
.

The OSI Management Information Service
User’s Manual

Version 1.0, for system version 3.0

Preface
TBA

Acknowledgements
A lot of people have contributed to OSIMIS, the following list includes the major

contributors.

Graham Knight of UCL introduced me to the area of network and systems
management. He first suggested the possibility of a "generic managed system" and has
influenced the OSIMIS high-level concepts and direction. He also contributed the first
version of the example UNIX managed object and wrote a nice tutorial, parts of which have
been incorporated in Section 5.1 of this manual.

Simon Walton, formerly of UCL and currently at UCLA, wrote the first embryonic
CMIS/P implementation back in 1987 and implemented the first (non-generic) OSI
management agent for the ISODE implementation of the ISO/CCITT Transport Protocol.
Though these have been largely redesigned, some of his design concepts have been
influential, especially regarding the CMIS API.

Saleem N. Bhatti of UCL implemented the log control systems management function,
the OSI Internet MIB and the CMIS filter parsing and printing stuff and has contributed the
SMI Attribute and Syntax support section of this manual (5.3). He has also being giving
excellent feedback regarding the OSIMIS concepts and APIs and has influenced some of the
most important GMS design decisions, so he qualifies as the deputy OSIMIS engineer.

James Cowan of UCL has written the MIB browser (he is the InterViews guru), he has
also produced a prototype version of the full "Remote MIB" high-level access API and has
been working on a GDMO MIB compiler - these two will be incorporated in future OSIMIS
releases.

Kevin McCarthy of UCL has implemented the proxy version of the OSI Internet MIB
which will be incorporated in future OSIMIS releases.

Derick Jordaan and Andreas Mann of IBM ENC Heidelberg have provided very
useful general feedback and Derick also contributed a prototype implementation of an
experimental "Shadow MIB" high-level access API (not included in this release). Wilko
Eschebach, again of IBM ENC, has been porting the latest OSIMIS versions to AIX.

Adarsh Sethi, formerly of IBM Research Zurich and currently with the University of
Delaware has ported OSIMIS initially to AIX and provided useful feedback. Metin Feridun,
again of IBM Research Zurich, ported later versions to AIX and also tested interoperability
with the IBM NetView CMIP and provided logical bug fixes.

Finally, Bill Anderson of MITRE ported OSIMIS to 386BSD and provided general
feedback.

George Pavlou
London, England
January 1993

1. Introduction

It should be noted first that this is version 1.0 of the OSIMIS User’s Manual describing
version 3.0 of the software. The reason the documentation has a different version number to
the software is because it is not yet complete. The full version of the documentation for the
version 3.0 of the system should be also version 3.0, we expect this to happen in the next
months.

TBA

1.1 Fanatics Need Not Read Further

First of all, OSIMIS uses ISODE to operate an upper layer management stack over
either pure OSI environments (TP0/X.25 or TP4/CLNP) or over TCP/IP using the RFC1006
method. A lightweight OSI management stack (CMOT) is also possible directly over
TCP/IP. TCP/IP zealots and OSI purists will sigh but the world will never be perfect.

Then, there is the great debate between OSI and Internet management. Though having
OSI in its acronym, OSIMIS is meant to be a platform in which the word Open is not
exclusively conceived in the OSI sense. Though currently an OSI management platform,
there are plans for extensions: OSI to Internet proxy infrastructure and systems and, more
important, potential for application of the same concepts and infrastructure for SNMP
generic managed systems and access methods.

Furthermore, there is the debate between OSI and ODP, zealots of the latter claiming
there is no need for management protocols/models with respect to systems management but
the same communications mechanisms can be used to manage distributed "objects". And
also, the extreme aspect that management is not needed at all, all is needed is intelligent
self-organising protocols.

The role of OSIMIS in this maelstrom is to show the usability and power of OSI
management and to combine it with the strengths and the installed base of the Internet-
capable resources and systems in order to provide real management solutions. Advanced
ODP-based approaches and their compatibility with the more traditional OSI and Internet
protocol-based ones will also be investigated when they mature. Finally, OSIMIS itself and
the possibilities it offers is the answer to the claim that management is not needed.

1.2 A Note on the Implementation

OSIMIS does not claim to be production software. Despite that, effort has been made
during the development to employ good software practices which result in efficient
implementations. Data copying is absolutely minimal, though this may create problems to
inexperienced management application implementors as the actual data is passed across
instead of copies. It is advised that implementors read very carefully the Attr class
specification in Section 4 of this manual.

Though no performance measurements have been conducted, experience has shown
OSIMIS-based applications to be very efficient, in the context of course of the ISODE stack
and its ASN.1 handling. Formal performance studies will be conducted in the future.

1.3 Changes From Previous Releases

It is noted first that by previous releases are meant only the versions 2.98 and 2.99 - the
versions 2.95 and 2.97 were only made public after public demand and despite our will as the
system was still under development.

In this version of the manual, we do not list enhancements and additions but rather
changes in APIs and configuration which will affect already existing implementations.

In the CMIS M_Get primitive, zero for the nattrs parameter used to denote "all
managed object attributes". Though this is still true, you should use now the manifest
constant GET_ALLATTRS for all and GET_NOATTRS for no attributes as their values may
change in future releases (see M_Get manual page, Section 3). These are currently defined
as:

#define GET_ALLATTRS 0
#define GET_NOATTRS -1

Some of the MOClassInfo methods used at the MO::initialiseClass method have now a
few additional parameters. These are the following:

int setClass (char* className, int nbindings, int nattrs,
int ngroups, int nevents, int nactions, int npackages = 0);

int setAttr (char* attrName, int attrId,
Bool settable = False, Attr* dfltVal = NULLATTR);

int setGroupAttr (char* groupName, int groupId, int ngroupAttrs);

int setAction (char* actionName, int actionId, Attr* action);

The additional parameters are needed to optimise the use of storage space and in the case of
set and action to provide information on set capability, the default value and the action
template respectively (see MOClassInfo specification, Section 5).

The information on the settability of attributes and the default value are now kept by
the managed object class and not by the attribute (see above). This means that the
makeSettable and makeUnsettable methods do not longer exist Also, the first two of the
following Attr class methods are now deprecated and should be replaced by the last two (see
also the Attr class specification, Section 4):

// deprecated methods, still there but will be removed

void replace (void* value);
CMISErrors replace (PE encodedValue);

// they replace the previous two methods

void replace (void* value);
CMISErrors set (PE encodedValue);

The MO class set and action method interfaces have now slightly changed:

virtual CMISErrors set (CMISModifyOp modifyOperator,
int attrId, int classLevel, void* setValue)

virtual CMISErrors action (int actionId, int actionLevel,
void* actionValue, void** actionReply);

The set and action value and the action reply are now C data structures instead of ASN.1
presentation elements. Also, in the case of set, the attribute value is set by the GMS, the set
method needs only to implement any interactions to the real resource (see also MO class
specification, Section 5).

The initialiseSyntaxes call is now used to initialise the OSIMIS ETCDIR and load
ASN.1 syntaxes, it is imperative that you use this one as the first call in both agents and
managers (see manual page, Section 3).

The agent main program has changed, consult the $(TOP)/agent/sma/Sma.cc file and
use it after you adopt it to your needs. Also, the Create.cc file in the main agent directory is
now in the GMS library and the Create.h should be renamed to <agent>.h e.g. Sma.h. It
contains the same information as before i.e. the agent’s managed object classes and creation
information, and remember that it should have an entry for EVERY managed object class,
not only those with initial creation information.

The Log Control systems management function which as introduced in version 2.99
had an "ad-hoc access control mechanism" to prevent access to log records if this was
desirable. This was implemented at compile time through a manifest constant in
$(TOP)/agent/gms/EventLog.h. In this version, this is a run time option through a flag in
$(ETCDIR)/osimistailor, see the $(TOP)/README file for details.

Finally, the OSIMIS ETCDIR oidtable.oc and isobjects files you used to register MIB
information are no longer used, you can copy the standard OSIMIS ones. All the MIB
information should be now registered in the oidtable.gen and oidtable.at files, in the former
anything without associated syntax i.e. class, name bindings, groups, packages and general
errors while in the latter information with association syntax i.e. attributes, actions and
notifications.

2. Overview

TBA, consult the $(TOP)/README file for the moment.

3. Communication Services

This section will eventually describe in detail the Common Management Information
Service API. All the information is currently here but in the form of manual pages instead of
a tutorial section.

In reading these, you will need the mparm.h and msap.h CMIS header files. The
former contains all the interface data structures used in the CMIS primitives ("management
parameters") while the latter contains all the indication/confirmation related structures that
contain the information sent together with prototypes for the primitives ("management
service access point").

As background reading and support, you may also consult the following sections of the
ISODE User’s manual: Volume 1 Chapter 2 "Association Control", Chapter 3 "Remote
Operations" and Chapter 5 "Encoding of Data-Structures". Also relevant are the chapters on
the ASN.1 compilers, Volume 4 Chapter 5/6 "POSY/PEPY" and Chapter 7 "PEPSY" and on
using the object identifier tables Volume 5 Chapter 17 "Programming the Directory".

M_INITIALISEREQ (3N) NETWORK FUNCTIONS M_INITIALISEREQ (3N)

NAME
M_InitialiseReq - establish a management association

SYNOPSIS
#include <isode/msap.h>

int M_InitialiseReq (callingTitle, callingAddr, calledTitle, calledAddr,
context, protvrsn, fununits, access, info, mc, mi)

AEI callingTitle, calledTitle;
char ∗ context;
struct PSAPaddr ∗ callingAddr, ∗ calledAddr;
int protvrsn, fununits;
External ∗ access, ∗ info;
MSAPConnect ∗ mc;
MSAPIndication ∗ mi;

DESCRIPTION
M_InitialiseReq() attempts to establish a management association with another management application. It
provides a synchronous interface and a successful return is equivalent to the M-
ASSOCIATE.CONFIRMATION event. Its arguments are the following:

calledTitle and calledAddr identify the remote application’s entity title and presentation address. They may
be created from the host and service names using str2aei() and aei2addr(). These involve accessing the OSI
directory using the high performance name service or the stub-directory (default), depending on
configuration.

callingTitle and callingAddr are the calling application’s entity title and presentation address. They may be
created in the same way as calledTitle and calledAddr. These parameters are optional, so they may also be
left NULLAEI and NULLPA respectively.

context is the application context for the association (i.e. "management").

protvrsn is an integer whose bits indicate the CMIP versions supported, at present it should be 2 for version
two (bit 1 set).

fununits is an integer whose bits are intended to indicate the capabilities of the caller. The first four bits
may be set to indicate the following capabilities:

Bit Functional Unit
0 multipleObjectSelection
1 filter
2 multipleReply
3 extendedService

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS or NULLEXTERN may be used if there are no access control requirements.

info is user information to be sent with the association request. It is an external type (see access) and NUL-
LEXTERN may be used if no information is to be sent.

mc is a pointer to a MSAPConnect structure which is updated if the association establishment is successful
and contains information about the association, including the association descriptor mc->mc_sd to be used
in all references to it.

Sun Release 4.0 Last change: January 1993 1

M_INITIALISEREQ (3N) NETWORK FUNCTIONS M_INITIALISEREQ (3N)

mi is a pointer to a MSAPIndication structure which is updated only if the association establishment pro-
cedure fails and contains in mi->mi_abort the reason for the failure - in particular mi->mi_abort.ma_data is
a human readable reason.

DIAGNOSTICS
OK is returned if the association establishment is successful, NOTOK otherwise.

SEE ALSO
ISODE User’s Manual Vol.1 Chapter 2 (Association Control), str2aei(), aei2addr(), external_build(), IS
9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_INIT (3N) NETWORK FUNCTIONS M_INIT (3N)

NAME
M_Init - initialise a management responder

SYNOPSIS
#include <isode/msap.h>

int M_Init (vecp, vec, ms, mi)

int vecp;
char ∗∗ vec;
MSAPStart ∗ ms;
MSAPIndication ∗ mi;

DESCRIPTION
M_Init() initialises a management responder. It should be called by a dynamic responder as soon as it
invoked and by a static responder every time a request for a new association arrives. A successful return is
equivalent to the M-ASSOCIATE.INDICATION event. Its arguments are the following:

vecp and vec, in the case of a dynamic responder, should be the argv and argc program arguments, while in
the case of a static responder they are transparently passed by the isodeserver() event dispatcher.

ms is a pointer to a MSAPStart structure which is updated only if the call succeeds and contains association
information, including the association descriptor ms->ms_sd to be used in all references to it.

mi is a pointer to a MSAPIndication structure which is updated only if the association establishment pro-
cedure fails and contains in mi->mi_abort the reason for the failure - in particular mi->mi_abort.ma_data is
a human readable reason.

DIAGNOSTICS
OK is returned upon success, NOTOK otherwise.

SEE ALSO
ISODE User’s Manual Vol.1 Chapter 2 (Association Control), isodeserver(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

M_INITIALISERESP (3N) NETWORK FUNCTIONS M_INITIALISERESP (3N)

NAME
M_InitialiseResp - respond to a management association request

SYNOPSIS
#include <isode/msap.h>

int M_InitialiseResp (ms, status, respTitle, respAddr, context, protvrsn,
fununits, access, info, mi)

MSAPStart ∗ ms;
int status;
AEI respTitle;
struct PSAPaddr ∗ respAddr;
char∗ context;
int protvrsn, fununits;
External ∗ access, ∗ info;
MSAPIndication ∗ mi;

DESCRIPTION
M_InitialiseResp() responds to a management association request. A successful return is equivalent to the
M-ASSOCIATE.RESPONSE event. Its arguments are the following:

ms is a pointer to the MSAPStart structure filled previously by the M_Init() primitive.

status denotes if the association request is accepted or rejected. ACS_ACCEPT should be used to accept
the association request, otherwise ACS_TRANSIENT or ACS_PERMANENT should be used for a tran-
sient or permanent rejection respectively.

respTitle and respAddr are the application’s entity title and presentation address. They may be created from
the host and service names using str2aei() and aei2addr(). These involve accessing the OSI directory using
the high performance name service or the stub-directory (default), depending on configuration. These
parameters are optional, so they may also be left NULLAEI and NULLPA respectively.

context is the application context for the association. It may be left NULLCP if the requester’s application
context is acceptable.

protvrsn is an integer whose bits indicate the CMIP versions supported, at present it should be 2 for version
two (bit 1 set).

fununits is an integer whose bits are intended to indicate the capabilities of the caller. The first four bits
may be set to indicate the following capabilities:

Bit Functional Unit
0 multipleObjectSelection
1 filter
2 multipleReply
3 extendedService

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS or NULLEXTERN may be used if there are no access control requirements.

info is user information to be sent with the association response. It is an external type (see access) and
NULLEXTERN may be used if no information is to be sent.

mi is a pointer to a MSAPIndication structure which is updated only if the call fails and contains in mi-
>mi_abort the reason for the failure - in particular mi->mi_abort.ma_data is a human readable reason.

Sun Release 4.0 Last change: January 1993 1

M_INITIALISERESP (3N) NETWORK FUNCTIONS M_INITIALISERESP (3N)

DIAGNOSTICS
OK is returned upon success, NOTOK otherwise.

SEE ALSO
ISODE User’s Manual Vol.1 Chapter 2 (Association Control), M_InitialiseReq(), M_Init(), str2aei(),
aei2addr(), external_build(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_TERMINATEREQ (3N) NETWORK FUNCTIONS M_TERMINATEREQ (3N)

NAME
M_TerminateReq - orderly management association release request

SYNOPSIS
#include <isode/msap.h>

int M_TerminateReq (msd, reason, info, mi)

int msd, reason;
PE info;
MSAPIndication ∗ mi;

DESCRIPTION
M_TerminateReq() requests the orderly release of a management association. It provides a synchronous
interface and a successful return is equivalent to the M-RELEASE.CONFIRMATION event. Its arguments
are the following:

msd is the association descriptor.

reason is the reason for the association release request. It should be one of ACF_NORMAL,
ACF_URGENT, ACF_UNDEFINED.

info is user information to be sent with the association release request. This is a presentation element and
may be created from the internal representation manually, using the psap library primitives, or automati-
cally, using procedures produced by the posy/pepy or pepsy ASN.1 compilers.

mi is a pointer to a MSAPIndication structure which is updated only if the association release procedure
fails and contains in mi->mi_abort the reason for the failure - in particular mi->mi_abort.ma_data is a
human readable reason.

DIAGNOSTICS
OK is returned if the association has been successfully released, NOTOK otherwise.

SEE ALSO
ISODE User’s Manual Vol.1 Chapter 2 (Association Control), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

M_ABORTREQ (3N) NETWORK FUNCTIONS M_ABORTREQ (3N)

NAME
M_AbortReq - request the abrupt release of a management association

SYNOPSIS
#include <isode/msap.h>

int M_AbortReq (msd, info, mi)

int msd;
External ∗ info;
MSAPIndication ∗ mi;

DESCRIPTION
M_AbortReq() requests the abrupt release of a management association. A successful return it is equivalent
to a M-ABORT.REQUEST event and the association is immediately released with any data queued possi-
bly lost. Its arguments are the following:

msd is the association descriptor.

info is user information to be sent with the association abort request. This is a presentation element and
may be created from the internal representation manually, using the psap library primitives, or automati-
cally, using procedures produced by the posy/pepy or pepsy ASN.1 compilers.

mi is a pointer to a MSAPIndication structure which is updated only if the call fails and contains in mi-
>mi_abort the reason for the failure - in particular mi->mi_abort.ma_data is a human readable reason.

DIAGNOSTICS
OK is returned upon success, NOTOK otherwise.

SEE ALSO
ISODE User’s Manual Vol.1 Chapter 2 (Association Control), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

M_ASSOC (3N) NETWORK FUNCTIONS M_ASSOC (3N)

NAME
m_initialise, m_terminate - set up and release a management association.

SYNOPSIS
#include <isode/msap.h>

int m_initialise(agent, host)

char ∗agent, ∗host;

int m_terminate(msd)

int msd;

DESCRIPTION
m_initialise() attempts to set up an association to an agent application.

agent expresses the remote logical management application "qualifier". In OSIMIS there are two such
application qualifiers, SMA for the ISO Transport and the example UNIX MIB agent and OIM-SMA for
the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as described in RFC 1214).

host specifies the name of the host where the application runs - the application "designator". It should be
the name with which the host has been registered in the isoentities database or the global Directory. Note
that for Internet hosts, this is usually the last component of its address e.g. lemma and NOT
lemma.cs.ucl.ac.uk.

If a connection is established then m_initialise() returns a positive integer which is a descriptor for the new
management association.

m_terminate() will attempt a "graceful release" of the association to which msd is the descriptor.

RETURN VALUES
Each functions return OK on success and NOTOK on failure.

FILES
$(ETC)/isoentities - PSAP address information of agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
M_InitialiseReq(3N), M_TerminateReq(3N)

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS, and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

M_GET (3N) NETWORK FUNCTIONS M_GET (3N)

NAME
M_Get - Get Management Information

SYNOPSIS
#include <isode/msap.h>

int M_Get (msd, invoke, obj_class, obj_inst, scope, filter, access, sync, nattrs, attrs, mi)

int msd, invoke;
MID obj_class;
MN obj_inst;
CMISScope ∗ scope;
CMISFilter ∗ filter;
External ∗ access;
CMISSync sync;
int nattrs;
MIDentifier attrs[];
MSAPIndication ∗ mi;

DESCRIPTION
M_Get is a remote operation request to retrieve management information. It is always directed from an
application in a managing role to one in an agent role and is (obviously) a confirmed service: a result or
error is expected. Upon successful return, it is equivalent to a M-GET.REQUEST event.

The call returns as soon as the APDU is queued, it does not wait for the result/error. M_WaitReq() must be
used to wait for the latter i.e. an asynchronous remote operations interface is used. The arguments are the
following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the parameters to the get operation:

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid().

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn() assuming that naming attributes have been
registered in oidtable.at.

scope may be used to select a set of managed objects to perform the management operation. It is a pointer
to a CMISScope structure which contains two integers: scope->sc_type, which may take one of the values
Sc_BaseObject, Sc_FirstLevel, Sc_WholeSubtree, Sc_IndividualLevel or Sc_BaseToNthLevel and scope-
>sc_level, which should indicate the selected level if any. This parameter is optional: NULLMSCOPE
may be used if scoping is not required.

Sun Release 4.0 Last change: January 1993 1

M_GET (3N) NETWORK FUNCTIONS M_GET (3N)

filter is the CMIS Filter to be applied to the scoped managed objects. Only the ones for which the filtering
expression evaluates to true will be selected for the operation. Consult <isode/mparm.h> and IS 9596
(CMIP). This parameter is optional: NULLMFILTER may be used if filtering is not required.

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS may be used if there are no access control requirements.

sync defines the synchronisation requirements for the management operations across more than one
selected managed objects. The value s_atomic may be used if all operations should succeed or none should
be performed. The value s_bestEffort may be used for an attempt on a best effort basis. Syncronisation is
only meaningful when scoping is used. NULLMSYNC (effectively s_bestEffort) may be used if there are
no synchronisation requirements.

attrs are the identifiers for the management attributes to be retrieved. It is an array of MIDentifier structures
(see above), while nattrs is the number of elements in that array. By specifying nattrs to be
GET_ALLATTRS or GET_NOATTRS all or no attributes are requested respectively. In this case the attrs
argument is irrelevant. Attribute identifiers are usually object identifiers, in which case attrs[x].mid_type
should be set to MID_GLOBAL and attrs[x].mid_global should contain the actual OID. The latter may be
created from the "dot notation" using str2oid() or from the attribute textual description registered in
oidtable.at, using name2oid().

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory),
external_build(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_GETRES (3N) NETWORK FUNCTIONS M_GETRES (3N)

NAME
M_GetRes - Get Management Information Result

SYNOPSIS
#include <isode/msap.h>

int M_GetRes (msd, invoke, linked, obj_class, obj_inst, cur_time, nattrs, attrs,
error, error_info, mi)

int msd, invoke, linked;
MID obj_class;
MN obj_inst;
char∗ cur_time;
int nattrs;
CMISGetAttr attrs[];
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_GetRes is the result to the M_Get remote operation request, returning management information. It is
always directed from an application in an agent role to one in a managing role. Upon successful return, it is
equivalent to a M-GET.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation. In the case of a single reply or the very last (non-
linked) of a series of linked replies, invoke should have the same value as the operation request invoke ID.
In the case of a linked reply, it may have any value.

linked denotes if the reply is linked. In the case of a single reply or the very last (non-linked) of a series of
linked replies, linked should be NONLINKED (zero) while in the case of a linked reply, it should have the
same value as the operation request invoke ID.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the get result/error parameters. In the case of an error other than
m_getListError, only the error and error_info parameters should be passed as explained later while the rest
may be left NULL<X>. A m_getListError, which means that some of the requested attributes are not
returned because of errors, is actually treated as a (partial) result.

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an OID or an integer (global or local ID respectively). Usually the object class is an object
identifier, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid(). This parameter is optional and may be
omitted in the case of a single reply referring to the base object. In this case NULLMID may be used.

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional and may be omitted in the case of a single reply refer-
ring to the base object. In this case NULLMN may be used.

Sun Release 4.0 Last change: January 1993 1

M_GETRES (3N) NETWORK FUNCTIONS M_GETRES (3N)

cur_time is the current time at which the response is generated. It is a character string representation of the
ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts between a
UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This parameter
is optional and may be omitted by using NULLCP.

attrs are the retrieved management attributes. It is an array of CMISGetAttr structures, while nattrs is the
number of elements in that array.
attrs[x].ga_id is the attribute identifier as received in M_Get().
attrs[x].ga_error is the error occurred while trying to access that attribute and may have one of the values:
m_accessDenied if access was denied for security reasons, m_noSuchAttribute if the managed object does
not contain the requested attribute or m_noError if there was no error. In the latter case, attrs[x].ga_val
should contain the actual attribute value. This is a presentation element and may be created from the inter-
nal representation manually, using the psap library primitives, or automatically, using procedures produced
by the posy/pepy or pepsy ASN.1 compilers (NULLPE may be used in the case of an error). In the case of
a general get request error other than m_getListError, nattrs and attrs may be left 0 and NULLMGETATTR
respectively.

error is the error occurred during the M_Get() operation. The possible error codes and their semantics are:

m_noError - no error
m_noSuchObjectClass - the specified class was not recognised
m_noSuchObjectInstance - the specified object instance was not recognised
m_accessDenied - the specified managed object could not be accessed because of security reasons
m_invalidScope - the specified scope parameter was invalid
m_invalidFilter - the specified filter parameter was invalid
m_syncNotSupported - the specified (atomic) synchronisation is not supported
m_classInstanceConflict - the specified instance does not belong to the specified class
m_complexityLimitation - one of the specified scope, filter or sync parameters was too complex
m_getListError - some of the attributes could not be accessed because of errors
m_operationCancelled - the operation was cancelled by a M-CANCEL-GET
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError, m_getListError, m_accessDenied, m_operationCancelled:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchObjectClass:
error_info -> ei_noSuchObjectClass should contain the object class.

m_noSuchObjectInstance:
error_info -> ei_noSuchObjectInstance should contain the object instance.

m_invalidScope: error_info -> ei_invalidScope should contain the scope parameter.

m_invalidFilter:
error_info -> ei_invalidFilter should contain the filter parameter.

m_syncNotSupported:
error_info -> ei_syncNotSupported should contain the sync parameter.

m_classInstanceConflict:
error_info -> ei_classInstanceConflict.cic_class should contain the object class and
error_info -> ei_classInstanceConflict.cic_inst should contain the instance.

m_complexityLimitation:
error_info -> ei_complexityLimitation.cl_scope may contain the scope (optional),
error_info -> ei_complexityLimitation.cl_filter may contain the filter (optional) and
error_info -> ei_complexityLimitation.cl_sync may contain the sync parameter (also optional).

