the applications, e.g., strongly
coupled applications developed at the same time, or applica-
tions mapped to separate parts of the infrastructure. Ordering
and precedence-based strategies offer in general good per-
formance. In addition to their relative simplicity in terms of
implementation, they come with a high degree of extensibility,

scalability and configurability. They do however fail to provide
fairness guarantees and may therefore lead to sub-optimal re-
source usage. In contrast, harmonization techniques offer strong
guarantees in terms of fairness. However, the configuration
of the mitigation mechanisms derived from these techniques
needs to reflect the specifics of the concurrent applications
(e.g., comparative priorities, individual best/worst performance
etc.), which is not always straightforward to achieve in practice.
They also have a lower degree of extensibility and scalability
since handling interactions requires coordinating the decisions
of individual MAs.

Selecting a priori which mitigation strategy to use is not
trivial given that they all have different pros and cons. In
practice, the choice of a strategy should not only depend on
the type of interaction to handle but also on the static and
dynamic characteristics of the environment in which these arise.
From a system perspective, this means that, in addition to
computing mitigating actions, the mitigation function should
also be responsible for automatically selecting which strategy
to use based on current operating conditions.

IV. INTERACTION MANAGEMENT FUNCTIONALITY

In addition to the MAs’ characteristics, the effects of in-
teractions also depend on the environment in which these
operate (e.g., resource availability and operating conditions).
To efficiently handle interactions, we propose to complement
the network management process with an interaction manage-
ment functionality that operates in three steps as depicted in
Fig. 3. The objective is to supervise the operations of co-
existing applications by 1) ensuring that independent MAs can
gracefully operate in parallel, and 2) facilitating the integra-
tion/update/removal of MAs from the operating environment
without causing disruption.

The proposed process involves three main functions: detec-
tion, selection and mitigation. To preserve the modularity of
the management system, these are implemented as separate
components. More specifically, the detection component uses
information exposed by each MA regarding the set of param-
eters it operates on to identify possible interactions based on

6

PARAMETER SET

MANAGEMENT

APPLICATION N

Interaction

Type

Selected

Mitigation

Strategy

Operating

Conditions

DETECTION
INTERACTION

TAXONOMY

SELECTION

MONITORING

MITIGATION

OPERATOR

PREFERENCES

PARAMETER SET

MANAGEMENT

APPLICATION 1 ……...

Fig. 3. Interaction management process.

the taxonomy presented in Section II-B. In addition it uses
information provided by the monitoring functionality regarding
the operating conditions to classify the current state of the
underlying infrastructure as either normal or critical. The
results are passed to the selection component that decides which
strategy to execute to mitigate the detected interaction given the
performance attributes defined in Section III-C. The selection
is carried out in two steps. The procedure first determines
which technique best applies based on the interaction type
and network state. It then fine-tunes the selection by choosing
a specific strategy (in case of multiple options) following
preferences set by the operator. The mitigation component
finally triggers the relevant mitigating actions.

The selection rules are presented in Algorithm 1. In case of
functional dependencies, ordering is always the recommended
technique. For the other interaction types, the best choice
depends on the network state. In particular, the procedure
follows a trade-off between optimization and responsiveness.
While under normal operating conditions time can be devoted
to compute configurations that optimize all the objectives, i.e.,
harmonizing the decisions, the focus is on making sure that the
system remains operational under critical conditions, i.e., give
precedence to imperative applications.

V. OPEN CHALLENGES

The issue of interactions between concurrent management
applications is not new to the research community that has
invested efforts in understanding how interactions can arise and
in proposing strategies to handle uncoordinated decisions. To-
day’s solutions for the management of interactions heavily rely
on ad hoc practices that usually involve the intervention of a
human operator and whereby the set of actions to execute when
interactions arise follows some static pre-determined rules.
These practices are not well suited for emerging software-based
networks, which are more complex and richer in functionality.
To efficiently handle interactions in these environments, solu-
tions that allow for a fully automated interaction management

Algorithm 1 Mitigation strategy selection rules.
Inputs: InteractionType; OperatingConditions.
if InteractionType==SharedAccessToConfigurationParameters
then

if OperatingConditions==Normal then
ORDERING

end if
if OperatingConditions==Critical then

PRECEDENCE
end if

end if
if InteractionType==CompetitiveAccessToSharedResources
then

if OperatingConditions==Normal then
HARMONIZATION

end if
if OperatingConditions==Critical then

PRECEDENCE
end if

end if
if InteractionType==FunctionalDependencies then

ORDERING
end if
Output: SelectedMitigationStrategy.

functionality operating in real-time are needed. While some
proposals with a partial degree of automation and adaptability
have been presented in the recent years [7] [10], we believe that
more research is needed to address this challenging problem.
In this section we discuss three important open issues.

