
1

SigMA: Signaling Framework for Decentralized
Network Management Applications

Dario Valocchi†, Daphne Tuncer†, Marinos Charalambides†, Mauro Femminella∗,
Gianluca Reali∗, George Pavlou†

†Department of Electronic and Electrical Engineering,University College London, UK
∗Department of Engineering, University of Perugia, IT

Abstract—The management of network infrastructures has
become increasingly complex over time, which is mainly at-
tributed to the introduction of new functionality to support
emerging services and applications. To address this important
issue, research efforts in the last few years focused on devel-
oping software-defined networking solutions. While initial work
proposed centralized architectures, their scalability limitations
have led researchers to investigate a distributed control plane.
Controller placement algorithms and mechanisms for build-
ing a logically centralized network view are some examples
of challenges addressed in this context. A critical issue that
requires specific attention concerns the communication between
distributed entities involved in decision-making processes. To this
end, we propose SigMA, a signaling framework that supports
communication between the different entities of a decentralized
management and control system. We also define the communi-
cation primitives and interfaces involved in such a decentralized
environment. The benefits of SigMA are illustrated through
three realistic network resource management use cases with
different communication requirements. Based on simulation, we
demonstrate the flexibility and extensibility of our solution in sat-
isfying these requirements, thus effectively supporting advanced
decentralized decision-making processes.

Index Terms—Signaling, Decentralized network management,
Software-based networks.

I. INTRODUCTION

Network resource management is traditionally performed by
software operating in an offline fashion, which is executed by
a centralized management system. The primary objective of
management software is to configure the network resources
such that their their usage is optimized over long periods of
time. While resource provisioning is essential to enable the
operation of the network under a wide range of conditions, it
has limitations when it comes to satisfying the requirements
of emerging applications and services with stringent needs in
terms of quality of service, resilience and security guarantees.

Despite the various efforts invested for the last 20 years
towards the realization of adaptive resource management (e.g.,
active networking, autonomic networks, etc.), we still have not
seen any wide deployment of standardized operational solu-
tions. The recent initiatives on the development of Software-
Defined Networking (SDN)-based approaches and the emer-
gence of concepts such as Network Function Virtualization
(NFV) have however given a new impulse to these issues.
In particular, these technologies have led to a redefinition of
abstraction models (both in terms of resources and functions),

which are essential for the realization of flexible, dynamic and
adaptive management functionality.

In our previous work [1], we developed a novel SDN-
based management and control framework to support adaptive
resource management. The framework follows a layered archi-
tecture compatible with the generic SDN model defined by the
Open Networking Foundation (ONF), and relies on distributed
planes to implement the management and control functionality.
Management operations are executed by distributed Local
Managers (LMs), which communicate their decisions to dis-
tributed Local Controllers (LCs). The latter are responsible for
planning the sequence of actions to enforce for updating the
network configuration parameters. A key challenge associated
with the development of such a distributed solution concerns
the communication between the various entities in the system
so that management decisions can be computed and enforced,
while satisfying the application requirements and without
incurring significant signaling overhead and complexity.

In recent years, some proposals for communication models
in distributed environments have been discussed in the litera-
ture e.g., [2][3][4][5]. Existing approaches, however, do not ap-
ply well to adaptive resource management as they either focus
on specific problems (e.g., mechanisms to build a global net-
work view [3]), lack the required functionality (e.g., absence
of synchronization support [6]), or are simply too complex
to deploy, e.g., [7]. To address these limitations, we propose
SigMA, a new signaling approach to support communication
between the different entities of our decentralized management
and control framework. SigMA is an extension of our previous
work [8] that focused on the communication between the
distributed management entities. To support the interaction
between the different components of the framework, other
interfaces are however essential, especially between the LMs
and the LCs that need to exchange messages regarding the new
configurations computed by the management applications.

In this paper, we extend our previous work in [8] by consid-
ering all interfaces of our architecture and by demonstrating
how the proposed signaling approach can be used to enable
communication between all the entities. More specifically, the
main contributions of this paper are as follows: i) we formalize
the functionality of local controllers and define an abstraction
model to represent management and control functions, ii)
based on this model, we present the sequence of operations
required for translating configuration decisions computed by
resource management applications into enforceable actions, iii)

2

we describe in detail all interfaces required to execute these
operations and investigate in particular the communication
between LMs and LCs, and iv) in addition to the previously
considered use case on cache management, we show the
benefits of the proposed framework based on two new use
cases for security management and online traffic engineering.

Our results, which are based on simulation experiments,
demonstrate the flexibility and extensibility of our solution in
meeting the requirements of different types of management
applications and in controlling a heterogeneous set of network
resources. They also show that by introducing negligible
network or bandwidth overhead, the proposed solution enables
the deployment of decentralized and distributed management
applications.

The remainder of this paper is organized as follows. Section
II provides background information on our network resource
management framework and the placement of management
and control functionality. In Section III, we describe the main
operations performed by the LMs and the LCs and elaborate on
the role of the main communication interfaces. The signaling
protocol is presented in detail in Section IV. In Section V, we
provide some information about the three use cases considered
in this work and evaluate their performance in Section VI.
Related work is discussed in Section VII. Finally, conclusions
are provided in Section VIII.

II. BACKGROUND

In this section, we provide some background information
on the SDN-based framework we developed in our previous
work. We also briefly discuss how to distribute management
and control functionality.

A. SDN-based Resource Management Framework

In our previous work [1], we developed a novel SDN-
based network resource management and control framework
to support both static and dynamic resource management
applications in fixed backbone infrastructures. In the proposed
framework, the network infrastructure is managed and con-
trolled by a set of software-based Local Managers (LMs) and
Local Controllers (LCs), forming distributed management and
control planes, respectively. As depicted in Fig. 1, the frame-
work follows a three-layer architecture designed based on the
principles of the general SDN model defined by the ONF. The
bottom layer represents the underlying network infrastructure.
The middle layer implements distributed management and
control functionality. Finally, the top layer represents the
central management system. Interaction between the different
components of the architecture is realized through a set of
interfaces.

A key feature of this framework resides in its modular
structure, which is represented by two levels of separation,
i.e., between management and control functionalities, on one
hand, and between centralized and distributed management
operations, on the other. Short to medium term management
operations are performed by the LMs, which implement the
logic of management applications (MAs), e.g., traffic engi-
neering, cache management etc. These are responsible for

Distributed

Management and Control

Physical Network

Infrastructure

Central

Management
Local Manager

Orchestrator

Local Controller

Orchestrator

Central Management System

Local Controller (LC)

Local Manager (LM)

Resource (RS)

Interaction LM-RS

Interaction LC-RS

Management Substrate Link

Interaction LM-LC

Interaction Orchestrator-LM

Interaction Orchestrator-LC

Fig. 1. Resource management and control framework proposed in [1].

computing the configuration of the set of network resources
under their supervision according to the objective of the
applications which they implement. Configuration decisions
taken by LMs are provided to the LCs, which define and
plan the sequence of actions to be enforced for updating
the network parameters. These actions are then translated to
instructions sent to and executed by the relevant network
devices. In contrast to the LMs, the centralized management
system is responsible for longer term operations, for example
those that pertain to the instantiation and life cycle of LMs
and LCs. More specifically, this involves two components: the
Local Manager Orchestrator (LMO) and the Local Controller
Orchestrator (LCO)1. The LMO is responsible for performing
high-level supervision of the LMs and MAs instantiated in
the network, for instance to select the LMs which need to be
involved in the decision-making process of a given application,
or to determine how the decision-making process of a given
MA is distributed.Example operations performed by the LCO
include the computation of LC placement and the supervision
of their state.

While previous work considered management logic as an
integral part of control functionality, e.g. [2][3], we believe
that a clear distinction between the two provides several
deployment benefits. This not only allows the two concerns
to evolve independently, offering increased design choices
and flexibility for the system vendors, it also simplifies the
integration of new network applications, while maintaining
interoperability.

B. Placement of Management and Control Functionality

The number of LMs and LCs to deploy, their location in
the network, as well as the mapping between the two, depend
on several factors, such as the physical infrastructure, the
type of MAs to implement or the usage of the machines
hosting the relevant software. For instance, the more frequent
the interactions with the devices, the closer the management
and control functionality is expected to be to the resource
in order to minimize the reconfiguration latency [10]. The

1It is worth highlighting here that although we use the term orchestrator
to define the two main modules of the centralized management plane, their
functionality is different from the one foreseen in the ETSI NFV model of
the Management and Orchestration (MANO) Framework [9].