Sun Release 4.0 Last change: January 1993 2

M_GETRES (3N) NETWORK FUNCTIONS M_GETRES (3N)

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

m_processingFailure:
error_info -> ei_processingFailure.pf_class should contain the object class,
error_info -> ei_processingFailure.pf_inst may contain the object instance (optional),
error_info -> ei_processingFailure.pf_error.mp_id should contain the error identifier and
error_info -> ei_processingFailure.pf_error.mp_val should contain the error information.

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

A series of linked replies should be terminated by an empty non-linked reply with invoke equal to the
request invocation identifier:

M_GetRes (msd, invoke, NONLINKED, NULLMID, NULLMN, NULLCP, 0, NULLMGETATTR,
NULLMERROR, NULLMERRORINFO, mi);

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

M_SET (3N) NETWORK FUNCTIONS M_SET (3N)

NAME
M_Set/M_SetConf - Set Management Information

SYNOPSIS
#include <isode/msap.h>

int M_Set (msd, invoke, obj_class, obj_inst, scope, filter, access, sync, nattrs, attrs, mi)

int msd, invoke;
MID obj_class;
MN obj_inst;
CMISScope∗ scope;
CMISFilter∗ filter;
External∗ access;
CMISSync sync;
int nattrs;
CMISSetAttr attrs[];
MSAPIndication∗ mi;

int M_SetConf (msd, invoke, obj_class, obj_inst, scope, filter, access, sync, nattrs, attrs, mi) /∗ parameters
as above ∗/

DESCRIPTION
M_Set/M_SetConf are remote operation requests to modify management information. They are always
directed from an application in a managing role to one in an agent role. M_Set is an unconfirmed service
while M_SetConf is a confirmed one: a result or error is expected. Upon successful return, they are
equivalent to a M-SET.REQUEST event.

The M_SetConf call returns as soon as the APDU is queued, it does not wait for the result/error.
M_WaitReq() must be used to wait for the latter i.e. an asynchronous remote operations interface is used.
The arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the parameters of the set operation:

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from the "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid().

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at.

scope may be used to select a set of managed objects to perform the management operation. It is a pointer
to a CMISScope structure which contains two integers: scope->sc_type, which may take one of the values
Sc_BaseObject, Sc_FirstLevel, Sc_WholeSubtree, Sc_IndividualLevel or Sc_BaseToNthLevel and scope-
>sc_level, which should indicate the selected level if any. This parameter is optional: NULLMSCOPE

Sun Release 4.0 Last change: January 1993 1

M_SET (3N) NETWORK FUNCTIONS M_SET (3N)

may be used if scoping is not required.

filter is the CMIS Filter to be applied to the scoped managed objects. Only the ones for which the filtering
expression evaluates to true will be selected for the operation. Consult <isode/mparm.h> and IS 9596
(CMIP). This parameter is optional: NULLMFILTER may be used if filtering is not required.

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS may be used if there are no access control requirements.

sync defines the synchronisation requirements for the management operations across more than one
selected managed objects. The value s_atomic may be used if all operations should succeed or none should
be performed. The value s_bestEffort may be used for an attempt on a best effort basis. Syncronisation is
only meaningful when scoping is used. NULLMSYNC (effectively s_bestEffort) may be used if there are
no synchronisation requirements.

attrs are the management attributes to be set. It is an array of CMISSetAttr structures, while nattrs is the
number of elements in that array.
attrs[x].sa_modify is the modify operator to be applied to the particular attribute. It may take one of the
values m_replace, m_setToDefault, m_addValue or m_removeValue, the last two applying only to set-
valued attributes.
attrs[x].sa_id is a MIDentifier structure (see above) identifying the attribute. Attribute identifiers are usu-
ally object identifiers, in which case attrs[x].sa_id.mid_type should be set to MID_GLOBAL and
attrs[x].sa_id.mid_global should contain the actual OID. The latter may be created from a "dot notation"
using str2oid() or from the attribute textual description registered in oidtable.at, using name2oid().
attrs[x].sa_val contains the actual attribute value to be set. It is a presentation element and may be created
from the internal representation manually, using the psap library primitives, or automatically, using pro-
cedures produced by the posy/pepy or pepsy ASN.1 compilers. The attribute value is optional if the modify
operator is m_setToDefault, in which case NULLPE may be used.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory),
external_build(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_SETRES (3N) NETWORK FUNCTIONS M_SETRES (3N)

NAME
M_SetRes - Set Management Information Result

SYNOPSIS
#include <isode/msap.h>

int M_SetRes (msd, invoke, linked, obj_class, obj_inst, cur_time, nattrs, attrs,
error, error_info, mi)

int msd, invoke, linked;
MID obj_class;
MN obj_inst;
char∗ cur_time;
int nattrs;
CMISSetAttr∗ attrs;
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_SetRes is the result to the M_SetConf remote operation request. It is always directed from an applica-
tion in an agent role to one in a managing role. Upon successful return, it is equivalent to a M-
SET.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation. In the case of a single reply or the very last (non-
linked) of a series of linked replies, invoke should have the same value as the operation request invoke ID.
In the case of a linked reply, it may have any value.

linked denotes if the reply is linked. In the case of a single reply or the very last (non-linked) of a series of
linked replies, linked should be NONLINKED (zero) while in the case of a linked reply, it should have the
same value as the operation request invoke ID.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the set result/error parameters. In the case of an error other than
m_setListError, only the error and error_info parameters should be passed as explained later while the rest
may be left NULL<X>. A m_setListError, which means that some of the requested attributes were not set
because of errors, is actually treated as a (partial) result.

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid(). This parameter is optional and may be
omitted in the case of a single reply referring to the base object. In this case NULLMID may be used.

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional and may be omitted in the case of a single reply refer-
ring to the base object. In this case NULLMN may be used.

Sun Release 4.0 Last change: January 1993 1

M_SETRES (3N) NETWORK FUNCTIONS M_SETRES (3N)

cur_time is the current time at which the response is generated. It is a character string representation of the
ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts between a
UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This parameter
is optional and may be omitted by using NULLCP.

attrs are the new values of the management attributes that were set. It is an array of CMISSetAttr struc-
tures, while nattrs is the number of elements in that array.
attrs[x].sa_id is the attribute identifier as received in M_SetConf.
attrs[x].ga_error is the error occurred while trying to set that attribute and may have one of the values:
m_accessDenied if access was denied for security reasons,
m_noSuchAttribute if the managed object does not contain the attribute
m_invalidAttributeValue if the specified attribute value was invalid
m_invalidOperation if the modify operator specified can not be performed on the specified attribute
m_invalidOperator if the modify operator specified is not recognised and
m_noError if there was no error.
attrs[x].ga_val is the new value of the attribute if it was set correctly or the supplied value in M_SetConf in
the case of an error. The attribute value is a presentation element and may be created from the internal
representation manually, using the psap library primitives, or automatically, using procedures produced by
the posy/pepy or pepsy ASN.1 compilers.
attrs[x].ga_modify contains the unrecognised modify operator in the case of a m_invalidOperator error,
otherwise it may be m_noModifyOp.

In the case of a general set request error other than m_setListError, nattrs and attrs may be left 0 and
NULLMSETATTR respectively.

error is the error occurred during the M_SetConf operation. The possible error codes and their semantics
are:

m_noError - no error
m_noSuchObjectClass - the specified class was not recognised
m_noSuchObjectInstance - the specified object instance was not recognised
m_accessDenied - the specified managed object could not be accessed because of security reasons
m_invalidScope - the specified scope parameter was invalid
m_invalidFilter - the specified filter parameter was invalid
m_syncNotSupported - the specified (atomic) synchronisation is not supported
m_classInstanceConflict - the specified instance does not belong to the specified class
m_complexityLimitation - one of the specified scope, filter or sync parameters was too complex
m_setListError - some of the attributes could not be accessed because of errors
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError, m_setListError, m_accessDenied:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchObjectClass:
error_info -> ei_noSuchObjectClass should contain the object class.

m_noSuchObjectInstance:
error_info -> ei_noSuchObjectInstance should contain the object instance.

m_invalidScope:
error_info -> ei_invalidScope should contain the scope parameter.

m_invalidFilter:
error_info -> ei_invalidFilter should contain the filter parameter.

Sun Release 4.0 Last change: January 1993 2

M_SETRES (3N) NETWORK FUNCTIONS M_SETRES (3N)

m_syncNotSupported:
error_info -> ei_syncNotSupported should contain the sync parameter.

m_classInstanceConflict:
error_info -> ei_classInstanceConflict.cic_class should contain the object class and
error_info -> ei_classInstanceConflict.cic_inst should contain the instance.

m_complexityLimitation:
error_info -> ei_complexityLimitation.cl_scope may contain the scope (optional),
error_info -> ei_complexityLimitation.cl_filter may contain the filter (optional) and
error_info -> ei_complexityLimitation.cl_sync may contain
the sync parameter (also optional).

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

m_processingFailure:
error_info -> ei_processingFailure.pf_class should contain the object class,
error_info -> ei_processingFailure.pf_inst may contain the object instance (optional),
error_info -> ei_processingFailure.pf_error.mp_id should contain the error identifier and
error_info -> ei_processingFailure.pf_error.mp_val should contain the error information.

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

A series of linked replies should be terminated by an empty non-linked reply with invoke equal to the
request invocation identifier:
M_SetRes (msd, invoke, NONLINKED, NULLMID, NULLMN, NULLCP, 0, NULLMSETATTR,
NULLMERROR, NULLMERRORINFO, mi);

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

M_ACTION (3N) NETWORK FUNCTIONS M_ACTION (3N)

NAME
M_Action/M_ActionConf - Perform a Management Action

SYNOPSIS
#include <isode/msap.h>

int M_Action (msd, invoke, obj_class, obj_inst, scope, filter, access, sync,
action_type, action_info, mi)

int msd, invoke;
MID obj_class;
MN obj_inst;
CMISScope∗ scope;
CMISFilter∗ filter;
External∗ access;
CMISSync sync;
MID action_type;
PE action_info;
MSAPIndication∗ mi;

int M_ActionConf (msd, invoke, obj_class, obj_inst, scope, filter, access, sync, action_type, action_info,
mi) /∗ parameters as above ∗/

DESCRIPTION
M_Action/M_ActionConf are remote operation requests to perform a management action. They are always
directed from an application in a managing role to one in an agent role. M_Action is an unconfirmed ser-
vice while M_ActionConf is a confirmed one: a result or error is expected. Upon successful return, they are
equivalent to a M-ACTION.REQUEST event.

The M_ActionConf call returns as soon as the APDU is queued, it does not wait for the result/error.
M_WaitReq() must be used to wait for the latter i.e. an asynchronous remote operations interface is used.
The arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the parameters of the action operation:

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from the "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid().

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at.

scope may be used to select a set of managed objects to perform the management operation. It is a pointer
to a CMISScope structure which contains two integers: scope->sc_type, which may take one of the values
Sc_BaseObject, Sc_FirstLevel, Sc_WholeSubtree, Sc_IndividualLevel or Sc_BaseToNthLevel and scope-

Sun Release 4.0 Last change: January 1993 1

M_ACTION (3N) NETWORK FUNCTIONS M_ACTION (3N)

>sc_level, which should indicate the selected level if any. This parameter is optional: NULLMSCOPE
may be used if scoping is not required.

filter is the CMIS Filter to be applied to the scoped managed objects. Only the ones for which the filtering
expression evaluates to true will be selected for the operation. Consult <isode/mparm.h> and IS 9596
(CMIP). This parameter is optional: NULLMFILTER may be used if filtering is not required.

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS may be used if there are no access control requirements.

sync defines the synchronisation requirements for the management operations across more than one
selected managed objects. The value s_atomic may be used if all operations should succeed or none should
be performed. The value s_bestEffort may be used for an attempt on a best effort basis. Syncronisation is
only meaningful when scoping is used. NULLMSYNC (effectively s_bestEffort) may be used if there are
no synchronisation requirements.

action_type is the type of the management action. It is a pointer to a MIDentifier structure (see above). The
action type is usually an object identifier, in which case action_type->mid_type should be set to
MID_GLOBAL and action_type->mid_global should contain the actual OID. The latter may be created
from the "dot notation" using str2oid() or from the action textual description registered in oidtable.at, using
name2oid().

action_info contains the action information. It is a presentation element and may be created from the inter-
nal representation manually, using the psap library primitives, or automatically, using the posy/pepy or
pepsy ASN.1 compilers. This parameter is optional: NULLPE should be used if there is no action informa-
tion.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory),
external_build(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_ACTIONRES (3N) NETWORK FUNCTIONS M_ACTIONRES (3N)

NAME
M_ActionRes - Management Action Result

SYNOPSIS
#include <isode/msap.h>

int M_ActionRes (msd, invoke, linked, obj_class, obj_inst, cur_time, action_reply,
error, error_info, mi)

int msd, invoke, linked;
MID obj_class;
MN obj_inst;
char∗ cur_time;
CMISParam∗ action_reply;
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_ActionRes is the result to the M_ActionConf remote operation request. It is always directed from an
application in an agent role to one in a managing role. Upon successful return, it is equivalent to a M-
ACTION.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation. In the case of a single reply or the very last (non-
linked) of a series of linked replies, invoke should have the same value as the operation request invoke ID.
In the case of a linked reply, it may have any value.

linked denotes if the reply is linked. In the case of a single reply or the very last (non-linked) of a series of
linked replies, linked should be NONLINKED (zero) while in the case of a linked reply, it should have the
same value as the operation request invoke ID.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the action result/error parameters. In the case of a non-linked reply error or a
m_processingFailure linked reply one, only the error and error_info parameters should be supplied: the rest
may be NULL<X>. In the case though of a linked reply error other than m_processingFailure, the
obj_class and obj_inst parameters should be supplied as well as the error and error_info ones. This is
despite the fact that there may be duplication of information in the case of a m_noSuchAction or
m_noSuchArgument error as the object class should be also supplied in the error information.

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid(). This parameter is optional and may be
omitted in the case of a single reply referring to the base object. In this case NULLMID may be used.

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional and may be omitted in the case of a single reply refer-
ring to the base object. In this case NULLMN may be used.

Sun Release 4.0 Last change: January 1993 1

M_ACTIONRES (3N) NETWORK FUNCTIONS M_ACTIONRES (3N)

cur_time is the current time at which the response is generated. It is a character string representation of the
ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts between a
UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This parameter
is optional and may be omitted by using NULLCP.

action_reply contains the reply information. It is a pointer to a CMISParam structure which contains an
identifier/value pair.
action_reply->mp_id is the action identifier as received in M_ActionConf.
action_reply->mp_val is the action reply information. This is a presentation element and may be created
from the internal representation manually, using the psap library primitives, or automatically, using pro-
cedures produced by the posy/pepy or pepsy ASN.1 compilers.

In the case of an action error, action_reply may be NULLMPARM.

error is the error occurred during the M_ActionConf operation. The possible error codes and their seman-
tics are:

m_noError - no error
m_noSuchObjectClass - the specified class was not recognised
m_noSuchObjectInstance - the specified object instance was not recognised
m_accessDenied - the specified managed object could not be accessed because of security reasons
m_invalidScope - the specified scope parameter was invalid
m_invalidFilter - the specified filter parameter was invalid
m_syncNotSupported - the specified (atomic) synchronisation is not supported
m_classInstanceConflict - the specified instance does not belong to the specified class
m_complexityLimitation - one of the specified scope, filter or sync parameters was too complex
m_noSuchAction - the specified action type is not supported by this object class
m_noSuchArgument - the specified action information was not recognised
m_invalidArgumentValue - the specified action information is invalid
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchObjectClass:
error_info -> ei_noSuchObjectClass should contain the object class.

m_noSuchObjectInstance:
error_info -> ei_noSuchObjectInstance should contain the object instance.

m_accessDenied:
if the reply is not linked, no error information is returned and error_info may be NULLMERRORPARM. If
though the reply is linked
error_info -> ei_linkedActionAccessDenied should contain the action type.

m_invalidScope:
error_info -> ei_invalidScope should contain the scope parameter.

m_invalidFilter:
error_info -> ei_invalidFilter should contain the filter parameter.

m_syncNotSupported:
error_info -> ei_syncNotSupported should contain the sync parameter.

m_classInstanceConflict:
error_info -> ei_classInstanceConflict.cic_class should contain the object class and
error_info -> ei_classInstanceConflict.cic_inst should contain the instance.

Sun Release 4.0 Last change: January 1993 2

M_ACTIONRES (3N) NETWORK FUNCTIONS M_ACTIONRES (3N)

m_complexityLimitation:
error_info -> ei_complexityLimitation.cl_scope may contain the scope (optional),
error_info -> ei_complexityLimitation.cl_filter may contain the filter (optional) and
error_info -> ei_complexityLimitation.cl_sync may contain the sync parameter (also optional).

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

m_noSuchAction:
error_info -> ei_noSuchAction.nsa_class should contain the object class
error_info -> ei_noSuchAction.nsa_type should contain the action type.

m_noSuchArgument:
error_info -> ei_noSuchArgument.nsa_class may contain the object class (optional),
error_info -> ei_noSuchArgument.nsa_type should contain the action type.

m_invalidArgumentValue:
error_info -> ei_invalidArgumentValue.iav_id should contain the action type,
error_info -> ei_invalidArgumentValue.iav_val may contain the action information (optional).

m_processingFailure:
error_info -> ei_processingFailure.pf_class should contain the object class,
error_info -> ei_processingFailure.pf_inst may contain the object instance (optional),
error_info -> ei_processingFailure.pf_error.mp_id should contain the error identifier and
error_info -> ei_processingFailure.pf_error.mp_val should contain the error information.

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

A series of linked replies should be terminated by an empty non-linked reply with invoke equal to the
request invocation identifier: M_ActionRes (msd, invoke, NONLINKED, NULLMID, NULLMN,
NULLCP, NULLMPARM, NULLMERROR, NULLMERRORINFO, mi);

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

M_CREATE (3N) NETWORK FUNCTIONS M_CREATE (3N)

NAME
M_Create - Create a Managed Object

SYNOPSIS
#include <isode/msap.h>

int M_Create (msd, invoke, obj_class, obj_inst, instance_type, reference_inst,
access, nattrs, attrs, mi)

int msd, invoke;
MID obj_class;
MN obj_inst, reference_inst;
int instance_type;
External∗ access; int nattrs;
CMISParam attrs[];
MSAPIndication∗ mi;

DESCRIPTION
M_Create is a remote operation request to create a managed object i.e. to enable the management of the
associated real resource. It is always directed from an application in a managing role to one in an agent role
and it is a confirmed service: a result or error is expected. Upon successful return, it is equivalent to a M-
CREATE.REQUEST event.

The call returns as soon as the APDU is queued, it does not wait for the result/error. M_WaitReq() must be
used to wait for the latter i.e. an asynchronous remote operations interface is used. The arguments are the
following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the parameters to the create operation:

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid().

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional as the remote agent may use its own name for managed
objects from particular object classes. In this case NULLMN should be used.

instance_type is the type of the object instance. It may take one of the values CA_OBJECT_INST, specify-
ing the name of the actual object to be created or CA_PARENT_INST, specifying the name of the parent
object under which the object will be created (in the latter case, the remote agent will assign the relative
object’s name). If the obj_inst is not specified, NULL may be used for the inst_type.

reference_inst is a managed object instance of the same class as the object to be created, which may be
used to determine initial attribute values, depending on the managed object class specification. It may be
created in the same way as the obj_inst and it is an optional parameter, in which case NULLMN should be

Sun Release 4.0 Last change: January 1993 1

M_CREATE (3N) NETWORK FUNCTIONS M_CREATE (3N)

used.

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS may be used if there are no access control requirements.

attrs are the attribute identifiers/values for the management attributes to be initialised. It is an array of
CMISParam structures, while nattrs is the number of elements in that array.
attrs[x].mp_id is a MIDentifier structure (see above) identifying the attribute. Attribute identifiers are usu-
ally object identifiers, in which case attrs[x].mp_id.mid_type should be set to MID_GLOBAL and
attrs[x].mp_id.mid_global should contain the actual OID. The latter may be created from the "dot notation"
using str2oid() or from the attribute textual description registered in oidtable.at, using name2oid().
attrs[x].mp_val contains the initial attribute value which is a presentation element and may be created from
the internal representation manually, using the psap library primitives, or automatically, using procedures
produced by the posy/pepy or pepsy ASN.1 compilers.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory),
external_build(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_CREATERES (3N) NETWORK FUNCTIONS M_CREATERES (3N)

NAME
M_CreateRes - Create Managed Object Result

SYNOPSIS
#include <isode/msap.h>

int M_CreateRes (msd, invoke, obj_class, obj_inst, cur_time, nattrs, attrs,
error, error_info, mi)

int msd, invoke;
MID obj_class;
MN obj_inst;
char∗ cur_time;
int nattrs;
CMISParam∗ attrs;
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_CreateRes is the result to the M_Create remote operation request, It is always directed from an applica-
tion in an agent role to one in a managing role. Upon successful return, it is equivalent to a M-
CREATE.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the create result/error parameters. In the case of an error, only the error and
error_info parameters should be passed: the rest may be left NULL<X>.

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an OID or an integer (global or local ID respectively). Usually the object class is an object
identifier, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid(). This parameter is optional and may be
omitted in the case of a single reply referring to the base object. In this case NULLMID may be used.

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional and may be omitted in the case of a single reply refer-
ring to the base object. In this case NULLMN may be used.

cur_time is the current time at which the response is generated. It is a character string representation of the
ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts between a
UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This parameter
is optional and may be omitted by using NULLCP.

attrs are the initial values of all the management attributes. It is an array of CMISParam structures
(identifier/value pairs), while nattrs is the number of elements in that array. attrs[x].mp_id is the attribute
identifier and attrs[x].ga_val is the initial attribute value. This is a presentation element and may be created
from the internal representation manually, using the psap library primitives, or automatically, using

Sun Release 4.0 Last change: January 1993 1

M_CREATERES (3N) NETWORK FUNCTIONS M_CREATERES (3N)

procedures produced by the posy/pepy or pepsy ASN.1 compilers.
In the case of a create request error, nattrs and attrs may be left 0 and NULLMPARM respectively.

error is the error occurred during the M_Create operation. The possible error codes and their semantics
are:

m_noError - no error
m_noSuchObjectClass - the specified class was not recognised
m_duplicateManagedObjectInstance - the specified managed object already exists
m_noSuchReferenceObject - the specified reference object does not exist
m_accessDenied - the specified managed object could not be created
m_noSuchAttribute - a specified attribute was not recognised
m_noSuchObjectInstance - the specified parent object instance was not recognised
m_classInstanceConflict - the specified instance may not be created as a member of the specified class
m_invalidObjectInstance - the specified object instance violates the naming rules
m_missingAttributeValue - a required attribute value was not specified
m_invalidAttributeValue - a specified attribute value was invalid
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError, m_accessDenied:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchObjectClass:
error_info -> ei_noSuchObjectClass should contain the object class.

m_duplicateManagedObjectInstance:
error_info -> ei_duplicateObjectInstance should contain the object instance.

m_noSuchReferenceObject:
error_info -> ei_noSuchReferenceObject should contain the reference object.

m_noSuchAttribute:
error_info -> ei_noSuchAttribute should contain the unrecognised attribute ID.

m_noSuchObjectInstance:
error_info -> ei_noSuchObjectInstance should contain the object instance.

m_classInstanceConflict:
error_info -> ei_classInstanceConflict.cic_class should contain the object class and
error_info -> ei_classInstanceConflict.cic_inst should contain the instance.

m_invalidObjectInstance:
error_info -> ei_invalidObjectInstance should contain the object instance.

m_missingAttributeValue:
error_info -> ei_missingAttributeValue.mav_attrs (an array of MIDentifier structures) should contain attri-
bute identifiers for which initial values were required but not supplied and
error_info -> ei_missingAttributeValue.mav_nattrs should be the number of the attribute identifiers in that
array.

m_invalidAttributeValue:
error_info -> ei_invalidAttributeValue.mp_id should contain the attribute identifier and
error_info -> ei_invalidAttributeValue.mp_val should contain the invalid attribute value.

m_processingFailure:
error_info -> ei_processingFailure.pf_class should contain the object class,
error_info -> ei_processingFailure.pf_inst may contain the object instance (optional),
error_info -> ei_processingFailure.pf_error.mp_id should contain the error identifier and
error_info -> ei_processingFailure.pf_error.mp_val should contain the error information.

