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Abstract

Traditional network functions such as firewalls and Intrusion Detection Systems (IDS) are implemented in

costly dedicated hardware, making the networks expensive to manage and inflexible to changes. Network

function virtualization enables flexible and inexpensive operation of network functions, by implementing

virtual network functions (VNFs) as software in virtual machines (VMs) that run in commodity servers.

However, VNFs are vulnerable to various faults such as software and hardware failures. Without efficient

and effective fault tolerant mechanisms, the benefits of deploying VNFs in networks can be traded-off. In

this paper, we investigate the problem of fault tolerant VNF placement in cloud networks, by proactively

deploying VNFs in stand-by VM instances when necessary. It is challenging because VNFs are usually stateful.

This means that stand-by instances require continuous state updates from active instances during their

operation, and the fault tolerant methods need to carefully handle such states. Specifically, the placement of

active/stand-by VNF instances, the request routing paths to active instances, and state transfer paths to

stand-by instances need to be jointly considered. To tackle this challenge, we devise an efficient heuristic

algorithm for the fault tolerant VNF placement. We also propose two bicriteria approximation algorithms

with provable approximation ratios for the problem without compute or bandwidth constraints. We then

consider the dynamic fault recovery problem given that some placed active instances of VNFs may go faulty,

for which we propose an approximation algorithm that dynamically switches traffic processing from faulty

VNFs to stand-by instances. Simulations with realistic settings show that our algorithms can significantly

improve the request admission rate compared to conventional approaches. We finally evaluate the performance

of the proposed algorithm for the dynamic fault recovery problem in a real test-bed consisting of both

physical and virtual switches, and results demonstrate that our algorithms have potentials of being applied

in real scenarios.

Keywords: Fault-tolerance; network function virtualization; cost minimization; bicriteria approximation

algorithms; algorithm analysis.
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1. Introduction

The operation of cloud networks, such as data center networks, geo-distributed networks, needs various

network functions, such as network address translation (NAT), firewall and deep packet inspection (DPI),

to improve the network performance and security. These network functions are typically implemented in

dedicated hardware that are costly and difficult to reconfigure. The advent of Network Function Virtualization

(NFV) provides a flexible and inexpensive support of network functions [1], by decoupling network functions

from physical devices to software in virtual machines (VMs). Therefore, such virtualized network functions

(VNFs) can be instantiated on any data center (DC) with enough compute resources. This flexibility further

enables advanced VNF placement schemes [2, 3], through which the cost and flexibility of network functions

can be largely improved [4].

Despite the achieved flexibility, moving network functions from hardware to software poses grand concerns

especially in terms of fault tolerance and reliability. For instance, VNFs are software running in VMs, which

are vulnerable to various problems such as software misconfiguration, faulty VMs and software malfunctions

[5]. In order to enhance VNF fault tolerance and reliability, backup VNF instances are required [6]. In case

of failures, requests of stateless VNFs can be immediately redirected to one of their stand-by instances. In

contrast, stateful VNFs generate states during traffic processing [7] that need to be transferred to stand-by

instances in order to guarantee seamless request redirection. For instance, a stateful NAT VNF needs to

maintain existing user connections to support its correct operation. If a NAT fails, the transient states

created by the traffic itself have to be transferred to the backup NAT to avoid NAT disconnection. Given

that such state transfers need to be continuously performed while active instances are in operation [8, 9], it

could consume considerable network bandwidth resources. As such, decisions regarding 1) the placement of

active instances, 2) the placement of stand-by instances, 3) traffic routing, and 4) the state transfer paths

need to be jointly considered so that the number of admitted user requests can be maximized, subject to

computing and bandwidth resource constraints. In this paper, we study the fault-tolerant stateful VNF

placement problem and the fault recovery problem when VNFs fail, whereby the aforementioned four decisions

are jointly determined under compute and bandwidth resource constraints of data centers in a cloud network.

Providing efficient solutions to the fault-tolerant VNF placement and fault recovery problems poses

several fundamental challenges. First, as stated earlier, a naive solution that separately determines the
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instance locations and routings may result in network congestion and admission failures. It may also lead

to significant network communication costs if the active/stand-by instances are placed with long network

distance to the source and destination nodes of requests. Second, the placement of stand-by instances directly

influence the state update cost for VNFs. Also, the number of stand-by instances affects the fault tolerance

of the networks. Clearly, a higher number of stand-by instances indicates a higher degree of fault tolerance;

however, a higher number of stand-by VNF instances mean higher cost and overhead. Third, there exist

various players in the NFV market. Although all of them aim to maximize their revenue in offering NFV

services, they usually have different resource settings and thus will need different objectives in optimizing the

performance of VNF provisioning in their networks. For example, some start-up service providers may have

limited compute and bandwidth resources leased from infrastructure providers, and they want to admit as

many requests as possible while guaranteeing the fault tolerance of the NFV services. Furthermore, service

providers that aim to compute-intensive services, e.g., big data processing services usually want to minimize

the maximum resource utilization at different locations. How to provide a series of efficient and effective

solutions for different network service providers with different objectives is challenging.

There are a few studies on the fault-tolerant VNF placement. Most of them focused on either backup

instances or stateless VNFs [6, 10, 11, 12, 13]. For example, Kanizo et. al. [11] investigated the planning-stage

VNF backup instances (i.e., do not consider active instances) deployment problem while taking into account

the failure probabilities of network nodes. Chantre et. al. [12] studied the placement problem of redundant

stateless VNFs in LTE networks with a focus on deriving the optimal number of VNFs to guarantee reliability.

Carpio et. al. [6] investigated the joint active and backup stateless VNF placement problem, but did not

consider request routing and VNF state transfers. Almost all of them only focus on a specific optimization

objective in their problems. To the best of our knowledge, this work is the first study that jointly considers

stateful active/stand-by VNF placement, request routing and state transfers. We are also the first to

consider different scenarios for network service providers with different optimization objectives to optimize

the provisioning of their NFV services.

The main contributions of this paper include:

• We define a comprehensive series of optimization problems on fault-tolerant VNF placement in cloud

networks for various service providers with different resource configurations to offer compute-intensive

or bandwidth-hungry network services

• For start-up service providers with both limited compute and bandwidth resources,we formulate the

fault-tolerant VNF placement problem to maximize the number of requests that can be admitted

while minimizing the implementation cost of the admitted requests. We propose an efficient heuristic

based on the joint availability of compute resources of a data center and the accumulative bandwidth

resources of its inbound links. The proposed heuristic jointly computes the placement of both active

3



and stand-by stateful VNF instances

• For service providers offering compute-intensive network services, we consider the fault-tolerant VNF

placement problem without bandwidth constraint that aims to minimize the maximum resource

utilization in different locations. We propose a (2, 4 + ε) bicriteria approximation algorithm with

provable approximation ratios on the achieved cost and maximum utilization of data center in Sections 5,

where ε is a constant that represents the accuracy parameter in the algorithm [14] for the unsplittable

flow problem. The proposed algorithm exploits an approach based on auxiliary graph that allows

active/stand-by instances, request routings and state update paths to be jointly considered

• Similarly, the bandwidth resource may be the bottleneck of the networks of some service providers.

We thus consider the VNF placement problem that aims to minimize the maximum congestion of the

links in the network while minimizing the implementation cost, by proposing a (2∆, 8 + 2ε) bicriteria

approximation algorithm

• For the problem of dynamic fault recovery, we also propose an efficient approximation algorithm with

an approximation ratio

• We then investigate the performance of the proposed algorithms by simulations and results show that

the performance of the proposed algorithms is promising

• We finally build a prototype to evaluate the algorithm for the dynamic fault recovery problem in a real

test-bed with both hardware and virtual switches, and results show that the proposed algorithm can

be applied in real environments.

The remainder of this paper is organized as follows. We give a survey of the state-of-the-art on fault

tolerance in NFV-enabled networks in Section 2. We introduce the considered scenario, the related definitions,

and a series of optimization problems related to fault-tolerant placement of stateful VNFs in NFV-enabled

networks in Section 3. We then propose a heuristic algorithm for the fault-tolerant VNF placement problem in

Section 4. For the fault-tolerant VNF placement without compute or network bandwidth resource constraints,

we propose two bicriteria approximation algorithms with approximation ratios in Sections 5 and 6, respectively.

We also investigate the dynamic fault recovery problem with VNFs being placed in the network in Section 7.

We finally study the performance of the proposed algorithms in Section 8, and conclude in Section 9.

2. Related Work

Previous work have focused on different aspects of the deployment of VNFs, e.g., [15, 16, 10, 17, 3, 18, 19].

Fayazbakhsh et al. [20] proposed FlowTags for flow scheduling in a network in the presence of dynamic

modifications performed by middleboxes. Martins et al. [15] developed a virtualization system that aims to
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improve network performance, by deploying modular, virtual middleboxes on lightweight VMs. Qu et al. [21]

studied the problem of delay-aware scheduling and resource optimization for VNFs. Wang et al. [17] studied

the problem of dynamic network function composition, and proposed a distributed algorithm, using Markov

approximation method for the problem. Huang et al. [10] studied the problem of jointly routing and placing

network functions to some servers in a data center, with the aim to maximize network throughput while

meeting end-to-end delay requirements of user requests. These studies assumed failure-free scenarios and as

such, are not adapted to support fault tolerant routing in case of VNF malfunctions.

VNF failures can however occur frequently [22], due to a variety of reasons, such as connectivity errors

(e.g., link flaps, device unreachability, port errors), hardware faults (memory errors, defective chassis),

misconfiguration (wrong rule insertion, configuration conflicts), software faults (reboot, OS errors) or

excessive resource utilization. Not handling these failures seamlessly and correctly can cause significant

degradation in terms of service performance and reliability. It is therefore crucial to enable robust routing by

placing active and stand-by instances of VNFs, such that traffic is processed by the active instance under

normal operating conditions and by one of the stand-by instances when a failure occurs. Most studies

on providing fault tolerance support for NFV-enabled networks have been focusing on either designing

and implementing systems with fault tolerance support [9, 23, 24] or plan-stage VNF placements based on

statistical methods [11]. For example, Pico [9] was designed and implemented to provide fault tolerance

support at the flow level. Kanizo et. al. [11] investigated the problem of NFV backup instances deployment,

given the distribution of failure probabilities for different network functions. None of these studies, however,

takes into account how to jointly route user requests and place active and stand-by instances of their service

chains while optimizing network performance metrics.