3

Fig. 2. The Local Manager (LM) and Local Controller (LC) components.

modular structure of our SDN-based resource management
framework enables flexibility in the placement of the LMs
and LCs, which is not bound to specific configurations. Based
on the targeted objective(s) and resources, our framework
allows LM and LC to be co-located on a single host or
to reside on separate remote machines. In general, deciding
on the placement of management and control functionality
constitutes a trade-off between reducing the communication
delay from the LMs/LCs to the network resources without
significantly increasing the signaling overhead between the
distributed entities [11][12][13].

III. MANAGEMENT AND CONTROL PLANES

A. Components

1) Local Manager: As explained in Section II-A, LMs are
responsible for performing short to medium term management
operations. Each reconfiguration process involves at the LM
level a set of three modules as depicted in Fig. 2.

The Monitoring Module executes functions related to net-
work monitoring (e.g., data collection, filtering, aggregation
etc.) and enables each LM to create its own local network view.
It is responsible for translating the collected low-level network
statistics (e.g., port counters, CPU cycles etc.) into a high-level
abstracted view of the status of the network resources (e.g.,
link utilization, server load etc.). To realize the translation,
the association between application-level parameters and low-
level resources is maintained in a mapping table which can
be modified over time as new abstractions are identified and
introduced.

The statistics collected by the Monitoring Module are
passed as inputs to MAs instantiated at the LM level as
different modules2. Each MA encompasses the logic to re-
configure the network resources according to some high-level
objectives (e.g., minimize delay, maximize cache hit ratio etc.).
It maintains information tables and implements algorithms to
decide on the configurations to apply. To assist the decision-
making process, the requirements of the MA in terms of
monitoring (i.e., information needed and update mode) are
passed to the Monitoring Module, which is responsible for
converting these requirements into monitoring instructions.
Each MA operates on its own abstract view of the resources
(connectivity and configuration parameters), which can differ
from application to application. The output of a MA is a set
of application-level configurations.

2In practice, each LM can instantiate a different number of MAs.

The outputs are passed to the Parser Module, whose role is
to cast application-level decisions into low-level configuration
actions. The conversion is performed based on information
retrieved from the mapping table maintained in the Moni-
toring Module. In contrast to the MAs, which are agnostic
to the mechanisms implemented in the network to realize
their objective, the Parser Module has knowledge about the
low-level functions and protocols (e.g., OpenFlow syntax).
It acts as an intermediate between the management and the
control logic by computing the value of the arguments used
to control the configuration of these low-level mechanisms.
Let’s for instance consider the case of a traffic load-balancing
application with the objective to determine the volume of
traffic to send over the multiple paths from any source-
destination pair of nodes in the network. In this example,
the MA-level configuration represents the vector of splitting
ratios that define the volume of traffic associated with each
path. From the parser perspective, the configuration concerns
instead the actual traffic splitting mechanism implemented
in the underlying network switches (e.g., set of forwarding
rules). The processed decisions are finally sent in the form of
instructions to the associated LC.

In a similar fashion to the framework, the modular struc-
ture of the LM provides multiple advantages. In particular,
defining the MAs as separate modules allows each logic to
be developed independently. In addition, by abstracting the
reconfiguration logic, MA decisions are not bound to specific
low level implementation, which provides more flexibility in
the development of the applications. For instance, it is not
necessary to know all the details of the traffic splitting solution
used to design a new traffic load balancing application. To
enable the integration of the applications into the system,
the implementation needs to follow the abstraction model
defined by the management framework, which can come in
the form of a set of libraries or a Software Development Kit
(SDK)3. From the parser point of view, the modularity allows
the refinement of the application-level decisions based on the
targeted resources without the need to implement the full
functionality of the interfaces used to configure the relevant
resources.

2) Local Controller: The LC is responsible for planning
and executing the decisions taken by MAs based on the
instructions received from the LM Parser Module that indicate
the targeted type of resources. In this paper, we identify two
types of resources: i) those concerned with packet processing,
such as switches, firewall, routers etc., and ii) the ones
associated with data storage (i.e., caches). As can be seen in
Fig. 2, each resource type is represented by a separate module.

Messages received from the LM are first processed by the
LC Dispatcher that determines to which resource module the
messages should be redirected. Each module implements three
main functions:

• Interpreter: the objective of the interpreter is to extract
and translate the set of actions received from the LMs
into low level reconfiguration instructions. These are ex-

3We refer the reader to [14][15] as examples of relevant initiatives on these
issues.

4

pressed according to the specification of the protocol used
to interact with the data plane resources (e.g., OpenFlow,
NETCONF etc.).

• Scheduler: the scheduler is concerned with scheduling
the execution of the different reconfiguration instructions.
In particular, actions sent pro-actively in anticipation to
some network event (e.g., link failure, congestion etc.) are
stored in an internal data structure for future enforcement.

• Enforcer: the role of the enforcer is simply to execute the
planned instructions.

As opposed to the LM, the LC implements all the interfaces
to the network resources. In terms of functionality, however,
it is a much lighter weight component which mainly acts as
an actuator of the reconfiguration decisions.

B. Interfaces

1) Management Application to Management Application:
To make a decision, the instance of a MA at a specific LM
can either act independently based on local information or
communicate with other MA modules located in remote LMs.
The distributed instances of a particular MA can interact, for
instance, to share information, to harmonize their decisions
or to synchronize their reconfiguration cycle. To support the
decision-making process of a specific MA, the set of LMs
involved in the execution of that application are organized
into a management substrate [5][10]. The substrate is a log-
ical structure used to facilitate the exchange of information
between decision-making entities for coordination purposes.
Their number depends on the number of applications imple-
mented in the distributed management plane (one substrate
per application). Each substrate can follow different structures
(e.g., full-mesh, ring, hybrid). The choice of the structure is
driven by different parameters related not only to the topology
of the underlying infrastructure, but also to the constraints of
the coordination and communication mechanisms supporting
each application. The overhead incurred by the communication
protocol in terms of delay and number of messages exchanged,
for example, is a key factor that can influence the choice
of the structure. To communicate through the substrate, each
MA module stores the list of its neighbors in the substrate,
represented by the identifier of the corresponding LMs. The
list, as well as application-specific information, is retrieved
from the Local Manager Orchestrator module in the central-
ized management plane (Fig. 1) at the deployment phase.

2) Local Manager to Local Manager: The LMs in the
distributed management and control plane provide a common
execution environment for different applications. The LM-to-
LM interface enables the communication between the MAs
hosted locally and the MAs hosted on remote LMs, consti-
tuting as such an east-west interface4. To communicate with
other instances, each LM maintains locally a translation table
associating the identifier of the LMs to their IP address.

4It should be noted that in our framework the east-west interface is
implemented where the management intelligence lies, i.e., between the LMs,
but in practice it can also be used to enable communication between LCs.

3) Local Manager to Local Controller: The interface be-
tween the LM and the LC is used to exchange the processed
reconfiguration outputs which are encapsulated into messages
that contain two main fields:

• Resource Type: this field indicates the resource type to
which the configuration applies (i.e., packet processing
or storage). The Resource Type is retrieved by the
Dispatcher Module of the LC which then redirects the
message to the appropriate resource module.

• Instruction: this field contains two elements: (i) Targets:
list of network resources (identified by their resource ID)
to which the configurations should be applied, and (ii)
Actions: list of reconfigurations to be applied to each
resource with the arguments indicating the new parameter
value.

To communicate with its peer LCs, each LM implements a
translation table indicating the association of the identifier of
the LCs to their IP address.

4) Local Manager/Local Controller to Underlying Re-
sources: As explained in Section III-A1, the Monitoring
Module in each LM is responsible for gathering information
within the scope of the LM and making it available to local
MA instances. The data collection is realized through a LM-
to-RS (resource) interface connecting the LM directly to the
network resources. Since the network information is primarily
needed by the LM, the LM-to-RS interface allows to bypass
the LC to avoid additional processing and delay. Configuration
decisions taken by the management application are applied
to the underlying resource by the LCs through a LC-to-RS
interface. The technology and protocols used to implement this
interface depend on the type of resource to configure, as well
as on the resource vendor (e.g. OpenFlow switch, RESTful
API, etc.)