Sun Release 4.0 Last change: January 1993 2

M_CREATERES (3N) NETWORK FUNCTIONS M_CREATERES (3N)

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

M_DELETE (3N) NETWORK FUNCTIONS M_DELETE (3N)

NAME
M_Delete - Delete Managed Object(s)

SYNOPSIS
#include <isode/msap.h>

int M_Delete (msd, invoke, obj_class, obj_inst, scope, filter, access, sync, mi)

int msd, invoke;
MID obj_class;
MN obj_inst;
CMISScope∗ scope;
CMISFilter∗ filter;
External∗ access;
CMISSync sync;
MSAPIndication∗ mi;

DESCRIPTION
M_Delete is a remote operation request to delete one or more managed objects i.e. to disable the manage-
ment of the associated real resource(s). It is always directed from an application in a managing role to one
in an agent role and it is a confirmed service: a result or error is expected. Upon successful return, it is
equivalent to a M-DELETE.REQUEST event.

The call returns as soon as the APDU is queued, it does not wait for the result/error. M_WaitReq() must be
used to wait for the latter i.e. an asynchronous remote operations interface is used. The arguments are the
following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails (APDU not queued).

The remaining arguments are the parameters to the create operation:

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid().

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at.

scope may be used to select a set of managed objects to perform the management operation. It is a pointer
to a CMISScope structure which contains two integers: scope->sc_type, which may take one of the values
Sc_BaseObject, Sc_FirstLevel, Sc_WholeSubtree, Sc_IndividualLevel or Sc_BaseToNthLevel and scope-
>sc_level, which should indicate the selected level if any. This parameter is optional: NULLMSCOPE
may be used if scoping is not required.

filter is the CMIS Filter to be applied to the scoped managed objects. Only the ones for which the filtering
expression evaluates to true will be selected for the operation. Consult <isode/mparm.h> and IS 9596
(CMIP). This parameter is optional: NULLMFILTER may be used if filtering is not required.

Sun Release 4.0 Last change: January 1993 1

M_DELETE (3N) NETWORK FUNCTIONS M_DELETE (3N)

access is an application defined parameter used for access control. It is a pointer to a struct
type_UNIV_EXTERNAL as in <isode/pepy/UNIV-types.h> (type-defined as External). It may be created
using the routine external_build() (see manual entry) and free’d using external_free(). This parameter is
optional: NULLMACCESS may be used if there are no access control requirements.

sync defines the synchronisation requirements for the management operations across more than one
selected managed objects. The value s_atomic may be used if all operations should succeed or none should
be performed. The value s_bestEffort may be used for an attempt on a best effort basis. Syncronisation is
only meaningful when scoping is used. NULLMSYNC (effectively s_bestEffort) may be used if there are
no synchronisation requirements.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Vol. 5 Chapter 17 (Programming the Direc-
tory), external_build(), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_DELETERES (3N) NETWORK FUNCTIONS M_DELETERES (3N)

NAME
M_DeleteRes - Delete Managed Object Result

SYNOPSIS
#include <isode/msap.h>

int M_DeleteRes (msd, invoke, linked, obj_class, obj_inst, cur_time, error, error_info, mi)

int msd, invoke, linked;
MID obj_class;
MN obj_inst;
char∗ cur_time;
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_DeleteRes is the result to the M_Delete remote operation request. It is always directed from an applica-
tion in an agent role to one in a managing role. Upon successful return, it is equivalent to a M-
DELETE.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation. In the case of a single reply or the very last (non-
linked) of a series of linked replies, invoke should have the same value as the operation request invoke ID.
In the case of a linked reply, it may have any value.

linked denotes if the reply is linked. In the case of a single reply or the very last (non-linked) of a series of
linked replies, linked should be NONLINKED (zero) while in the case of a linked reply, it should have the
same value as the operation request invoke ID.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the delete result/error parameters. In the case of a non-linked reply error,
only the error and error_info parameters should be supplied: the rest may be NULL<X>. In the case though
of a linked reply error (it may only be m_accessDenied), the obj_class and obj_inst parameters should be
supplied as well as the error and error_info ones (actually error_info may be omitted for that error code -
see below).

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an OID or an integer (global or local ID respectively). Usually the object class is an object
identifier, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid(). This parameter is optional and may be
omitted in the case of a single reply referring to the base object. In this case NULLMID may be used.

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional and may be omitted in the case of a single reply refer-
ring to the base object. In this case NULLMN may be used.

cur_time is the current time at which the response is generated. It is a character string representation of the
ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts between a
UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This parameter

Sun Release 4.0 Last change: January 1993 1

M_DELETERES (3N) NETWORK FUNCTIONS M_DELETERES (3N)

is optional and may be omitted by using NULLCP.

error is the error occurred during the M_Delete operation. The possible error codes and their semantics
are:

m_noError - no error
m_noSuchObjectClass - the specified class was not recognised
m_noSuchObjectInstance - the specified object instance was not recognised
m_accessDenied - the specified managed object could not be accessed because of security reasons
m_invalidScope - the specified scope parameter was invalid
m_invalidFilter - the specified filter parameter was invalid
m_syncNotSupported - the specified (atomic) synchronisation is not supported
m_classInstanceConflict - the specified instance does not belong to the specified class
m_complexityLimitation - one of the specified scope, filter or sync parameters was too complex
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError, m_accessDenied:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchObjectClass:
error_info -> ei_noSuchObjectClass should contain the object class.

m_noSuchObjectInstance:
error_info -> ei_noSuchObjectInstance should contain the object instance.

m_invalidScope:
error_info -> ei_invalidScope should contain the scope parameter.

m_invalidFilter: error_info -> ei_invalidFilter should contain the filter parameter.

m_syncNotSupported:
error_info -> ei_syncNotSupported should contain the sync parameter.

m_classInstanceConflict:
error_info -> ei_classInstanceConflict.cic_class should contain the object class and
error_info -> ei_classInstanceConflict.cic_inst should contain the instance.

m_complexityLimitation:
error_info -> ei_complexityLimitation.cl_scope may contain the scope (optional),
error_info -> ei_complexityLimitation.cl_filter may contain the filter (optional) and
error_info -> ei_complexityLimitation.cl_sync may contain the sync parameter (also optional).

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

m_processingFailure:
error_info -> ei_processingFailure.pf_class should contain the object class,
error_info -> ei_processingFailure.pf_inst may contain the object instance (optional),
error_info -> ei_processingFailure.pf_error.mp_id should contain the error identifier and
error_info -> ei_processingFailure.pf_error.mp_val should contain the error information.

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

A series of linked replies should be terminated by an empty non-linked reply with invoke equal to the
request invocation identifier:
M_DeleteRes (msd, invoke, NONLINKED, NULLMID, NULLMN, NULLCP, NULLMERROR,
NULLMERRORINFO, mi);

Sun Release 4.0 Last change: January 1993 2

M_DELETERES (3N) NETWORK FUNCTIONS M_DELETERES (3N)

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

M_EVENTREP (3N) NETWORK FUNCTIONS M_EVENTREP (3N)

NAME
M_EventRep/M_EventRepConf - Send an Event Report

SYNOPSIS
#include <isode/msap.h>

int M_EventRep (msd, invoke, obj_class, obj_inst, event_type, event_time, event_info, mi)

int msd, invoke;
MID obj_class, event_type;
MN obj_inst;
char∗ event_time;
PE event_info;
MSAPIndication∗ mi;

int M_EventRepConf (msd, invoke, obj_class, obj_inst, event_type, event_time, event_info, mi) /∗ parame-
ters as above ∗/

DESCRIPTION
M_EventRep/M_EventRepConf are remote operation requests to send an event report. They are always
directed from an application in an agent role to one in a managing role. M_EventRep is an unconfirmed
service while M_EventRepConf is a confirmed one: a result or error is expected. Upon successful return,
they are equivalent to a M-EVENT-REPORT.REQUEST event.

The M_EventRepConf call returns as soon as the APDU is queued, it does not wait for the result/error.
M_WaitReq() must be used to wait for the latter i.e. an asynchronous remote operations interface is used.
The arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the parameters to the event report operation:

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid().

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at.

event_type is the type of the event. It is a pointer to a MIDentifier structure (see above). The event type is
usually an object identifier, in which case event_type->mid_type should be set to MID_GLOBAL and
event_type->mid_global should contain the actual OID. The latter may be created from the "dot notation"
using str2oid() or from the event textual description registered in oidtable.at, using name2oid().

event_time is the current time at which the event report is generated. It is a character string representation
of the ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts
between a UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This

Sun Release 4.0 Last change: January 1993 1

M_EVENTREP (3N) NETWORK FUNCTIONS M_EVENTREP (3N)

parameter is optional and may be omitted by using NULLCP.

event_info contains the actual event information. It is a presentation element and may be created from the
internal representation manually, using the psap library primitives, or automatically, using the posy/pepy or
pepsy ASN.1 compilers. This parameter is optional: NULLPE should be used if there is no event informa-
tion.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

M_EVENTREPRES (3N) NETWORK FUNCTIONS M_EVENTREPRES (3N)

NAME
M_EventRepRes - Event Report Result

SYNOPSIS
#include <isode/msap.h>

int M_EventRepRes (msd, invoke, obj_class, obj_inst, cur_time, event_reply,
error, error_info, mi)

int msd, invoke;
MID obj_class;
MN obj_inst;
char∗ cur_time;
CMISParam∗ event_reply;
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_EventRepRes is the result to the M_EventRepConf remote operation request. It is always directed from
an application in a managing role to one in an agent role. Upon successful return, it is equivalent to a M-
EVENT-REPORT.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

The remaining arguments are the event report result/error parameters. In the case of an error, only the error
and error_info parameters should be supplied: the rest may be NULL<X>.

obj_class is the managed object class. It is of type MID, a pointer to a MIDentifier structure which may
contain an object identifier or an integer (global or local ID respectively). Usually the object class is an
OID, in which case obj_class->mid_type should be set to MID_GLOBAL and obj_class->mid_global
should contain the actual OID. The latter may be created from a "dot notation" using str2oid() or from the
class textual description registered in oidtable.oc, using name2oid(). This parameter is optional and may be
omitted in the case of a single reply referring to the base object. In this case NULLMID may be used.

obj_inst is the managed object instance (i.e. name). It is of type MN, a pointer to a MName structure which
may contain a full distinguished name, a subset ("local") distinguished name or a character string ("non-
specific" name). Usually the object instance is a distinguished name, in which case obj_inst->mn_type
should be set to MN_DN and obj_inst->mn_dn should contain the actual distinguished name. The latter
may be created from a string representation using str2dn(), assuming that naming attributes have been
registered in oidtable.at. This parameter is optional and may be omitted in the case of a single reply refer-
ring to the base object. In this case NULLMN may be used.

cur_time is the current time at which the response is generated. It is a character string representation of the
ASN.1 GeneralizedTime and may be created using gent2str() and tm2ut() (the latter converts between a
UNIX tm time structure and the ISODE UTCtime, which should be passed to the former). This parameter
is optional and may be omitted by using NULLCP.

event_reply contains the reply information. It is a pointer to a CMISParam structure which contains an
identifier/value pair.
event_reply->mp_id is the action identifier as received in M_ActionConf.
event_reply->mp_val is the event reply information. This is a presentation element and may be created
from the internal representation manually, using the psap library primitives, or automatically, using

Sun Release 4.0 Last change: January 1993 1

M_EVENTREPRES (3N) NETWORK FUNCTIONS M_EVENTREPRES (3N)

procedures produced by the posy/pepy or pepsy ASN.1 compilers. This parameter is optional: NULLPE
may be used if there is no event reply information. In the case of an event report error, event_reply may be
left NULLMPARM.

error is the error occurred during the M_EventRepConf operation. The possible error codes and their
semantics are:
m_noError - no error
m_noSuchObjectClass - the specified class was not recognised
m_noSuchObjectInstance - the specified object instance was not recognised
m_noSuchEventType - the specified event type was not recognised
m_noSuchArgument - the specified event information was not recognised
m_invalidArgumentValue - the specified event information is invalid
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchObjectClass:
error_info -> ei_noSuchObjectClass should contain the object class.

m_noSuchObjectInstance:
error_info -> ei_noSuchObjectInstance should contain the object instance.

m_noSuchEventType:
error_info -> ei_noSuchEventType.nsa_class should contain the object class
error_info -> ei_noSuchEventType.nsa_type should contain the action type.

m_noSuchArgument:
error_info -> ei_noSuchArgument.nsa_class may contain the object class (optional),
error_info -> ei_noSuchArgument.nsa_type should contain the event type.

m_invalidArgumentValue:
error_info -> ei_invalidArgumentValue.iav_id should contain the event type,
error_info -> ei_invalidArgumentValue.iav_val may contain the event information (optional).

m_processingFailure:
error_info -> ei_processingFailure.pf_class should contain the object class,
error_info -> ei_processingFailure.pf_inst may contain the object instance (optional),
error_info -> ei_processingFailure.pf_error.mp_id should contain the error identifier and
error_info -> ei_processingFailure.pf_error.mp_val should contain the error information.

The whole error parameter is optional, so error_info may be also NULLMERRORPARM.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), Chapter 5 (Encoding of Data Structures),
Vol. 4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), Vol. 5 Chapter 17 (Programming the Directory), IS 9595/6
(CMIS/P).

Sun Release 4.0 Last change: January 1993 2

M_EVENTREPRES (3N) NETWORK FUNCTIONS M_EVENTREPRES (3N)

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

M_CANCELGET (3N) NETWORK FUNCTIONS M_CANCELGET (3N)

NAME
M_CancelGet - Cancel a Previously Released Get Request

SYNOPSIS
#include <isode/msap.h>

int M_CancelGet (msd, invoke, get_invoke, mi)

int msd, invoke, get_invoke;
MSAPIndication∗ mi;

DESCRIPTION
M_CancelGet is a remote operation request to cancel a previously released Get request. It is always
directed from an application in a managing role to one in an agent role and it is a confirmed service: a
result or error is expected. Upon successful return, it is equivalent to a M-CANCEL-GET.REQUEST
event.

The call returns as soon as the APDU is queued, it does not wait for the result/error. M_WaitReq() must be
used to wait for the latter i.e. an asynchronous remote operations interface. The arguments are the follow-
ing:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

get_invoke is the invocation identifier of the operation to be cancelled.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

M_CANCELGETRES (3N) NETWORK FUNCTIONS M_CANCELGETRES (3N)

NAME
M_CancelGetRes - Cancel Get Result

SYNOPSIS
#include <isode/msap.h>

int M_CancelGetRes (msd, invoke, error, error_info, mi)

int msd, invoke;
CMISErrors error;
CMISErrorInfo∗ error_info;
MSAPIndication∗ mi;

DESCRIPTION
M_CancelGetRes is the result to the M_CancelGet remote operation request. is always directed from an
application in an agent role to one in a managing role. Upon successful return, it is equivalent to a M-
CANCEL-GET.RESPONSE event. Its arguments are the following:

msd is the management association descriptor.

invoke is the invocation identifier for the operation.

mi is a pointer to a MSAPIndication structure, which is updated only if the call fails i.e. the APDU is not
queued.

error is the error occurred during the M_CancelGet() operation. The possible error codes and their seman-
tics are:

m_noError - no error
m_noSuchInvokeId - the get invoke identifier parameter was not recognised.
m_mistypedOperation - the get invoke identifier parameter does not refer to a M-GET operation.
m_processingFailure - a general failure occurred while processing the operation (usually out of memory)

According to the error encountered, error_info, which points to a CMISErrorInfo structure, should contain
the following information.

m_noError, m_mistypedOperation, m_processingFailure:
no error information is returned and error_info may be NULLMERRORPARM.

m_noSuchInvokeId:
error_info -> ei_noSuchInvokeId should contain the get invoke identifier.

DIAGNOSTICS
OK is returned upon success, NOTOK upon failure and the mi ->mi_preject structure is updated: mi->
mi_preject.mpr_reason contains the reason for the failure (an integer) and mi->mi_preject.mpr_data con-
tains a human readable string.

SEE ALSO
ISODE User’s Manual Vol. 1 Chapter 3 (Remote Operations), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

INITIALISESYNTAXES (3N) NETWORK FUNCTIONS INITIALISESYNTAXES (3N)

NAME
initialiseSyntaxes - Set up ISODE syntax information and tailoring

SYNOPSIS
#include <isode/msap.h>

extern char ∗etcdir;
extern char ∗tailor;
typedef void (∗VoidFunc)();

int initialiseSyntaxes(tailorName, syntaxFuncs)

char ∗tailorName;
VoidFunc ∗syntaxFuncs;

DESCRIPTION
initialiseSyntaxes() must be the first function ISODE function call made in a program. It has three functions
:

The ETC directory
ISODE libraries use configuration files and tables that are usually located in a well known location. This is
called the ETC directory. InitialiseSyntaxes() reads the path name for this directory as from the value of
OSIMISETCPATH environment variable.

Tailoring
ISODE uses a tailor file to configure certain aspects of the ISODE stack, as well as provide other
configuration information to the application. The tailor file must be located in the ETC directory for
OSIMIS applications. If the value of tailorName is non-NULL, then initialiseSyntaxes() set the value of the
global variable tailor to the full path name of the tailor file (for use by other parts of the program). If it is
NULL then the default tailor file name "osimistailor" is used.

Syntax information
The ETC directory should contain two files that are used to configure the syntax information. These files
are "oidtable.gen" and "oidtable.at". syntaxFuncs should point to a NULL terminated list of function
pointers. These functions are called to set up the correct syntax information for use by the program. The
value of syntaxFuncs may be one of the standrd OSIMIS ones (see <isode/msap/Syntax.h>) or it may be
user-defined. The functions are basically calls to the dsap library routine add_attribute_syntax();

RETURN VALUES
OK on success
NOTOK on failure

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[at,gen] - syntax and OID information.
$(ETC)/osimistailor - the default tailor file.

Sun Release 4.0 Last change: January 1993 1

INITIALISESYNTAXES (3N) NETWORK FUNCTIONS INITIALISESYNTAXES (3N)

DIAGNOSTICS
Should be obvious.

NOTES
See the ISODE User’s Manual for more information on tailor files and also the dsap library routines used.

AUTHOR
Saleem N. Bhatti, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

AVA2STR (3N) NETWORK FUNCTIONS AVA2STR (3N)

NAME
ava2str, str2ava, attrv2str - convert between strings and values for syntaxes.

SYNOPSIS
#include <isode/msap.h>

int ava2str(oid, pe, name, value)

OID oid;
PE pe;
char ∗∗name, ∗∗value;

Ava ∗str2ava(nameStr, valueStr);

char ∗nameStr, ∗valueStr;

void free_ava(ava)

Ava ∗ava;

char ∗attrv2str(v, print_fnx);

void ∗v;
PRINT_FNX print_fnx;

DESCRIPTION
ava2str() takes an object identifier (oid) and a BER encoded value (pe) and fills in the human readable
representations of both at the pointers name and value, respectively. The human readable form of the oid is
a name (e.g. of name of an attribute), and the human readable form of the value is as given by the "print
function" defined for that attribute syntax. name and value should be the addresses of two char pointers,
which ava2str() will give values to. The memory pointed to be name and value after the function returns
successfully should be freed by the user (using free(3V)) after use.

str2ava() takes two strings and returns a pointer to an Ava:

typedef struct /∗ attribute value assertion ∗/ {
OID ava_oid;
PE ava_value;

} Ava;

the file $(ETC)/oidtable.at, and valueStr should be parseable by the syntax "parse function" defined for that
entry. After use, ava should be freed using free_ava();

attrv2str() is similar to ava2str, except it takes a pointer to the C structure, v, that is an instance of a type
and a pointer to the "print function", print_fnx, defined for that type in the syntax tables. The returned
string should be freed() after (using free(3V)).

RETURN VALUES
ava2str() returns OK on success and sets the values of the name and value. On failure it returns NOTOK.

Sun Release 4.0 Last change: January 1993 1

AVA2STR (3N) NETWORK FUNCTIONS AVA2STR (3N)

str2ava() returns NULL on failure.

attrv2str() returns NULL on failure.

FILES
$(ETC)/oidtable.[at,gen] - syntax and OID information.
$(ETC)/osimistailor - the default tailor file.

DIAGNOSTICS
str2ava() has many obvious diagnostics when compiled with the DEBUG option.

ava2str() and attrv2str() have no diagnostics.

NOTES
See the ISODE User’s Manual for more information on syntax function definitions.

AUTHORS
George Pavlou & Saleem N. Bhatti, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

MPARSE (3N) NETWORK FUNCTIONS MPARSE (3N)

NAME
sprintmfilter, str2mfilter, sprintscope, str2scope, sprintsync, str2sync - various parse and print functions for
the MSAP library.

SYNOPSIS
#include <isode/msap.h>

char ∗sprintmfilter(mfilter)

CMISFilter ∗mfilter;

CMISFilter ∗str2mfilter(filterStr)

char ∗filterStr;

char ∗sprintscope(scope)

CMISScope ∗scope;

CMISScope ∗str2scope(scopeStr)

char ∗scopeStr;

char ∗sprintsync(sync)

CMISSync sync;

CMISSync ∗str2sync(syncStr)

char ∗syncStr;

DESCRIPTION
sprintmfilter() returns a pointer to a string that is a human readable representation of mfilter. The pointer
returned is to a static area of memory that will be overwritten on the next call to the function.

str2mfilter() takes a string representation of a CMISFilter value (the kind returned by sprintmfilter()) and
returns a pointer to a CMISFilter structure. The user must free the memory pointed to after use (using
mfilter_free(3N)).

The format of the string representation of the filters is described in FILTER EXPRESSIONS.

sprintscope() returns a pointer to a string that is a human readable representation of scope. The pointer
returned is to a static area of memory that will be overwritten on the next call to the function.

str2scope takes a string representation of a CMISScope value (the kind returned by sprintscope()) and
returns a pointer to a CMISScope structure. The user must free the memory pointed to after use (using
free(3V)). Acceptable values for scopeStr are:

baseObject

firstLevel

wholeSubtree

baseTo<n>[st | nd | rd | th]Level

Sun Release 4.0 Last change: January 1993 1

MPARSE (3N) NETWORK FUNCTIONS MPARSE (3N)

where <n> is a positive integer., e.g.

baseTo1stLevel or baseTo4thLevel

sprintsync() returns a pointer to a string that is a human readable representation of sync. The pointer
returned is to a static area of memory that will be overwritten on the next call to the function.

str2sync takes a string representation of a CMISSync value (the kind returned by sprintsync()) and returns
a CMISSync value. Acceptable values for syncStr are:

atomic

bestEffort

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows :

(<cmisfilter>)

where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form :

(!(<cmisfilter>))

A <andfilter> has the form :

((<cmisfilter>) & (<cmisfilter>) ...)

A <orfilter> has the form :

((<cmisFilter>) | (<cmisfilter>) ...)

A <filteritem> has one of the two forms :

(<attributename>)

for creating a CMISFilter item with the assertion test for "present", or

(<attributename> <assertiontype> <attributevalue>)

for the other assertion types :

Character Assertion type
"=" equality
":=" substrings
">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions :

"((objectClass = eventRecord) & (eventType = linkUpEvent))"

Sun Release 4.0 Last change: January 1993 2

MPARSE (3N) NETWORK FUNCTIONS MPARSE (3N)

"((objectClass = log) & (!(administrativeState = unlocked)))"

"((objectClass = log) & ((logId <= 2) | (logId >= 10)))"

"((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))"

A "NULL" filter (one that always evaluates to true) can be created using :

"(NULL)"

(This is actually an empty AND filter.)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

PLEASE NOTE that for an attribute type to be used in a filter expression, there should be a "parse" func-
tion defined for its syntax and the function should be registered in the syntax tables. This parse function
reads the attribute’s value from a "pretty-printed" form and converts it to a value, i.e. a C structure. There is
no methodology applied in OSIMIS (as yet) to the way in which values are "pretty-printed", however a
loose convention is :

"scalar" values are represented as single strings e.g.,

logId = 1 /∗ INTEGER ∗/

objectClass = eventRecord /∗ OID ∗/

wiseSaying = Hello World /∗ Strings ∗/

administrativeState = unlocked /∗ ENUMERATED ∗/

"set" values are enclosed in curly brackets. e.g.,

availabilityStatus :< {inTest offLine offDuty}

nUsersThld = {Low:7 Switch:On High:10 Switch:On}

FILES
$(ETC)/oidtable.[at,gen] - syntax and OID information.