In contrast to previous work, we investigate a comprehensive set of optimization problems related to

enhancing the fault tolerance of NFV-enabled network services. Specifically, we study the problem of joint

routing and placement of active and stand-by instances, such that either network throughput, congestion,

or implementation cost of admitted requests is optimized, while meeting compute and network bandwidth

resource constraints.

3. Preliminary

In this section, we first introduce the system model. We then describe the stateful VNFs and cost model,

and we finally define a series of optimization problems.

3.1. System model

We consider a cloud network G = (V ∪ DC, E) operated by a cloud service provider with a set V of

switches, a set DC of data centers that are attached to some switches in V , and a set E of network links
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Figure 1: An example of fault-tolerant placement problem in G with a set DC = {DC1, DC2, DC3} connected by a set
V = {v2, v3, v5} of switches.

that interconnect the switches in V (see Fig 1). We follow the convention to assume that the number of

data centers is far less than the number of switches. Each data center DCi ∈ DC has a capacity of compute

resources C(DCi) that can instantiate a limited number of VNFs. Also, each link e ∈ E has a capacity

B(e) of bandwidth resource that can be allocated to transfer data traffic of user requests. Furthermore, the

transmission delay on each link e ∈ E is denoted as de, representing the delay for transmitting a unit packet

rate over edge e. In this work, we focus on inter-data center resource allocations and hence assume that each

data center and the switch node attached to it (usually the core switch in a leaf-spine data center network)

are connected by high-speed optical cables with abundant network bandwidth (see Fig 1), so that the delay

and communication cost on these links can be considered as negligible.

3.2. User requests with service chain requirements

We denote as rj = (sj , tj , SCj , ρj , Dj) a user request. Each user request rj requires to route its traffic

from a source node sj to a destination node tj at a given packet rate ρj within Dj time, such that its traffic

passes through one instance of its required service chain SCj . An instance of a service chain is defined as an

implementation of its specified VNFs in a VM. We denote as R the set of all rj .

User requests usually require different types of service chains, with each type of service chains having

a different sequence of VNFs. We assume that the compute resources requested by an instance of service

chain SCj for processing the traffic of rj is proportional to its packet rate, i.e., ρj · cunit, where cunit is a

given constant representing the amount of compute resources that is needed to process each packet rate unit.

The total amount of compute resource allocated to all instances of service chains in data center DCi must

not exceed its computing capacity C(DCi). Similarly, let bunit be the amount of bandwidth resource that is

assigned to transfer each data unit via each link e ∈ E.

The end-to-end delay requirement Dj of each request rj is defined as the maximum tolerable delay

experienced by its traffic from its source node sj to destination node tj . It consists of the processing delay of
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service chain SCj in a data center and the transfer delay due to traffic routing. Let d(SCj , DCi) be the delay

incurred by an instance of SCj at DCi for processing a packet rate unit. We denote by yji a binary variable

indicating whether an instance of service chain SCj of rj is placed in DCi. We also use a binary variable

wje to indicate whether edge e is used to transfer the data of request rj . The end-to-end delay requirement

of rj thus can be defined by

ρj

(∑
e∈E

wje · de +
∑

DCi∈DC
yji · d(SCj , DCi)

)
≤ Dj . (1)

3.3. Stateful active and stand-by VNF instances

Faults can occur anywhere and at anytime in a network due, for example, to natural disasters at the

locations of data centers, software malfunctions in VNFs, and hardware failures. To avoid service interruption

due to such failures, active-standby failover mechanisms are usually adopted in many systems. We consider

that an active instance of a service chain is placed into a data center, and a few stand-by instances of the

service chain are placed into other data centers.To reduce communications overhead among different VNFs,

the instances are considered at the service chain level instead of VNF level. It must be mentioned that the

number of data centers that are selected for the stand-by instances play a vital role in guaranteeing the

fault-tolerance level of the system. Too many stand-by instances may lead to a high overhead of maintenance

and cost, while too few stand-by instances may not be able to respond to some failures.

We consider stateful VNFs (i.e., stateful service chains), whereby the states from the active instance need

to be continuously transferred to stand-by instances while the active instance is still in operation. Such state

transfer plays a vital role in enabling the seamless and correct request redirection from an active instance to

a stand-by instance. Specifically, once the active instance fails (e.g., one of the VNFs in a service chain fails),

its traffic can be seamlessly redirected to one of the stand-by instances for processing, as long as the states

are updated to the stand-by instances. The re-directed flows may not be processed correctly otherwise. For

example, maintaining statistic information about the observed traffic flows is essential to perform intrusion

detection. The absence of relevant statistics in the stand-by instances of an Intrusion Detection VNF can

compromise the detection.

We assume that the state update rate of each request from its active instance to stand-by instances is

proportional to its packet rate, i.e., β · ρj , where β (> 0) is a given constant. We further assume that the

demand for compute resources is allocated on a stand-by instance only when this is activated. In other words,

compute resources are not pre-allocated to a specific stand-by service chain instance. We assume instead

that there is a stand-by resource pool in each data center with reserved compute resources that can be used

by any stand-by instance when it becomes activated.
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3.4. Cost model

Minimizing the implementation cost for user requests is usually considered as an effective objective

to reduce the operational cost of network service providers. Here, the implementation cost of request rj

= (sj , tj , SCj , ρj , Dj) consists of (i) the processing cost incurred by the processing of user traffic by an active

instance of service chain SCj in data center DCi, (ii) the communication cost of transferring its traffic from

sj to DCi for processing, (iii) the communication cost of transferring the processed data from DCi to its

destination tj , and (iv) the communication cost of updating status from DCi to a set of data centers with

the stand-by instances of SCj . Let c(SCj , DCi) be the cost of implementing an instance of SCj in DCi for

the processing each packet rate unit, and c(e) be the cost of transferring each packet rate unit of request rj

through link e ∈ E. Without loss of generality, we assume that the edge cost c(e) is within the range of (0, 1].

Let y′ji be the binary variable indicating whether data center DCi has a stand-by instance of SCj or not.

The implementation cost c(rj) of rj in an active data center and a set of data centers with stand-by service

chain instances is:

c(rj) = ρj ·
( ∑
DCi∈DC

yjic(SCj , DCi) +
∑
e∈E

wje · c(e) +
∑

DCi∈DC
yji

∑
DCi′∈DC

yji′
∑

e∈pDCi,DC
i′

c(e)
)
, (2)

where py,z is the shortest path in G from node y to node z (in terms of path cost). As explained in Section

3.3, the stand-by instances of a service chain are only activated in case of failures but their resource demands

are reserved in advance. As such, the placement of service chain instances does not take into account the

cost incurred by the consumption of compute resources by stand-by instances of the service chain.

3.5. Problem definitions

Different network performance indicators can be taken into account when optimizing the service delivery

process. In particular, the choice of the objective depends on the characteristics of the provider, e.g., types

of available resources, geographical scope of the infrastructure, nature of the offered services etc. We here

define different versions of the VNF deployment optimization problem that cover the requirements of a wide

range of network service providers.

Problem 1: A key objective for service providers with limited compute and bandwidth resources (e.g.,

start-ups service providers) is to maximize the number of admitted requests while both fully utilizing their

limited resources and incurring the least operational cost. In addition, it is also essential for their services to

be fault tolerant and delay-aware in order to maximize the quality of experience offered to their customers.

The optimization objective thus is defined as the maximization of the admitted number of requests. More

specifically, the goal of the fault-tolerant VNF placement problem is to determine, for all user requests rj

in R, i) the placement of the active instance of service chain SCj on data center DCi, ii) the number and

placement of stand-by instances to a set of other data centers, as well as iii) the routing path for requests
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from sj to tj via DCi and the state update path from DCi to the data centers with stand-by instances

of SCj , so that the number of admitted requests is maximized while the total cost associated with their

implementation is minimized, subject to compute resource capacity C(DCi), network bandwidth capacity

B(e) for e ∈ E, and end-to-end delay constraints.

Let xj be a binary variable that indicates whether user request rj is admitted. We denote by qjv a binary

indicator variable that shows whether switch v ∈ V is used to forward the traffic of rj . Let δ(v) denote the

incident edges of switch node v ∈ V . Denote by χje a binary variable that shows whether edge e is used

to transfer the state update data of request rj . Assuming that B represents the budget of implementing

requests, we can formulate the objective of Problem 1 as an Integer Linear Program (ILP) with quadratic

constraints as follows,

ILP : max
∑

rj∈R
xj , (3)

subject to the following constraints,

∑
DCi∈DC

yji = xj , ∀rj ∈ R (4)∑
DCi∈DC

y′ji ≥ xj , ∀rj ∈ R (5)∑
rj∈R

yji · ρj · cunit ≤ C(DCi), ∀DCi ∈ DC (6)

∑
rj∈R

(
wje + χje · β

)
· ρj · bunit ≤ B(e), ∀e ∈ E (7)

∑
e∈δ(v)

wje ≤ 2 · qjv, ∀rj ∈ R (8)

∑
e∈δ(sj)

wje ≤ 1, ∀rj ∈ R (9)

∑
e∈δ(tj)

wje ≤ 1, ∀rj ∈ R (10)

∑
rj∈R

c(rj) ≤ B, (11)

ρj

(∑
e∈E

wje · de +
∑

DCi∈DC
yji · d(SCj , DCi)

)
≤ Dj , ∀rj ∈ R, (12)

xi, yji, y
′
ji, wje ∈ {0, 1}, (13)

Constraints (4) guarantee that each admitted user request has its service chain SCj active instance in a

data center. Constraints (5) make sure there is at least one data center that implements a stand-by instance

of SCj of request rj if it is admitted. Constraints (6) and Constraints (7) guarantee that the computing

capacity of each data center DCi and the bandwidth resource capacity of each link e ∈ E are satisfied,

respectively. Constraints (8) makes sure that if a switch v ∈ V is selected to forward the traffic of rj , either

at most two of its incident edges are used to forward traffic (one for incoming traffic and one for outgoing
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traffic) or one incident edge is used to forward both incoming and outgoing traffic. Constraints (9) and

(10) ensure that no traffic goes to source node sj and no traffic leaves destination node tj of request rj ,

respectively. Constraints (11) imposes a budget on the cost of implementing all admitted requests. The

budget can be used to control and possibly minimize that cost. It should be highlighted that quadratic

nature of constraints (11) affects the hardness of the ILP’s resolution and optimal solutions can only be

obtained for small problem sizes. Constraints (12) guarantee that the end-to-end delay requirement of each

admitted request rj is met.