5) Local Orchestrator to Distributed Plane: The interface
between the Local Orchestrator modules in the centralized
management plane and the LMs/LCs in the distributed man-
agement and control plane is used for the long term config-
uration of the LMs and the LCs. For each LM, the Local
Management Orchestrator maintains its identifier, the address
of the server hosting it, the list of managed resources under
its responsibility (i.e., switches, routers, caches), and the list
of hosted MAs. In a similar fashion, the Local Controller
Orchestrator maintains the list of LCs represented by their
identifier, the address of the servers hosting them and the list
of resources under their control.

This information is pre-computed and provided to the LMs
and the LCs, respectively, during the deployment phase, and
updated, if needed, during a long term reconfiguration cycle.

IV. SIGNALING FRAMEWORK

To enable communication between the entities of the pro-
posed management and control framework, a suitable signaling
protocol is required. Three key aspects were taken into account
when designing the new protocol: i) identify the minimum
amount of information required in order to provide a signaling
service to the entities of the management framework, ii)
determine how to efficiently format this information and iii)

5

Fig. 3. Signaling architecture.

define the internal statuses of the signaling nodes. This section
presents our proposed solution, SigMA.

A. Design Principles

Different management applications can have different re-
quirements in terms of how and when they need to share
information. Due to this heterogeneity, a monolithic signal-
ing protocol would not be able to cope with the needs of
different applications. Furthermore, the type of management
applications that could emerge in the future, as well as their
signaling requirements cannot be easily foreseen. Another
important aspect for the design of the signaling framework is
the relationship between the management and control planes.
Different types of applications would require to control differ-
ent categories of network resources, which can be classified,
for example, into SDN switches, routers, and network caches.
Based on this classification, different controllers would be
required to control and enforce decisions on different resource
types. As such, the signaling framework should be flexible and
allow the MAs to interact and communicate with different
types of LCs, through the abstraction provided by LMs.

In addition, the signaling framework should also support
the parallel evolution of the management and control planes.
The definition of new features, or the introduction of new
MAs, new categories of resources or new and more advanced
LCs, should not require any modification of the signaling
architecture. SigMA is designed to ensure both flexibility, in
terms of enabling the communication between different types
of applications and different types of controllers/resources,
and extensibility to cope with the evolving nature of the
management and control planes.

To achieve these objectives, the proposed architecture de-
couples the infrastructure signaling, necessary to deploy and
coordinate the system entities, from the management signaling
required by the MAs to execute their decision-making process.
This decoupling leads to a two-layer architecture as depicted
in Fig. 3: the Management Signaling Layer (MSL) deals with
the infrastructure signaling, whereas the Application Signaling
Layer (ASL) implements the signaling logic needed by the MA
modules.

The main functions of the MSL are the following:
1) Exchange packets used by the system to deploy modules

over the network and update their internal status (e.g.,
configure LM, setup MAs, distribute substrate informa-
tion, etc.).

2) Multiplex and demultiplex packets coming from and
directed to the MAs.

Application Specific Fields

(variable length)

Ver. Msg Type

Source Manager ID

[Application ID]

Msg Type

Application Payload

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

ASP

Header

MSP

Header

Fig. 4. MSP and ASP packet format.

3) Provide the communication interface between the MAs
and the LCs.

The ASL has two main functions:
1) Exchange packets to share information needed by MA

modules to make decisions.
2) Exchange packets to synchronize the different phases of

the decision-making process of a given application.
We refer to the Management Signaling Protocol (MSP) as an

implementation of the MSL, and to the Application Signaling
Protocols (ASPs) as the implementations of different ASLs.
The decoupling between the MSL and the ASL allows the
MA developers to design their own information format and
communication scheme, which relies on a common layer to
provide message transport and addressing services. In addition,
the MSL provides a common interface for the different MAs
to push their decisions to the relevant type of LCs (e.g., for
SDN switches or caches) associated with the LM, regardless of
the specific vendor implementations. The evolution of existing
LCs, or even the introduction of new LCs and/or resource
categories, will not affect the signaling architecture, and will
only require the definition of new identifiers for the different
LCs, and the development of a relevant MA to interact
with/manage them. Another advantage of this architecture is
that, in case of LM relocation, the decoupling between the
MSL and the ASL allows the Local Management Orchestrator
to inform the other LMs about the new address of the relocated
LM. This alleviates the need to compute and distribute a
new network-level substrate for all the MAs affected by the
relocation, which provides gains in terms of computing time
and network bandwidth.

In addition to intra-MAs communication, the MSL address-
ing service allows different MAs, not necessarily deployed on
the same location, to communicate. This enables developers to
design and build more complex management systems, splitting
complex management tasks in smaller and simpler jobs to be
handled by small interacting MAs, which share information
and synchronized decisions through the relevant substrates.

B. Management Signaling Protocol Operations

Instead of designing a new IP based transport protocol, we
designed the MSP to rely on existing transport and session
protocols, which provide the communication primitives, such
as datagram messaging (UDP), reliable sessions (TCP), or
secure and reliable sessions (TLS over TCP).

The ASP maintains information about the substrate of the
relevant MA, represented by a list of LM identifiers. The
interface between the ASP and the MSP allows the ASP to

6

specify a list of LMs, which are the signaling destinations,
its payload, and the signaling requirements (i.e., in terms of
reliability, security, etc.). The MSP adds its header to the
payload, uses its internal table to resolve the IP addresses of
the destinations and chooses, among the available transport
services, the one matching the ASP requirements. It can then
send the packet to the selected destinations. Fig. 4 shows
the packet format of the proposed signaling framework. The
header of the MSP is designed to be as general as possible
in order to cope with the different requirements in terms of
flexibility and extensibility, as described in Section IV-A. The
Message Type field in the MSP header is used to identify
packets carrying ASP payloads, and packets coming from or
directed to LCs, or to the Local Management Orchestrator.
The MSP header also contains the Source Manager Id field
that is fetched with the payload to the ASP when a message is
received. As such, the ASP does not need to execute a reverse
lookup on the MSP table in order to identify the source of the
message.

In contrast, the ASP packet format strongly depends on the
specific ASP implementation. A Message Type field should
be available to allow the finite state machine of the ASP
to identify the format of the carried MA payload. For ex-
ample, the ASP header of a time-driven MA could provide
synchronization fields, such as a configuration cycle identifier,
an iteration identifier or a timestamp, and the ASP header of
an event-driven application could include the triggering event
identifier.

In the set of functions implemented by the MSL, packets
multiplexing and demultiplexing are fundamental tasks. To
offer these services, an IP resolution table, mapping LM
identifiers to their corresponding IP address, needs to be
configured during the LM deployment and subsequently main-
tained. Given that the LM deployment is centrally managed
by the LMO, a centralized approach is also followed by the
MSP to maintain the IP resolution table. More specifically, the
table is configured by the LMO during the deployment phase
in each LM, using the standard MSP packet header (Msg. Type
= 1, LM-ID = 0, Application ID = 0) that encapsulates a list
of ordered pairs (LM IDi, IPi). With this signaling session,
each LM is able to configure its own address table with the
address of the LMO and other LMs. Once the deployment
phase is completed, the LMO relies on a pull strategy to
periodically perform an health-check on each LM. In that
case, an empty MSP packet with Msg. Type set to 3, LM-
ID and App. Id set to 0, is sent by the LMO to the LM. If
the MSP is running, the LM replies with the same message
type, with a non-zero LM-ID, and a list of Application-IDs
representing the MA hosted locally. Finally, in case of failures
or LM migration, the LMO can broadcast the changes of the
overall LM-to-IP mapping using the message format of the
initial configuration phase.

V. USE CASE DESCRIPTION

To illustrate the role and benefits of SigMA, we investigate
how this can be used to enable distributed instances of manage-
ment applications as defined in Section III-A1 to communicate

TABLE I
APPLICATION CHARACTERISTICS.

Application Load Periodicity Impact
Cache Management Heavy Fixed Infrequent

Security management Low Event-driven Infrequent

Online TE Variable Fixed Frequent

in the context of three use cases, which are described in this
section. As summarized in Table I, these applications have
different characteristics in terms of the traffic they generate,
the periodicity and frequency of execution.

A. Cache Management

The first use case concerns a cache management applica-
tion that was originally developed in [16] and graphically
represented in Fig. 5. In this ISP-operated caching scenario
each network node is associated with caching capabilities and
is used to locally store a set of content items. The configu-
ration of each cache is computed based on the logic of the
management application implemented by a set of LMs, which
coordinate their decisions through the management substrate
defined for this application. The objective is to determine
which content items to cache, and where, based on content
characteristics such as the popularity and origin (geographical)
of requests.