NOTES
The abstract syntax of a CMISFilter, CMISScope and CMISSync is given in ISO 9596 : "Information
Technology - Open Systems Interconnection - Common Management Information Protocol specification".

SEE ALSO
ava2str(3N), str2ava(3N)

DIAGNOSTICS
sprintmfilter() and str2mfilter() produce some fairly obvious diagnostics when compiled with the DEBUG
flag. Both return NULL when passed invalid arguments.

sprintscope() returns the string "invalidScope" for a bad value of scope. str2scope returns NULL if
scopeStr has an invalid value.

sprintsync() returns the string "invalidSync" for a bad value of sync. str2sync() returns s_invalid if syncStr
is invalid.

Sun Release 4.0 Last change: January 1993 3

MPARSE (3N) NETWORK FUNCTIONS MPARSE (3N)

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets :

"(eventType = linkUpEvent) | (eventType = linkDownEvent)"

but instead of reading it as a badly formed OR filter, the parser reads it as the <filteritem> :

"(eventType = linkUpEvent)"

Additionally, superfluous brackets, e.g :

((eventType = linkUpEvent))

will cause it to fail.

AUTHORS
George Pavlou & Saleem N. Bhatti, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 4

EXTERNAL (3N) NETWORK FUNCTIONS EXTERNAL (3N)

NAME
external_build - Build an External structure
external_free - Free an External structure

SYNOPSIS
#include <isode/msap.h>

External ∗ external_build (type, context, context_id, pe, octet_aligned)

int type;
char ∗ context;
int context_id;
PE pe;
struct qbuf ∗ octet_aligned;

void external_free (external)
External ∗ external

DESCRIPTION
external_build() builds an External structure and returns a pointer to it. The External structure implements
the ASN.1 type EXTERNAL and is the same as the struct type_UNIV_EXTERNAL defined in
<isode/pepy/UNIV-types.h>.

type should be one of EXTERN_ASN1_TYPE, EXTERN_ARBITRARY or
EXTERN_OCTET_ALIGNED. In the case of the first two, the actual external parameter is a presentation
element (pe) while in the case of EXTERN_OCTET_ALIGNED the actual parameter is of type struct
qbuf∗ (octet_aligned). If the type is EXTERN_ASN1_TYPE, the pe parameter may be created from the
internal representation manually, using the psap library primitives, or automatically, using procedures pro-
duced by the posy/pepy or pepsy ASN.1 compilers.

context identifies the module that defines the syntax of the external data type (ASN.1 or other) and is an
object identifier in dot notation e.g. "1.2.3.4". The context is negotiated at association establishment time in
conjunction with an associated integer for future references. This integer may be used as the context_id to
avoid carrying the context object identifier in each instance of the external type. In the latter case, NUL-
LOID may be used for the context.

external_free() may be used to free the space previously allocated by external_build(). It is actually the
same as the ISODE free_UNIV_EXTERNAL().

DIAGNOSTICS
external_build() returns an External∗ upon success, NULLEXTERN otherwise.

SEE ALSO
<isode/pepy/UNIV-types.h>, ISODE User’s Manual Vol. 1 Chapter 5 (Encoding of Data Structures), Vol.
4 Chapters 5/6, 7 (POSY/PEPY, PEPSY), IS 9595/6 (CMIS/P).

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

MFREE (3N) NETWORK FUNCTIONS MFREE (3N)

NAME
mfree - free the management structures

SYNOPSIS
#include <isode/msap.h>

void mc_free (mc)
MSAPConnect ∗ mc;

void ms_free (ms)
MSAPStart ∗ ms;

void ma_free (ma)
MSAPAbort ∗ ma;

void mi_free (mi)
MSAPIndication ∗ mi;

void mid_free (mid)
MID mid;

void mn_free (mn)
MN mn;

void mparm_free (mparm)
CMISParam ∗ mparm;

void mfilterdata_free (mfilter)
CMISFilter ∗ mfilter;

void mfilter_free (mfilter)
CMISFilter ∗ mfilter;

DESCRIPTION
These routines free any data that may have been allocated to the pointed structure. They do not free the
structures themselves, apart from mfilter_free().

DIAGNOSTICS
None.

SEE ALSO
ISODE User’s Manual Section 3.

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

.

4. General Management System Support

This section contains information on general management support which may be
common to both agents and managers, though most OSIMIS managers use do not use this
infrastructure (yet). This support is two fold:

g support for writing asynchronous event-driven applications

g support for transparent ASN.1 handling

The former is of paramount importance to agents or hybrid-units and also essential to
managers that need to receive asynchronous events from more than one sources e.g. many
agents or an agent and a user interface etc. The latter enables to program management
applications by dealing with the programming language data types instead of abstract
structures representing ASN.1 constructs (presentation elements in ISODE, XOM objects in
X/Open’s XOM ASN.1 API etc.)

The relevant C++ classes in OSIMIS that implement such abstractions are the
following:

i. the Knowledge Source class

ii. the Coordinator and ISODE Coordinator classes and

iii. the Attribute and Any Type classes

The Coordinator/Knowledge Source abstraction provides the capability of
asynchronous event-driven management while the Attribute/Any Type abstraction supports
transparent ASN.1 handling. In fact these abstractions are not specific to management but
could be used by any other OSI applications. These are actually implemented in OSIMIS by
the kernel(3n) library. The following two sections provide detailed information on the class
APIs.

4.1 Support for Asynchronous Event-Driven Applications

Class KS

Inherits from: None

Classes used: Coordinator

Interface file: GenericKS.h

Implementation file: GenericKS.cc

Introduction

The Knowledge Source class is an abstraction of a general management application object,
implementing some of the application’s management intelligence. The term has its roots in
blackboard systems, the blackboard in this case being the local MIB in agents, one or more
remote MIBs in managers and the union of those in hybrid applications.

Knowledge sources have the capability of scheduling wake-ups at regular real time intervals
in order to implement polling strategies. They may also register external communication
endpoints to other management applications, real resources etc. on which they expect to
receive management information; they are subsequently notified when information arrives.
This is possible through the Coordinator object (see relevant specification) which
implements a fully event-driven paradigm for management applications and whose presence
and operation is completely transparent.

Knowledge sources may be used in both agent and manager applications. In manager
applications they may be (some of) the objects that implement the management intelligence.
In agent applications, they may be used to receive information from loosely coupled
resources or to implement polling access to real resources in general, either for implementing
cache-ahead schemes or in order to support notifications.

In agent applications there should always exist a special knowledge source which is the
management protocol agent (CMIS/P, SNMP or other). This is distinguished by the
Coordinator and treated specially.

Methods
class KS
{

static KS* _agent;

protected:
// real time wake-up capabilities

int scheduleWakeUp (long, char*);
int scheduleWakeUps (long, char*, Bool = False);
int cancelWakeUps (char*);

// listening on external communication endpoints

int startListen(int);
int stopListen(int);

// for the special management agent

static int setAgent (KS*);

public:
// call-backs for wake-ups, external events, process shutdown

virtual int wakeUp (char*);
virtual int readCommEndpoint (int);
virtual int shutdown (int);

// ...
};

Real time wake-ups

The following set of methods allow to schedule and cancel wake-ups in real time.

int scheduleWakeUps (long period, char* token, Bool onlyIfReporting);

This method schedules wake-ups to take place every period seconds. The token should be
unique character string that will distinguish the associated call-backs by any others possibly
requested by the same knowledge source. NULLCP may be supplied if this distinction is not
needed or if only one series of wake-ups is scheduled.

If the onlyIfReporting parameter is True, the knowledge source will be awaken only if there
are event forwarding disriminators or log managed objects in the system. This is useful when
the wake-ups are only used to support event notifications via polling. The default case
(parameter not supplied) is wake-ups independently of the notification function. OK is
returned upon success, NOTOK if the scheduling period is invalid i.e. less or equal to zero.

int scheduleWakeUp (long period, char* token);

This is the same as above but only one wake-up is scheduled after period seconds. This will
always take place independently of the notification function.

int cancelWakeUps (char* token);

This will cancel either multiple or single wake-ups identified by token. OK is returned upon
success, NOTOK if the cancel operation failed i.e. there was no such scheduled wake-up.

Listening to external communication endpoints

int startListen (int fd);

This method allows to register an external point of communication (a Unix file descriptor) on
which to start listening for information. OK is returned upon success, NOTOK otherwise (if
fd < 0 or already registered).

int stopListen (int fd);

This allows to deregister an external point of communication so that no more listening on
that takes place. OK is returned upon success, NOTOK if the operation failed i.e. there was
no such file descriptor registered.

Callbacks

The following two methods are call-backs for wake-ups and notifications regarding data at
an external communication endpoint. The third notifies that the application is shutting down.
They should be supplied in derived classes.

virtual int wakeUp (char* token);

This is called as a result of the wake-up methods. The token is the one supplied in the
scheduling call. The method should return OK or NOTOK.

virtual int readCommEndpoint (int fd);

This is called if there is data at the external communication endpoint identified by the fd file
descriptor. The method should return OK or NOTOK.

virtual int shutdown (int fd);

This is called to notify that the management application is shutting down (exiting). It should
be used to release external links gracefully, delete control managed objects in remote agents
etc. It should return OK or NOTOK.

The special management agent knowledge source (if present) receives calls for any file
descriptors it has registered that describe management associations for CMIS and the UDP
transport port for SNMP. It also receives last a call with fd = -1 as an indication to release
its MIB which may terminate interaction to real resources or subordinate agents.

Class Coordinator

Inherits from: None

Classes used: KS, List

Interface file: Coordinator.h

Implementation file: Coordinator.cc

Introduction

The Coordinator class coordinates activity in management applications by acting as a central
point for all external communication endpoints and scheduled alarms. Only one instance of
this or any derived classes is present in a management application realised as one UNIX
process.

It uses the UNIX select facility, enhanced in ISODE as xselect to be portable across UNIX
platforms, to implement a fully event driven scheme with respect to all external
communications. A first-come-first-served policy is exercised with respect to both external
communications and scheduled real-time alarms (wake-ups).

This class is written in such a way to allow integration with other packages that have their
own coordinating mechanisms. This will be necessary for managing applications with
graphical user interfaces that receive asynchronous events both from the keyboard and the
network e.g. event reports, asynchronous replies to requests etc. It may also be desirable for
integrating OSIMIS applications with distributed platforms such as DCE, ANSAware etc. In
case integration with another package is needed, the coordinating mechanism of that package
is used centrally and a special OSIMIS coordinator (a derived class) should be written to
work with the latter.

Methods

class Coordinator
{

static Coordinator* _instance;
// ...

public:
// interface to other coordinating mechanisms

void setAlarmMode (Bool);
long getNextWakeUpIntvl ();
void getCommEndpointMask (fd_set*, int*);
int serviceWakeUp (); // alarm handler (in serviceAlarm)
void shutdown (Bool = False); // terminate handler (in terminate)

virtual int commEndpointMaskChange (int, int);
virtual int nextWakeUpIntvlChange (long);

// changing the communication endpoint listening mechanism

virtual int readCommEndpoints ();

// initialisation methods

static void serviceAlarm (int);
static void terminate (int);
void listen ();

// ...
};

Interface to other coordinating mechanisms

The following set of methods allow to use the coordinator together with the coordinating
mechanisms of other packages in central role. in real time.

void setAlarmMode (Bool mode);

When the OSIMIS coordinator is in central role, it handles alarms through the UNIX alarm
system call. When created, the coordinator thinks by default that it is in central role but it can
"be told" that this is not the case through this method i.e. setAlarmMode(False). In this case,
it still manages the list of wake-ups for all the knowledge sources but without scheduling the
next alarm through alarm(3).

long getNextWakeUpIntvl ();

This allows another coordinating mechanism to get the interval for the next OSIMIS wake-
up. This should be done once after the OSIMIS initialisation has finished and after every
OSIMIS related wake-up (see serviceWakeUp).

void getCommEndpointMask (fd_set* mask, int* nfds);

This allows another coordinating mechanism to get the mask of OSIMIS external
communication endpoints (file descriptors). mask is the descriptor mask and nfds the number
of the highest file descriptor plus one which; these are updated through this call.

int serviceWakeUp ();

This allows another coordinating mechanism to tell the OSIMIS coordinator to service a
particular real-time wake-up. This call should be always combined with
getNextWakeUpIntvl immediately afterwards to find out the period for the next OSIMIS
wake-up. That other mechanism should keep track if the next alarm for the whole system is
an OSIMIS one or not.

This method is also essentially the alarm handler when there is no other coordinating
mechanism. It needs though to be wrapped-up in the static void serviceAlarm (int); method
because UNIX expects signal handlers to have a single integer argument - in non-static
methods the hidden this pointer is added.

void shutdown (Bool doExit);

This allows another coordinating mechanism to tell the OSIMIS coordinator that the whole
system is exiting so that knowledge sources are notified and other OSIMIS cleaning-up is
done. In this case the doExit argument should be False so that the exit(3) call is not executed.

This method is also essentially the termination handler when there is no other coordinating
mechanism, in which case doExit is True. It needs though to be wrapped-up in the static
method void terminate (int); because UNIX expects signal handlers to have a single integer
argument - in non-static methods the hidden this pointer is added.

virtual int commEndpointMaskChange (int fd, int mode);

This allows another coordinating mechanism to redefine it in a derived class so that it
arranges to take care of any change in the OSIMIS mask during program execution. fd is the
file descriptor that changed and mode will be MASK_ADD for adding and MASK_REMOVE
for removing it from the global mask.

virtual int nextWakeUpIntvlChange (long interval);

This allows another coordinating mechanism to redefine it in a derived class so that it
arranges to take care of any change in the OSIMIS next wake-up interval during program
execution. interval is the new next wake-up interval.

Changing the communication endpoint listening mechanism

virtual int readCommEndpoints ();

This method enables to redefine the mechanism through which the event-driven model with
respect to external communication endpoints is exercised. The default mechanism is
ISODE’s enhancement of select(2) xselect. Redefining this may be needed for packages with
hidden descriptors, in which case xselect cannot be used. This is exactly the case with
ISODE association control through the iserver_wait mechanism, see derived class
IsodeCoordinator.

Initialisation

The following methods are used only when the OSIMIS coordinating system does
coordinate i.e. when it is not integrated with the coordinating mechanism of another package
as the master. They should be used to initialise the single coordinator instance and start-up
the central listening procedure.

static void serviceAlarm (int signal);
static void terminate (int signal);

These are the signal handlers, they should be used to catch the UNIX SIGALRM, SIGINT,
SIGQUIT and SIGTERM signals. As they are static, they do not need the instance pointer,
the latter can be accessed through the private variable _instance through which the
serviceWakeUp and shutdown methods are called respectively. They are needed because of
the standard format of UNIX signal handlers (see before). The standard way to use them
from the main program is:

signal(SIGALRM, (SIGHANDLER) Coordinator::serviceAlarm);
signal(SIGINT, (SIGHANDLER) Coordinator::terminate);
signal(SIGQUIT, (SIGHANDLER) Coordinator::terminate);
signal(SIGTERM, (SIGHANDLER) Coordinator::terminate);

void listen ();

This method realises the central listening process for events. It should be called after all
initialisation has finished. It never returns but the shutdown method is called (through
terminate) upon receipt of a termination signal.

Class ISODECoordinator

Inherits from: Coordinator

Classes used: None

Interface file: IsodeCoord.h

Implementation file: IsodeCoord.cc

Introduction

The ISODECoordinator class is a special coordinator for ISODE applications that wish to
receive ACSE association requests. Such processes are all management agents, all hybrid
applications (both agents and managers) and those managers that may receive management
association requests for event reporting.

The reason a special coordinator is needed is that ISODE uses a special mechanism to
initialise a process listening for associations (iserver_init) and to listen for incoming
association requests or data on existing associations (iserver_wait) - see ISODE User Manual
Volume 1 Chapter 2 "Association Control". These hide the "TSAP" descriptor so that
explicit use of xselect is not possible. All this class does is to simply redefine the virtual int
readCommEndpoints () method to use iserver_wait instead of xselect.

4.2 Support For Transparent ASN.1 Handling

Class Attr

Inherits from: None

Classes used: None

Interface file: GenericAttr.h

Implementation file: GenericAttr.cc

Introduction

The Attr class is a superclass of all management attributes. It contains the actual attribute
value as a C language data structure as the ISODE ASN.1 compilers (pepsy or posy/pepy) do
not work with C++. It may also contain an ASN.1 presentation element corresponding to
that value if the latter has been encoded in order to optimise ASN.1 processing i.e. avoid
encoding a value every time it is requested through the management protocol.

This class defines a set of virtual methods which may be redefined in derived classes. Such
classes for the generic attribute types i.e. counter, gauge, counter-threshold, gauge-threshold
and tide-mark, commonly used data types e.g. strings, integer, real, time etc. and common
attribute types e.g. administrative and operational state, destination address etc. are provided
by OSIMIS. It is almost certain though that applications introducing new managed objects
will need additional attribute types. The documentation of this class together with the general
guidelines in the section describing the specific OSIMIS attributes provide the framework for
introducing these.

Methods

class Attr
{

// ...

protected:
// methods related to the ASN.1 syntax - to be provided in derived classes

virtual PE _encode ();
virtual void* _decode (PE);
virtual void _free ();
virtual char* _print ();
virtual void* _copy ();
virtual int _compare (void*);

public:
// methods to encode, decode, free, print, copy, compare and store
// the attribute value

PE encode ();
void* decode (PE);
void ffree ();
void ffree (void*);
char* print ();
void* copy ();
int compare (void*);
char* asnMemoryDump (int*);
int asnFileDump (FILE*);

// methods to access and modify the contained attribute value

void* getval ();
void setval (void*);
void replval (void*);

// methods that may be redefined in derived classes to associate behaviour
// or simply manipulate the value according to syntax (add/remove)

virtual void* get ();
virtual int set (void*);
virtual int setDefault (void*);
virtual int add (void*);
virtual int remove (void*);

// methods to respond to CMIS operations

CMISErrors get (PE*);
CMISErrors set (PE);

virtual Bool filter (int, void*);
virtual Bool filterSubstring (int, void*, Bool);

// ...
};

Virtual syntax manipulation methods

The following set of methods should be provided in derived classes. They allow the attribute
syntax to be manipulated. They all operate on the contained attribute value apart from
_decode which decodes a supplied presentation element. They are essentially simple wrap-
ups of the procedures used for the syntax tables (see relevant section).

The only ones that are really necessary are _encode, _decode, _free and _print. _compare is
not currently used but it may be used in the future to automate filtering while _copy can be
emulated through _encode and _decode at a moderate performance cost.

One could avoid providing these methods if the specific attribute type is derived from
AnyType which is in turn derived from this class (see AnyType class specification). This
would necessitate the use of syntax tables and would also incur a table look-up operation
every time such an attribute type is instantiated. This is not generally recommended since
providing these methods is very easy and accords to a standard pattern (see below).

virtual PE _encode ();

This method should encode the contained value which could be accessed through the getval
method. It is a simple wrap-up of the encoding procedure for the syntax tables which in turn
uses the encoder generated by the ASN.1 compiler. Memory is allocated for the resulting
presentation element.

virtual void* _decode (PE pe);

This method should just decode its argument and return the result, a pointer to a C data type.
It is a simple wrap-up of the decoding procedure for the syntax tables which in turn uses the
decoder generated by the ASN.1 compiler. Memory is allocated for the type. NULLVD
should be returned upon failure i.e. the presentation element does not correspond to the
syntax.

virtual char* _print ();

This method should print the contained value which may be accessed through the getval
method. A common way of printing the value is by using the print procedure for the syntax
tables which pretty-prints the value to a presentation stream (see relevant section), in
conjunction to the attrv2str(void*, PRINT_FNX) msap library procedure. The actual value
could be accessed through the getval method. Memory is allocated for the returned string.

virtual void _free ();

This method should free the contained value which could be accessed through the getval
method.

virtual void* _copy ();

This method should copy the contained value which may be accessed through the getval
method. Memory is allocated for the copied value. This method uses currently _encode and
_decode to produce a copy but it may not be redefined in derived classes to create a direct
copy. The only reason to redefine it would be in order to reduce the processing overhead the
default encode/decode approach incurs but this is not essential.

virtual int _compare (void*);

This method should compare its argument to the contained value which may be accessed
through the getval method. It should return zero if the values are equal, non-zero otherwise.
This method is not currently used but in the future it will be used to automate filtering i.e. to

avoid supplying the filter method. This will require an additional argument denoting the
comparison mode e.g. equality, subset etc. and a comprehensive of return values. At present
there is no reason for providing it.

An implementation example for the integer data type is shown below. Note that the _copy
and _compare methods are redefined only to show how this can be done, they are not
essential as explained previously. You will notice the need for casting which is because the
data type is not known at the this level (a void*).

inline PE Integer::_encode ()
{ return int_enc((int*) getval()); }

inline void* Integer::_decode (PE pe)
{ return int_dec(pe); }

inline void Integer::_free ()
{ free((char*) getval()); }

inline char* Integer::_print ()
{ return attrv2str(getval(), (PRINT_FNX) int_print); }

inline void* Integer::_copy ()
{ return int_cpy((int*) getval()); }

inline int Integer::_compare (void* val)
{ return int_cmp((int*) val, (int*) getval()); }

Public syntax manipulation methods

The following set of methods use the virtual syntax manipulation methods described above
and allow to encode, decode, free, print, copy, compare and store manipulate ASN.1 values.
They all return NULL upon failure which means that either the corresponding
_<syntaxHandler> method has not been redefined or the attribute value does not map to the
attribute syntax. These errors may happen only for undebugged programs apart from
mismatches in decoding when the wrong value may come from the network.

PE encode ();

This method encodes and returns the contained value. The returned presentation element is
not a copy and should NOT be free’d. NULLPE is returned upon failure.

void* decode (PE pe);

This method decodes its argument and returns the result, a pointer to a C data type.
NULLVD is returned upon failure. The decoded value is NOT set in the attribute, the latter
is simply used for its syntax knowledge as a decoding engine. The result should be free’d

(using possibly the ffree(void*) method) when no longer needed.

void* print ();

This method prints the contained value, NULLCP is returned upon failure. The returned
string should be free’d using free or delete when no longer needed.

void* copy ();

This method returns a copy of the contained value. The returned value should be free’d
(using possibly the ffree(void*) method) when no longer needed.

int compare (void* value);

This method compares its argument to the contained value and returns zero if the values are
equal, non-zero otherwise.

char* asnMemoryDump (int* len);

This method returns the contained value as an ASN.1/BER stream of octets and updates the
length argument.

int asnFileDump (FILE* outFile);

This method dumps the contained value as an ASN.1/BER stream of octets to a file. It
returns OK if is succeeds, NOTOK otherwise.

Non behaviour-related attribute value access

The following set of methods allow to access and manipulate the contained attribute value
without triggering any associated behaviour. For example, a specific attribute type may be
redefined to relate to a tightly coupled real resource. In this case, the get method (see below)
will be redefined to return the real resource value while getval will only return the value
within the attribute, probably corresponding to the last real resource access.

These methods are mainly needed by implementors of derived classes e.g. the virtual syntax
manipulation methods use getval to access the attribute value. They are also needed
elsewhere, so they need to be public.

void* getval ();

This method returns the contained (pointer to the) C language data type.

void setval (void* newValue);

This method sets the contained value to the supplied one. Memory for the data type supplied
should have been previously allocated. Memory for the previous value (if any) is released.

void replval (void* newValue);

This method replaces the contained value with the supplied one. By replace is meant that
memory for the previous value is NOT released. This is useful when the memory of the data
type stored is to be re-used: in that case, the value should be obtained, altered and replaced.
This is particularly useful for complex data types where only a particular element needs to be
modified.

Possibly behaviour-related attribute value access

The following set of methods allow to access and manipulate the contained attribute value
and may be them redefined to associate real-resource behaviour, apart from setDefault which
simply uses set.

The set method may be also redefined to perform additional checks or offer a friedlier
interface e.g. to allow passing an integer with no allocated memory for the Integer attribute
type.

The add and remove methods should be always redefined in derived classes for set-valued
types in order to be of any usefulness. This is necessary because there is no knowledge for
perfoming the add/remove operation at this level.

The setDefault method needs only to be redefined if special (non real resource) behaviour
should be associated to the set-to-default operation e.g. for a CounterThreshold or TideMark
the value of the associated Counter or Gauge respectively is needed.