Problem 2: An important objective for service providers with distributed data centers offering compute-

intensive services is to balance resource usages between available locations (e.g., geographical load balancing),

such that users in different locations can be provided with maximum resource availability and guaranteed

quality of experience. In this setting, we assume that links in G have abundant resources to implement

all requests in R. The objective of the fault-tolerant VNF placement problem without bandwidth capacity

constraint is to minimize the maximum data center utilization for all data centers, i.e.,

min max
DCi∈DC

∑
rj∈R

yjiρj · cunit

C(DCi)
, (14)

subject to constraints (6), (8), (9), (10), (11), (12), (13), and:

∑
DCi∈DC

yji ≥ 1, ∀rj ∈ R (15)∑
DCi∈DC

y′ji ≥ 1, ∀rj ∈ R. (16)

In this problem, all resources in the network are sufficient to implement all requests. Constraints (15) and

(16) are used to guarantee that each request in R is admitted.

Problem 3: We focus in this problem on service providers offering intensive data-transfer services,

e.g., big data processing network functions. Given that these services are bandwidth hungry, network link

bandwidth can act as a bottleneck. The fault-tolerant NFV placement problem without computing capacity

constraint consists in determining the placement of the service chain active instance of each request rj ∈ R,

as well as the number and placement of stand-by instances, such that the congestion on links in G and the

cost of implementing all requests are minimized, i.e.,

min max
e∈E

∑
rj∈R

wje · ρj
B(e)

, (17)

subject to constraints (15), (16), (7), (8), (9), (10), (11), (12).

Problem 4: Problems 1, 2 and 3 compute for each request a set of stand-by instances. In Problem 4, we

focus on determining which of these stand-by instances to select when the active instance of a VNF fails. We
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refer to this problem as the dynamic fault recovery problem. We assume a model where time is divided into

equal slots. The active instance of a request can fail at any future time slot once the request is admitted.

Let Rf (t) be the set of requests with active service chain instances failed at time slot t. As explained in

Section 3.3, compute resource are reserved at each data center hosting stand-by instances. Let Cf (DCi) be

the computing resource capacity of the stand-by resource pool at data center DCi. The total amount of

resource allocated to activated stand-by instances of service chains should not exceed Cf (DCi). Similarly,

denote by Bf (e) the bandwidth resource capacity that is reserved for transmitting the data traffic from/to

activated stand-by instances. Note that without such computing and bandwidth resource reservation, the

stand-by instances of VNFs may not be able to be activated when necessary.

The objective of the dynamic fault recovery problem is to select, for each request rj (∈ Rf (t)), a data center

from the set DCsj and determine the routing of the traffic of rj to the selected data center, such that the cost

of the recovery procedure in terms of compute and network bandwidth resource consumption is minimized,

subject to compute resource capacity Cf (DCi) and bandwidth resource capacity Bf (e) constraints.

All these problems are clearly NP-hard given that special versions without considering fault-tolerant

requirements and/or bandwidth resource constraints are NP-hard by simple reduction from another NP-hard

problem, the unsplittable single-source flow problem [14]. In this paper, we build upon the algorithm proposed

in [14] to solve this problem.

More specifically, in the unsplittable single-source flow problem [14], we are given a network G = (V,E, u),

a source node s, and a set of commodities with a set of sink nodes. Each commodity m has a demand σm for

transferring σm number of flows from the source node to its sink node tm along a single s− tm path. The

total number of flows routed across any edge e ∈ E should not violate its capacity ue.

4. An Efficient Heuristic for the Fault-Tolerant VNF Placement Problem

Due to the NP-hardness of the fault tolerant VNF placement problem, we here propose an efficient

heuristic to solve it.

4.1. Algorithm

To avoid poor performance in terms of request admission rate and cost, the placement of active/stand-by

instances, request routings and update paths need to be jointly computed. Conventional approaches such as

naive greedy algorithm select data centers for the active and stand-by instances separately. It first finds the

data center with the largest amount of available compute resources to host the active instance for SCj of rj ,

and then selects a random number of data centers with lowest transfer costs to host stand-by VNF instances

for rj . As a result, the separate placement and routing decision may result in situations where no update

paths are available from the active instance to one of its stand-by instances due to link congestions.
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Table 1: Symbols

Symbols Meaning
G = (V ∪ DC, E) a cloud network with a set V of switches, a set DC of data centers, and a set E of edges
DCi a data center DCi in DC
vDCi

the switch that attaches DCi

C(DCi) the capacity of compute resources of data center DCi

e and de link e ∈ E and the delay of implementing a unit packet along e
B(e) the network bandwidth capacity for e ∈ E
rj , sj , tj a request and its source and destination nodes
Dj the end-to-end delay requirement of request rj
ρj and SCj the packet rate and service chain of request rj
R a set of requests
cunit, bunit the amounts of compute and bandwidth resources that is needed to process each unit packet rate.
d(SCj , DCi) the processing delay by an instance of SCj at DCi for the processing of a unit amount of packet rate
yji the binary variable that shows whether an instance of service chain SCj of rj is placed to DCi.
wje, χje the binary indicator variables that show whether edge e is used to transfer the data and the state

update of rj , respectively.
β the ratio between the state update rate and the packet rate of user requests
c(SCj , DCi) the cost of implementing an instance of SCj in DCi for the processing a unit amount of packet rate
c(e) the cost of transferring a unit packet rate for request rj through link e ∈ E.
y′ji the binary variable showing whether data center DCi has a stand-by instance of SCj

c(rj) the implementation cost of rj
py,z the shortest path in G from node y to node z in terms of path cost
qjv the binary indicator variable that shows whether switch v ∈ V is used to forward the traffic of rj
δ(v) the incident edges of switch node v ∈ V
B the budget of implementing requests
Rf (t) the set of requests that have their assigned active service chain instances failed at time slot t
DCsj the data centers where the stand-by instances of request rj ∈ Rf (t) are hosted
Cf (DCi) the amount of computing resource in the stand-by resource pool with resources reserved for activated

stand-by instances
Bf (e) the bandwidth resource capacity that is reserved for transmitting the data traffic from/to activated

stand-by instances
s and tm the single source and the sink of commodity m in the unsplittable single-source flow problem
σm the demand of each commodity m in the unsplittable single-source flow problem
ue the capacity for each link e in the unsplittable single-source flow problem
NR(DCi, j) the ranking of DCi after considering the (j − 1)th request in the sorted list
A(DCi, j), A(e, j) the available compute and bandwidth resources of DCi and link e after considering the (j − 1)th

request
Ei

adj the set of inbound links of DCi

DChr based on the obtained ranking, the algorithm selects the data center with the highest rank
K a threshold for the number of data centers that can be used for stand-by instances(1 ≤ K ≤ |DC|)
Lhr the list of data centers
ε a constraint with ε > 0 that represents the accuracy parameter in the algorithm [? ] for the

unsplittable flow problem
G′ = (V ′, E′) the auxiliary graph for the problem without bandwidth constraint
DC′i, s0 the virtual data center node and the common source in auxiliary graph G′
DCsj the set of data centers for stand-by instances of SCj

T2(m,n) the time to solve a fractional minimum-cost flow problem with m edges and n nodes in the flow graph
∆ the diameter of the given network
G′′ = (V ′′, E′′) the auxiliary graph for the fault-tolerant VNF placement problem without computing capacity

constraints
rj,1 and rj,2 the two virtual requests of user request rj
fj,1 the unsplittable flow for virtual request rj,1 from s0 to virtual request node in G′′
fj,2 the unsplittable flow for virtual request rj,2 from s0 to its virtual request node in G′′
f ′ the single-source unsplittable flow in the auxiliary graph G′′
fj,1 and fj,2 the flows for virtual requests rj,1 and rj,2 in auxiliary graph G′′
G′′′ = (V ′′′, E′′′) the auxiliary graph for the fault recovery problem
Bf,max, Cf,max the maximum edge and node capacities
f ′′′ the unsplittable flow from s0 to request node rj in G′′′

12



In contrast, our heuristic jointly selects a data center for the active instance and a number of data centers

for its stand-by instances. Specifically, the heuristic first sorts all requests in R in increasing order of their

packet rates, and then sequentially considers the requests in the sorted list. Next, for the jth request rj in

the sorted list, the algorithm ranks data centers based on the increasing order of the product of the available

compute resources and the accumulative available network bandwidth resources of data centers’ inbound

links. Let NR(DCi, j) be the ranking of DCi after considering the (j − 1)th request in the sorted list. Also,

denote by A(DCi, j) and A(e, j) the available compute and bandwidth resources of DCi and link e after

considering the (j − 1)th request. Then,

NR(DCi, j) = A(DCi, j) ·
∑

e∈Ei
adj

A(e, j), (18)

where Eiadj is the set of inbound links of DCi. The idea of such ranking is to find a set of data centers with

enough compute and network bandwidth resources for both active and stand-by instances.

Based on the obtained ranking, the algorithm selects the data center with the highest rank, denoted

DChr. Then, the algorithm checks if (1) DChr has enough compute resources to host an active instance of

SCj for rj ; and (2) if the shortest path from sj to tj via DChr has enough bandwidth resources to transfer

rj at rate ρj . The algorithm also checks whether (3) DChr conforms to rj ’s delay requirement. If the above

three requirements are all satisfied, DChr is selected as the data center for the active service chain instance

of SCj . The algorithm then searches data centers for the stand-by service chain instances of rj . Let DCsj be

the set of data centers for stand-by service chain instances of rj . To this end, the rest of data centers except

DChr are sorted in the increasing order of state update costs to DChr. Each data center in the sorted DC

list is further added to DCsj until there is a data center that cannot meet the bandwidth resource requirement

for updating states from DChr. To avoid all the other data centers to be selected to host stand-by instances,

we set a threshold K (1 ≤ K ≤ |DC|) for the number of data centers that can be used for stand-by instances.