The cache reconfiguration algorithm is executed periodically
by cache managers, once a quasi-synchronous timer expires.
The objective of the timer is to introduce a degree of de-
synchronization between the distributed managers in order
to illustrate the ability of our framework to support a syn-
chronization mechanism. In that case, the ASP deals with
the synchronization issue by sending a set of MA-dependent
signaling messages. The decision process is composed of
two phases. The first phase is iterative and involves the
use of the ASP. At the start of this phase, cache managers
exchange content popularity information, as perceived from
their local view, through the ASP. The collected information
is subsequently aggregated by each manager separately to
build a data structure representing the global view of content
popularity. The next part of this phase involves an iterative
process to decide on which content items to store at each
of the available caching locations. At each iteration, every
manager selects a variable number of items to cache locally
based on, (a) information extracted from the global popularity
structure, and (b) the cache status of other managers in the
substrate. Given that (b) needs to be updated at each iteration,
management applications use the ASP to share their cache
status once a new placement has been computed. The first
phase ends in an asynchronous fashion and a final cache status
exchange is therefore required in order to synchronize the
global content placement view between the different cache
managers. In addition to communicating information relevant
to the first phase of the algorithm, the ASP is also used to
exchange messages to keep the cache managers synchronized
with the current step of the algorithm. A detailed description
of the algorithm can be found in [17]. The second phase of the

7

Fig. 5. Cache management use case.

algorithm is carried out by each manager independently with
the objective of filling up any remaining local cache capacity
and, as such, does not involve the ASP.

B. Security Management

The second use case concerns security in mobile network
operator environments, where malicious user devices can flood
a server(s) within the network with fake requests. This can
deteriorate the performance of running services or block them
altogether due to server overloading and/or excessive network
traffic. In contrast to the previous use case in which the
caching algorithm was executed at fixed periodic intervals,
reconfigurations in this case are triggered by security events.

We consider a set of distributed security management ap-
plications executing in LMs that have at least one edge node
under their scope of responsibility, i.e., from where malicious
traffic emanates, as shown in Fig. 6. These applications re-
ceive monitoring information, e.g., user request statistics, and
perform initial analysis for detecting abnormal behavior. Upon
such an event, and alarm procedure is triggered by which (a)
other application instances are pro-actively informed using the
ASP, (b) a server location is determined where traffic can be
further analyzed, e.g., a deep packet inspection (DPI) engine,
and (c) relevant LCs are instructed to install rules for re-
directing potentially malicious requests to the DPI engine. The
latter responds to the LM that initiated the process with the
attack profile and the security application communicates this
information to other application instances through the ASP.
As a response, security applications decide on the remedy
actions, for example dropping traffic from specific sources
or ports, which are enforced by the relevant LCs. Taking
proactive remedy actions at remote locations is particularly
useful in mobile environments since malicious user devices
can move and connect to different base stations over time, but
also because an attack can propagate among users.

C. Online Traffic Engineering

Resource reconfigurations in the context of the previous two
use cases are not frequent. In order to evaluate the proposed
framework under a more dynamic environment, we consider an
online traffic engineering (TE) application in which reconfigu-
ration decisions are executed in short timescales, for example
every few seconds. This involves the adaptation of traffic
splitting ratios for achieving traffic engineering objectives,
such as load balancing. While some prior research proposed
that splitting decisions are enforced at ingress routers, e.g.,

Fig. 6. Security management use case.

[18], other approaches proposed that all nodes in the network
are responsible for dynamically splitting the traffic between
the available next hops, e.g., [19] [20]. In this use case we
adopt the latter and investigate the ability of the signaling
framework to effectively support a set of distributed online
TE applications that require link utilization updates at a high
frequency. Although in some distributed scenarios information
would be aggregated, or only alerts would be communicated in
an effort to reduce the management overhead, we consider the
worst case to test scalability: at each reconfiguration interval,
application instances exchange the local raw measurements so
that they can all build a global view of the network state.

VI. EVALUATION

In this section, we present the results of the experiments
we performed to demonstrate the benefits of the proposed
signaling framework based on the three use cases described in
Section V. For each use case, we designed and implemented
the relevant management application and its associated ASP.
For all these use cases, results were obtained based on custom
simulators 5. In all cases, we used the Deltacom topology [21]
with 92 nodes for layer 3 routing. We assume that each link in
the network has an available bandwidth of 10 Gbit/s, which is
a conservative capacity value in real networks (e.g., [22]) and
5 ms of network latency per hop [23][22]. The placement of
LMs and LCs is determined based on the algorithms presented
in [13]. It is provided as an input and is used to compute the
relevant IP distances between pairs of entities.

A. Cache Management

As explained in Section V-A, the objective of the cache
management application is to determine which content items
to cache and where, based on content characteristics such
as popularity and geographical origin of requests. In this
subsection, we first describe the experiment settings and then
present the obtained performance results.

1) Experiment Settings: We generated user demand as
follows. The number of requests per content, for each manager
and for each reconfiguration cycle, is provided as an input
to our simulator. To determine the number of requests per
content, we generate one hour of random requests based on

5Code available at http://clayfour.ee.ucl.ac.uk/sigma/SigmaSource.zip

8

a Poisson distribution with inter-arrival time λ = 5000 req/h
(based on the hourly request pattern of the video on demand
(VoD) trace presented in [24]) and a Zipf distribution with
skew factor α = 1.2 (based on the characteristics of the
VoD dataset used in [25]). For the geographical distribution
of interests (i.e., number of distinct locations from which a
content is requested), we use the model proposed in [16] with
β = 0.8. In this case, the predominance of popular content
items can be preserved without strongly discriminating less
popular ones. The caching space available in the network is
evenly divided between the deployed LMs and, as such each
LM is responsible of managing the same amount of caching
space.

The performance has been evaluated both in terms of the
time consumed by the MA during one reconfiguration cycle,
and the traffic generated during the decision-making phase.
The Network Time is defined as the time used by each
instance of the MA to send signaling messages to its peers
in the substrate. This time is divided into two components;
the transfer time and the network delay as follows:

• The Network Delay is measured assuming that each IP
hop in the topology incurs a 5 ms delay (based on the
values reported in [23]).

• The Transfer Time is computed by dividing the size of
the packet with the link bandwidth.

The network time introduced by the signaling is measured
and accumulated by each manager during each reconfiguration
cycle.

As for the traffic generated, the Network Traffic is com-
puted by summing up the size of each packet multiplied by
the length of the path between its source and its destination,
measured in terms of IP hops. This measurement assumes that
a TCP socket is used by the MSP to transport the messages.

Each MA module is represented by an object that im-
plements the cache reconfiguration algorithm and the ASP
described in Section V-A. The simulator runs the MA al-
gorithms and signaling routines in real time, which enables
the direct collection of reliable time measurements. At the
end of each reconfiguration cycle, the average value and the
standard deviation for the network time are computed based on
the values measured by each node, while the network traffic
metric is obtained by summing up the contribution of each
node. For each test we compute the average value along with
the standard deviation for all the relevant metrics, collected
for 10 reconfiguration cycles.

2) Results: We collected values for the described metrics
for different configurations of three main parameters of the
system: the content catalogue size, the number of managers
(i.e., caches), and the caching space available at each caching
location. We consider a content catalogue with a number of
items ranging from 104 to 105 based on the catalogue sizes
reported in [26]. The number of managers, and their location
in the topology, is computed using the placement algorithm
proposed in [1], and it ranges from 4 to 82. As for the available
caching space per location, we also used [26] and selected
four values for the ratio between the total caching space in
the network and the catalogue size (5%, 10%, 15% and 20%),
but due to space limitations, we present results only with the

0 20 40 60 80 100

Number of managers

0

50

100

150

N
e
tw

o
rk

 T
ra

ff
ic

 [
M

B
]

Total Cache Capacity/Catalog Size = 5%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 7. Average Network Traffic with 95% confidence interval for a ratio
between the total caching space and the catalogue size of 5%, for different
values of the catalogue size, as a function of the number of managers.

0 20 40 60 80 100

Number of managers

0

20

40

60

80

100

N
e
tw

o
rk

 T
ra

ff
ic

 [
M

B
]

Total Cache Capacity/Catalog Size = 20%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 8. Average Network Traffic with 95% confidence interval for a ratio
between the total caching space and the catalogue size of 20%, for different
values of the catalogue size, as a function of the number of managers.

two extreme cases (5% and 20%)6. For each ratio, we compute
the available space per location by dividing the resulting total
caching space by the number of managers.