Associating an attribute to a real resource should only be used when the latter is "tightly-
coupled" to the agent i.e. shares a common address space. When the real-resource is loosely
coupled, this knowledge should be preferably put in the managed object in order to optimise
access to the real resource by grouping requests for more than one attribute.

virtual void* get ();

This method returns the contained (pointer to the) C data type In the case of a tightly-
coupled real resource it may be redefined to actually fetch that value. If not, it is equivalent
to getval.

virtual int set (void* newValue);

This method sets the contained value to the supplied one It may be redefined to perform
additional checks on the value range or to actually set the value in the case of a tightly-
coupled real resource. If not associated to a real resource, it is equivalent to setval. It returns
OK upon success and NOTOK on failure (invalid value).

virtual int add (void* addValue);

This method should always be redefined for a settable set-valued attribute and should simply
add its argument to the contained value. It may be also redefined to additionally associate

the attribute to a real resource. It may return NOTOK if the supplied value is invalid or the
method has not been redefined.

virtual int remove (void* addValue);

This method should always be redefined for a settable set-valued attribute and should simply
remove its argument from the contained value. It may be also redefined to additionally
associate the attribute to a real resource. It may return NOTOK if the supplied value is
invalid, if any of the elements to be removed is not present or the method has not been
redefined.

virtual int setDefault (void*);

This method simply uses set to set the attribute to the supplied default value. It is mentioned
here that the managed object class knows the default value for every settable attribute and
this is supplied through this method. There is no point redefining it to associate the attribute
to a real resource and this could be done for the set method and serve this one as well. The
only reason for redefining it is when an additional value is needed from somewhere else to
deduce the default value e.g. for a counter threshold the value of the associated counter is
needed etc.

Responding to CMIS requests

CMISErrors get (PE* encodedValue);

This is only used by the GMS and calls first the get method of the previous group which may
relate the attribute to a real resource. MIB implementors need never use it but is mentioned
here for completeness.

CMISErrors set (PE encodedValue);

This method is used by the GMS to set an attribute value. It calls the set method of the
previous group which may relate the attribute to a real resource.

This method may be also used in a managed object’s constructor for initialising an attribute
value when the object is created through a CMIS M-CREATE request. It returns m_noError
upon success or m_invalidAttributeValue if the value cannot be decoded or it is invalid for
the operation (out of range etc.)

virtual Bool filter (int mode, void* assertedValue);

This method should be currently supplied for every new attribute type as the compare
method is not comprehensive enough to support filtering. The mode could have one of the
following values:

FI_Equality - equality

FI_GreaterOrEqual - greater than or equal

FI_LessOrEqual - less than or equal

FI_SubsetOf - subset of

FI_SupersetOf - superset of

FI_NonNullSetIntersect - non-null set intersection
The second and third are not applicable to set-valued attributes while the last three are only
applicable to those. A typical way of providing this method is to use the virtual void* get()
method to access the current value which may fetch it from an associated real resource and
then perform a comparison with assertedValue according to mode. True should be returned
upon success and False upon failure.

virtual Bool filterSubstring (int mode, void* assertedValue, Bool first);

This method needs to be supplied only for string types and OSIMIS will supply these but it is
mentioned here for completeness. The mode could have one of the following values:

FI_Substring_Initial - initial substring

FI_Substring_Any - any substring

FI_Substring_Final - final substring
The first argument is True for the first substring assertion and False for any subsequent ones
as this method will be called a number of times, equal to the number of substring assertions.
The first time the current value is accessed by using the virtual void* get() method which
may fetch it from an associated real resource. Then every time a comparison with
assertedValue according to mode is performed and if successful, a static pointer is advanced
to the end of the asserted string in the value. This is necessary as the order of the string
assertions is important. For example, using the * as a wild-carding character, the assertions

Its*when*know* and Its*know*when*

are NOT the same. If an assertion is wrong False should be returned and the method will not
be called any further for this filtering operation (logical ANDing of the assertions).

Class AnyType

Inherits from: Attr

Classes used: None

Interface file: GenericAttr.h

Implementation file: GenericAttr.cc

Introduction

OSIMIS uses parts of the ISODE QUIPU X.500 implementation for manipulating ASN.1
syntaxes through the use of object identifier / syntax tables. These are the oidtable.gen for
general object identifiers and the oidtable.at for identifiers with associated syntax i.e.
management attributes, actions and notifications. Using those tables results in a large amount
of software and data being loaded with management applications and incurs a table look-up
every time a new attribute is instantiated. This should be better avoided by agents but could
be used by managers where memory and processing requirements are less critical.

The Attr class is designed so that the use of tables can be avoided by explicitly redefining the
virtual syntax manipulation methods. The AnyType class is an extension of that class which
provides the syntax manipulation methods through the tables. It is designed for use in higher
level manager APIs such as the "Remote MIB" or others where only "syntax-related" use of
attributes is expected. Though this class could be used as a base class for specific attribute
types with the only gain of avoiding to redefine those methods, this is strongly discouraged
as it will result in making agents using (MO classes using) those attributes bound to the use
of tables.

Methods

class AnyType
{

sntx_table* _syntax;

// ...

public:
// constructors

AnyType (OID, PE);
AnyType (char*, void*);

}

Constructors

This class has constructors which provide information about the syntax in addition to the
initial value. This is used to find the syntax entry in the syntax tables which should have
already been loaded.

AnyType (OID attributeType, PE encodedAttributeValue);

This constructor uses an attribute value assertion (attribute type/value) as the initial
information and it is likely to be used when information is coming from the network.
attributeType is the object identifier for the attribute type as passed in the CMIS API and
encodedAttributeValue is the ASN.1/BER encoded attribute value, again as needed by the
CMIS API.

Trying to build an attribute may fail when the attribute type and value do not match, the
syntax is unknown i.e. not registered in the tables, when the value is malformed etc. In this
case, a valid pointer will be returned from the create operation when using the new operator.
The way to check if the attribute has been correctly created is by getting its value using the
Attr get or getval methods and check if this is NULLVD. In this case, the attribute should be
deleted using the delete operator when created using new.

Notice that if the call is successful, the value (a presentation element) will be free’d when the
attribute will be destroyed, so you should be careful not to free it twice e.g. if it has come
through the CMIS API, the pointer to it in the MSAPIndication structure should be set to
NULLPE before calling mi_free. If the call has failed, the value is not free’d.

AnyType (char* suntaxName, void* initialValue);

This constructor uses the syntax name as registered in the tables e.g. "Integer",
"GaugeThreshold" etc. as the initial information. The initialValue is a pointer to the value
for which space should have been allocated. Trying to build an attribute fail if the syntax is
not registered in the tables or the value does not match that syntax (the attribute finds that out
by trying to encode it). In this case, the same procedures as for the previous constructor
should be followed while the value is left intact (not free’d).

5. The Generic Managed System

This section will eventually describe fully the Generic Managed System (GMS) which
is implemented by the gms(3n) and smisntx(3n) libraries. At present, it contains the
following:

i. a tutorial on the implementation of the UNIX managed object which uses the GMS
facilities

ii. details on the APIs of the managed object support offered by the GMS i.e.
specification of the MOClassInfo, MO, and Top C++ classes

iii. a description of the Structure/Definition of Management Information ASN.1 attributes
and syntaxes offered by the GMS

5.1 A Tutorial Introduction

5.1.1 Implementing Managed Object Classes

At present, this section contains a tutorial on the implementation of the UNIX
managed object which uses the GMS facilities and is intended to help people who will be
implementing managed objects using OSIMIS. In this section such people are referred to
either as GMS users or MO implementors. The first part of this section describes the
important aspects of the GMS mainly through the use of tutorial examples. The second part
gives a more formal description of the various classes and APIs used. It is assumed that
readers are familiar with the OSI management model and C++.

The key task for an MO implementor is to derive a C++ class to represent the new
MO. The starting point will be a definition of the MO class - typically in GDMO format in
some standard. This will include, amongst other things, the identity of the parent MO class in
the inheritance hierarchy and a list of the additional attributes the new class is to contain.

This pattern will be reflected in the C++ class; a new class being derived from a parent
class and the additional attributes being added. In many cases these additional attributes will
be drawn from the standard types provided by the GMS (gauge, counter etc.). If this is not
the case, a new C++ class must be implemented to represent the new attribute type.

If the Management Information Base was like a normal database then that would be
the end of the story. Unfortunately it is not; there must also be mechanisms to ensure that
changes in the real resource are reflected in attribute values and vice versa. An important aim
in the design of the GMS is to ensure that these mechanisms are as flexible as possible. This
is in recognition of the fact that few of the resources to be managed will have been built with
OSI management in mind. Therefore, the MO implementor has to be given the freedom to
use whatever management hooks are available no matter how poorly these fit the OSI
management model.

In practice, most of the code written by a GMS user will concern interfacing MOs to
real resources. The other MO interface - the one to the agent is provided for free by the GMS
through its generic MO class; this is sufficient for most purposes.

5.1.1.1 Deriving New Managed Object Classes

The derivation of C++ classes to represent MO classes will be the normal starting
point for any new MIB implementation. All such classes must ultimately be derived from
class Top which is itself derived from the C++ class MO. This section and its successor
illustrate the main issues involved by reference to the UxObj1 class the definition of which
may be found in the file $(TOP)/agent/ux_mib/UxMO1.h.

The UxObj1 MO class does not do anything very useful. It has five mandatory
attributes (loosely) related to the Unix operating system:

uxObj1Id - an arbitrary string which identifies an instance of the class i.e. the Relative
Distinguished Attribute. Since there is only ever one instance this does not achieve anything
much but it has to be present.

sysTime - the current time according to the system clock.

wiseSaying - an arbitrary string which may be set using the OSI management service.

nUsers - a gauge reflecting the current number of logged-on users.

nUsersThld - a gauge threshold related to the above.

There is also one attribute contained in a conditional package:

nUsersTideMark - records the highest value reached by the nUsers attribute.

There is one notification:

nUsersThldExceeded - triggered by the gauge threshold.

Referring to the file above we find the class definition starting with:

class UxObj1 : public Top, public KS // classid {uclManagedObjectClass 50}
{

It can be seen that the class UxObj1 is derived directly from two classes; Top and KS.
The class KS (Knowledge Source) is principally concerned with interfacing a set of related
MO instances to the Coordinator. When the Coordinator handles timer or socket events it
does so by calling a knowledge source method (see Section 4).

The fact that the UxObj1 MO class is one level down from Top in the inheritance
hierarchy is recorded at the start of the class definition

#define UXOBJ1_LEVEL 1 /* Top 0 */

This is used within the definition of the method UxObj1:get(); see Section 5.1.2.2. The heart
of the class definition is contained in the lines:

// The attributes are currently identified by integers 0-5

#define UXOBJ1ID 0
#define SYSTIME 1
#define WISESAYING 2
#define NUSERS 3
#define NUSERSTHLD 4
#define NUSERSTIDEMARK 5
#define UXOBJ1NATTRS 6 /* the total number of attributes:

mandatory + the conditional package ones */
#define TMPACKAGENATTRS 1 /* the conditional package number of attrs */

Attr* _attrs [UXOBJ1NATTRS];

This associates the six attributes of the UxObj1 class (including the one in the
conditional package) with a set of integers and declares an array of pointers to the attributes
themselves. A key point is that the six attributes declared here are only those which the
UxObj1 class has in addition to those inherited from Top. Within the definition of Top you
will find five more attributes declared:

#define OBJECTCLASS 0
#define NAMEBINDING 1
#define PACKAGES 2
#define ALLOMORPHS 3
#define TOPNATTRS 4

Attr* _attrs [TOPNATTRS];

At this point, neither the type of the attributes is specified nor are the attributes
instantiated. This is done when the UxObj1 class is instantiated - see the description of the
constructor UxObj1::UxObj1() in Section 5.1.1.2.

Since the attribute NUSERSTIDEMARK belongs to a conditional package it may, or
may not be present. The integer TMPACKAGENATTRS is the number of attributes in the
conditional package and Bool _tideMarkPackage; indicates whether the package is present or
not. This mechanism is explained further below.

In order that the C++ classes correctly reflect the behaviour of the corresponding MO
classes, a certain amount of information has to be available at run time which would
normally be available only at compile time. For example, a MO instance needs to know not
only what its class is but also what are its superclasses, it must also have access to the
mappings between the integer attribute identifiers discussed above and the attribute OIDs
from the MIB definition. Rather than replicate this information in every instance of the MO
class, a single instance of the class MOClassInfo is created for each MO class instantiated
within the system. Notice therefore that near the start of the UxObj1 class definition a static
instance of the MOClassInfo class is declared:

static MOClassInfo _uxobj1ClassInfo;// Object containing MO information
// relating to all members of this
// class.

This must be present. The static storage class ensures that just one instance of the class
will be created. The information in the MOClassInfo object is initialised in the method
UxObj1::initialiseClass() which is called from the constructor - see Section 5.1.1.2.

Also, there is a boolean flag indicating whether or not the conditional package for the
object is present. This flag is set from an argument that is passed to the constructor of
UxObj1 from the create() method as described in Section 5.1.3.4. The mechanism for the use
of conditional packages is an interim solution, it is expected to change in future OSIMIS
versions.

The remainder of the MO class definition consists mainly of declarations of a few
methods particular to the UxObj1 class. These are discussed in Section 5.1.3.1.

5.1.1.2 Instantiation

The tasks which must be performed on instantiation are best illustrated by reference to
the UxObj1 class. First, let us look at the definition of the constructor UxObj1::UxObj1() in
the file $(TOP)/agent/ux_mib/UxMO1.cc. This carries out five essential tasks:

g if this has not already been done, it calls a routine to initialise the MOClassInfo object
(initialiseClass() - also in UxMO1.cc). This routine is written to a standard pattern
which should be followed.

g it instantiates the attributes and sets up an array of pointers to them.

g it establishes the association between thresholds and the attributes they monitor

g it registers the class. This is essential to ensure that inherited attributes are handled
correctly.

g it arranges how its communication with the real resources being managed should be
controlled by the Coordinator. (scheduleWakeups(UXINTVL, NULLCP, True)).

Most of the attributes that will be used are derived from a few common types - gauges,
counters etc. These are all provided by the GMS and it is only necessary to instantiate them.
Their definitions may be found in $(TOP)/agent/gms/SmiAttr.h and they are documented
below. Where attributes with non-standard behaviour are used, these must be implemented
specially. There is an example of this type of attribute in the UxObj1 class - sysTime. The
implementation of this attribute and other features of attribute types are discussed in Section
5.1.3.2.

As a consequence of executing the UxObj1 constructor, the constructor of the base MO class
will be invoked. This will ensure that the new instance of the UxObj1 class will be properly
bound in to the rest of the system. The CMIS agent will know it is there and will be able to
GET and SET its attributes etc.

5.1.1.3 Knowledge Sources

The generic Knowledge Source (KS) object class (see
$(TOP)/agent/gms/GenericKS.h) satisfies two main needs:

First, it provides some standard methods which may be invoked by the Coordinator
when significant events occur. The most important of these are two "call-back" methods:

KS::readCommEndpoint (int)Which is invoked by the Coordinator when data is available to
be read from a file-descriptor. This is the mechanism used in an event-driven regime to
receive messages from the real resource.

KS::wakeUp (char*) Which is invoked by the Coordinator when a timer event occurs. This
is the mechanism used to drive a polling regime.

These are virtual methods which must be specialised to do the right things for a
particular MIB implementation (see UxObj1::wakeUP() in $(TOP)/agent/ux_mib/UxMO1.cc
for example). In some cases, an MIB-specific KS class will be derived from the generic KS
class and an instance of this class will be created at run-time (see below). In other cases, the
class representing the MO will be derived from both the generic MO class and the generic
KS class and there will never be an instance of the KS class as such. This latter is the
approach used for the UxObj1 class.

Second, it can provide a "multiplexing/demultiplexing" facility. This is needed where
some largely unrelated MO instances are updated through the same mechanism.

Consider the case of retrieving information from an intelligent communications
processor which is implementing layers 1-4 of the OSI model. If the information retrieved in
a message from the communications processor always relates to just one Layer then we have
no problem since (presumably) all MO instances associated with a Layer are in a sub-tree of
the containment tree. Therefore, we can associate the KS callback method with the class of
the MO at the root of the sub-tree and arrange that this method, when invoked, distributes the
information correctly between the objects in the sub-tree. However, if the information
retrieved in a message can relate to several layers it will affect objects in several sub-trees.
In this case we would create a stand-alone instance of the KS class to handle
communications and timer events on behalf of all four sub-trees. This has been done in the
case of the ISODE MIB; though, strictly speaking, it is not necessary at present since only
Transport Layer objects are supported.

5.1.2 Communicating With Real Resources - Examples

5.1.2.1 Polling Example - the nUsers Attribute

The last line of the UxObj1 constructor makes the following call:

scheduleWakeUps(UXINTVL, NULLCP, True)

This is a method inherited from the KS class and requests polls at UXINTVL ms
intervals - this request is passed on to the Coordinator object.

When the poll occurs the wakeUp() method is called. As noted in the previous section,
this is a virtual method of the KS class but it is re-defined for the UxObj1 class. This re-
definition may be found in UxMO1.cc and simply calls the update() method (see Section
5.1.3.1).

In this particular case, update() is really only concerned with the nUsers attribute. It
uses the Unix "users" command to update that attribute and then calls the method
triggerEvent(int, int) in the event that the associated threshold has been exceeded (see
Section 5.1.3.3). Note that the obvious alternative communications mode - "upon external
request" cannot be used here since we would only discover that the threshold had been
exceeded when and if an external request was received.

5.1.2.2 Upon External Request Example - the sysTime Attribute

When a CMIS GET request is received by the agent, and after all the scoping and
filtering has been completed, the GMS agent will call the Attr::get() methods for each of the
required attributes in order to retrieve their current values. For many implementations the
standard Attr::get() method for the attribute type will suffice. The sysTime attribute of the
UxObj1 MO is one example where this is not so. In this case, timeliness is so important that
an "on external request" strategy is required with the system clock being consulted from
within the Attr::get() method. The relevant code may be found in the file
$(TOP)/agent/ux_mib/UxAttr.cc:

//
// UxTime::get() - read the system clock and return the value
//

void* UxTime::get()
{

set(); // Just call the Time set() method. This does
// the appropriate initialisation
// Then call the equivalent routine from
// the parent class

return Time::get();
}

The C++ class representing the UxTime attribute type is derived from the Time class
supplied with the GMS. The Time class has a method, Time::set(), which, when called
without arguments, simply updates the attribute value from the system clock. This method is
used to perform the update prior to returning a value.

The implementation of the sysTime attribute illustrates the implementation of an "on
external; request" strategy through the provision of a special UxTime::get() method for the
attribute type. This is not the only means of implementing the strategy. The GMS also
provides a mechanism which applies to the MO as a whole. This mechanism too is used in
the UxObj1 class and is invoked through the MO::get() method - a virtual method of the base
MO class. The CMIS agent always calls this method before retrieving any attribute value.
For the UxObj1 class the virtual method is overridden by the following (from UxMO1.cc):

int UxObj1::get (int attrId, int classLevel)
{

if (classLevel != UXOBJ1_LEVEL && classLevel != MO_ALLEVELS)
return Top::get(attrId, classLevel);

switch (attrId) {

case MO_ALLATTRS:
case NUSERS:

update(); // update the nUsers attribute
break;

default:
break;

}

return OK;
}

Here the classLevel parameter specifies the level in the inheritance hierarchy
(UXOBJ1_LEVEL = 1, i.e. one below Top). If this does not correspond to UxObj1 the call is
passed up to the Top class. The effect of the rest of the routine is to ensure that the update()
method is called whenever the access relates to the nUsers attribute. This ensures that the

value of this attribute will be timely when it is (almost immediately) retrieved by the CMIS
Agent.

Note that there is no particular reason why the sysTime and nUsers attributes should
be handled differently. It is done in this way merely to illustrate that the two mechanisms are
available. However, there are cases where the mechanism used for nUsers has decided
advantages. Consider again the "intelligent communications processor" example, this time
using an "on external request" strategy. Suppose the refreshing of the attribute values was
done in the Attr::get() methods as for sysTime. A CMIS request for multiple attributes would
result in a plethora of refreshes as each Attr::get() method was called. Each refresh would
involve communication with the communications processor - probably an expensive
procedure. Fortunately we can take advantage of the fact that, when multiple attribute values
are accessed, the CMIS Agent calls the MO::get() method for each one followed by one
additional call with the attrId parameter set to MO_NOMOREATTRS. All of this happens
prior to the retrieval of any attribute values by the CMIS Agent. This allows the implementor
the possibility of writing a specialised MO::get() method which notes which attributes will
be accessed and refreshes them all in one interaction with the communications processor
when it sees the MO_NOMOREATTR value.

Although not used in the UxObj1 object, the GMS provides similar mechanisms to the above
in the case of SET and ACTION operations.

5.1.2.3 Event Driven Example - the tpEntity Managed Object

Consider now the the TpEntity class which implements a MO class for an OSI
Transport entity. Obviously some means must be found for accessing information held in the
space of the Transport protocol code. In the case of the ISODE software, the Transport
protocol code is present in every user process which is using ISODE. Therefore, accessing
Transport protocol information necessarily implies some form of IPC. In fact, the chosen
mechanism is to have the Transport protocol code emit UDP messages at significant
moments. All these messages are directed to a common UDP port. The GMS system listens
on this port and so receives information from all user processes employing the ISODE
transport.

In Berkeley-based Unix systems, listening on a port implies listening on a socket. In
fact, the agent system will be listening on several sockets. Some of these will be for IPC
communication with real resources as for the TpEntity class, others will be for incoming
requests from CMIS clients. It is essential that all these sockets are managed centrally
otherwise a blocking read on a socket would halt the whole system. This socket management
is handled by the Coordinator which executes a "select" system call on all the relevant
sockets and passes incoming messages to the appropriate objects.

Referring to files in $(TOP)/agent/isode_mib, setting this up works as follows:

1. as noted in Section 5.1.2.3 a separate instance of the KS class is used to manage
communication on behalf of all ISODE MOs. This is declared as a global in
$(TOP)/agent/isode_mib/IsodKS.cc

2. the constructor for the TpEntity class registers the presence of a new instance of the class
with the ISODE KS object through the use of its registerMO method. This can be found
in the file $(TOP)/agent/isode_mib/TpEntity.cc .

3. the ISODE KS object arranges that a socket is created and configured for incoming UDP
messages, and passes this socket to the Coordinator via the
Coordinator::registerCommEndpoint() method. The Coordinator then uses the ISODE
iserver_wait() call to wait for incoming messages on this (and other) sockets.

4. when a message is received at the socket, the Coordinator invokes a KS method to read
the socket. In the case of the ISODE TP objects, this method is specialised in
IsodeKS::readCommEndpoint() defined in $(TOP)/agent/isode_mib/IsodKS.cc. In
addition to updating the TpEntity object this method also updates any TpConnection
objects that might be present.

5.1.3 The Complete Example UNIX Managed Object

5.1.3.1 Methods

It must be emphasised that the vast bulk of the operations that need to be supported by
a MO class are provided by the methods inherited by the basic C++ MO class. These include
methods to GET and SET attribute values, to place an object instance correctly in the
containment hierarchy according to its RDN, to locate object instances given a DN, to apply
a filter to the attributes of an object and so on.

The UxObj1 object is fairly typical with just four specialised methods being required.
These have mostly already been described. In summary they are:

UxObj1::buildReport (int, int, PE*);

This constructs an event report when the threshold on the number of users is triggered.

UxObj1::wakeUp (char*);

This is called periodically by the Coordinator as explained in Section 7. It simply calls the
update() method - see below.

UxObj1::get (int, int);

This is called prior to the GMS agent reading attributes. It ensures that attributes are up-to-
date before they are read by calling the update() method when necessary (See Section 5.4).

UxObj1::update ();

This updates the attributes. In this case, the principle effect is to update the nUsers attribute
and to check whether the associated threshold has been exceeded.

The definitions of these methods may be found in $(TOP)/agent/ux_mib/UxMO1.cc.

5.1.3.2 Attributes

The attribute nUsers is of type "integer gauge". The GMS provides a C++ class to
represent such a gauge. Like all such classes, this one is derived from the generic Attr class
defined in $(TOP)/agent/gms/GenericAttr.h. The definition of the GaugeInt class itself may
be found in ${Top}/agent/GMS/SmiAttr.h. "Standard" attribute types such as GaugeInt
provide methods to:

g service requests from the CMIS Agent corresponding to CMIS requests (GET SET
etc.)

g encode and decode attribute values in line with the ASN.1 syntax.

g allow the attribute values to be manipulated by user code so that they reflect the
current state of the corresponding real resource.