A. Models for Network Resource Management

A key issue to investigate concerns the availability of ab-
straction models to represent management applications. Over
the years, there have been some efforts in the development of
standardized modeling frameworks for network resources and
configurations, such as YANG2 or SID3. With the advent of
new paradigms such as SDN and NFV, the need for common
abstraction models has been pushed in the limelight as a key
critical issue [11]. Defining the right abstraction is crucial to en-
able interoperability between applications and understand their
interdependence, as well as their relation to the environment.

A number of initiatives4 in recent years have been investi-
gating novel programming frameworks with the objective of
providing network operators with an interface for specifying
the functionality of their network at a high-level of abstraction.
Until now however, the effort invested towards the development
of abstractions for network management applications has been
limited. In [12] a high-level abstraction in the form of path-
based optimization is proposed to represent MAs, while in [13]
MAs are modeled as sets of atomic stateful functions interacting

2IETF RFC 6020, October 2010
3https://www.tmforum.org/information-framework-sid/
4http://frenetic-lang.org/

7

between themselves by exchanging asynchronous messages. In
[8] each application is described as a view on a SQL database
that represents the whole network control infrastructure. While
these abstractions were developed for different purposes they
share a common objective, which is to provide means to reason
upon management functionality in a general way. This is a
significant step towards the development of a framework to
enable the systematic analysis of management applications and
their interactions. In that direction we believe that further efforts
are needed to investigate which formal semantics and language
paradigms are best suited to express network resource manage-
ment functionality, hence complementing proposals focusing on
the control functionality. These can cater for effective treatment
of interactions as they can provide (i) vital information for their
detection, and (ii) precise explanations for their occurrence that
can be used to select the most appropriate mitigation strategy
and associated configuration (cf. Section IV).

B. Self-Adaptive Mitigation

Given that the effects of interactions depend on the operating
conditions, a key challenge is to implement mitigation functions
that can automatically infer, in an online fashion, the best set of
mitigating actions to enforce based on current operating condi-
tions (e.g., traffic dynamics, interacting MAs etc.). This involves
the development of mechanisms that can adapt at run-time the
parameters of mitigation strategies, as well as approaches that
can automatically select from a range of possible strategies the
one to use for achieving a specific objective.

An interesting avenue of research is to investigate the use
of learning techniques to design such self-adaptive mitigation
approaches. The application of machine learning as a driver
for the realization of self-adaptive management functionality
received a lot of attention in the context of the research on
autonomic networking [14], in particular techniques based on
reinforcement learning. A relevant example for self-adaptive
mitigation is to design lightweight self-tuning priority-based
mitigation strategies that autonomously determine in real time
how to set priorities between interacting applications. This is
not a trivial problem as it involves exploring trade-offs between
the state to maintain to account for previous decisions and the
accuracy of the inference method used.

C. Intent-based Management

Recent years have witnessed a growing interest in the com-
munity for intent-based networking5. The objective is to hide
the complexity of the underlying managed infrastructure from
the operators who can focus on expressing, in the form of high-
level intents, what they want the network to do rather than how
to do it. In particular, it alleviates the burden of slow and error
prone manual configuration by enabling the development of
adaptive management functionality that autonomously decides
how to configure the network at run time based on some high-
level operator objectives.

5https://www.opennetworking.org/images/stories/downloads/
sdn-resources/technical-reports/TR-523 Intent Definition Principles.pdf

In the context of interaction management, a challenging
issue is to develop a framework that enables the translation of
these high-level intents into instructions that can be understood
by the interaction management functionality. To achieve this
objective, it is first essential to analyze what metrics to use to
characterize the performance and effects of different mitigation
actions. A possible approach is to focus on the properties
presented in Section III-C in order to derive quantifiable metrics
to assess the expected performance and to show how they
can be linked to specific high-level objectives (e.g., reduce
downtime). We recently proposed an initial implementation of
a northbound interface in [15]. Extending the interface with
additional functionality to autonomously decompose relevant
intents for the purpose of selecting mitigation strategies and
tuning their parameters requires further work.

VI. CONCLUSIONS

To meet the requirements of new advanced networking
approaches and services, rich management functionality is
needed. This raises questions on how to facilitate the integration
of a wide range of functions in an environment where poten-
tially conflicting applications operate in parallel. The handling
of application interactions is a complex issue that involves
multiple challenging facets. Addressing these challenges is
crucial before software-based networks can be deployed in the
real. In this paper we review and analyze previous efforts in that
direction and discuss key open issues for achieving automated
and real-time management of interactions.