Figures 7 and 8 show the results for the network traffic,
and Figures 9 and 10 show the results obtained for the
network time metric. The evaluation demonstrates that the
proposed signaling framework can support the complexity
of the communication scheme of the Cache Management
application. This relies on a N-to-N communication scheme,
leading to a complexity in the order of O(N2), with N being
the number of managers. The results show that the quadratic
relationship between the number of managers and the gen-
erated traffic is satisfied: no further overhead or complexity
is incurred by the signaling system. In addition, an increase
of the caching space at each manager leads to an increase in
the performance in terms of network metrics. Increasing the
caching space leads to a decrease in the number of iterations
needed to complete a reconfiguration cycle, thus resulting to
a decrease in the number of sharing tasks, and consequently
to performance improvement. This can be explained by the
cache reconfiguration algorithm, which relies on a parameter p
to control the number of content items to consider for caching
at each iteration of the first phase. The value of p depends
on the total available caching space in the network and an
increase in its value means that more items can be cached
at each iteration. This leads to a decrease in the number of
iterations needed to complete the first phase.

An interesting result is the performance improvement in
terms of network metrics when the number of content items
in the catalogue increases. When a lower number of items is

6It is worth noting that similar results were obtained with the two other
ratio values.

9

0 20 40 60 80 100

Number of managers

0

50

100

150

200

250

N
e
tw

o
rk

 t
im

e
 [
s
]

Total Cache Capacity/Catalog Size = 5%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 9. Average Network Time with 95% confidence interval for a ratio
between the total caching space and the catalogue size of 5%, for different
values of the catalogue size, as a function of the number of managers.

0 20 40 60 80 100

Number of managers

0

50

100

150

N
e
tw

o
rk

 t
im

e
 [
s
]

Total Cache Capacity/Catalog Size = 20%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 10. Average Network Time with 95% confidence interval for a ratio
between the total caching space and the catalogue size of 20%, for different
values of the catalogue size, as a function of the number of managers.

considered, we observe that more signaling traffic is generated,
which is due to how the local popularity is computed. As
explained in Section VI-A1, we generate one hour of requests
as a Poisson process. The total number of requests received
during that period is then distributed between the contents in
the catalogue according to the Zipf’s Law, in order to compute
the number of requests per content. The function proposed
in [16] is used to compute the geographical distribution of
the demand. The total number of requests per content is then
divided by the number of geographical locations and assigned
to a random set of managers, accordingly, if and only if the
number of requests for that content at a specific location is
greater than zero. Given that the total number of requests for
each configuration cycle follows a stationary stochastic model
and the number of requests per content is driven by Zipf’s
Law, an increase in the total number of content items leads to
a decrease in the total number of requests per content. This
causes more items to have zero requests at certain geographical
locations. Therefore, the length of some of the messages
exchanged in the first phase of the algorithm decreases, thus
also diminishing the Network Time and the Network Traffic.
In order to evaluate the effect of the function used to compute
the number of requests per content, we also executed tests
replacing the Zipf’s law with a uniform distribution. This
forces each content to be requested at least once and from
at least one location. Since this is not the focus of this paper,
we do not show the results here, but it is worth mentioning
that, in this case, the value of network related metrics increases
with the size of the catalogue.

Finally, we are interested in the effects of the degree of dis-
tribution of the management instances on the performance of
the Cache Management application in terms of computational
resources (CPU). Given that this comes with an increase in

0 20 40 60 80 100

Number of managers

0

500

1000

1500

2000

2500

C
P

U
 t
im

e
 [
u
s
]

Total Cache Capacity/Catalog Size = 5%

10
4
 contents

5*10
4
 contents

10
5
 contents

Fig. 11. Average Cache Management CPU time with 95% confidence interval
for a ratio between the total caching space and the catalogue size of 5%, for
different values of the catalogue size, as a function of the number of managers.

terms of traffic generated by the signaling framework, it is im-
portant to assess whether increasing the degree of distribution
can result in better computational efficiency. Figure 11 shows
the average CPU time spent by each MA instance to compute
the cache reconfiguration algorithm for the next configuration
cycle with a 95% confidence interval, as the number of
manager increases and for different values of the catalogue
size. Increasing the number of MA instances from 4 to 47
decreases the average CPU time of the cache reconfiguration
algorithm by 78%, while incurring less than 15 MB of traffic
on the whole network every hour. This amount of traffic can
be considered negligible compared to the capacity available on
modern networks. At the same time, the improvement in terms
of CPU time could be important in a scenario where many
MAs share computational resources through virtualization, and
the selection of the appropriate number of LMs to be deployed
in the network could be a valuable instrument to optimize their
use.

B. Security Management

The security management application aims at supporting
DDoS defense mechanisms, by enabling alarms and attack
profile distribution among management entities located at the
edge nodes of a network. In this section we describe the
models and settings we used for our experiments and analyze
the results obtained with our simulations.

1) Experiment Settings: We generated a traffic trace in-
spired by the real Distributed Denial of Service (DDoS) attack
that happened in September 2015 and for which details were
reported in [27]. In our attack scenario, pedestrian users are
accessing web pages which contain advertisements through
the browser of their smartphones. The advertisements are
generated by an advertisement system and selected using an
auction mechanism. We assume that the auction mechanism
has been compromised by an attacker through the insertion
of a malicious advertisement in the advertisements pool. The
malicious item instructs the infected browser to generate a
high volume of HTTP GET requests towards a specific target
server [27] located inside the core network. As the attacker
succeeds in compromising the auction system, the malevolent
advertisement is selected to be included in an increasing
number of web pages accessed by the mobile users, resulting
in an increasing number of mobile devices flooding the target
with HTTP requests.

We considered a set of 10,000 mobile users scattered around
a square area and modeled their mobility pattern based on the

10

approach described in [28]. The area is covered by a cellular
network composed by 74 hexagonal cells, each connected to an
edge access switch. The set of edge switches represents 80%
of the Deltacom topology. The edge switches are themselves
interconnected by a backbone of 18 core switches representing
20% of the topology. Each cell has a radius of 300 meters [29].
To model the attack spreading behavior, we assume that each
user device can have two different statuses: a normal status
in which a low number of requests is generated each second
(e.g., 1 request per second per user), and a compromised
status in which the number of requests per second sent from
each device is orders of magnitude greater (e.g., 100 requests
per second). The percentage of devices in the compromised
status increases over time following a first order step response
Ncompr = 1−e tτ , that is uniquely defined by the time constant
τ . As the value of τ decreases, the attack becomes faster. With
this assumption, we can define the attack speed as the rise
times (10% to 90%) of the aforementioned step response func-
tion. Moreover, users move around the area causing handovers
from cell to cell so that the malevolent traffic moves and enters
the network from different cells over time. We use the model
proposed in [28] to evaluate the handover rate, allowing us to
generate the ingress traffic coming from each cell (i.e. from
each edge node of the Deltacom topology).

Based on this model, we generated one hour of traffic traces
in which the malicious advertisement is fetched by users for
one third of the time before it is stopped, and we evaluated
the performance of the security management application using
the following metrics:

• The Network Traffic generated by the signaling frame-
work during the whole time window (i.e., one hour). The
measurements assume that a TCP socket is used by the
MSP to transport messages.

• The Alarm Propagation Time, defined as the time
needed to execute an alarm procedure, from the attack
detection to the enforcement of traffic steering to the DPI
engine.

• The Countermeasure Propagation Time, that is the
time needed to distribute the Attack profile computed by
the DPI engine.

2) Results: We evaluated these metrics using the same LM
deployment described in Section VI-A1, with the number
of local managers ranging from 4 to 82. As explained in
Section V-B, the Security Management application runs only
on LMs which control at least one edge node, so that the
actual number of MA instances in the network ranges from 4
to 64. In this paper, we are interested in the performance of
the proposed signaling framework (i.e., how it can be used to
support management applications with different requirements)
rather than in the management substrate (defining the mode
of communication between MA instances [5]). As such, we
show the results as the total number of deployed LMs varies.
In particular, this demonstrates how the framework can enable
communication between the relevant set of LMs. In addition,
to assess the ability of SigMA to respond to time constraints
of different magnitudes, we considered different values of the
attack speed, ranging from 44 seconds to almost 10 minutes.

Figure 12 shows the overall network traffic generated by the
Security MA during the attack through both the LM-to-LM
and LM-to-LC interfaces. As can be observed, a negligible
volume of traffic is incurred by the signaling framework -
20 MByte only over the whole network in the worst case.
Moreover, given that the management application instances
only run where they are needed, the volume of generated traffic
increases almost linearly with the number of LMs. Finally the
results also show that the speed of the attack has almost no
influence on the volume of signaling traffic incurred in the
network.