When using these attribute types provided by the GMS, the user’s principle task is to
ensure that the attribute’s value is up-to-date when it needs to be. There is an example of this
in the UxObj1::update() method in the file $(TOP)/agent/ux_mib/UxMO1.cc:

// Adjust nUsers. Since there is a threshold associated with
// it we must check whether it has been triggered. If it has,
// set will return "On".

if (((GaugeInt*) _attrs[NUSERS]) -> set(words) == On) {

This is calling the GaugeInt::set(int) method in order to update the observed value.
Note that, in this case, the returned value is checked in case the associated threshold has been
triggered (see Section 10).

Whilst the UxTime class is not a standard one, it is straightforwardly derived from a
standard class - the Time class. The distinction between these two C++ classes is required
solely in order to implement the "on demand" refresh strategy for the UxTime class. As far
as the OSI management information model is concerned there is no distinction - both
correspond to the same attribute type. This is important since it implies that the two classes
will share the same attribute value syntax and hence the same encoder and decoder - and
these are already supplied for the Time class by the GMS. Were this not the case it would be
necessary to write specialised encoders and decoders - a complex procedure using the PEPY
ASN.1 compiler.

5.1.3.3 Notifications

The class Top provides a method called Top::triggerEvent() which should be called
whenever a defined event has occurred - the MO implementor is responsible for ensuring that
this is done. As a result of calling this method it may be that a CMIS M-EVENT-REPORT is
issued, a log is updated, or both, or neither. Which it is is determined by the current state of
the discriminator and log objects. Discriminators and log objects are specialised MOs
provided entirely by the GMS; they contain filter constructs. When Top::triggerEvent() is

called, a temporary object is formed which contains information about the event; its OID, the
class and DN of the object generating the event and so on. The filters of all current
discriminators are applied to this temporary object. It any returns true then the appropriate
action is taken (issue an EVENT REPORT or generate a log record). The GMS provides full
support for the creation and deletion of discriminator and log objects in response to CMIS
requests. This is a completely general mechanism and need not concern the MO
implementor. All s/he has to do is to ensure that Top::triggerEvent() is called at the
appropriate moment and provide a routine to build an event report or log record as needed.

There is one example of this in the UxObj1 class. A threshold is applied to the nUsers
gauge and a notification should be generated when this threshold is triggered. The GaugeInt
class has built-in knowledge about thresholds:

g it provides a method GaugeInt::associateThreshold() to tie together the gauge and the
threshold.

g it checks whether the threshold has been exceeded each time the GaugeInt::set()
method is called to alter the "observed value". The value returned by this method
indicated whether or not the threshold has been triggered.

This can be seen in use by referring to $(TOP)/agent/ux_mib/UxMO1.cc. In the
method UxObj1:UxObj1() the gauge/threshold association is established:

// associate the gauge (nUsers) with the corresponding
// gauge threshold (nUsersThld).
((GaugeInt*) _attrs[NUSERS]) -> associateThreshold

((GaugeThresholdInt*) _attrs[NUSERSTHLD]);

In the method UxObj1:update() the observed value is updated using GaugeInt::set()
and if the value returned by this is "On" then the Top::triggerEvent() method is called:

// Adjust nUsers. Since there is a threshold associated with
// it we must check whether it has been triggered. If it has,
// set will return "On".

if (((GaugeInt*) _attrs[NUSERS]) -> set(words) == On) {

// Now check whether an event report should be generated.
// EFDCheck will look through its list of EFDs and check whether
// any of them has a filter which evaluates to true. For any
// that do an event report will be sent. The event report
// is constructed by UxObj1::buildReport()

triggerEvent(NUSERSTHLDEXCEEDED, UXOBJ1_LEVEL);

Assuming that a discriminator filter returns "true" a report must be generated. This is
done by the UxObj1:buildReport() method which can be found in
$(TOP)/agent/ux_mib/UxMO1.cc. This first sets up the information to be included in the
report in a structure of type UxObj1Report (see UxRepAsn.h). It then calls a PEPY-
generated routine (build_UxRep_UxObj1Report()) to construct the PE as required by
ISODE. The relevant code is reproduced below:

report.uxobj1rep_sysTime = *((UxTime*) _attrs[SYSTIME]) -> getutc()
// Time::getutc() returns a
// pointer to a UTCtim struct.
// The indirection implies a
// struct copy.

report.uxobj1rep_nUsers = *(int*) _attrs[NUSERS] -> get();
// GaugeInt::get returns an int

fprintf(stderr, "Time check %s users %d0,
utct2str(&report.uxobj1rep_sysTime),
report.uxobj1rep_nUsers);

// Construct a PE for the report

if (build_UxRep_UxObj1Report (info, 1, 0, NULLCP, &report) == NOTOK) {

The PEPY source from which the encoder and decoder are built may be found in the
file $(TOP)/agent/ux_mib/UxRepAsn.py. The contents of this file will be meaningful only if
you understand PEPY. If you do not, refer to the ISODE manual...

5.1.3.4 Creation

Finally, let us look at how things get started. In the directory in which you build your
complete system ($(TOP)/agent/sma for example) there should be a copy of Create.cc. You
should produce a customised Create.h which specifies which Managed Object classes are
supposed to be present, whether inst ances of these should be created at start-up and whether
they may be created as a result of CMIS requests. (They may also be created as a result of
some event within the "real resource" - the opening of a new connection for example.) This
information is contained in the moclasses[] array, the entry for the UxObj1 class in Create.h
is:

// class name CMIS M_Create MIB initialise

...

"uxObj1", UxObj1::cmisCreate, UxObj1::create

This specifies that an instance of the UxObj1 class may be created at initialisation time
by calling the routine UxObj1::create(). If this entry were instead "NULLCREATE" then no
instance could be created initially. UxObj1::create() is very simple and consists of the single
line:

return new UxObj1(rdn, superior, True, True);

The value in the CMIS M_Create column indicates that a routine has been defined
dynamically to create instances of the UxObj1 class in response to CMIS requests. The value
NULLMCREATE can be used to indicate that such creations are not allowed.

5.2 Managed Object Support

Class MOClassInfo

Inherits from: none

Classes used: NameBinding, MO, the ISODE OID structure

Interface file: GenericMO.h

Implementation file: GenericMO.cc

Introduction

The MOClassInfo class is a meta-class describing a managed object class. It is similar to the
notion of the Smalltalk/ObjectiveC class object and there is always one instance of it for
every managed object class. It contains common information to all the objects of the class,
such as attribute, group, event and action identifiers, name bindings and possibly a pointer to
the first instance of the class from which subsequent instances may be addressed (the first
regarding its creation in time).

Every managed object class should own a static instance of this class which will then be
shared by all its members. This is usually defined within the managed object class
declaration and is initialised by the initialiseClass() method of the latter, see the MO class
specification for details. Most of the methods of this class are only used from the generic
parts of the GMS to access attributes, actions etc. The only parts interesting the managed
object class implementers are the ones regarding its initialisation with information and the
addressing of the first managed object instance. These are described below.

Methods

class MOClassInfo
{

// ...

public:
Bool initialised ();
int setClass (char*, int, int, int, int, int, int = 0);
int setAttr (char*, int, Bool = False, Attr* = NULLATTR);
int setNameBinding (char*, char*, char*);
int setGroupAttr (char*, int, int);
int addGroupAttr (int, int);
int setEvent (char*, int);
int setAction (char*, int, Attr*);
int setPackage (char*, int);
MO* getFirst ();
// ...

};

Initialising the class information

Bool initialised ();

Usually, the class information this object holds is initialised when the first managed object
instance of the associated class is created. After this initialisation, this method returns True
so that subsequent object instances do not re-initialise it.

int setClass (char* className, int nbindings, int nattrs, int ngroups, int nevents, int
nactions, int npackages);

This should be called first to initialise the class identifier and declare how many name
bindings, attributes, attribute groups, notifications, actions and packages the class has so that
storage space is allocated. className is as registered in oidtable.at. Note that the last
parameter is optional for backwards compatibility reasons, you should supply it even if it is
zero as it will be mandatory in future versions.

int setAttr (char* attrName, int attrId, Bool settable, Attr* defaultValue);

This should be called repetitively for all the attributes of the class. attrName is as registered
in oidtable.at and the attrId is the integer tag assigned to it within the class. settable should
be set to True is the attribute is settable and defaultValue should be the default value. Note
that the two last parameters are optional and may be omitted if the attribute is not settable.

int setNameBinding (char* nameBinding, char* superiorClass, char* namingAttr);

This should be called repetitively for all the name bindings of the class. It should be called
AFTER the attributes have been registered as above. The naming attribute is as registered in
oidtable.at while the name binding and the superior class are as in oidtable.gen.

int setGroupAttr (char* groupName, int groupId, int ngroupAttrs);

This is similar to setAttr but for an attribute group. The group name should be registered in
oidtable.gen and the groupId is the integer tag assigned to it within the class. ngroupAttrs
declares the number of attributes in that group so that space is allocated.

int addGroupAttr (int groupId, int attrId); This should be called repetitively for all the
attributes of each group in the class. The group and attribute ids are the integer tags assigned
to them within the class. This method should be called AFTER the attributes have been
registered as above.

int setEvent (char* eventName, int eventId);
int setPackage (char* packageName, int packageId);

These are similar to setAttr for events and packages. Events (notifications) should be
registered in oidtable.at while packages in oidtable.gen.

int setAction (char* actionName, int actionId, Action* actionTemplate); This is similar to
the above for actions, but actionTemplate is an additional parameter with a dummy value
that is used by the GMS for decoding the action argument and encoding the action result.
Actions are registered in oidtable.at and their syntax should be the ASN.1 CHOICE of their
information and reply ASN.1 syntaxes. This is because there can be only one syntax
associated with each entry in oidtable.at.

Accessing the first MO instance

MO* getFirst ();

Usually, objects of the same class may be linked together in a doubly linked list,
independently of their links in the MIT. In this case, the MOClassInfo object holds a handle
to the first one while the list may be traversed using the getClassNext() and getClassPrev()
MO methods. This method returns a pointer to the first instance of the associated class if the
instances are linked together, NULLMO otherwise.

The managed object class implementer may control if the instances should be linked together
through the registerClass() MO method. A static method of that class called by convention
getClassInfo() should return a handle to the MOClassInfo object. That way, instances of a
class may be accessed without searching through the MIT. For example, the first instance of
a transport connection class may be accessed as follows:

TPConnection* tpConn = (TPConnection*) TPConnection::getClassInfo() -> getFirst();

Class MO

Inherits from: None

Classes used: MOClassInfo, Attr

Interface file: GenericMO.h

Implementation files: GenericMO.cc, MibAccess.cc, Create.cc

Introduction
MO is the abstract superclass of all managed object classes. It contains information related to
the position of a managed object instance in the containment hierarchy. It also contains
handles to management information held by classes derived from it so that access through
the OSI management protocol (CMIS/P) may be automated. This class defines a set of
virtual methods which may be redefined by derived classes to achieve the desired
functionality.

Methods

class MO
{

// ...
/*
static int initialiseClass ();
*/

protected:
// virtual methods (to be possibly provided in derived classes)

virtual int get (int, int);
virtual CMISErrors set (CMISModifyOp, int, int, void*);
virtual CMISErrors action (int, int, void*, void**);
virtual CMISErrors cmisDelete ();
virtual int buildReport (int, int, PE*);
virtual CMISErrors refreshSubordinate (RDN);
virtual CMISErrors refreshSubordinates ();

// ...

public:
// interface to managed objects, knowledge sources and the CMIS agent

static int initialiseMIB ();
static MO* getRoot ();

MO* getMO (DN, Bool = False);
MO* getMO (char*);
MO* getSubordinate (RDN, Bool = False);
MO* getSubordinate (char*);
MO** getSubordinates (Bool = False);
MO** getWholeSubtree (Bool = False);

MO* getSubordinate ();
MO* getPeer ();
MO* getSuperior ();

/*
static MOClassInfo* getClassInfo ();
*/
MO* getClassNext ();
MO* getClassPrev ();

OID getClass ();
char* getClassName ();
RDN getRDN ();
char* getRDNString ();
int setRDN (RDN);
int setRDN (char*);
DN getDN ();
char* getDNString ();

Attr* getAttr (char*);
void* getAttrVal (char*);
int setAttrVal (char*, void*);
int replAttrVal (char*, void*);

// managed object creation
/*
static MO* create (RDN, MO*);
static MO* cmisCreate (RDN, MO*, MO*, int, CMISParam*,

CMISErrors*, CMISErrorInfo*, OID*);
*/

// ...
};

These methods constitute the interface offered to managed objects, knowledge sources and
the CMIS agent to access and modify the Management Information Base (MIB).

MIB initialisation

static int initialiseMIB ();

This method is called in the main program of every agent and it initialises the MIB by
reading the ETCDIR/mib.init file, other persistent objects from LOGDIR/mib/ and event logs
from LOGDIR/logs. It returns OK upon success, NOTOK upon failure. Managed object
addressing

The following set of methods allow to address managed objects in the Management
Information Tree (MIT), that is the managed object containment hierarchy within that
management application process. All, apart from the first one, may cause access to the
associated real resources by calling the refreshSubordinate or refreshSubordinates methods
described previously. This will occur if a fetch-on-request regime is exercised regarding real
resource access. If this is not desirable, methods of the next group described later should be
used.

static MO* getRoot ();

This method returns the root which is the "handle" to the MIB. By being static, it allows
always access to the MIB root as follows:
MO* root = MO::getRoot();

MO* getMO (DN distinguishedName, Bool refresh);

This method finds a managed object hanging off another one in the Management Information
Tree (MIT). Its argument should be a portion of the distinguished name for the object,
starting after the object to which the method is applied.

Some managed objects may be in the MIB but they may not have an in core representation in
the MIT. This is true for example for log records which would be in secondary storage,
routine table entries which could be in the operating system’s kernel address space etc.
Usually, an object containing them (e.g. the log for log records) is aware of this and revives
them when needed. If the refresh parameter is set to True, then in the process of searching
for the object in the MIT, objects along that path will be told to revive their subordinates.

The above parameter is also present in other object addressing and scoping methods and is
usually set to True when searching for objects after a CMIS request, which happens
transparently. There is no need to use this facility when searching for objects from within the
agent. The parameter has the default value False, which means that it can be omitted to avoid
the reviving of objects.

The distinguished name may be constructed from a string format using the ISODE dsap
library procedure "DN str2dn(char*)" when object identifier / syntax tables are in use. A
pointer to the managed object is returned upon success, NULLMO otherwise.

As an example, consider the following MIT branch:
systemId = athena, subsystemId = 4, entityId = ISOTP, connectionId = 12345
Having a pointer to the subsystem object, the transport connection one may be accessed
using a distinguished name with string representation:
"subsystemId=4@entityId=ISOTP@connectionId=12345"

MO* getMO (char* distinguishedName);

This is the same as above but offers a friendlier interface, allowing to use a string
representation of the distinguished name. It assumes that object identifier / syntax tables are
in use. This does not offer the facility of reviving objects as method.

MO* getSubordinate (RDN relativeDistinguishedName, Bool refresh);

This is similar to getMO but searches only for a first level subordinate. The getMO method
may achieve the same effect using a one component distinguished name but with some
performance cost. The refresh parameter is as described above. The relative distinguished
name may be constructed from a string format using the ISODE dsap library procedure
"RDN str2rdn(char*)" when object identifier / syntax tables are in use. A pointer to the
managed object is returned upon success, NULLMO otherwise.

MO* getSubordinate (char* relativeDistinguishedName);

This is the same as above but offers a friendlier interface, allowing to use a string
representation of the relative distinguished name. It assumes that object identifier / syntax
tables are in use. This does not offer the facility of reviving objects as above.

MO** getSubordinates (Bool refresh);

This method returns an array of pointers to the first level subordinates, terminated by an
empty cell i.e. containing NULLMO. The array returned is in static storage, so it should
NOT be free’d. The refresh method offers the same facility as described above.

MO** getWholeSubtree (Bool refresh);

This is similar to the one above but it returns an array of pointers to all objects under the one
on to which is applied.

Walking through the Management Information Tree

The following set of methods allow to access managed objects in the management
information tree by simply walking the pointers that link them. As such, they do not cause
any updates by accessing the associated real resources.

MO* getSubordinate ();

The MIT is represented internally as a binary tree. This method returns the first of its
immediate subordinates.

MO* getPeer ();

This method returns the next peer object (sibling) in the containment hierarchy. Peer objects
are all those having a common superior i.e. its immediate (first level) subordinates.

MO* getSuperior ();

This method returns the object’s superior.

Using these three methods and checking the relative distinguished name using the
getRDN/getRDNString methods, one may achieve the same effect as using any of the
methods in the previous group.

Accessing objects of the same class

The following set of methods allow to access managed objects of the same class. As it
has been explained, objects of the same class may be linked together in a doubly
linked list if the class implementor wishes so. If an object of the class is known, the
list may be walked in both directions. If no object is known, the first one may be
accessed through the MOClassInfo object for that class.

static MOClassInfo* getClassInfo ();

This method does not actually belong to the MO class and it cannot be defined as
virtual as it should be static. Implementors of of derived classes should provide it if
they wish to offer access to all objects of the same class when no object of that class
is known.

The method should return (a pointer to) the static MOClassInfo object that contains
all the class associated information. The getFirst method of the latter may then be
used to access the first instance. As an example, the following line of code allows to
access the first transport connection:
TpConnection* firstConn = (TpConnection*) TpConnection::getClassInfo() ->
getFirst();

MO* getClassNext ();

This method returns the next (forward) one in the doubly linked list of all objects of
the same class.

MO* getClassPrev ();

This method returns the previous (backward) one in the doubly linked list of all
objects of the same class.

It is noted here that the terms next/forward and previous/backward relate to the point
in time when the managed objects were created: next/forward means later in time.

Accessing the object class and name

The following group of methods allow to find out information about an object such as
its class and name. There are also methods that allow to change an object’s name.

OID getClass ();

This returns the object class as an object identifier. This is the leaf class of the
inheritance tree. It may be printed in a friendly format using the "char*
oid2name(OID, int)" dsap library procedure if object identifier / syntax tables are in
use. The object identifier returned is not a copy and it should NOT be free’d.

char* getClassName ();

This is the same as above but offers a friendlier interface, returning a string
representation of the class. It assumes that object identifier / syntax tables are in use.
The character string returned is in static storage and should NOT be free’d.

RDN getRDN ();
DN getDN ();

These return the object’s relative or full distinguished name. The latter be printed in a
friendly format using the dsap library procedures "char* rdn2str(RDN) and char*
dn2str(DN)" when object identifier / syntax tables are in use. The name returned is
not a copy and should NOT be free’d.

char* getRDNString (); char* getDNString ();

These are the same as above but offers a friendlier interface, returning a string
representation of the name. It assumes that object identifier / syntax tables are in use.
The character string returned should be free’d.

Accessing management attributes

The following group of methods allow to access management attributes within a
managed object.

Attr* getAttr (char* attrName);

This method returns a (pointer to an) attribute object identified by attrName. The
latter should be as registered in the object identifier tables. If the attribute name is
wrong/non-existent, NULLATTR is returned. The attribute returned is not a copy and
it should NOT be free’d.

void* getAttrVal (char* attrName);

This method returns the value of the attribute identified by attrName. If the attribute
name is wrong/non-existent, NULLVD is returned. The attribute value returned is not
a copy and it should NOT be free’d. This method is actually an inline wrap-up of the
getAttr one, using the "void* getval()" virtual Attr method. The result should be
casted to the appropriate data type. See also the Attr class specification.

int setAttrVal (char* attrName, void* attrValue);

This method sets the value of the attribute identified by attrName to attrValue. The
old value within that attribute object is free’d. If the attribute name is wrong/non-
existent, NOTOK is returned. The attribute value supplied should have allocated
memory. This method is actually an inline wrap-up of the getAttr one, using the "void
set(void*)" virtual Attr method. See also the Attr class specification.

int replAttrVal (char* attrName, void* attrValue);

This method replaces the value of the attribute identified by attrName to attrValue.
The old value within that attribute object is NOT free’d. If the attribute name is
wrong/non-existent, NOTOK is returned. The attribute value supplied should have
allocated memory. This method is actually an inline wrap-up of the getAttr one, using
the "void Attr::replval(void*)" method. See also the Attr class specification.

Virtual Methods

The following constitute a set of virtual methods that may be redefined by derived classes.

virtual int get (int attrId, int classLevel);

The get method should only be redefined when the class attributes need to be updated before
responding to a CMIS M-GET request. This is needed when a fetch-on-request regime is
exercised regarding access to the associated real resource. In the case of an event- or poll-
driven approach, this method may not be redefined, incurring though a cost in management
information timeliness.

Redefining this method can be avoided even on a fetch-on-request regime. This can be done
by customising the attribute types for that object and associate them with the real resource
i.e. redefine their get() method. This approach is fine when the information for the various
attributes is in the local address space and is unrelated but can be inefficient when say kernel
access is needed or when the actual attribute values reside in another process address space
and should be accessed via an IPC mechanism. In this case, it is better for the MO to have
this knowledge rather than the attributes in order to optimise access. It is this method where
this knowledge should be.

The method should retrieve the necessary information and update the requested attribute(s),
using methods of the Attr class (setval, replval) or customised methods of its derived classes
i.e the attribute types. attrId is the integer index of that attribute in the array of attributes for
the class and classLevel is the level of the class in the inheritance hierarchy tree (0 for Top).
In case all the attributes are requested, the values of these parameters are MO_ALLATTRS
and MO_ALLEVELS. The end of a series of attribute get requests pertaining to a CMIS
request is indicated by a call with the values MO_NOMOREATTRS and MO_ALLEVELS.

Accessing the real resource on a per attribute basis is not usually efficient. Various schemes
may be implemented to improve efficiency e.g. using timestamps on a per object or attribute
basis etc. A simple typical scheme would be to attempt the real resource "read" operation
after all the requested attributes have been marked as such. The organisation of this method
would then look like:

int <Class>::get (int attrId, int classLevel)
{

static Bool update = False;
// static state information here ...

if (classLevel != <CLASS_LEVEL> && classLevel != MO_ALLEVELS)
return <ParentClass>::get(attrId, classLevel);

switch (attrId) {
case <ATTR_X>:
// mark attribute X as requested
break;

case <...>:
// ...

case MO_ALLATTRS:
// mark all attributes as requested
update = True;
break;

case MO_NOMOREATTRS:
update = True;
break;

default: // for attributes that need no "refresh"
break;

}

if (update == True) {
// fetch and update the requested attributes
// reset state information ...
update = False;

}
return OK;

}

A fetch-on-request regime is usually exercised when management information resides in
accessible address space i.e. kernel, shared memory etc. It can also be exercised in the case
the management information is held by another process, by another agent for which this is a
proxy etc. The managed object may obtain the communication endpoint though the
corresponding knowledge source. It should then request the information and perform a
blocking read with a timne-out value until it receives the response. This can be done through
the xselect() call, see ISODE User’s Manual Volume 1 Section 2.4 "Select Facility".

The problem with this approach lies in the synchronous nature of the operation which results
in all the activity in the agent ceasing until this information has been received. An
asynchronous interface between the CMISAgent object and the MIB is clearly needed to
allow the management agent to continue its operation as normal. Such a facility will be
provided in future OSIMIS versions.

virtual CMISErrors set (CMISModifyOp mode, int attrId, int classLevel, void* setValue);

The set method should only be redefined if a set operation on a management attribute should
result in modifying information in the associated real resource. Is is noted that there may be

attributes for which a set operation may not trigger a real resource associated update/action,
such as thresholds etc. For these no action is required as they are handled by the generic parts
of the MO class.

mode is the set operation mode (m_replace, m_addValue, m_removeValue or
m_setToDefault). attrId is the integer index of the attribute in the array of attributes for the
class and classLevel is the level of the class in the inheritance hierarchy tree (0 for Top).
setValue is the value to be used in the set operation. Note that the same value will be used
by the GMS to set the actual attribute if m_noError is returned so it should NOT be free’d.
The only errors that should be returned is m_invalidAttributeValue if the value is out-of-
range or otherwise inappropriate (though the decoder should tackle this in most cases) or
m_processingFailure if something goes wrong to the interaction with the real resource. The
end of a series of attribute set requests pertaining to one M-SET CMIS request is indicated
by a call with the values MO_NOMOREATTRS and MO_ALLEVELS.

Similar optimisation methods as for the get() method above may be exercised.

virtual CMISErrors action (int actionId, int classLevel, void* actionInfo, void**
actionReply);

This is similar to get and set regarding the actionId and classLevel arguments and real
resource access. The only difference to set is that there is only one action as opposed to
many attributes to set on one operation and a reply is possibly needed. actionInfo is the
action information and actionReply is the reply which should be set (if any). You should
NOT free the actionInfo and you should make sure that actionReply has allocated memory.

m_noError should be returned if everything went ok while m_invalidArgumentValue or
m_processingFailure should be returned in case of an error in a similar fashion to the set
method.

virtual CMISErrors cmisDelete ();

This will delete the managed object if the latter can be deleted through CMIS. According to
the class specification, this could be only allowed if there are no contained objects. In this
case, the contained objects could be obtained by using the getSubordinates method with True
as argument to possibly check the real resource. m_accessDenied should be returned if
deletion is not possible e.g. there are subordinate objects in the above case.

