

Managing Ad hoc / Ubiquitous Environments

Prof. George Pavlou

Centre for Communications Systems Research
Department of Electronic Engineering
University of Surrey, UK

G.Pavlou@surrey.ac.uk
http://www.ee.surrey.ac.uk/CCSR/Networks/

Ad hoc / Ubiquitous Environments

- ◆ Mobile Ad Hoc Networks (MANETs)
 - Self-creating, self-organising, self-administrating
 - Dynamic nature and lack of centralisation
 - Large scale, smaller devices => Ubiquitous environments
- Stand-alone or used as access networks for fixed or cellular packet networks
 - One or more devices act as gateways
- ◆ Fixed (ISP/enterprise) / cellular networks are managed by the owning body
- ♦ Who, why and how ad hoc / ubiquitous environments should be managed?

Node Alignment / Programmability

- ◆ Fixed / cellular network nodes and terminals have well-agreed protocol and service infrastructure
- ◆ In ad hoc / ubiquitous environments a multitude of solutions exist, e.g. for routing, QoS, services, hence the need for terminode alignment
 - Common protocols / services can be deployed throughout the network
 - Servers can be dynamically relocated for better performance / reachability
- ◆ Programmability essential for capability alignment
 - Also able to support "management by delegation"

Context-based Operation

- ◆ Context information can be used to drive the network to an optimal operating state given the current surroundings, user needs, etc.
 - Switching between a reactive (for highly dynamic topologies) and a proactive (for relatively static ones) routing protocol
 - Deploy energy-aware routing to conserve battery power
 - Relocate servers for better performance and energy efficiency
 - Identify paths of major traffic streams and adapt routing plans (dynamic traffic engineering)
 - ...
- Context capture, modelling, aggregation, dissemination, adaptivity issues

Fairness, Protection, Security

- ◆ All network nodes need to cooperate according to an accepted pre-defined set of rules
 - For example "all nodes should forward packets if their energy level >= 25%"
- ◆ Nodes may cheat / misbehave e.g. not forward
 - Need to detect, warn/penalise and eventually isolate them
- ◆ Other "spy" nodes may maliciously attack e.g. flood the network with bogus streams
 - Detect and isolate
- **♦** General security management issues
 - Who can be in the network, who has access to what, etc.

Management Models

- All nodes are owned by a single entity e.g. military applications, disaster recovery, etc.
- **♦** Logically centralised (in terms of goals/policies) but physically distributed management
 - No view of the whole network, management node resilience, etc.
- ◆ No single entity owns the nodes e.g. conference / meeting network, campus ad hoc network, etc.
- ◆ A set of goals/policies are "brought to the table" and prevailing ones need to be agreed
 - Through semantically rich interaction or simply by voting
- **◆** After the policies are agreed, the network is operated as a network owned by a single entity

Current and Future Research

- ♦ We have been doing research on most of the previous aspects:
 - Organisational management model (ICC'2004) and policy-based framework
 - Programmability for node alignment (IM'2005)
 - Context-based middleware (ICAC'2005, WAC'2005)
 - Misbehaving node identification and isolation
- ◆ A major operator interested in funding work in controlling ad hoc access clouds to cellular networks
- ◆ Many more issues to be addressed
- ◆ Fertile soil for defining the principles of the new wireless ubiquitous communication paradigm