Given the sensitivity of the Security Management applica-
tion to time constraints (i.e., event-driven), the performance
obtained in terms of time-related metrics is crucial. Figure
13 shows the average alarm propagation time, with the rel-
evant 95% confidence intervals. These values are obtained
by averaging the measured alarm propagation times between
all the alarms issued by each MA instance during the attack
and between all the MA instances. The results demonstrate
that even in the worst case, where the attack is moving from
10% to 90% of its power in 44 seconds and the access
network is controlled by 83 LMs, SigMA enables the security
MA to propagate the alarm and to instrument the necessary
countermeasures in just 4 seconds. It is also important to
highlight that the responsiveness of the proposed approach is
independent of the attack speed. This shows that the proposed
signaling solution can be used in scenarios with different time
requirements. These observations are further confirmed by the
results obtained for the countermeasures propagation time,
which show the same performance in terms of responsiveness
and robustness.

As a final observation, we stress that, although the actual
logic of the security application is out of the scope of this
work, the increased overhead produced by SigMA when the
number of LMs increases is negligible in comparison to the
resources available in modern networks. As such, it represents
an affordable trade-off when compared to the advantages a
distributed management application can bring. Recent liter-
ature has highlighted examples of how SDN [30], [31] and
NFV [32] technologies can be effectively used to mitigate the
effects of DDoS attacks [33], [34]. A representative example of
these advantages in the context of a DDoS mitigation system
can be found in [35], where a distributed set of classifiers,
traffic throttles and packet markers is used, together with an
alarm propagation system, to react to DDoS in a collaborative
fashion. In this example the level of distribution of the entities
positively affects the ability of the overall system to filter
different attack types, thus balancing the cost of signaling
among a larger number of agents. Another example can be
found in [36], where the authors show that, in order to
cope with large scale DDoS attacks, most filtering techniques
require cooperation.

C. Online Traffic Engineering
In this subsection, we focus on the online traffic engineering

application. As explained in Section V-C, to test scalability,
we consider a worst case scenario where at each reconfigu-
ration interval, application instances exchange their local raw

11

0 20 40 60 80

Number of managers

0

5

10

15

20

25

N
e

tw
o

rk
 t

ra
ff

ic
 [

M
B

]

528000 ms

198000 ms

44000 ms

Fig. 12. Total network traffic for different values of the attack speed, as a
function of the number of managers.

0 20 40 60 80

Number of managers

0

1000

2000

3000

4000

A
la

rm

p
ro

p
a

g
a

ti
o

n
 t

im
e

[m
s
]

528000 ms

198000 ms

44000 ms

Fig. 13. Average Alarm propagation time with 95% confidence interval for
different values of the attack speed, as a function of the number of managers.

measurements so that they can all build a global view of the
network state.

1) Experiment Settings: In this use case, we evaluated the
overall Signaling Bandwidth needed by the MA instances to
exchange link utilization updates as the number of deployed
LMs varies from 4 to 82. The required bandwidth was eval-
uated for different values of the signaling interval, which is
defined as the time each MA instance waits before sending
its peers an update of the local link utilization. We let this
parameter vary from the extreme case of 50 milliseconds to the
more relaxed scenario where an update is sent every 4 seconds.
To get an estimation of the network capacity used by signaling,
we also compute the Network Capacity Utilization as the
ratio between the signaling bandwidth to the total available
bandwidth in the network. In a similar fashion to the two
previous use cases, a TCP socket is used by the MSP to
transport messages.

2) Results: Figure 15 shows the results obtained in terms
of signaling bandwidth and network capacity utilization on a
logarithmic scale. The left y-axis presents the value of the
signaling bandwidth in Gbit/s while the right y-axis indicates
the percentage of the available bandwidth used by SigMA in
each experiment setting (i.e., for different number of LMs). As
can be observed, the required bandwidth increases quadrat-
ically as the number of deployed MA instances increases.
In a similar fashion to the Cache Management application
(Section VI-A2), this behavior can be explained by the scheme
of communication used by the Online Traffic Engineering
MA. More specifically, after each signaling interval, a global
view of the resource utilization is built at each MA instance
location. To build this global view, each MA instance shares
with all its peers, the status of the links under the respon-
sibility of its associated LMs. This causes the exchange of

0 20 40 60 80

Number of managers

0

1000

2000

3000

4000

C
o

u
n

te
rm

e
a

s
u

re

p
ro

p
a

g
a

ti
o

n
 t

im
e

[m
s
]

528000 ms

198000 ms

44000 ms

Fig. 14. Average Countermeasure propagation time with 95% confidence
interval for different values of the attack speed, as a function of the number
of managers.

0 10 20 30 40 50 60 70 80

Number of Managers

10
-4

10
-2

10
0

S
ig

n
a
lin

g
 B

a
n
d
w

id
th

 [
G

b
it
/s

]

10
-6

10
-4

10
-2

N
e
tw

o
rk

 c
a
p
a
c
it
y
 u

ti
lis

a
ti
o
n
 [
%

]

T=50ms

T=100ms

T=1s

T=2s

T=3s

T=4s

Fig. 15. Signaling bandwidth (left axis) and Network capacity utilisation
(right axis) as functions of the number of managers, for different value of the
monitoring interval

a quadratic number of messages and, as such, the footprint
profile depicted in Figure 15. The results demonstrate that
SigMA is able to support the requirements of the MA without
introducing further complexity or scalability limitations in
terms of generated traffic. Finally, the results obtained in terms
of network capacity utilization show that in the worst case
where 82 managers are deployed, 0.0988% and 0.0012% of
the bandwidth globally available on the network is consumed
with a signaling interval of 50ms and 4s, respectively. This
shows that SigMA allows to increase the level of distribution
of TE instances, which is required to support online decisions
(e.g., [19] [20]), with negligible effects on the bandwidth usage
of the operated network.

VII. RELATED WORK

It is common in networking to use the terms northbound and
southbound when defining the interfaces of communication
between the different components of a system. In the recent
years, the notion of northbound and southbound interfaces has
become central in the literature related to SDN where the
SDN controller is presented as the focal point from which
communication between a low-level data plane on one hand
and a high-level user application plane on the other is defined.
An example of northbound interface design based on an
extensible REST API is presented in [37], where the use of
REST is justified by the rapid evolution of SDN northbound
APIs. In [38], the authors present a new architecture for
SDN network management called Recursive InterNetwork
Architecture (RINA) and propose to replace the northbound
and southbound APIs with a unified and recursive RINA API.

12

This provides a high level interface for both administrators
and users and allows management (and user) applications to
be programmed recursively over different scopes at different
levels. A review of existing network operating systems for
SDN and relevant interfaces is presented in [39].

While early SDN solutions rely on a physically cen-
tralized control infrastructure, more recent research efforts
have been investigated distributed control plane approaches
(e.g.,[40][2][3]), introducing the notion of east-westbound
interface to refer to as the communication between peer con-
trollers. Different communication models have been consid-
ered in the literature. In [2], Yeganeh et al. propose a hierarchi-
cal approach by which communication between control entities
is only permitted vertically between a root controller and a
set of distributed local controllers. In contrast, a horizontal
communication design based on a pub/sub system is used by
Tootoonchian et al. in [40] to achieve the synchronization of
network-wide view between distributed SDN controllers. A
peer-to-peer approach was also considered in [3] where the
authors focus on the design of a new controller architecture
adapted to distributed settings and that integrates a messag-
ing component to enable inter-controller communication. The
development of east-west interfaces is in particular essential
to support the exchange of information between multiple
SDN domains. A protocol to support such communication is
SDNi [41] that is designed to facilitate coordination between
SDN controllers and the exchange of control information
across multiple SDN domains. In [42], the authors present a
signaling approach for distributed SDN controllers to exchange
information regarding the routing rules and flow processing
actions that need to be executed and propose a model to
represent this information. In [11], Levin et al. focus on the
problem of interaction between distributed controllers from the
perspective of the impact of distribution on the performance of
management applications. In particular, two trade-offs which
should be taken into account when designing applications for
distributed control planes are discussed: between performance
optimality and state distribution overhead, and, between com-
plexity of the application logic and robustness to inconsistency.
The primary objective of most of the communication mecha-
nisms proposed in the SDN literature is to enable distributed
controllers to build a global network view. While this is also
one of the objectives of the signaling framework proposed
in this paper, our solution provides additional functionality
for the purpose of coordinating the decisions of distributed
management entities.