If it is known that the class has subordinate objects and these should be deleted, this should
be taken care in the destructor. A typical implementation of this method checks possibly for
subordinate objects which may result in returning m_accessDenied and asimply calls "delete
this; return m_noError;". The destructor should take care any cleaning-up, interactions with
the real resource etc.

virtual int buildReport (int eventId, classId, PE* report);

This is used to build an event report in order to be forwarded and/or logged as a log record. It
is called after the notification function has made sure that this is needed, so processing is

optimised. eventId and classId identify the event in a similar fashion to the attributes and
action in the previous methods. report is a presentation element which needs to be
constructed by using the encoder for the even report syntax.

A C data structure for the report needs first to be filled in with the information that should go
in it which should be obtained by accessing the attributes. Be careful not to double-free
information - using the attribute get and getval methods return the actual data, NOT copies.
OK should be returned upon success, NOTOK upon failure (should only happen at
development time if encoding failed).

virtual CMISErrors refreshSubordinates ();

The existence of some managed objects is only known by accessing the associated real
resource. This is true for example for resources that cannot notify the managed system when
they are created or deleted, as for example for table entries held in an operating systems
kernel or in a "non-intelligent" loosely coupled resource. In this case, answering to CMIS
requests could be done in two ways: using a cache-ahead scheme through polling or simply a
fetch-on-request regime.

The cache-ahead scheme has the drawback of introducing traffic between the managed
system and the real resources while it also affects the timeliness of information. It cannot be
avoided though, at least to some extent, if notifications are to be supported. The fetch-on-
request scheme rectifies these problems but cannot support notifications and increases the
response time to CMIS requests.

If the fetch-on-request scheme is adopted for managed objects that can dynamically change,
some way is needed to "refresh" before accessing them through CMIS. The GMS approach is
to put this knowledge in the containing object: that should redefine this method in order to
fetch its subordinates from the real resource i.e. create new ones and delete those that have
died. The method is called when the subordinates are needed because of scoping.

virtual CMISErrors refreshSubordinate (RDN rdn);

This is exactly the same as above but for a particular subordinate which is identified through
its relative distinguished name. In this case, only the specified object should be refreshed
which may create it, delete it or do nothing. In the latter case, it would be better to refresh its
data (attributes) in order to avoid another real resource access later. This can be done using a
timestamp which the get method will consult to avoid refreshing the requested attributes
again.

Class Top

Inherits from: MO

Classes used: MOClassInfo, EFDiscriminator, EventLog,
EventRecord, ObjClass, NmBinding, ObjIdList

Interface file: Top.h

Implementation file: Top.cc

Introduction

The Top class implements the root of the management information inheritance tree i.e. the
class from which all the other managed object classes are derived. Its attributes describe the
managed object itself for the purpose of management access and are fundamental for
allowing the exploration of the MIB in a generic fashion. These attributes are the
objectClass, nameBinding, packages and allomorphs. OSIMIS supports packages and (in a
limited fashion) allomorphism.

The reason for describing this class is twofold: first, because of its position as the root of the
managed object inheritance tree. Second and most important, because of the fact it offers the
interface to the event notification management function (event reporting and log control).
Only the methods related to that function and the constructors are described below, as only
these are of interest to derived and other classes.

Methods
class Top
{

// ...

protected:
Top (RDN, MO*);
Top (RDN, MO*, int, CMISParam*, CMISErrors*, CMISErrorInfo*);

public:
int triggerEvent (OID);
int triggerEvent (char*);
int triggerEvent (int, int);

static int relayEventReport (OID, DN, char*, OID, PE);

// ...
};

Constructors

Top (RDN rdn, MO* superior);

This is a protected method and should be called only from the constructors of derived
classes. rdn is the relative distinguished name of the managed object and superior is the
superior object in the containment tree (MIT). This type of constructor is used for creating
an object when the agent is initialised (reading the mib.init file) or as the result of real
resource activity (e.g. connection creation).

Top (RDN rdn, MO* superior, int nattrs, CMISParam* initialAttrs,
CMISErrors* cmisError, CMISErrorInfo* cmisErrorInformation);

This is a protected method as above and it is called when a managed object is created as a
result of a M-CREATE CMIS request. rdn and superior are as above, nattrs and initialAttrs
are number and the initial attribute values. These are checked in case the packages attribute
is initialised with one or more optional packages for derived classes. The latter should check
the value of this attribute in their constructor and instantiate the package(s) accordingly.
cmisError and cmisErrorInformation are the error and information in case things go wrong,
m_invalidAttributeValue is only possible is possible at this level.

The notification function

The following methods offer an interface to the notification function which allows to forward
and/or log a notification converted to an event report or log record accordingly. This depends
on the presence of event forwarding discriminators and/or log managed objects in the local
MIB and is completely transparent to derived managed object class implementors.

int triggerEvent (OID eventType);
int triggerEvent (char* eventType);
int triggerEvent (int eventId, int classLevel)

All these are overloaded functions that offer the same interface to the notification function.
In the first the event type is an object identifier and in the second a friendly name as
registered in the oidtable.at. In the third one, the event type is actually shown by two
parameters: the classLevel which shows which level of the object in the class inheritance
tree is associated to the event and the eventId which is an integer tag associated to the event
at that level (see also the MO class). The obvious one to use from within a derived class is
the last while the first two are more suitable for usage by other objects.

static int relayEventReport (OID moClass, DN moInstance,
char* eventTime, OID eventType, PE eventInfo);

Hybrid units which are both agents and managers may receive event reports. These could be
possibly forwarded and/or logged according to the presence of event forwarding
discriminators and/or logs in the local MIB. This is possible through this static method as the
event report is not emitted by any of the local objects. The arguments are the class, instance,
event time, event type and event information as received from the other agent via CMIS.

5.3 Attribute and Syntax Support

This section describes the various attribute type definitions in the GMS. The GMS
contains implementations of some "standard" attribute types that should fulfill the
requirements for the basic DMI attribute types. However, it will probably be necessary to
define your own attribute types and incorporate them into the agent software.

The remainder of this section is split roughly in two; first the attribute types that are
implemented in the GMS are described, then the procedure for introducing the
implementation of an attribute type is explained.

5.3.1 Attribute types in the GMS

This section describes the implementation of attribute types in the GMS. If the reader
is not familiar with the process involved for implementing new syntaxes for ISODE, it is
recommended that the next sub-section, "Introducing your own syntaxes into the
software", be read first. The GMS contains syntax implementations of the following
attribute types, which defined in the DMI (ISO 10165-2) :

g Integer

g Real

g CMISFilter

g OIDList

g Count

g CounterThreshold

g Gauge

g GaugeThreshold

g TideMark

g AdministrativeState

g OperationalState

g DestinationAddress (A modified version of the Destination syntax.)

g LogFullAction

g AvailabilityStatus

Also, implementations of the following syntaxes have been used from the dsap library:

g ObjectIndentifier

g DistinguishedName

g Presentation Address

g UTCTime

g OctetString

g IA5String

g PrintableString

g NumericString

Although all of the syntax implementations have routines to encode and free C structures,
decode PEs into C structures, and pretty-print C structures, not all have routines for parsers,
comparing two instances of the same type, or for copying instances of the same type.

The implementation of the syntaxes can be found in ${TOP}/agent/gms/SmiSntx.h and
${TOP}/agent/gms/SmiSntx.c. Additionally, some of the syntax routines have been
generated using the pepy tool from ISODE. The augmented ASN.1 source for use with pepy
is ${TOP}/agent/gms/SmiAsn.py. The syntax implementations are then used in a C++ class
definition to implement the attribute types.

The attribute types in the GMS are implemented as C++ classes of base class Attr. The
definitions of the C++ classes can be found in ${TOP}/agent/gms/SmiAttr.h and
${TOP}/agent/gms/SmiAttr.cc. These attribute type implementations are intended for use in
mainly in agents though they can be used in managers. However, the attribute type
implemented by class AnyType may be more useful in managers. This will take an OID and
a value and perform table look-ups (from ISODE libdsap.a routines) to "form itself" into the
correct type.

The following table summarise information concerning the syntax implementations and the
C++ class implementations for each attribute type in the GMS :

iii

Type [Note] C data type C++ class parse compare copy
iii
iii

Integer int * Integer g g g
iii

Real double * Real g g g
iii

CMISFilter CMISFilter Filter g
iii

OIDList[1] ObjIdListVal * ObjIdList g
iii

Count int * Counter g g g
iii

CounterThreshold [2] CounterThresholdVal * CounterThreshold g g
iii

Gauge [2] ObservedValue * Gauge[Int, Real] g g
iii

GaugeThreshold [2] GaugeThresholdVal * GaugeThreshold[Int, Real] g g
iii

TideMark [3] TideMarkVal * TideMark[Min, Max]
iii

AdministrativeState AdminStateVal * AdministrativeState g
iii

OperationalState OperStateVal * OperationalState g
iii

DestinationAddress DestAddressVal * DestinationAddress
iii

LogFullAction LogFullActionValue * LogFullAction g g g
iii

AvailabilityStatus AvailabilityStatusValue * AvailabilityStatus g g g
iii

ObjectIndentifier OID ObjId g g g
iii

DN (DistinguishedName) DN DName g g g
iii

UTCTime [4] Time g g g
iii

IA5String char * [5] String g g g
iii

OctetString [6] OctetString g g g
iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Notes

"g" indicates that the particular syntax routine for performing this operation is available.

1. This type does not exist, as such, in the DMI, however it is provided for
convenience. It’s ASN.1 definition is OIDList ::= SET OF OBJECT
IDENTIFIER.

2. For convenience, the C++ implementation of these attribute types exist in two
forms; one for integer quantities, and one for real quantities.

3. For convenience, the C++ implementation of this attribute type exists in two
forms; one for a minimum tidemark and one for a maximum tidemark.

4. For convenience, the C++ implementation of this attribute type stores this value in
two formats; the UTCtime structure and in the slightly more flexible long
(time_t) as used by time(3).

5. This is a NULL terminated char array.

6. For convenience, the C++ implementation of this attribute type deals with char
* and int (pointer + length). When using the syntax routines directly, e.g. from
the syntax tables, a struct qbuf * is used.

Please also not that although some syntaxes do have compare functipons defined for them,
they are not used in the GMS. The use of the compare function may be examined in the
future.

5.3.1.1 C++ implementations of attribute types in the GMS

This section describes the public interface to the attribute types implemented in the
GMS. Only methods specific to the attribute type are explained. The use of the protected
methods is explained with the documentation for class Attr. The following sub-
sections are headed by the name of the C++ class that implements each attribute type (see
${TOP}/agent/gms/SmiAttr.h).

5.3.1.1.1 Integer

class Integer : public Attr

{

...

public:

inline void set (int val) { int* i = (int*) getval();

*i = val; replval(i); }

inline int set (void* val) { set(*(int*) val); return OK; }

Bool filter (int, void*);

inline Integer () { int val=0; setval(int_cpy(&val)); }

inline Integer (int val) { setval(int_cpy(&val)); }

};

inline void set (int val);

Sets the contained value to the supplied one. The memory used to store the previous value is
reused.

inline int set (void* val);

Sets the contained value to val (int *).

inline Integer ();

Instantiate an attribute instance and allocates memory for the int to be used for the lifetime
of the attribute.

inline Integer (int val);

Instantiate an attribute instance and allocate memory for the int to be used for the
lifetime of the attribute. Sets the value to val.

5.3.1.1.2 Real

class Real : public Attr

{

...

public:

inline void set (double val) { double* r = (double*) getval();

*r = val; replval(r); }

inline int set (void* val) { set(*(double*) val); return OK; }

Bool filter (int, void*);

inline Real () { double val=0; setval(real_cpy(&val));}

inline Real (double val) { setval(real_cpy(&val)); }

};

inline void set (double val);

Sets the contained value to val.

inline int set (void* val);

Sets the contained value to val (double *).

inline Real ();

Instantiate an attribute instance and allocate memory for the double to be used for the
lifetime of the attribute.

inline Real (double val);

Instantiate an attribute instance and allocate memory for the double to be used for the
lifetime of the attribute. Sets the value to val.

5.3.1.1.3 OctetString

class OctetString : public Attr

{

...

public:

inline void set (char* v, int l) { char* tv = (char*) malloc(l+1);

len = l; bcopy(v, tv, l);

tv[l] = ’ ’; setval(tv); }

inline void setlen (int l) { tlen = l; }

inline int set (void* v) { set((char*) v, len = tlen);

return OK; }

Bool filter (int, void*);

Bool filterSubstring (int, void*, Bool);

inline OctetString (char* v, int l) { set(v, l); }

inline OctetString () { setval(strdup("")); len = 0; }

};

inline void set (char* v, int l);

The string v of length l is copied and stored.

inline void setlen (int l);

Sets the length of the string. This should be used in conjunction with set (void* v).

inline int set (void* v);

This set current value to a copy of the string pointed to be v (char *). This should be used
in conjunction with setlen (int l).

inline OctetString (char* v, int l);

Instantiates an attribute instance and initilaises it with the values supplied. A copy of the
string pointed to by v is made.

inline OctetString ();

Instantiates an attribute instance.

5.3.1.1.4 String

class String : public OctetString

{

...

public:

inline int set (void* val) { OctetString::set((char*) val,

strlen((char*) val)); return OK; }

inline String () {}

inline String (char* val) : OctetString(val, strlen(val)) {}

};

inline void set (void* val)

The string pointed to be val is copied and stored. The string must NULL terminated.

inline String ();

Instantiates an attribute instance.

inline String (char* val);

Instantiates an attribute instance and initialises it with values supplied. The string must be
NULL terminated. A copy of the string pointed to by val is made.

5.3.1.1.5 DName

class DName : public Attr

{

...

public:

Bool filter (int, void*);

inline DName () { setval(NULLDN); }

inline DName (DN mydn) { setval(mydn); }

};

inline DName ();

Instantiates an attribute instance.

inline DName (DN mydn);

Instantiates an attribute instance with the value supplied. The user is responsible for
allocating memory for the storage of mydn.

5.3.1.1.6 ObjId

class ObjId : public Attr

{

...

public:

Bool filter (int, void*);

inline ObjId () { setval(NULLOID); }

inline ObjId (OID myoid) { setval(myoid); }

};

inline ObjId ();

Instantiates an attribute instance with no value stored.

inline ObjId (OID myoid);

Instantiates an attribute instance with the value supplied. The user is responsible for
allocating memory for the storage of myoid.

5.3.1.1.7 CounterThreshold

class CounterThreshold : public Attr

{

...

public:

int add (int, int, Switch);

int add (void*);

int remove (void*);

int setDefault (void*);

Bool filter (int, void*);

Switch check (int, int);

inline void associateCounter (Counter* cntr)

{ counter = cntr; }

inline CounterThreshold () { setval(NULL); counter = NULL; }

inline CounterThreshold (int level, int offset, Switch onoff)

{ add(level, offset, onoff);

counter = NULL; }

};

int add (int level, int offset, Switch onoff);

Adds a threshold at level with an offset value of offset to switch to the value of onoff. Returns
OK or NOTOK.

int add (void* addThld);

Add a threshold with the values provided in addThld (CounterThresholdVal *). The
user is responsible for allocating memory for the storage of addThld. Returns OK or
NOTOK.

int remove (void* rmThld);

Remove a threshold with the values provided in rmThld (CounterThresholdVal *).
Returns OK or NOTOK.

int setDefault (void* val);

Set the default value of the threshold to the current value offset by val
(CounterThresholdVal *). The value of the associated counter is checked and the
offset given by val applied. The user is responsible for allocating memory for the storage of
val. Returns OK or NOTOK.

Switch check (int val, int prev);

Check threshold levels by comparing current value, val, and previous value, prev.

inline void associateCounter (Counter* cntr);

This threshold will be applied to cntr. The user is responsible for allocating memory for the
storage of cntr.

inline CounterThreshold ();

Instantiate an attribute instance.

inline CounterThreshold (int level, int offset, Switch onoff);

Instantiate an attribute instance and initilaise with the value supplied.

5.3.1.1.8 GaugeThresholdInt and GaugeThresholdReal

These are derived from the base class :

class GaugeThreshold : public Attr

{

...

public:

int set (void*);

int add (void*);

int remove (void*);

Bool filter (int, void*);

Switch check (double, double);

int add (double, Switch, double, Switch);

};

int set (void* newThld);

Set the threshold to the value pointed to by newThld (GaugeThresholdVal *). The user
is responsible for allocating memory for the storage of newThld. Returns OK or NOTOK.

int add (void* addThld);

Add to the current threshold the values provided in addThld (GaugeThresholdVal *).
The user is responsible for allocating memory for the storage
of addThld. Returns OK or NOTOK.

int remove (void* rmThld);

Remove from the current threshold the values provided in addThld
(GaugeThresholdVal *). Returns OK or NOTOK.

Switch check (double val, double prev);

Check threshold levels by comparing current value, val, and previous value, prev.

int add (double low, Switch onofflow, double high, Switch onoffhigh);

Add to the current threshold, an element given by the values provided. Returns OK or
NOTOK.

Two classes are provided for convenient instantiation :

class GaugeThresholdInt : public GaugeThreshold

{

public:

inline GaugeThresholdInt () : GaugeThreshold(OV_INTEGER) {}

inline GaugeThresholdInt (int low, Switch slow, int high, Switch

shigh)

: GaugeThreshold(OV_INTEGER)

{ add(low, slow, high, shigh); }

};

class GaugeThresholdReal : public GaugeThreshold

{

public:

inline GaugeThresholdReal () : GaugeThreshold(OV_REAL) {}

inline GaugeThresholdReal (double low, Switch slow,

double high, Switch shigh)

: GaugeThreshold(OV_REAL)

{ add(low, slow, high, shigh); }

};

inline GaugeThresholdInt ();

Instantiate an attribute instance for an INTEGER gauge.

inline GaugeThresholdInt (int low, Switch slow, int high, Switch shigh);

Instantiate an attribute instance for an INTEGER gauge, and initialise the value with those
supplied.

inline GaugeThresholdReal ();

Instantiate an attribute instance for a REAL gauge.

inline GaugeThresholdReal (double low, Switch slow, double high, Switch shigh);

Instantiate an attribute instance for a Real gauge, and initilaise values with those supplied.

5.3.1.1.9 TideMarkMin and TideMarkMax

These are derived from the base class :

class TideMark : public Attr

{

...

public:

// the following is defined because setDefault is permitted

// but not replace(set), add and remove

inline int set (void*) { return NOTOK; }

Switch check (double);

int setDefault (void*);

void associateGauge (Gauge*);

};

inline int set (void*);

It is not possible to set the value of the tidemark - the tidemark monitors the value of an
associated gauge.

Switch check (double newVal);

Check the tidemark against newVal.

int setDefault (void *dflt);

Set the default value to the current value of the associated gauge. dflt is not used, however,
the user must provide a valid value for dflt for which memory has been allocated.

void associateGauge (Gauge* g);

Associate gauge g to this tidemark.

Two classes are provided for convenient instantiation :

class TideMarkMin : public TideMark {

public:

inline TideMarkMin () : TideMark(TM_MIN) {}

};

class TideMarkMax : public TideMark {

public:

inline TideMarkMax () : TideMark(TM_MAX) {}

};

inline TideMarkMin ();

Instantiate an instance of a minimum tidemark.

inline TideMarkMax ();

Instantiate an instance of a maximum tidemark.

5.3.1.1.10 Counter

class Counter : public Attr

{

...

public:

Bool filter (int, void*);

Switch set (int);

Switch increment (int);

inline int set (void* val) { set(*(int*) val); return OK; }

inline Switch increment () { return increment(1); }

inline void associateThreshold (CounterThreshold* thld)

{ (threshold = thld) ->

associateCounter(this); }

inline Counter () { int val = 0; setval(int_cpy(&val));

threshold = NULL; }

};

Switch set (int newVal);

Set the value to newVal and check the threshold.

Switch increment (int incr);

Increment the value by incr and check the threshold.

inline void set (void* val);

Set the value to that pointed to by val (int) and check the threshold. Returns OK or
NOTOK.

inline Switch increment ();

Increment the value by one and check the threshold.

inline void associateThreshold (CounterThreshold* thld);

Use the threshold provided by thld.

inline Counter ();

Instantiate an attribute instance and allocate memory for storing the int to be used for the
lifetime of the attribute. Sets the value to zero.

5.3.1.1.11 GaugeInt and GaugeReal

These are derived from the base class :

class Gauge : public Attr

{

...

public:

inline int getType () { return observedValue.ov_type; }

inline void associateThreshold (GaugeThreshold* thld)

{ threshold = thld; }

inline void associateTideMark (TideMark* tm)

{ (tideMark = tm) ->

associateGauge(this); }

inline Switch triggeredThreshold () { return thldTrigger; }

inline Switch triggeredTideMark () { return tmrkTrigger; }

Switch set (double);

inline int set (void* val) { set(*(double*) val); return OK; }

Bool filter (int, void*);

};

int getType ();

The type of this gauge. Returns OV_INTEGER for GaugeInt or OV_REAL for
GaugeReal.

inline void associateThreshold (GaugeThresholdInt* thld);

Use the threshold(s) provided by thld. The user is responsible for allocating memory for the
storage of thld.

inline void associateTideMark (TideMark* tm);

Use the tidemark provided by tm. The user is responsible for allocating memory for the
storage of tm.

inline Switch triggeredThreshold ();

Test if the threshold is triggered.

inline Switch triggeredTideMark ();

Test if the tidemark is triggered.

Switch set (double newVal);

Set this gauge to the value given by newVal, and check thresholds.

int set (void* val);

Set this gauge to the value pointed to by val (double *) and check thresholds. Returns OK
or NOTOK.

Bool filter (int, void*);

Two classes are provided for convenient instantiation :

class GaugeInt : public Gauge

{

public:

inline Switch increment (int incr) { return set(*(int*) getval() + incr);

}

inline Switch decrement (int decr) { return set(*(int*) getval() - decr);

}

inline Switch increment () { return increment(1); }

inline Switch decrement () { return decrement(1); }

inline GaugeInt () : Gauge(OV_INTEGER)

{ int val = 0; setval(int_cpy(&val)); }

};

Switch increment (int incr);

Increment the value by incr and check the threshold.

Switch decrement (int decr);

Decrement the value by decr and check the threshold.

Switch increment ();

Increment the value by 1 and check the threshold.

Switch decrement ();

Decrement the value by 1 and check the threshold.

inline GaugeInt ();

Instantiate an attribute instance.

class GaugeReal : public Gauge

{

public:

inline Switch increment (double incr) { return set(*(double*) getval()

+ incr); }

inline Switch decrement (double decr) { return set(*(double*) getval()

- decr); }

inline GaugeReal () : Gauge(OV_REAL)

{ double val=0;

setval(real_cpy(&val));}

};

Switch increment (double incr);

Increment the value by incr and check the threshold.

Switch decrement (double decr);

Decrement the value by decr and check the threshold.

inline GaugeReal ();

Instantiate an attribute instance.

5.3.1.1.12 Time

class Time : public Attr

{

...

public:

inline void* get () { if (!converted) convert();

return getval(); }

inline long getsec () { get(); return sectime; }

inline UTC getutc () { return (UTC) get(); }

inline void set (long newtime) { sectime = newtime;

converted = False; }

inline void set (UTC newtime) { UTC ut = (UTC)getval(); *ut=*newtime;

#ifndef __BSDI__

sectime = timelocal(ut2tm(newtime));

#else

sectime = mktime(ut2tm(newtime));

#endif

replval(ut); converted = True; }

inline int set (void* newtime) { set((UTC) newtime); return OK; }

inline void set () { sectime = time((long*)0); // now

converted = False; }

Bool filter (int, void*);

inline Time () { UTC ut = new UTCtime; setval(ut);

set(); }

inline Time (long mytime) { UTC ut = new UTCtime; setval(ut);

sectime = mytime; converted = False;}

};

inline void* get ();

Returns the value in the C data type UTCtime.

inline long getsec ();

Returns the value in the format described by time(3).

inline UTC getutc ();

Returns the value in the C data type UTCtime.

inline void set (long newtime);

Set the value to that given by newtime, which is time(3) format.

void set (UTC newtime);

Set the value to that given by newtime.

inline int set (void* newtime);

Set the value to that pointed to by newtime (UTC). Returns OK or NOTOK.

inline void set ();

Set the value to that of the current system time as given by time(3).

inline Time ();

Instantiate an attribute instance and allocate memory for storing the UTCtime structure to
be used for the lifetime of the attribute, and initialise attribute instance with a value of the
current time as given by the system.

inline Time (long mytime);

Instantiate an attribute instance and allocate memory for storing the UTCtime structure to
be used for the lifetime of the attribute. Sets the value to mytime.