ACKNOWLEDGMENT

The work of Daphne Tuncer is supported by the Imperial
College Research Fellowship Scheme. This research was also
partly funded by the EPSRC KCN project (EP/L026120/1).

REFERENCES

[1] M. Claeys et al., “Hybrid Multi-tenant Cache Management for Virtualized
ISP Networks,” in Journal of Network and Computer Applications (JNCA),
vol. 68, pp. 28-41, June 2016.

[2] R. Landa, M. Charalambides, R.G. Clegg, D. Griffin, and M. Rio, “Self-
Tuning Service Provisioning for Decentralized Cloud Applications,” IEEE
Transactions on Network and Service Management, vol. 13, no. 2, pp.
197-211, June 2016.

[3] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
Software Defined Networks,” in Proc. of NSDI’13, vol. 13, pp. 1-13, 2013.

[4] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compositional
Hypervisor for Software-Defined Networks,” in Proc. of NSDI’15, vol. 15,
pp. 87-101, May 2015.

[5] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative
content distribution and traffic engineering in an ISP network,” in Proc. of
SIGMETRICS ’09, New York, NY, USA, pp. 239-250, 2009.

[6] M. Charalambides et al., “Policy conflict analysis for diffserv quality
of service management,” in IEEE Transactions on Network and Service
Management, vol. 6, no. 1, pp.15-30, March 2009.

[7] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin, “A
network-state management service,” in Proc. of the 2014 ACM conference
on SIGCOMM (SIGCOMM ’14). pp. 563-574, 2014.

[8] A. Wang and J. Croft, “Automating SDN Composition: A Database
Perspective,” in Proc. of the Symposium on SDN Research (SOSR’17),
pp. 203-204, 2017.

8

[9] W. Wang, W. He and J. Su, “Redactor: Reconcile network control with
declarative control programs In SDN,” in Proc. of the 24th IEEE Interna-
tional Conference on Network Protocols (ICNP’16), Singapore, pp. 1-10,
2016.

[10] A. AuYoung et al., “Democratic Resolution of Resource Conflicts Be-
tween SDN Control Programs,” in Proc. of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies
(CoNEXT’14), pp. 391-402, 2014.

[11] R. Riggio, M. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed,
“Programming abstractions for software-defined wireless networks,” in
IEEE Transactions on Network and Service Management, vol. 12, no. 2,
pp. 146-162, June 2015.

[12] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using SOL,” in Proc. of the 13th Usenix Conference
on Networked Systems Design and Implementation (NSDI’16), Santa Clara,
CA, USA, pp. 223-237, 2016.

[13] S.H. Yeganeh, and Y. Ganjali, “Beehive: Simple Distributed Programming
in Software-Defined Networks,” in Proc. of the Symposium on SDN
Research (SOSR’16), pp. 1-12, 2016.

[14] G. Tesauro, “Reinforcement Learning in Autonomic Computing: A Man-
ifesto and Case Studies,” in IEEE Internet Computing, vol. 11, no. 1, pp.
22-30, Jan.-Feb. 2007.

[15] D. Tuncer, M. Charalambides, G. Tangari, G. Pavlou, “A Northbound
Interface for Software-based Networks,,” in Proc. of the Internartional
Conference on Network and Service Management (CNSM’18), Rome, Italy,
November 2018.

Daphne Tuncer (e-mail: dtuncer@ic.ac.uk) is a Re-
search Fellow in the Department of Computing at
Imperial College London, UK. She received a Ph.D.
from University College London (UK) in 2013 and
a Diplome d’ingenieur de Telecom SudParis (France)
in 2009. Her research interests are in the areas of
software-defined and programmable networks, adap-
tive network resource management and monitoring,
and multimedia content distribution.

Marinos Charalambides (e-mail:
marinos.charalambides@ucl.ac.uk) is a senior
researcher at University College London. He
received a BEng in Electronic and Electrical
Engineering, a MSc in Communications Networks
and Software, and a Ph.D. in Policy-based Network
Management, all from the University of Surrey, UK,
in 2001, 2002 and 2009, respectively. His research
interests include network programmability, adaptive
resource management, content delivery and network
monitoring.

George Pavlou (e-mail: g.pavlou.ucl.ac.uk) is Profes-
sor of Communication Networks in the Department
of Electronic and Electrical Engineering, University
College London, UK. He received a PhD in Computer
Science from University College London, UK. His
research interests focus on networking and network
management, including aspects such as autonomic
networking and software defined networks. He is the
chief editor of the bi-annual IEEE Communications
network and service management series and in 2011
he received the Daniel Stokesbury award.