In general, the implementation of any distributed system
come with a set of traditional challenges such as the design
of communication and interaction models between distributed
entities [4], synchronization issues [43] etc.. In the context
of distributed network management application, efforts have
focused on various issues such as the definition of the in-
teraction type [44], the orchestration of distributed decisions
[45], or the development of frameworks and protocols for the
exchange of information between distributed decision points
[46][5][47]. In this paper, we also design a communication
protocol for distributed management entities. However, in
contrast to previous work which mainly focused on specific

use cases, we propose a general and extensible signaling
framework that can be used to support any type of application.

The issue of a generic signaling framework, flexible enough
to support virtually every kind of signaling application, has
also been addressed by the IETF in [48], and further extended
in [7] as NSIS. However, in spite of its generality, the
complexity of the framework prevented it from becoming
widely used. NSIS was initially designed to provide support
for quality of service (similarly to RSVP) and to go further by
providing an extensible mechanism for peer-to-peer oriented
signaling applications. To support both these approaches, NSIS
includes functions like peer discovery, peer-to-peer session
control, and packet interception which introduce overhead and
complicate the design of the signaling logic for applications. A
generic messaging system (RELOAD) able to support peering
messaging and to provide a messaging substrate service to
overlaying applications has been proposed in [6]. Although
some similarities with our approach exist, the main focus
of RELOAD is on resource location and on creating and
maintaining a distributed storage overlay. As such, it cannot be
used to synchronize distributed decision-making algorithms.

VIII. DISCUSSION AND CONCLUSIONS

In this paper we significantly extend our previous work in
[8] and present the design and in-depth performance evaluation
of a novel signaling framework that enables communication in
a distributed management system. In particular, compared to
our previous work, we further elaborated on and formalized the
operation involving the LC component, providing abstraction
models and translation functionality to implement the relevant
interface toward the LM component and toward resources. It
is worth to mention that the proposed abstraction focuses on
packet processing and storage as two illustrative examples
of resources types. This does not preclude the introduction
of other types of resources, which would apply to other
environments and that would be simply represented by new
sub-modules. Furthermore, we evaluated the performance of
our solution on a wider spectrum of use cases, exploiting
the characteristics of SigMA to meet different application
requirements. Some key observations can be drawn from the
results obtained for each of the three use cases.

The cache management application can be regarded as an
extreme case for the signaling footprint, since it requires
each distributed application instance to build a global view
of both the input condition (i.e., the content demand) and
the system status (i.e. cache status during the cache recon-
figuration algorithm). In addition, the synchronization of the
algorithmic steps is required throughout the decision-making
process. On one hand, these requirements directly influence
the footprint generated by the signaling framework during the
execution of the application, i.e., it quadratically grows with
the number of Cache Management instances. On the other
hand, however, the distribution of the management entities
provides non-negligible benefits in optimizing the decision-
making process in terms of computational resources. As shown
in the evaluation, the cost of distribution in terms of traffic
is very limited. In the extreme case of highly distributed

13

deployments, the volume of traffic generated by the content
placement application over a time window of one hour is just
150 MB. We believe that this represents a reasonable trade-off
with respect to the aforementioned benefits.

In the security management application a different set of
requirements has been tested. Although infrequent, the dis-
semination of alarms and countermeasures to security threats
should be fast and reliable to enable the distributed system to
react in a coherent way to different attack aggressiveness but
also to cope with the mobility of the attackers. Despite the
simplicity of the logic of the security management application
considered in this paper, the results show that in an event-
driven, time-constrained scenario, SigMA is able to distribute
the needed information within the expected time, introducing
negligible traffic and without being itself affected by the
aggressiveness of the attack. It should be noted here that in our
scenario, possible issues associated with network congestion
are not taken into consideration. In our opinion, these are
not deciding factors in our context. First, most DDoS attacks
aim at overloading the server capacity rather than the network
capacity itself. In addition, our design is based on off-band
signaling, which means that the signaling messages constitute
a separate flow of traffic (e.g., in terms of addressing points,
protocols etc.). It is also worth mentioning that, in the worst
case, the signaling protocol generates only 20 MB of traffic
throughout the network in a time span of 4 seconds. In
general, the obtained results (in terms of responsiveness and
independence of the attack speed) provide evidence of the
effectiveness of the design.

Finally, experimentation with the online traffic engineering
MA shows the performance of our solution in terms of
scalability when a smaller time scale is considered and the
distribution of link status information becomes very frequent.
The proposed solution supports this frequent exchange, scaling
both as the number of distributed entities increases and the
required refresh interval becomes smaller. We highlight that
these results could be used as an instrument for designing the
level of MA distribution; the proposed ASP is generic enough
to provide an estimation tool for the bandwidth consumption
of any application exchanging key-value information, in sce-
narios with different responsiveness requirements.

In conclusion, in this paper we show that the proposed
signaling framework provides both flexibility and extensibility,
enabling different types of management applications to interact
and control a heterogeneous set of network resources. As
evidenced by the evaluation results based on three different
use cases, SigMA does not introduce scalability limitations
or significant complexity: in all the presented use cases, the
evolution of the network related metrics with the number of
managers follows the expected trends while satisfying the
constraints imposed by the relevant application. We believe
that these results are important as they demonstrate that the
proposed signaling solution can support advanced distributed
management algorithms. In addition, due to its modular design,
it also allows the management and control planes to evolve
without needing to modify the signaling stack. Performance
enhancements could also be achieved by further exploiting the
decentralized nature of the proposed management framework.

An example is to rely on a gossip-based ASP to spread
information in an epidemic fashion, tolerating partial knowl-
edge. Furthermore, the scope of peering between managers
can be limited by partitioning the substrate into clusters, or
introducing optimized substrate structure, so as to further adapt
signaling mechanisms to the application requirements.

ACKNOWLEDGMENT

This research was funded by the EPSRC KCN project
(EP/L026120/1) and by the Flamingo Network of Excellence
project (318488) of the EU Seventh Framework Programme.

REFERENCES

[1] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
Resource Management and Control in Software Defined Networks,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 1,
pp. 18–33, March 2015.

[2] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proc. of HotSDN’12,
2012, pp. 19–24.

[3] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” in 2014 IEEE Network Operations and Management
Symposium (NOMS), May 2014, pp. 1–4.

[4] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach
to Network Control and Management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 41–54, Oct. 2005.

[5] D. Tuncer, M. Charalambides, H. El-Ezhabi, and G. Pavlou, “A Hy-
brid Management Substrate Structure for Adaptive Network Resource
Management,” in Proc. of ManFI’14, Krakow, Poland, May 2014, pp.
1–7.

[6] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“REsource LOcation And Discovery (RELOAD) Base Protocol,” RFC
6940 (Proposed Standard), Tech. Rep. 6940, Jan. 2014. [Online].
Available: http://www.ietf.org/rfc/rfc6940.txt

[7] M. Femminella, R. Francescangeli, G. Reali, and H. Schulzrinne,
“Gossip-based signaling dissemination extension for next steps in sig-
naling,” in Proc. of NOMS’12, April 2012, pp. 1022–1028.

[8] D. Valocchi, D. Tuncer, M. Charalambides, M. Femminella, G. Re-
ali, and G. Pavlou, “Extensible signaling framework for decentralized
network management applications,” in Proc. of IEEE/IFIP Network
Operations and Management Symposium (NOMS’16), April 2016, pp.
153–161.

[9] “Network Functions Virtualisation (NFV); Management and Orches-
tration,” 2014, http://www.etsi.org/deliver/etsi gs/NFV-MAN/001 099/
001/01.01.01 60/gs NFV-MAN001v010101p.pdf.

[10] M. Charalambides, G. Pavlou, P. Flegkas, N. Wang, and D. Tuncer,
“Managing the future internet through intelligent in-network substrates,”
Network, IEEE, vol. 25, no. 6, pp. 34–40, 2011.

[11] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically Centralized?: State Distribution Trade-offs in Software Defined
Networks,” in Proc. of HotSDN’12, Helsinki, Finland, 2012, pp. 1–6.

[12] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and
M. Hoffmann, “Heuristic Approaches to the Controller Placement Prob-
lem in Large Scale SDN Networks,” Network and Service Management,
IEEE Transactions on, vol. 12, no. 1, pp. 4–17, March 2015.

[13] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “On the
placement of management and control functionality in software defined
networks,” in Proc. of 2nd International Workshop on Management of
SDN and NFV Systems, Nov. 2015.