This prevents a large number of data centers to be selected to place stand-by instances and as such avoids

the creation of unnecessary burden for state updates. If no stand-by data center exists after considering the

rest of the data centers, request rj is rejected.

In case the aforementioned constraints cannot be satisfied, DChr is added to DCsj as the accumulative

bandwidth resources to nearby data centers might make DChr a promising candidate for stand-by instances.

Data centers other than DChr are sorted in a list based on the increasing accumulative communication cost

to DChr. Denote by Lhr such a list of data centers. The algorithms then iterates through data centers in

Lhr until a data center, say DCi, that can serve the active service chain instance is found, i.e., a data center

that meets constraints (1), (2) and (3). Once DCi is found, it is used to host the active instance of rj . Then,

in Lhr, only the data centers that have enough bandwidth resources for state updates rate β · ρj from DCi
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(the data center with the active instance) are added to DCsj (with |DC
s
j | ≤ K). If neither such data center

can be found for its active instance nor a set of data centers can be determined for its stand-by instances, rj

is rejected.

The above procedure continues until all requests in R are considered. The details of the proposed heuristic

are shown in Algorithm 1.

Algorithm 1 Heuristic
Input: Network G(V ∪ DC, E); Set of requests rj ∈ R where rj = (sj , tj , SCj , ρj , Dj), K.
Output: Assignments of each request in rj ∈ R to a data center for the active instance of its service chain SCj , and to a set
DCsj of data centers for stand-by instances of rj .

1: for rj ∈ R do
2: Sortedlist ← SortIncreaseOrder(DC) based on Eq. (18)
3: DChr ← Sortedlist.getF irst();
4: DCsj ← ∅;
5: Let DCa

j be the data center for the active instance of SCj ;
6: A(p(sj ,DChr)

)← G.shortestPathAvailBandwidth(sj , DChr);
7: A(p(DChr,tj)

)← G.shortestPathAvailBandwidth(DChr, tj);
8: if ρj ≤ A(p(sj ,DChr)

) && ρj ≤ A(p(DChr,tj)
) && Dhr ≤ Dj then

9: DCa
j ← DChr;

10: Updatelist ← SortIncreaseOrder(DC \DChr) based on state update costs to DChr;
11: for each DCi ∈ Lhr do
12: DCsj ← DCsj ∪ {DCi}
13: if K = |DCsj | or A(p(DCi,DChr)

) ≤ β · ρj then
14: Break;
15: else
16: DCsj ← DCsj ∪ {DChr}
17: Lhr ← SortIncreaseOrder(DC \DChr) following state update costs to DChr;
18: for each DCi ∈ Lhr do
19: if DCa

j 6= NIL && A(p(DCa
j ,DCi)

) ≥ β · ρj && |DCsj | ≤ K then
20: DCsj ← DCsj ∪ {DCi};
21: else
22: if ρj ≤ A(p(sj ,DCi)

) && ρj ≤ A(p(DCi,tj)
) && Di ≤ Dj then

23: DCa
j ← DCi;

24: else
25: if |DCsj | ≤ K then
26: DCsj ← DCsj ∪ {DCi};
27: Update the available resources of all data centers and network link resources
28: return The assigned data center to place the service chain of each request for the processing of its traffic, and a set of data

centers to replicate its service chain.

The performance of the proposed heuristic is given by the following theorem.

Theorem 1. Given a cloud network G = (V ∪ DC, E), a set of requests with each represented by rj =

(sj , tj , SCj , ρj , Dj), there is an algorithm, i..e, Algorithm 1, which delivers a feasible solution to the

fault-tolerant VNF placement problem in O(|R|(|DC| log |DC|) + (|V |+ |DC|)3) time.

Please see the proof in the appendix.
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5. A (2, 4 + ε) Bicriteria Approximation Algorithm for the Problem without Bandwidth Con-

straint

We now consider the fault-tolerant VNF placement problem without the bandwidth capacity constraint

of links in the cloud network G. We assume that all requests in R can be admitted, and the objective

thus is to minimize the maximum data center utilization for all data centers. We here propose a bicriteria

approximation algorithm with an approximation ratio of (2, 4 + ε). Such a ratio indicates that (1) the

implementation cost of all requests is twice the optimal cost, and (2) the minimum maximum utilization of

compute resources in a data center is (4 + ε) times the optimal one, where ε is a constant with ε > 0.

5.1. Overview

Solving the fault-tolerant VNF placement problem without bandwidth capacity constraint is to balance the

workloads among data centers by not only minimizing their maximum resource utilization but also minimizing

the total implementation costs of the requests. One challenge is with respect to the tradeoff between the

balance of data center resource utilizations and the implementation costs of requests. For instance, the active

instance of some requests may have to be placed into data centers with high communication costs in order to

achieve a balanced workload among data centers. In order to achieve a near optimal solution, we jointly

consider the active/stand-by instance placements, request routings and state update paths.

The idea behind the proposed approach is to reduce the fault-tolerant NFV placement problem without

the bandwidth capacity constraint in G into a single-source unsplittable flow problem [14] in an auxiliary

graph G′ = (V ′, E′). Then, a feasible unsplittable flow in G′ that minimizes both the implementation cost

of requests and the maximum congestion of links in G′ is a feasible solution to the original problem in G.

Note that the aim of the single-source unsplittable flow problem is, given a network G = (V,E, u), a source

vertex s, and a set of M commodities with sinks t1, ..., tM and associated real-valued demands σ1, ..., σM ,

to route the demand σm of each commodity m along a single s− tm flow path so that the congestion, i.e.,

maxe∈E{ feue
, 1}, and the cost of flow f are minimized, while the edge capacities constraints of G are met.

5.2. Bicriteria approximation algorithm

We now describe the bicriteria approximation algorithm. We first construct the auxiliary graph G′ =

(V ′, E′). Recall that the traffic of each request rj is processed by an active instance of its SCj in a data

center, and by one of its stand-by instances in other data centers if the active instance fails. Thus, each

data center DCi corresponds to a data center node (see Fig. 2), and is added into the auxiliary graph G′,

i.e., V ′ ← {DCi | 1 ≤ i ≤ |DC|}. For each data center node DCi, we further add a virtual data center node

DC ′i (see Fig. 2) into V ′, i.e., V ′ ← V ′ ∪ {DC ′i} so that the computing capacity constraint of each data

center is converted into an edge constraint in the auxiliary graph. Next, for each data center node, we add

a few stand-by set nodes to G′, whereby each stand-by set node represents a set of candidate data centers
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for stand-by instances (see Fig. 2). Specifically, the stand-by set nodes of DCi are different combinations

of data centers from DC \ {DCi} whereby each stand-by set node has no more than K data centers. For

example, in Fig. 2, DC1 has three stand-by set nodes, i.e., {DC2}, {DC3}, and {DC2, DC3}. This means

that the stand-by instance for an active instance in DC1 may be placed to DC2, DC3 or both of them. Note

that a stand-by set node will not be added twice (e.g., there is only one DC1 in stand-by set nodes). Last,

we add a request node into V ′ for each request rj , and add a common source s0 for all requests into V ′.

An edge from the common source s0 to each of stand-by set node is added into E′. Its capacity and cost

are set to infinity and zero, respectively (i.e., no bandwidth constraint). Also, there is an edge from each

stand-by set node to a data center node DCi if DCi is not in the set of data centers represented by the

stand-by set node (e.g., DC1 has edges to DC2, DC3 and DC2 & DC3 in Fig. 2). The capacity of the edge

is set to infinity, and its cost is the accumulative cost of state updates from DCi to the data centers within

the set of data centers represented by the stand-by set node. Further, an edge from DCi to DC ′i is added.

Its capacity is the processing capacity of DCi, and its cost is set to 0. We add an edge from each DC ′i to a

request rj if DCi provides a total delay (e.g., sum of processing and communication delay) for request rj

smaller than the request delay requirement. The capacity of this edge is set to infinity. Its cost is the total

cost of processing costs of DCi for request rj plus the communication costs from sj to DCi and from DCi to

tj at packet rate ρj . Fig. 2 shows an example of the constructed auxiliary graph G′. Given the constructed

DC1	 DC1’	 rj	

rj+2	DC3	 DC3’	

rj+1	DC2	 DC2’	S0	

Stand-by	set	nodes	

Data	centers	DC2	
DC3	
	
DC�	

DC3	

DC1	
DC3	

DC1	

DC1	
DC2	

Figure 2: An example of the auxiliary graph G′ = (V ′, E′) constructed from network G with a set DC = {DC1, DC2, DC3} of
DCs that are connected by a set V = {v2, v3, v5} of switches. R = {rj , rj+1, rj+2}.

auxiliary graph G′(V ′, E′), the original problem is transferred to the problem of single source unsplittable

flow problem in G′. To find a feasible flow f in G′, the algorithm presented in [14] is invoked. The main

steps of the approximation algorithm are shown in Algorithm 2.
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Algorithm 2 A (2, 4 + ε) bicriteria approximation algorithm for the fault-tolerant VNF placement problem
without network bandwidth constraint
Input: A network G(V ∪ DC, E), a set requests rj ∈ R where rj = (sj , tj ;SCj , ρj , Dj).
Output: Assignments of each requests in rj ∈ R to a data center for active instances of service chain SCj and to a set DCsj of

data centers for stand-by instances.
1: Construct an auxiliary graph G′ = (V ′, E′) from network G(V ∪ DC, E) as exemplified by Fig. 2;
2: Find a single-source unsplittable flowf in the auxiliary graph G′ by applying the algorithm presented in [14];
3: The requests that are assigned into DCi in the flow f will be processed by an instance of a service chain in DCi, and request

will be assigned a set of data centers that are represented by the stand-by set node in f .
4: return The assigned data center to place the service chain of each request for the processing of its traffic, a set of data

centers to replicate its service chain, the request routings and update paths.