[14] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service:
enabling enterprises’ own software-defined cellular networks,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 146–153, July 2016.

[15] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and
T. Rasheed, “Programming abstractions for software-defined wireless
networks,” IEEE Transactions on Network and Service Management,
vol. 12, no. 2, pp. 146–162, June 2015.

[16] D. Tuncer, M. Charalambides, R. Landa, and G. Pavlou, “More Control
Over Network Resources: An ISP Caching Perspective,” in Proc. of
CNSM’13, 2013.

14

[17] D. Tuncer, V. Sourlas, M. Charalambides, M. Claeys, J. Famaey,
G. Pavlou, and F. De Turck, “Scalable cache management for isp-
operated content delivery services,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 8, pp. 2063–2076, 2016.

[18] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” in ACM SIGCOMM Computer
Communication Review, vol. 35, no. 4. ACM, 2005, pp. 253–264.

[19] I. Gojmerac, P. Reichl, and L. Jansen, “Towards low-complexity inter-
net traffic engineering: the adaptive multi-path algorithm,” Computer
Networks, vol. 52, no. 15, pp. 2894–2907, 2008.

[20] S. Fischer, N. Kammenhuber, and A. Feldmann, “Replex: dynamic traffic
engineering based on wardrop routing policies,” in Proceedings of the
2006 ACM CoNEXT conference. ACM, 2006, p. 1.

[21] “The Deltacom topology,” 2010, http://www.topology-zoo.org/maps/
Deltacom.jpg/.

[22] “The GEANT topology,” 2014, http://geant3plus.archive.
geant.net/Resources/Media Library/Documents/GEANT Project
TopologyMAR14 Web.pdf.

[23] Y. Zhu, C. Dovrolis, and M. Ammar, “Combining Multihoming with
Overlay Routing (or, How to Be a Better ISP without Owning a
Network),” in Proc. of INFOCOM’07, may 2007, pp. 839 –847.

[24] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding User
Behavior in Large-scale Video-on-demand Systems,” in Proc. of Eu-
roSys’06, 2006, pp. 333–344.

[25] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and
S. Uhlig, “Trace-Driven Analysis of ICN Caching Algorithms on Video-
on-Demand Workloads,” in Proc. of CoNEXT’14, 2014, pp. 363–376.

[26] G. R. D. Rossi, “Caching performance of content centric networks under
multi-path routing (and more),” 2011, Telecom ParisTech, Paris, France.

[27] “Mobile Ad Networks as DDoS Vectors: A Case Study,” 2015, https:
//blog.cloudflare.com/mobile-ad-networks-as-ddos-vectors/.

[28] X. Lin, R. K. Ganti, P. J. Fleming, and J. G. Andrews, “Towards
understanding the fundamentals of mobility in cellular networks,” IEEE
Transactions on Wireless Communications, vol. 12, no. 4, pp. 1686–
1698, April 2013.

[29] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution:
From Theory to Practice. Wiley, 2011.

[30] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “Ddos attack protection in
the era of cloud computing and software-defined networking,” in 2014
IEEE 22nd International Conference on Network Protocols, Oct 2014,
pp. 624–629.

[31] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 602–622,
Firstquarter 2016.

[32] A. H. M. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman,
“Vfence: A defense against distributed denial of service attacks using
network function virtualization,” in 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), vol. 2, June 2016,
pp. 431–436.

[33] A. S. Pimpalkar and A. R. B. Patil, “Detection and defense mecha-
nisms against ddos attacks: A review,” in Innovations in Information,
Embedded and Communication Systems (ICIIECS), 2015 International
Conference on, March 2015, pp. 1–6.

[34] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-
nisms: a classification,” in Signal Processing and Information Technol-
ogy, 2003. ISSPIT 2003. Proceedings of the 3rd IEEE International
Symposium on, Dec 2003, pp. 190–193.

[35] G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson, “A framework
for a collaborative ddos defense,” in 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), Dec 2006, pp. 33–42.

[36] K. Kalkan, G. Gr, and F. Alagz, “Filtering-based defense mechanisms
against ddos attacks: A survey,” IEEE Systems Journal, vol. PP, no. 99,
pp. 1–13, 2016.

[37] L. Li, W. Chou, W. Zhou, and M. Luo, “Design patterns and extensibility
of rest api for networking applications,” IEEE Transactions on Network
and Service Management, vol. 13, no. 1, pp. 154–167, March 2016.

[38] Y. Wang and I. Matta, “Sdn management layer: Design requirements
and future direction,” in 2014 IEEE 22nd International Conference on
Network Protocols, Oct 2014, pp. 555–562.

[39] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[40] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. of INM/WREN’10, 2010, pp. 3–3.

[41] “SDNi: A Message Exchange Protocol for Software Defined Networks
(SDNs) across Multiple Domains,” Jun. 2012, https://tools.ietf.org/html/
draft-yin-sdn-sdni-00. [Online; accessed 08-July-2015].

[42] F. Salvestrini, G. Carrozzo, and N. Ciulli, “Towards a distributed sdn
control: Inter-platform signaling among flow processing platforms,” in
Future Networks and Services (SDN4FNS), 2013 IEEE SDN for. IEEE,
2013, pp. 1–7.

[43] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[44] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart, “An archi-
tectural approach to autonomic computing,” in Proc. of International
Conference on Autonomic Computing, May 2004, pp. 2–9.

[45] E. Lavinal, T. Desprats, and Y. Raynaud, “A generic multi-agent concep-
tual framework towards self-management,” in Proc. of NOMS’06, April
2006, pp. 394–403.

[46] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang, “DACoRM: A
coordinated, decentralized and adaptive network resource management
scheme,” in Proc. of NOMS’12, Maui, Hawaii, Apr. 2012, pp. 417–425.

[47] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource man-
agement for cloud environments,” in Proc. of CNSM’10, Oct 2010, pp.
1–8.

[48] R. Hancock, G. Karagiannis, J. Loughney, and S. V. den Bosch, “Next
Steps in Signaling (NSIS): Framework,” IETF, RFC 4080, Jun. 2005.

Dario Valocchi received its Ph.D. in Engineering
from University of Perugia (IT) in 2016. The same
year he joined University College London as re-
search associate at the Department of Electronic
and Electrical Engineering. His research interests
focus on signaling protocols, network management,
network function virtualization.

Daphne Tuncer is a postdoctoral researcher in the
Department of Electronic and Electrical Engineering
at University College London, UK. She received her
Ph.D. from the same department in November 2013.
Before joining UCL, she studied in France, where
she obtained a ”Diplôme d’ingénieur de Télécom
SudParis” in 2009. Her research interests are in the
areas of software-defined networking, adaptive net-
work resource management and cache management.

Marinos Charalambides is a senior researcher at
University College London. He received a BEng
in Electronic and Electrical Engineering, a MSc
in Communications Networks and Software, and
a Ph.D. in Policy-based Network Management, all
from the University of Surrey, UK, in 2001, 2002
and 2009, respectively. His current research interests
include network programmability, adaptive resource
management, content distribution,and network mon-
itoring.

Mauro Femminella (M’01) received both the mas-
ter degree and the Ph.D. in Electronic Engineering
from University of Perugia in 1999 and 2003, re-
spectively. Since November 2006, he is assistant pro-
fessor at the Department of Electronic and Informa-
tion Engineering, University of Perugia. His current
research interests focus on nanoscale networking and
communications, location and navigation systems,
network and service management architectures, and
big data.

Gianluca Reali is an associate professor at the Uni-
versity of Perugia, Department of Information and
Electronic Engineering (DIEI), Italy, since January
2005. He received the Ph.D. degree in Telecommuni-
cations from the University of Perugia in 1997. From
1997 to 2004 he was researcher at DIEI. In 1999 he
visited the Computer Science Department at UCLA.
His research activities include resource allocation
over packet networks, wireless networking, network
management, and multimedia services.

15

George Pavlou is Professor of Communication Net-
works in the Department of Electronic and Electri-
cal Engineering, University College London, UK.
He received a Diploma in Engineering from the
National Technical University of Athens, Greece
and MSc and PhD degrees in Computer Science
from University College London, UK. His research
interests focus on networking and network manage-
ment, including aspects such as traffic engineering,
quality of service management,autonomic network-
ing, information-centric networking, and software-

defined networks. He has been on the editorial board of a number of
key journals in these areas, he is the chief editor of the bi-annual IEEE
Communications network and service management series and in 2011 he
received the Daniel Stokesbury award.