5.3. Algorithm analysis

We now analyze the correctness and performance of the proposed algorithm.

Theorem 2. Given a network G = (V ∪ DC, E), let R be a set of requests with each represented by

rj = (sj , tj , SCj , ρj , Dj)). Algorithm 2 delivers a bicriteria approximate solution with an approximation ratio

of (2, 4 + ε) with (1) the implementation cost of all requests twice the optimal cost, and (2) the minimum

maximum utilization of compute resource in a data center (4 + ε) times the optimal one, for the fault-tolerant

VNF placement problem without bandwidth capacity constraint, in O(T2(|R|+ |V |+ |DC|2|DC|−1, |R| · |DC|+

|DC|2|DC|−1)) time, where T2(m,n) is the time to solve a fractional minimum-cost flow problem with m edges

and n nodes in the flow graph, and ε is a constant with ε > 0.

Please see the proof in the appendix.

6. A (2∆, 8 + 2ε) Bicriteria Approximation Algorithm for the Fault-Tolerant VNF Placement

Problem without Computing Capacity Constraints

In this section we deal with the fault-tolerant NFV placement problem that aims to minimize the maximum

congestion of links in network G and the cost of implementing all requests in R. According to realistic

traffic patterns in various networks, we assume that all requests are mice flows with packet rates far smaller

than the minimum edge capacity in G [25]. Following ubiquitous heavy-tailed distributions in the Internet –

most (80% of the traffic is actually carried by only a small number of connections (elephants), while the

remaining large amount of connections are very small in size or lifetime (mice)), we further assume that

the total network bandwidth demand of all mice flows is far less than the total available network resources

of G. With the mentioned assumptions, we first devise a (2∆, 8 + 2ε) bicriteria approximation algorithm

by a non-trivial reduction to the single-source unsplittable flow problem, where ∆ is the diameter of the

given network, i.e., the longest shortest path between any two nodes in the network. We then analyze the

approximation ratio of the proposed algorithm.

6.1. Basic idea

To reduce the problem to the single-source unsplittable flow problem in an auxiliary graph G′′, we treat

each request in R as two single virtual requests without service chain requirements before finding routes for
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them in the auxiliary graph G′′. The rationale behind is that the path that routes the data traffic of rj

can be split into two segments: the segment from its source node sj to a data center DCi and the other

segment from DCi to its destination node tj . We thus can consider these two segments as two paths that

are found to route the traffic of two independent virtual request that require to transfer data from source

node sj to a data center and from destination node tj to a data center. To this end, we carefully set the

sources and destinations in auxiliary graph G′′ of such virtual requests, which will be introduced later once

the construction of G′′ is elaborated on in the rest of this section. However, if the two virtual requests of

each request are dealt with independently, the solution obtained may not correspond to a feasible solution

to the original problem, since the two virtual requests of each request may be assigned to different data

centers violating the request’s “unsplittable” constraint for its traffic. We thus modify the solution to the

single-source unsplittable flow problem in G′′ to a feasible solution to the original problem without two much

deterioration of the obtained approximation guarantee.

6.2. An approximation algorithm

We now describe the algorithm by first introducing the construction of the auxiliary graph G′′ = (V ′′, E′′),

and then elaborating on the algorithm.

To construct the auxiliary graph G′′, we add all switch nodes in the original network G into auxiliary

graph G′′. We also create a DC node for each data center DCi, and add it into the auxiliary graph G′′, i.e.,

V ′′ ← V ′′ ∪{DCi}. Similar to the auxiliary graph construction in Section 2, we add a stand-by set node for a

candidate set of data centers where a number of stand-by instances of the service chain of a user request may

be placed. In addition, for each virtual request, we add a virtual request node into V ′′. A common source s0

for all virtual requests are added into V ′′.

For the edges in G′′, we first add the links in the original network G into G′′. The costs and capacities of

these edges are the same as those in G. There is an edge from each virtual request node to each stand-by

set node. The capacity and cost of each of these edges are set to infinity and zero, respectively. An edge

from each stand-by set node to its corresponding data center node DCi is added, where its capacity is

infinity and cost is the cost of updating processing states from DCi to the data centers within the set of data

centers represented by the stand-by set node. In addition, an edge from each data center node DCi to the

switch node in V where DCi is attached is added, with its capacity and cost being set to infinity and zero,

respectively. To make sure the demands of virtual requests rj,1 and rj,2 are met, an edge from sj to rj,1 and

an edge from tj to rj,2 is added into E′′. The capacity and cost of each of these two edges is set to infinity

and zero, respectively. Fig. 3 shows an example of the constructed auxiliary graph G′′.

Let rj,1 and rj,2 be the two virtual requests of user request rj . Given the construction of G′′, virtual

request rj,1 has source s0 and destination sj , and rj,2 has source s0 and destination tj . Clearly, if rj,1 is

implemented by G′′, along its implementation path from s0 to sj , there will be a data center. This represents
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Figure 3: An example of the auxiliary graph G′′ = (V ′′, E′′) constructed from network G with a set DC = {DC1, DC2, DC3} of
data centers that are connected by a set V = {v2, v3, v5} of switches. R = {rj , rj+1}, where rj has source v1 and destination
v3 and rj+1 has source v1 and destination v4.

that the traffic of rj will be routed from sj to the selected DC for processing. Similarly, the implementation

of rj,2 means that the traffic of rj will be forwarded to its destination tj , after being processed by a data

center on the path.

Having constructed the auxiliary graph G′′ and the set of virtual requests, we proceed by transferring

the original problem into the single-source unsplittable flow problem. To this end, we consider each virtual

request as a commodity that has a demand of ρj from the common source s0 to its corresponding virtual

request node in G′′. Let fj,1 be the unsplittable flow for virtual request rj,1 from s0 to virtual request node

in G′′, denote by fj,2 the unsplittable flow for virtual request rj,2 from s0 to its virtual request node in G′′.

Clearly, according to the construction of the auxiliary graph, virtual requests rj,1 and rj,2 of each request rj

may be assigned to different data centers, which is not feasible for the original problem.

To make the obtained solution feasible for the fault-tolerant VNF placement problem, we then adjust it

by routing the traffic of one virtual request from its assigned data center to the other data center that is

assigned to another virtual request. Specifically, suppose the traffic of virtual request rj,1 of rj is assigned

to data center DCm by flow fj,1 in G′′ and virtual request rj,2 is allocated to DCn by flow fj,2. The data

center with a smaller processing cost, say DCm, will be selected to process the traffic of request rj . The

traffic of rj then will not be processed to the other data center DCn. Instead, DCn will be serving as a

switch node, and the traffic of rj will be forwarded from DCn to DCm for processing. This can be done

by a simple application of the algorithm for the single-source unsplittable flow problem in the network G′′,

where its capacities on links and edges are the residual capacities after implementing the virtual requests.

Namely, the traffic of rj will be considered as a community that requires to be routed from DCn to DCm.

Let pn,m be the path found by the single-source unsplittable. The overall path that route the traffic of rj

will be composed of three segments: (1) the segment from sj to data center DCn, which is derived by the
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Algorithm 3 A (2∆, 8 + 2ε) bicriteria approximation algorithm for the NFV placement and
replication problem
Input: A network G(V ∪ DC, E), a set R of requests with each request rj demanding to transfer its traffic from source sj to

destination tj at packet rate ρj , service chain SCj requested by each request rj , and its end-to-end delay requirement Dj .
Output: An assignment of requests in R to a DC to place an active instance of its service chain and a set of nearby data

centers to place a number of stand-by instances of its service chain in case failures happen in the active instance.
1: Split each user request rj into two virtual requests without service chain requirements, i.e., rj,1 and rj,2, where rj,1 has

source s0 and destination sj , rj,2 has source s0 and destination tj ;
2: Construct an auxiliary graph G′′ as illustrated in Fig. 3;
3: Consider each virtual request as a commodity that has a demand of ρj from the common source s0 to its corresponding

virtual request node in G′′.
4: Find a single-source unsplittable flowf ′ in the auxiliary graph G′′ by applying the algorithm in [14], given the constructed

auxiliary graph G′′ and set of commodities;
5: If the virtual requests of each request are not assigned to a single data center in f ′, assign both virtual requests to one of

the data centers, by routing the traffic of one virtual request from its assigned data center to the other data center with
lower processing cost;

6: return The assigned data center to place the service chain of each request for the processing of its traffic, and a set of data
centers to replicate its service chain.

flow fj,1 for virtual request rj,1 in auxiliary graph G′′, (2) the path pn,m from DCn to DCm, derived by a

single-source unsplittable flow in the residual network G after implementing the virtual requests of each

request, and (3) the segment from DCm to tj , which can be derived from the flow fj,2 for virtual request rj,2

in G′′.

The details of the proposed algorithm is described in algorithm 3.

We here analyze the performance of the proposed approximation algorithm in Theorem 3.

Theorem 3. Given a network G = (V ∪ DC, E), let R be a set of requests with each represented by

rj = (sj , tj ;SCj , ρj , Dj)). Algorithm 3 delivers a bicriteria approximate solution with an approximation ratio

of (2∆, 8 + 2ε) in O(T2(|R|+ |V |+ |DC|2|DC|−1, |E|+ |R| · |DC|+ |DC|2|DC|−1)) time, where T2(m,n) is the

time to solve a fractional minimum-cost flow problem with m edges and n nodes in the flow graph, ε is a

constant with ε > 0, and ∆ is the diameter of network G that is given constant.

Please see the proof in the appendix.

7. An Approximation Algorithm for the Fault Recovery Problem

Once the locations for the active and stand-by service chain instances for each request are determined,

one of the stand-by instances will be activated once some errors happen in the active instance. In this

section, we study the problem of fault recovery problem by proposing an approximation algorithm with an

approximation ratio.

7.1. Algorithm

Recall that once request rj is admitted by the network G, a data center and a set DCsj of data centers

will be selected for the active and stand-by instances of its service chain, respectively. Once faults happen in

active instances of such requests, the traffic of the requests need to be routed from the switch that attaches
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the faulty data centers to one of the data centers that host their stand-by instances. As the compute and

bandwidth resources in data centers and links for handing the fault recovery process when faults happen are

reserved in advance, the resource consumed by back-up instances and traffic re-routing should not exceed

the reserved amounts. The basic idea of the approximation algorithm is to jointly consider these node and

edge capacities in an auxiliary graph G′′′ = (V ′′′, E′′′) in a unified way, and then transfer the fault recovery

problem into a single-source unsplittable flow problem [14] in the auxiliary graph G′′′. A solution to the

latter will return a feasible solution to the former.

To jointly consider the edge and node capacities, we start by normalizing not only edge and node capacities

but also compute and network bandwidth resource demands into ranges of (0, 1]. Specifically, we divide the

edge capacity Bf (e) and node capacity Cf (DCi) by the maximum edge capacity Bf,max and node capacity

Cf,max, respectively. Accordingly, we then transfer the packet rate and compute resource demand of each

request rj into the ranges of (0, 1].

We proceed by constructing the auxiliary graph G′′′(V ′′′, E′′′) that enables the algorithm due to [14] for

the single-source unsplittable flow problem to jointly consider the edge and node capacities. Specifically,

we split each data center node DCi into two virtual nodes, i.e., DC ′i and DC ′′i , are added into V ′′′, and a

directed edge 〈DC ′i, DC ′′i 〉 is added into E′′′. For the switch vDCi
that attaches DCi, there is an edge from

vDCi to DC ′i and an edge from DC ′i to vDCi , i.e, 〈vDCi , DC
′
i〉 and 〈DC ′i, vDCi〉. For simplicity, we refer to

such edges as data center derived edges. All the other switch nodes in V are added into V ′′′, and all other

edges in E are added into E′′′ with each edge being represented as an bidirectional edge. We further add a

common source node s0 into V ′′′, and a request node rj for each request in Rf (t). For each request rj , there

is an edge from s0 to a data center with its faulty active instance of service chain, and an edge from the

second virtual data center DC ′′i of each DCi ∈ DCsj . Fig. 4 shows an example of the constructed auxiliary

graph.

V5

V2

V4

V1

V3

DC3' DC2'

DC1'

S0

DC3 

DC1 

DC2 

rj+1 rj

Figure 4: An example of the auxiliary graph G′′′ = (V ′′′, E′′′) constructed from network G with a set DC = {DC1, DC2, DC3}
of DCs that are connected by a set V = {v2, v3, v5} of switches. Rf (t) = {rj , rj+1}, where rj and rj+1 have both of their
active instances located in DC1 and stand by instances in DC2 and DC3, i.e., DCsj = DCsj+1 = {DC2, DC3}.
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Algorithm 4 An approximation algorithm for the fault recovery problem
Input: A network G(V ∪ DC, E), a set Rf of requests with each request rj having the data center DCj for its active instance

of its service chain at faulty, and the set DCsj of data centers for its stand-by instances.
Output: An assignment of each request in Rf to one of the stand-by instances in data centers DCsj to be activated to processing

its traffic.
1: Construct an auxiliary graph G′′′ = (V ′′′, E′′′) from network G(V ∪ DC, E), as illustrated in Fig. 4;
2: Consider the route of each request rj ’s traffic from the data center with its active service chain instance to a data center in
DCsj with stand-by instances as a commodity with source node s0 and destination node rj in auxiliary graph G′′′;

3: Find a single-source unsplittable flowf ′′′ in the auxiliary graph G′′′ by applying the algorithm in [14];
4: The requests that are assigned into DCi in the flow f ′′′ will have their stand-by instances activated in DCi, and their traffic

will be forwarded from the data centers with their active instances to DCi;
5: return The assigned data center to place the service chain of each request for the activation of its stand-by instance of its

service chain.

Constructed the auxiliary graph, we consider the route of each request rj ’s traffic from the faulty active

instance of service chain to a data center in DCsj with stand-by instances as a commodity with source node s0

and destination node rj in auxiliary graph G′′′. The demand of this commodity is ρj . All these commodities

will be routed in from their common source to destinations in auxiliary graph G′′′. Algorithm 4 lists the

detailed steps of the proposed approximation algorithm.

7.2. Algorithm analysis

We now show the correctness and performance of the proposed algorithm in the following lemma and

theorem.

Lemma 1. Let f ′′′ be a unsplittable flow from s0 to request node rj in G′′′. There is only one data center

derived edge in f ′′′.

Please see the proof in the appendix.

Theorem 4. Given a network G = (V ∪DC, E) with an amount Bf (e) of bandwidth resource and an amount

Cf (DCi) of compute resource to be reserved to enable fault tolerance, let Rf (t) be the requests that have their

active instances being faulty. There is an approximation algorithm for the fault recovery problem that delivers a

feasible solution with an approximation ratio of 1+δ in O(T2(|R|+|V |+|DC|, |E|)+|E| log((|R|+|V |+|DC|)/ε))

time, where T2(m,n) is the time to solve a fractional minimum-cost flow problem with m edges and n nodes

in the flow graph, δ and ε are constants with δ > 0 and ε.

Please see the proof in the appendix.

8. Experiments

In this section, we evaluate the performance of the proposed algorithms through not only simulations in

both synthetic networks and real networks but also a real test-bed with both hardware and virtual switches.
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8.1. Experiment settings

We consider synthetic networks generated by GT-ITM [26]. The network size ranges from 50 to 250 nodes

with a node connectivity of 0.2 (i.e., the probability of having an edge between two nodes is 0.2) [27]. In

these networks, the switch to data center ratio is set to 0.1, and each data center has a CPU capacity in the

range 4,000 to 8,000 Mhz. The transmission delay of a network link varies between 2 milliseconds (ms) and

5 ms [28]. The costs of transmitting and processing 1 GB (approximately 16,384 packets with each having

size of 64 KB) of data are set within [$0.05, $0.12] and [$0.15, $0.22], respectively, following typical charges

in Amazon EC2 with small variations [29]. We consider five categories of network functions: Firewall, Proxy,

NAT, DPI, and Load Balancer, their computing demands (e.g., CPU) are adopted from [15]. Further, the

consumed compute resources of a service chain is the sum of the computing demands of its contained VNFs

(the number of contained VNFs is randomly selected between 1 and 50). The processing delay of a packet

for each NF is randomly drawn from 0.045 ms to 0.3 ms [15], and the processing delay of a service chain is

the total processing delay of its NFs. Each request rj is generated by randomly selecting its source sj and

destination tj from G with packet rate ρj randomly selected between 400 and 4, 000 packets/second [30].

Each request has a delay requirement ranging from 10 ms to 100 ms [31, 32]. The running time is obtained

based on a machine with a 3.40GHz Intel i7 Quad-core CPU and 16 GB RAM. All results are averaged based

on 15 runs in each network topology.

There has not been any existing work considering the fault-tolerant stateful VNF placement. One possible

solution is to derive each decision variable in a separate step (similar to an existing approach for stateless

VNF placement problem [6]). In this sense, we compare our algorithms against a greedy algorithm (described

in 4.1) that separately selects the placement of active/stand-by service chain instance, request routings

and state transfer paths. The greedy aims to maximize the throughput by admitting requests with small

packet rates first. For simplicity, we refer to this greedy algorithm as algorithm Greedy, and the greedy

without bandwidth and computing capacity constraints as Greedy_noBW and Greedy_noCP, respectively. The

proposed heuristic and approximation algorithms (Algorithms 1, 2, 3, and 4) are referred to as Heuristic,

Appro_noBW, Appro_noCP, and Appro_Recovery, respectively.

8.2. Performance evaluation of the heuristic algorithm

We first compare the performance of algorithm Heuristic against that of algorithm Greedy for networks

with various sizes, in terms of the number of admitted requests, the total cost of implementing the admitted

requests, the average cost of implementing a request, and the running time.

Fig. 5 shows the result in terms of the number of admitted requests, the average cost of admitting a

request, and the running time. We see from Fig. 5 (a) that the proposed algorithm Heuristic consistently

admits more requests than Greedy. This is due to the fact that algorithm Heuristic jointly selects the

active and stand-by instances. As such, both network resources and the compute resources of data centers are
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efficiently utilized, which avoids the request rejections that happened with Greedy due to separate selection

process. The surge of admitted requests observed with both algorithms for networks with size equal to 250

can be explained by the fact that in this case, the bandwidth resources between any two network nodes

are on average increased (i.e., more network links exist between two nodes when network size becomes

larger), which results in relaxed constraints in terms of bandwidth. From Fig. 5 (b), we observe that the two

algorithms achieve almost the same total cost. However, since the overall admitted request number obtained

with Heuristic is higher than that of Greedy, we see from Fig. 5 (c) that the Heuristic achieves a lower

per request cost than Greedy. Furthermore, Heuristic achieves a lower cost in terms of the average cost per

admitted request than that of Greedy. Meanwhile, we see from Fig. 5 (d) that Heuristic slightly results in

a longer running time than that of algorithm Greedy.
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Figure 5: Performance of algorithms Heuristic and Greedy.

We then study the performance of algorithm Heuristic against that of algorithm Greedy in real network

AS1755, in terms of the number of admitted requests, the total cost of implementing the admitted requests,

the average cost of implementing a request, and the running time, by varying the number of data centers in

the network from 10 to 50.

Results are shown in Fig. 6. From Fig. 6 (a), we can see that algorithm Heuristic admits many more

request than algorithm Greedy. For example, when there are 20 data centers in the network, algorithm

Heuristic has an over 10% higher throughput than algorithm Greedy. Also, the number of admitted

requests is consistently increasing with the growth of data centers. The rationale behind is that more data

centers mean more resources to implement a higher number of requests. In addition, algorithm Heuristic

implements a request in a much lower cost, as shown in Figures 6 (b), and 6 (c).

It must be mentioned that the results obtained from synthetic and real networks can differ significantly.

For example, in Fig 5, the number of admitted requests by algorithm Heuristic for network size 250 is

slightly over 250. Notice that the ratio of number of switches to number of data centers is 0.1. We thus

compare this result with the number of data centers being set to 25 in real network AS1755, as shown in

Fig 6 (a). We can see that the number of admitted requests is roughly 95. The reason that the results

differ is due to the network topology. Specifically, for the synthetic networks, we connect each pair of nodes
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Figure 6: Performance of algorithms Heuristic and Greedy in real network AS1755.

with probability 0.2. This means that any pair of nodes has the same probability of being connected. This

however is not the case in real network AS1755. Consequently, the real network AS1755 may have more

bottleneck links with the synthetic one, leading to more requests being rejected due to the lack of bandwidth

resource in the bottleneck links.

8.3. Performance evaluation of the approximation algorithm without bandwidth capacity constraints

We then compare the performance of algorithm Appro_noBW with that of algorithm Greedy_noBW in terms

of the maximum resource utilization of data center resource, the average cost of implementing a request, and

the running time, by varying the network size from 50 to 250.

It can be seen from Fig. 7 (a) that the proposed approximation algorithm Appro_noBW delivers solutions

with lower maximum data center resource utilization than that by algorithm Greedy_noBW. For example,

when the network size is 250, the minimum maximum resource utilization of data centers of Appro is 5%

lower than that of algorithm Greedy_noBW. The rationale behind is that algorithm Appro_noBW explores a

fine-grained trade-off between the resource utilizations and the cost of implementing requests, by moving

both node and edge costs in the original network to the edge costs in the constructed auxiliary graph. Fig. 7

(a) also shows that the maximum resource utilization of data centers is decreasing with the network size.

This is because larger networks mean on average more compute resources in data centers, which incurs

lower resource utilization. In addition, as shown in Fig. 7 (c), algorithm Appro_noBW also delivers a lower

implementation cost. Regarding the running time, it should be noted that our algorithms are intended to be

executed offline and to compute solutions that will be implemented in networks at the network configuration

stage. The running time of Appro_noBW is therefore considered as tolerable. Finally, we observe that both

the maximum data center utilization in Fig. 7 (a) and the total cost in Fig. 7 (b) are not increasing as the

network size grows, which further justifies the performance guarantee of the proposed algorithm Appro_noBW.

We also investigate the performance of algorithms Appro_noBW and Greedy_noBW in real network AS1755

in terms of the maximum resource utilization of data center resource, the average cost of implementing a

request, and the running time, by varying the number of data centers in the network from 10 to 50.

It can be seen from Fig. 8 (a) that algorithm Appro_noBW has a lower maximum data center resource

utilization. Also, the data center utilization is decreasing with the grow of the number of data centers, because
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Figure 7: Performance of algorithms Appro_noBW and Greedy_noBW.

there are more compute resource in a higher number of data centers. In terms of the cost of implementing

requests, we can see from Figures 8 (c) that Appro_noBW has a lower average cost of implementing a request.
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Figure 8: Performance of algorithms Appro_noBW and Greedy_noBW in real network AS1755.

8.4. Performance evaluation of the approximation algorithm without computing capacity constraints

We now show the performance of algorithm Appro_noCP with that of algorithm Greedy_noCP in terms of

the maximum link utilization, the average cost of implementing a request, and the running time, by varying

the network size from 50 to 250.

The results are shown in Fig. 9. We can see from Fig. 9 (a) that the link utilization obtained from the

solution by algorithm Appro_noCP is lower than that of algorithm Greedy_noCP. As shown in Fig. 9 (b), the

average cost by algorithm Appro_noCP is much lower than that of algorithm Greedy_noCP. For example,

when the network size is 150, algorithm has at least 15% percentage lower average cost of implementing a

request, as shown in Fig. 9 (b). The running times are shown in Fig. 9 (c).

We then evaluate the performance of algorithms Appro_noCP and Greedy_noCP in terms of the maximum

link utilization, the average cost of implementing a request, and the running time in real network AS1755, by

varying the number of data centers in the network from 10 to 50.

From Fig. 10 (a), we can see that there is no obvious trend of the maximum link utilization with the

growth of data center numbers. As shown in Fig. 10 (b), the average cost of implementing a request decreases

with the growth of data centers. This is because the compute resource capacity of data centers is not a
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Figure 9: Performance of algorithms Appro_noCP and Greedy_noCP.

constraint in this problem, and more data centers usually mean more requests will be served in the data

centers that are closer to their sources or destinations. This will reduce the transmission cost significantly.

The running times of algorithms Appro_noCP and Greedy_noCP are shown in Fig. 10 (c), from which we can

see that algorithm Appro_noCP has a tolerable higher running time than algorithm Greedy_noCP.
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Figure 10: Performance of algorithms Appro_noCP and Greedy_noCP in real network AS1755.

8.5. Performance evaluation of the approximation algorithm for fault recovery

We continue by investigating the performance of algorithm Appro_Recovery against algorithm Greedy_Recovery

in terms of the total cost of implementing admitted requests, the average cost of each admitted request, and

the running time, by varying the network size from 50 to 250.

From Fig. 11 (a), it can be seen that the total cost of implementing all requests is increasing with

the growth of the network size. The reason is that although the requests thus have more choices of being

implemented in data centers with lower costs, when the network size keeps growing, each request has a

higher probability of being implemented in a data center that is far from its source and destination, thereby

increasing the transmission cost.

We then evaluate the performance of algorithms Appro_Recovery and Greedy_Recovery in real network

AS1755 in terms of the total cost of implementing admitted requests, the average cost of each admitted

request, and the running time, by varying the number of data centers in the network from 10 to 50.

From Fig. 12 (a), we can see that the total cost of implementing all admitted requests is decreasing

because less requests are admitted, as shown in Fig. 12 (b). However, the average cost does not experience
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Figure 11: Performance of algorithms Appro_Recovery and Greedy_Recovery.

some obvious changing patterns, and algorithm Appro_Recovery has a lower average cost than algorithm

Greedy_Recovery.
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Figure 12: Performance of algorithms Appro_Recovery and Greedy_Recovery in real network AS1755.

8.6. Performance of algorithms Appro_Recovery and Greedy_Recovery in a real test-bed

To testify the applicability of the proposed algorithm Appro_Recovery in real settings, we finally evaluate

the performance of algorithms Appro_Recovery and Greedy_Recovery in a test-bed with both hardware-

switches and virtual switches. Notice that the reason that why only algorithm Appro_Recovery is implemented

in the test-bed is that it deals with the online fault recovery problem while the rest algorithms focus on

offlline fault-tolerant placement of VNFs. In the following, we first describe the building of the test-bed,

settings, and the obtained results.

Test-bed: To evaluate both the applicability in real environments and scalability of algorithm Appro_Recovery,

the built test-bed consists of both a underlay with hardware appliances and an overlay with virtual resources,

as shown in Fig. 13. Specifically, in the underlay, we connect five hardware heterogeneous switches and four

servers, and their specifications are listed in Table 2. By using the VXLAN technique, we build a virtual

network with a number of Open vSwitch (OVS) [33] nodes and virtual machines. Notice that not all switches

in Table 2 support VXLAN. We thus attach a server node in each of the switches that do not support

VXLAN, and instantiate a virtual node with built in support for VXLAN, by replacing the network stack

with OVS in Linux kernel. Also, we use Netconf and SNMP protocols to manage the switches and the links

that interconnect them. The overlay network is built following the real topology AS1755. Its OVS nodes and
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virtual machines are controlled by a Ryu [34] controller. Notice that we do not consider the fault recovery

within a data center, we consider a simplified scenario with each virtual machine being used to simulate

a data center. Algorithms Appro_Recovery and Greedy_Recovery are implemented as Ryu applications,

and control the fault recovery process of the overlay network following OpenFlow protocol [35]. All the rest

settings are the same as the aforementioned simulations.

Underlay

Overlay

RYU

OpenVswitch

RYU Controller

Server

VM

Physical Switch

VXLAN Channel

(a) The underlay and overlay of the test-bed (b) The physical deploy-
ment of the hardware
switches

Figure 13: A test-bed with both hardware switches and virtual resources.

Table 2: Physical switches in the test-bed

Manufacturer Model Support VXLAN? Network management protocol
Huawei S5720-32C-HI-24S-AC YES Netconf
H3C S5560-30S-EI NO Netconf
Ruijie RG-5750C-28Gt4XS-H NO Netconf
CISCO CISCO3750X-24T NO SNMP
Centec aSW1100-48T4X NO SNMP

Results: We evaluate the performance of algorithms Appro_Recovery and Greedy_Recovery in terms of the

total cost of implementing all fault recovery requests, the average cost of implementing the requests, and the

running time. Fig. 14 shows the results, from which we can see that total cost obtained by Appro_Recovery

is 20% lower than that of algorithm Greedy_Recovery, and the average cost is 15% lower than that of

algorithm Greedy_Recovery, when there are 20 data centers in the network. However, the running times

between Appro_Recovery and Greedy_Recovery are higher than that of simulation results in Fig.12. The

reason is that the algorithms have to deal with more types of packets, such as PacketIn, PacketOut, and

probe packets.
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Figure 14: Performance of algorithms Appro_Recovery and Greedy_Recovery in a real test-bed.

9. Conclusion

In this paper, we proposed a novel efficient heuristic approach for the fault-tolerant VNF placement

problem that jointly computes the placement active and stand-by instances of stateful VNFs, the routing

paths and update paths of user requests. For the problem without network bandwidth or compute resource

constraints, we proposed two bicriteria approximation algorithms with performance guarantees, respectively.

Given the placed active and stand-by instances of stateful VNFs, we then investigated the dynamic fault

recovery problem, by assuming that the fault recovery requests arrive into the system without the knowledge

of their future arrivals. We proposed another approximation algorithm for the problem. We finally evaluated

the performance of the proposed algorithms based on simulations using both synthetic and real networks. Our

evaluation results show that the performance obtained with each algorithm outperforms existing solutions

that separately determine placements, routings and state update paths.
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Appendix

Proof of Theorem 1

Proof. To show the feasibility of the algorithm, we need to show that the resource demands of each admitted

request and its end-to-end delay requirement are met. Clearly, this is true due to steps 8 and 22.

For the running time of the proposed heuristic, we can see that the most time-consuming phases of

Algorithm 1 are (1) finding all pair shortest paths in G, (2) ranking all data centers, and (2) iteratively selecting

a number of data centers for each request. Clearly, phase (1) takes O((|V |+ |DC|)3) time, phase (2) takes

O(|DC| log |DC|) time, and phase (3) takes O(|DC|) time. Since the ranking of DCs is performed every time

when a request is admitted, the overall running time of algorithm 1 is O(|R|(|DC| log |DC|)+(|V |+|DC|)3).

Proof of Theorem 2

Proof. We first show the feasibility of the proposed algorithm. Given an unsplittable flow f , it starts at a

request node rj and ends at the common source s0 in G′ according to the construction of auxiliary graph G′.

Clearly, a data center node DCi for active instance and a stand-by set node exists in the route. The traffic

of request rj is processed by the placed active instance in DCi, and it is routed on the paths from rj ’s source

sj to DCi and from DCi to destination tj (e.g., represented by edge 〈DC ′i, rj〉 in auxiliary graph). Also,

since an auxiliary edge between a stand-by node to DCi denotes the state update path from DCi to one of

the stand-by set nodes, the processing states are then updated to one of the stand-by set nodes following the

traversed edge by f . In addition, the delay requirement of rj is met, as f only exists when there is an edge

between rj and DC ′i (i.e., delay is met).

We then show the approximation ratio of the devised approximation algorithm. It is clear that the

solution to the single-source unsplittable flow problem in auxiliary graph G′ corresponds to the solution to
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the VNF placement problem without bandwidth constraint in network G. The approximation ratio obtained

for the former problem thus is the approximation ratio for the latter, i.e., (2, 4 + ε).

We then show the time complexity of the approximation algorithm, which can be divided into two stages:

(1) the construction of the auxiliary graph G′(V ′, E′); and (2) finding an unsplittable flow in the constructed

auxiliary graph using the algorithm proposed by Kolliopoulos and Stein [14]. Clearly, the construction of G′

takes (|V ′|+|E′|) time, where |V ′| = O(|R|+|V |+|DC|+
∑|DC|−1
k=1

(|DC|−1
k

)
) = O(|R|+|V |+|DC|

(|DC|−1
k

)
), and

E′ = O(|R|·|DC|+|DC|
(|DC|−1

k

)
), where

∑|DC|−1
k=1

(|DC|−1
k

)
is the maximum number of stand-by set nodes for all

DCs. According to [14], finding a unsplittable flow in G′ takes O(T2(|V ′|, |E′|)+|E′| log(|V ′|/ε)) = O(T2(|R|+

|V | + |DC|
(|DC|−1

k

)
, |R| · |DC| + |DC|

(|DC|−1
k

)
)) = O(T2(|R| + |V | + |DC|2|DC|−1, |R| · |DC| + |DC|2|DC|−1))

time.

Proof of Theorem 3

Proof. We first show the feasibility of the solution. Recall that each request is split into two virtual requests.

It is clear that each virtual request will have its traffic going through a data center node and a stand-by

set node. This is because any path that starts with the common source s0 in G′′ and ends with a request

node rj has a data center node and a stand-by set node in the path, according to the construction of G′′.

However, different virtual requests may be assigned to different data centers. In the step (5) of algorithm 3,

the data traffic of rj is routed from its source sj to the data center assigned to one of its virtual request,

then from the virtual request to another data center that is assigned to its the other virtual request, and

finally its forwarded to its destination tj . Also, the service chain of rj is assigned to the DC and stand-by set

with smaller cost. This clearly makes the solution feasible.

We then show the approximation ratio of the devised approximation algorithm. According to Theorem 1,

the solution to the single-source unsplittable flow problem with a set of virtual requests without service

chain requirements in auxiliary graph G′′ has an approximation ratio of (2, 4 + ε) for cost and congestion.

Since virtual requests of each request may be assigned to different data centers, the approximation algorithm

performs further adjustments to make it feasible. To show the approximation ratio, we only need to show how

much of the approximation ratio is deviated from the one for the solution to the single-source unsplittable

flow problem with a set of virtual requests. To this end, we first show the derivation of the approximation

ratio on cost. The additional cost of such adjustment is mainly due to the path cost of the shortest path

between the two data centers that are assigned to the virtual requests of each request. Let ∆ be the diameter

of the network G. Clearly, the cost will be no more than ∆ times the cost obtained for the single-source

unsplittable flow problem with a set of virtual requests without service chain requirements. This is because

any shortest path in G will be no greater than ∆, considering the cost of each edge is in (0, 1]. Thus, the

approximation ratio for cost is 2∆. We then show the derivation of the approximation ratio on congestion.

In the worst case, each request may has its two virtual request distributed into two different data centers.
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This is to consider an addition set of requests with the same resource demands as the ones in R but with

different sources and destinations. Recall that we assume that the total network bandwidth demand of all

mice flows is far less than the total available network resources of G. It thus is clear the total demand of

the additional set of requests is still smaller than the total residual capacity of G after step 4. Clearly, by

reapplying the single-source unsplittable flow algorithm with the additional set of requests with equal total

amount of packet rates as the ones in R, the congestion will be enlarged by at most twice. We thus have an

approximation ratio of 8 + 2ε.

We then show the time complexity of the approximation algorithm, which can be divided two steps: (1)

construction of the auxiliary graph G′′(V ′′, E′′); and (2) finding a unsplittable flow in the constructed auxiliary

graph by the algorithm due to Kolliopoulos and Stein [14]. Clearly, the construction of G′′ takes |V ′′|+ |E′′|

time. First, for the node set, we know that there are three types of nodes in G′′: (1) the nodes in the original

network G, (2) the virtual request and source nodes, and (3) the stand-by set nodes. For types (1) and (2), it

takes O(|R|+ |V |+ |DC|) time. For stand-by nodes, since we do not fix the number of data centers in each

stand-by set, we thus have O(
∑|DC|−1
k=1

(|DC|−1
k

)
) choices, which is also the time spent in adding the nodes

into V ′′. Therefore, we have |V ′′| = O(|R|+ |V |+ |DC|+
∑|DC|−1
k=1

(|DC|−1
k

)
) = O(|R|+ |V |+ |DC|

(|DC|−1
k

)
),

and E′′ = O(|E|+ |R| · |DC|+ |DC|
(|DC|−1

k

)
), where

∑|DC|−1
k=1

(|DC|−1
k

)
is the maximum number of stand-by

set nodes for all data centers. For step (2), according to Theorem 2, finding an unsplittable flow in G′ takes

O(T2(|V ′′|, |E′′|) + |E′′| log(|V ′′|/ε)) = O(T2(|R| + |V | + |DC|
(|DC|−1

k

)
, |E| + |R| · |DC| + |DC|

(|DC|−1
k

)
)) =

O(T2(|R|+ |V |+ |DC|2|DC|−1, |E|+ |R| · |DC|+ |DC|2|DC|−1)) time.

Proof of Lemma 1

Proof. To show the feasibility of the proposed algorithm, we only need to show that any path from s0 to a

request node rj in auxiliary graph G′′′ has only one data center node. We prove by contradiction. Let DCi

be the data center to active the stand-by instance of request rj , clearly, edge 〈DC ′i, DC ′′i 〉 is the edge that

flow f ′′′ traverses to reach its destination node rj . Assume there is another edge 〈DC ′i+1, DC
′′
i+1〉 that is

traversed by the flow before edge 〈DC ′i, DC ′′i 〉. According to the construction of the auxiliary graph G′′′,

there is no edge from DC ′′i+1 to DC ′i+1. If DC ′′i+1 is connected to rj (i.e., DCi+1 ∈ DCsj), the flow will reach

rj via edge 〈DC ′′i+1, rj〉, meaning that DCi+1 is the DC to active the stand-by instance of request rj rather

than DCi, which contradicts the assumption. Otherwise, edge 〈DC ′i, DC ′′i 〉 will not be traversed either.

Proof of Theorem 4

Proof. According to Lemma 1, the solution obtained by algorithm 4 is feasible. We here analyze the

approximation ratio and running time of the algorithm.

We first show that a unsplittable flow f ′′′ in auxiliary graph G′′′ from source node s0 to destination node

rj corresponds to the routing of the traffic of request rj from its faulty data center to a data center with an
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available stand-by service chain instance. Recall that in algorithm 4, the construction of auxiliary graph

G′′′ divides each data center to two virtual data centers and add a directed edge from the first virtual data

center to the second one. Also, there is an edge from the second virtual data center to the request node.

This guarantees that the compute resource reserved in each data center is considered as edge capacities, and

thereby makes the capacity of reserved compute resource is met. That is to say, any feasible flow f ′′′ starting

from s0 will have a data center derived edge in it, and the corresponding data center will active a stand-by

service chain instance to further process the traffic. We thus say a unsplittable flow corresponds the routing

of user request rj from its faulty service chain instance to a stand-by instance.

In the construction of the auxiliary graph, the cost of using reserved compute resource is transferred to

edge costs in the auxiliary graph. The cost due to fault recovery thus is the cost of a unsplittable flow f ′′′

in G′′′. Also, considering the solution obtained from finding a single-source unsplittable flow in G′′′ can be

directly transferred to a solution to the fault recovery problem, the approximation ratio obtained of the

algorithm for the single-source unsplittable flow problem is the approximation ratio for the fault recovery

problem. That is, 1 + δ due to [14], where δ is a given positive constant.

For the running time, algorithm 4 has two parts: (1) the construction of auxiliary graph G′′′, and (2) the

invoking of algorithm due to [14]. For part (1), it can be seen the construction of auxiliary graph G′′′ takes

|V ′′′|+ |E′′′| = O(|R|+ |V |+ |DC|+ |E|) time, where |V ′′′| = |R|+ |V |+ |DC| and |E′′′| = O(|E|). For part

(2), according to Theorem 1, finding a unsplittable flow in G′′′ takes O(T2(|V ′′′|, |E′′′|) + |E′′′| log(|V ′′′|/ε)) =

O(T2(|R| + |V | + |DC|, |E|) + |E| log((|R| + |V | + |DC|)/ε)). Overall, algorithm 4 takes O(T2(|R| + |V | +

|DC|, |E|) + |E| log((|R|+ |V |+ |DC|)/ε)) time.
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