5.3.1.1.13 Filter

class Filter : public Attr

{

...

public:

int set (void*);

Filter ();

inline Filter (CMISFilter* filter) { setval(filter); }

};

int set (void* val);

Set value to that pointed to by val (CMISFilter *). The user is resposnible for allocating
memory for the storage of val. Returns OK or NOTOK.

inline Filter ();

Instantiate an attribute instance and initialise to a value that always returns "True" i.e. a
NULL filter.

inline Filter (CMISFilter* filter);

Instantiate an attribute instance and set value to filter. The user is resposnible for allocating
memory for the storage of filter.

5.3.1.1.14 ObjIdList

class ObjIdList : public Attr

{

...

public:

Bool filter (int, void*);

int add (void*);

inline ObjIdList () { setval(NULL); }

inline ObjIdList (OID oid) { ObjIdListVal* v = new ObjIdListVal;

v->ol_oid = oid; v->ol_next = NULL;

setval(v); }

};

int add (void* oid);

Add oid (OID) to current value. The user is responsible for allocating memory for the
storage of oid. Returns OK or NOTOK.

inline ObjIdList ();

Instantiate an attribute instance.

inline ObjIdList (OID oid);

Instantiate an attribute instance. Set value to oid. The user is responsible for allocating
memory for the storage of oid.

5.3.1.1.15 AdministrativeState

class AdministrativeState : public Attr

{

...

public:

inline void set (AdminStateVal newState)

{ AdminStateVal* state =

(AdminStateVal*) getval();

*state = newState; replval(state); }

inline void set (void* val) { set(*(AdminStateVal*) val); }

inline int setDefault () { AdminStateVal* state =

(AdminStateVal*) getval();

*state = as_unlocked;

replval(state); return OK; }

Bool filter (int, void*);

inline AdministrativeState () { AdminStateVal* state = new

AdminStateVal; *state = as_unlocked;

setval(state); makeSettable(); }

inline AdministrativeState (AdminStateVal myState)

{ AdminStateVal* state =

new AdminStateVal; *state = myState;

setval(state); makeSettable(); }

};

inline void set (AdminStateVal newState);

Set value to that given by newState.

inline void set (void* val);

Set the value to that pointed to by val (AdminStateVal).

inline AdministrativeState ();

Instantiate an attribute instance and allocate memory for storing the AdminStateVal to
be used for the lifetime of the attribute. Sets the value to as_unlocked.

inline AdministrativeState (AdminStateVal myState);

Instantiate an attribute instance and allocate memory for storing the AdminStateVal to
be used for the lifetime of the attribute. Sets the value to myState.

5.3.1.1.16 OperationalState

class OperationalState : public Attr

{

...

public:

inline void set (OperStateVal newState)

{ OperStateVal* state = (OperStateVal*)

getval(); *state = newState;

replval(state); }

inline int set (void* val) { set(*(OperStateVal*) val);

return OK; }

Bool filter (int, void*);

inline OperationalState () { OperStateVal* state =

new OperStateVal; *state=os_enabled;

setval(state); }

inline OperationalState (OperStateVal myState)

{ OperStateVal* state =

new OperStateVal; *state = myState;

setval(state); }

};

inline void set (OperStateVal newState);

Set value to that given by newState.

inline int set (void* val);

Set the value to that pointed to by val (OperStateVal *). Returns OK or NOTOK.

inline OperationalState ();

Instantiate an attribute instance and allocate memory for storing the OperStateVal to be
used for the lifetime of the attribute and sets the value to os_enabled.

inline OperationalState (OperStateVal myState);

Instantiate an attribute instance and allocate memory for storing the OperStateVal to be
used for the lifetime of the attribute. Sets the value to myState.

5.3.1.1.17 DestinationAddress

class DestinationAddress: public Attr

{

...

public:

inline DestinationAddress ()

{ setval(NULL); }

inline DestinationAddress (DestAddressVal* myAddr)

{ setval(myAddr); }

};

inline DestinationAddress ();

Instantiate an attribute instance.

inline DestinationAddress (DestAddressVal* myAddr);

Instantiate an attribute instance and set value to myAddr. The user is responsible for
allocating memory for the storage of myAddr.

5.3.1.1.18 LogFullAction

class LogFullAction : public Attr {

...

public :

void set(LogFullActionValue);

int set(void *);

Bool filter(int, void *);

LogFullAction(); // default is lfa_wrap (0)

LogFullAction(LogFullActionValue);

};

void set(LogFullActionValue v);

Set value to v.

int set(void *v);

Set value to v (LogFullActionValue *). Returns OK or NOTOK.

LogFullAction();

Instantiate an attribute instance and allocate memory for storing the
LogFullActionValue to be used for the lifetime of the attribute. Sets the value to
lfa_warp.

LogFullAction(LogFullActionValue v);

Instantiate an attribute instance and allocate memory for storing the
LogFullActionValue to be used for the lifetime of the attribute. Sets the value to v.

5.3.1.1.19 AvailabilityStatus

class AvailabilityStatus : public Attr {

...

public :

int add(void *);

int remove(void *);

Bool filter(int, void *);

int add(int); // internal use only

int remove(int); // internal use only

Bool isMember(int); // internal use only

AvailabilityStatus(); // default is {} (empty set)

AvailabilityStatus(AvailabilityStatusValue *);

};

int add(void *v;)

Add v (AvailabilityStatusValue *) to current value. Returns OK or NOTOK.

int remove(void *v;)

Remove v (AvailabilityStatusValue *) from current value. Returns OK or
NOTOK.

int add(int member);

Add member to current value. Returns OK or NOTOK.

int remove(int member);

Remove member from current value. Returns OK or NOTOK.

Bool isMember(int member);

Tests if member is part of current value.

AvailabilityStatus();

Instantiate an attribute instance and initialise attribute instance with the value {} (empty set).

AvailabilityStatus(AvailabilityStatusValue *v);

Instantiate an attribute instance with the value v. The user is responsible for allocating
memory for the storage of v.

5.3.2 Introducing your own syntaxes into the software

The implementation consists of two stages :

1. The syntax routines : The ASN.1 definition of a type must be represented in a
form that is usable in a program, e.g. a C data structure, and also in a form that is
suitable for communication, i.e. independent of both the programming language or
machine architecture. Also, other routines may be required - to pretty-print the C
structure, parse a human-readable, human-friendly string to produce a C structure,
make a copy of the C structure, free memory allocated to the C structure or
compare two instances of the C structure - to allow useful things operations to be
performed with the information the C structure holds.

2. The C++ class definition : All attributes implementations must be of base class
Attr. Some of the "generic" properties of attributes are already implemented in
Attr and it remains for these properties to be enhanced and adjusted, according to
requirements, through use of inheritance.

The C++ attribute implementation is used in MO implementations, i.e. the agent software.
The syntax routines find use in both agents and managers.

5.3.2.1 Implementing the syntax routines

The syntax routines must be implemented to provide the interfaces described in
Volume 5 of the ISODE Manual (Section 16.4, page 195). Every syntax MUST have an
encode, a decode, a free and a print routine. If required, parse, copy and compare routines
can also be implemented. Once the syntax is defined, the relevant files that include the syntax
definition must be linked with every program that uses that definition.

The routines could be implemented with one of two methods: "hand-coded" or generated
automatically from the ASN.1 using the pepsy tool from ISODE.

Using pepsy is normally a quick and fairly simple procedure, though the resulting C data
structures often have "unfriendly" names and the routines generated may not be the most
efficient. Also, pepsy does not generate the parse, copy or compare routines. More
information on the use of pepsy can be found in Chapter 7 of Volume 4 of the ISODE
Manual. After the syntax routines have been implemented, they must be incorporated into
the software using the add_attribute_syntax(), as explained in Volume 5 of the
ISODE Manual (Section 16.4, page 195).

Note : When using pepsy with ASN.1 that references/uses other ASN.1 types that should
already be defined, e.g. from the msap library or dsap library, pepsy will probably fail. The
data structures in the msap library and many from the dsap library were hand coded to
provide user-friendly data structures and efficient syntax routines. The format of the data
structures will probably be different to those that pepsy would expect them to be given the
ASN.1 definition. If this situation occurs, then you must hand code all your syntax routines.

Hand-coding may take longer and require you to have more knowledge of the workings of
PEs, but should result in a more "friendly" C data structure and a more efficient set of syntax
routines.

5.3.2.2 The C++ class definition

The GMS assumes that the attribute implementations have some generic properties.
This genericity is implemented by the C++ class Attr. All attribute implementations must
have this class as their most base class.

This section describes how the syntax routines are incorporated into a C++ class definition,
that can be used in the GMS. It assumes that reader is familiar with the implementation of
syntax routines in ISODE (see previous section). The explanation will be given by way of
example, using the fictitious syntax MySyntax, say, that is represented by a C type called
MySyntaxValue. This representation is supported by the following syntax routines :

PE encodeMySyntax(MySyntaxValue *v);

MySyntaxValue *decodeMySyntax(PE pe);

void freeMySyntax(MySyntaxValue *v);

int printMySyntax(PS ps, MySyntaxValue *v, int format);

MySyntaxValue *parseMySyntax(char *str);

int copyMySyntax(MySyntaxValue *v);

int compareMySyntax(MySyntaxValue *v1, MySyntaxValue *v2);

In the following text, value refers to the C data-type that represents the ASN.1 syntax and
attribute is the instance of the C++ class definition that implements the attribute type - value
is stored in attribute.

The remainder of this section is split into three. The first part describes the most basic
requirements for implementing a C++ class that can be used by the GMS. The second part
describes a slightly more complex implementation that makes more efficient use of memory,

and utilises some of the facilities offered by the GMS. The third part describes how to
redefine the "CMIS interface" to the attribute if extremely sophisticated handling of the
attribute value is required, for instance when it is required to report errors from a real
resource that is represented by value.

5.3.2.2.1 Minimal requirements for the C++ attribute implementation

This simply requires that certain protected virtual methods of class Attr be
redefined. The most basic requirements for a C++ implementation of the attribute type are as
follows :

class MySyntax : public Attr {

protected :

PE _encode();

void *_decode(PE pe);

void _free();

char *_print();

public :

Bool filter(CMISFilterItem *);

MySyntax() {}

};

inline PE

MySyntax::_encode()

{ return(encodeMySyntax((MySyntaxValue *) getval())); }

inline void *

MySyntax::_decode(PE pe)

{ return((void *) decodeMySyntax(pe)); }

inline void

MySyntax::free()

{ freeMySyntax((MySyntaxValue *) getval()); }

inline char *

MySyntax::_print()

{ return(attrv2str(getval(), (PRINT_FNX) printMySyntax)); }

The above C++ class definition would allow the use of MySyntax in the GMS. It is
essential that the _encode(), _decode(), _free() and _print() be provided.
In the above example, the constructor simple initiates an instance of the class with a NULL
value. A value for the instance can be assigned by use of the public method
Attr::set(void *), e.g.

...

MySyntax ms;

MySyntaxValue *msv1, *msv2;

msv1 = val1; /* msv1 is assigned a value value */

ms.set((void *) msv1);

...

msv2 = val2; /* msv2 is given a value */

ms.set((void *) msv1);

...

In this very simple definition, use of Attr::set(void *) is the only method by which
assignments can be made. When msv2 is assigned to ms, the memory used by msv1 is
freed by the GMS.

The protected virtual methods for _copy() and _compare() can be defined
in a similar way, if required, but are currently not used by the GMS.

Although the definition of the filter() method is not shown, it is required so that CMIS
filters can be applied to value. The method should be defined to cater for the possible
assertions that may be made about value, e.g. less or equal, subset of, etc.

In this very simple implementation, the CMIS operations add and remove (as applied to set
valued attributes) will not function properly. Facilities for dealing correctly with set valued
objects exist in the GMS, and their use is described below.

5.3.2.2.2 A slightly more complex implementation

The GMS offers a flexible interface to class Attr that allows the implementor to access
the facilities offered by the GMS as well as incorporate any proprietary needs.

For instance, MySyntaxValue represents a set valued attribute type and also wishes to
avoid memory allocation/deallocation every time the value of attribute is changed. Also, the
attribute instance represents a value that is taken from some real-resource and so value must
be "refreshed" before it is read by the GMS, and changes made to value via CMIS must be
echoed to the real resource.

For this, the following might be implemented :

class MySyntax : public Attr {

protected :

PE _encode(); // as before

void *_decode(PE); // as before

void _free(); // as before

char *_print(); // as before

public :

// Virtual methods from class Attr that will be redefined

void *get();

int set(void *);

int add(void *);

int remove(void *);

int setDefault(void *);

// CMIS methods

Bool filter(int, void *); // as before

// New methods for internal use

Bool isMember(MySyntaxElementValue *);

MySyntax *intersection(MySyntax *);

MySyntax *union(MySyntaxElement *);

// Constructor

MySyntax(MySyntaxValue *v = NULL);

};

and lets say that :

MySyntax ::= SET OF MySyntaxElement

and that MySyntaxElement is represented in C by a data-type called
MySyntaxElementValue.

In the above definition, a lot more methods are defined. They shall be tackled in the way that
they have been grouped above. The constructor first :

MySyntax::MySyntax(MySyntaxValue *v)

{ setval((void *) v); }

In this method, an initial can be supplied.

Now we shall deal with the redefined virtual functions.

void *

MySyntax::get()

{

MySyntaxValue *v;

/*

** Here, information from the real resource

** is retrieved and stored. v is updated.

*/

v = valueFromRealResource;

setval((void *) v);

return((void *) v);

}

The call to setval() frees the old value an uses the new value v. In the next call to
setval(), v will be freed, so v must be allocated storage space (e.g. using
malloc());

int

MySyntax::set(void *newV)

{

Bool setOK = False;

/*

** Here, newV is written to the real resource.

** if the write to the real resource was succesful, then setOK = True;

** v should be updated after interaction with real resource.

*/

if (setOK)

setval((void *) newV);

return(setOK ? OK : NOTOK);

}

The set operation copies the new value to the real resource and also stores it in attribute, if
the interaction with the real resource was succesful.

The definition of the methods replace(), add() and remove() would be along
similar lines - replace() would replace the value of v (similar to set). For set valued
operations add() would add a MySyntaxElementValue from value and
remove() would remove a MySyntaxElementValue from value. add() and
remove() return the manifest constants OK or NOTOK.

int MySyntax::setDefault(void *default)

{ setval(default); return(OK); }

This method sets value to default. The default value is stored by the GMS and is
set-up when the object class containing this attribute instance is initiliased.

The implementor may also introduce some methods that are specific to this attribute. For
instance, in this attribute we have :

Bool isMember(MySyntaxElementValue *);

MySyntax *intersection(MySyntax *);

MySyntax *union(MySyntaxElement *);

which are for "internal" (i.e. non-CMIS) use.

5.3.2.2.3 The CMIS Interface to the attribute definition

So far, the interafce to the base class Attr has hidden as much as possible the
underlying communication. However, there are two methods that should be pointed out.

CMISErrors Attr::get(PE*);

This is used by the agent software and can be ignored.

CMISErrors Attr::set(PE pe);

This function needs to be used, for instance, when creating a MO instance in response to a
CMIS request. Use of ISODE means that attribute values are passed as ISODE Presentation
Elements (PEs). The PEs arriving from the network are used directly to set the attribute
values by passing the PEs to the attribute.

6. Generic Manager Support

TBA

7. Management Applications

TBA (see manual pages)

MIBDUMP (1C) USER COMMANDS MIBDUMP (1C)

NAME
mibdump − OSI MIB retriever

SYNOPSIS
mibdump <agent> <host> [-c <class> [-i <instance>]

[-s <scope> [<sync>]] [-f <filter>]
[-a <attr> ...]]

DESCRIPTION
mibdump is a program that enables to connect to a a remote OSI management agent and retrieve manage-
ment information. It establishes first a management association, requests the managed objects as specified
through the command line arguments (using a M-GET CMIS request), pretty prints the output and/or errors
and then releases the association and exits.

OPTIONS
The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the agent runs - the management application
"designator". It should be the name with which the host has been registered in the isoentities database or
the global Directory. Note that for Internet hosts, this is usually the last component of its address e.g.
athena and NOT athena.cs.ucl.ac.uk .

If no optional argument is given, the whole management information base is requested by assuming
class=system, inst={}, scope=wholeSubtree sync=bestEffort and all attributes (an instance of class system
with an empty local distinguished name is always the top object of OSI MIBs). This is an expensive opera-
tion and should better be avoided. If having done that it is realised that the remote MIB contains too many
objects, the retrieval may be interrupted by typing CONTROL-C (ˆC) or CONTROL-\ (ˆ\) on the terminal.

The ‘-c’ option selects the base object class. It should be used in conjunction with ‘-i’ for the instance (i.e.
the object’s name). If it is set ‘-c system’, the -i option may be omitted as there is always only one instance
of class system.

The ‘-i’ option selects the base object instance. This is a distinguished name in the ISODE string represen-
tation form and may be either a global or a local name, the latter omitting the relative name for the system
object. For example,
systemId=athena@subsystemId=transport@entityId=isode and
subsystemId=transport@entityId=isode
are the global and local distinguished names respectively for a transport protocol entity managing the
ISODE implementation of the latter. Local names are shorter and useful as there is no need to know in
advance the relative name of the system object.

Having selected the base object, the operation may be applied to many objects using
scoping/synchronisation and filtering. The ‘-s’ option selects the scope and possibly the synchronisation.
The scope may be an individual level e.g. 1stLevel, 2stLevel etc., all the objects until a particular level e.g.
baseTo3rdLevel or the whole subtree e.g. wholeSubtree. By specifying baseObject, 0thLevel or
baseTo0thLevel the scope effect is nullified.

The synchronisation of the operations across the multiple scoped objects may be requested to be atomic, in
which case either all operations should succeed or none should be performed - in the latter case an empty
reply is returned. Synchronisation is only meaningful when more than one objects have been scoped.
Atomic synchronisation can be requested using atomic e.g. ‘-s 1stLevel atomic’. You must bear in mind
that atomic synchronisation is not supported by most agents, in which case a synchronisationNotSupported
error will be returned. The default synchronisation is bestEffort.

The ‘-f’ option selects the filter to be applied to the scoped objects. This enables to perform the operation
only on these objects for which the filter expression evaluates to true. Note that a filter may be also used
without scoping. A filter expression may contain assertions on the value of managed object attributes. See

Sun Release 4.0 Last change: January 1993 1

MIBDUMP (1C) USER COMMANDS MIBDUMP (1C)

the FILTER EXPRESSIONS section for details on their grammar/construction.

The ‘-a’ option may be used to specify the attribute names for which values should be retrieved. If no attri-
butes are specified, all the attributes of each object are requested. By specifying ‘-a none’, no attributes are
requested i.e. empty objects are received - this is may be used to check which objects are present.

If one or more of the requested attributes does not exist for a selected object instance, a noSuchAttribute
error is returned. Also if the user has no read access rights for a particular attribute/object, a accessDenied
error is returned. These are partial errors (getListError) as any correctly specified attributes will be
received. The fact that inexistent attributes for an object class may be requested and still receive a partial
result can be exploited to combine attributes of different classes in one get operation.

The following errors may occur with respect to the base object in which case no result is returned:

noSuchObjectClass when the specified object class is unknown by the agent

noSuchObjectInstance when the specified object instance is unknown by the agent

classInstanceConflict when the specified object instance does not belong to the specified class

syncNotSupported when the agent does not support atomic operations

processingFailure when a general error has occurred

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows : (<cmisfilter>) where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form : (!(<cmisfilter>)) A <andfilter> has the form : ((<cmisfilter>) & (<cmisfilter>)
...) A <orfilter> has the form : ((<cmisFilter>) | (<cmisfilter>) ...) A <filteritem> has one of the two forms
: (<attributename>) for creating a CMISFilter item with the assertion test for "present", or (<attribu-
tename> <assertiontype> <attributevalue>) for the other assertion types :

Character Assertion type
"=" equality
":=" substrings
">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions : "((objectClass = eventRecord) & (eventType = linkUpEvent))"
"((objectClass = log) & (!(administrativeState = unlocked)))" "((objectClass = log) & ((logId <= 2) | (logId
>= 10)))" "((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))" A "NULL" filter (one that always evaluates
to true) can be created using : "(NULL)"

(This is actually an empty AND filter.)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

Sun Release 4.0 Last change: January 1993 2

MIBDUMP (1C) USER COMMANDS MIBDUMP (1C)

Please note that the string representation of attribute values is determined by the print and parse methods
for the particular ASN.1 syntax. The OSIMIS convention for set valued attributes is that they should be
enclosed in angular brackets and items should be separated by a "%". Note that set-valued attributes should
also be enclosed in double quotes to avoid the special interpretation of those characters by the UNIX shell.
Examples of attribute values are:

foobar - string
"Its always easy if you’re told how" - string
"{ Low: 5 Switch: On High: 7 Switch: On }" - gaugeThreshold
"{ Level:10 Offset:5 Switch:On %

Level:20 Offset:2 Switch:On }" - counterThreshold

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
mset(1C), maction(1C), mcreate(1C), mdelete(1C)

NOTES
The abstract syntax of a CMISFilter is given in ISO 9596 : "Information Technology - Open Systems Inter-
connection - Common Management Information Protocol specification".

There is currently no access control implemented in OSIMIS which means that all management informa-
tion is visible. In the future, user authentication information may be needed in addition to the other argu-
ments and the accessDenied error will be returned for attributes/objects for which the user has no read
access rights.

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets : "(eventType = lin-
kUpEvent) | (eventType = linkDownEvent)" but instead of reading it as a badly formed OR filter, the
parser reads it as the <filteritem> : "(eventType = linkUpEvent)" Additionally, superfluous brackets, e.g :
((eventType = linkUpEvent)) will cause it to fail.

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

MSET (1C) USER COMMANDS MSET (1C)

NAME
mset − allows to set management attributes in OSI MIBs

SYNOPSIS
mset <agent> <host> -c <class> [-i <instance>]

[-s <scope> [<sync>]] [-f <filter>]
[-w|a|r|d] <attrType[=<attrValue>] ...

DESCRIPTION
mset is a program that enables to connect to a a remote OSI management agent and set management infor-
mation (managed object attributes). It establishes first a management association, requests the set operation
to be performed as specified through the command line arguments (using a M-SET CMIS request), pretty
prints the results and/or errors and then releases the association and exits.

OPTIONS
The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the agent runs - the management application
"designator". It should be the name with which the host has been registered in the isoentities database or
the global Directory. Note that for Internet hosts, this is usually the last component of its address e.g.
athena and NOT athena.cs.ucl.ac.uk .

The ‘-c’ option selects the base object class. It should be used in conjunction with ‘-i’ for the instance (i.e.
the object’s name). If it is set ‘-c system’, the -i option may be omitted as there is always only one instance
of class system.

The ‘-i’ option selects the base object instance. This is a distinguished name in the ISODE string represen-
tation form and may be either a global or a local name, the latter omitting the relative name for the system
object. For example,
systemId=athena@subsystemId=transport@entityId=isode and
subsystemId=transport@entityId=isode
are the global and local distinguished names respectively for a transport protocol entity managing the
ISODE implementation of the latter. Local names are shorter and useful as there is no need to know in
advance the relative name of the system object.

Having selected the base object, the operation may be applied to many objects using
scoping/synchronisation and filtering. The ‘-s’ option selects the scope and possibly the synchronisation.
The scope may be an individual level e.g. 1stLevel, 2stLevel etc., all the objects until a particular level e.g.
baseTo3rdLevel or the whole subtree e.g. wholeSubtree. By specifying baseObject, 0thLevel or
baseTo0thLevel the scope effect is nullified.

The synchronisation of the operations across the multiple scoped objects may be requested to be atomic, in
which case either all operations should succeed or none should be performed - in the latter case an empty
reply is returned. Synchronisation is only meaningful when more than one objects have been scoped.
Atomic synchronisation can be requested using atomic e.g. ‘-s 1stLevel atomic’. You must bear in mind
that atomic synchronisation is not supported by most agents, in which case a synchronisationNotSupported
error will be returned. The default synchronisation is bestEffort.

The ‘-f’ option selects the filter to be applied to the scoped objects. This enables to perform the operation
only on these objects for which the filter expression evaluates to true. Note that a filter may be also used
without scoping. A filter expression may contain assertions on the value of managed object attributes. See
the FILTER EXPRESSIONS section for details on their grammar/construction.

The ‘-w’, ‘-a’, ‘-r’ and ‘-d’ options should be used to specify the attribute names and the corresponding
values to be set. The difference is the set mode, which is the following for each option:

Sun Release 4.0 Last change: January 1993 1

MSET (1C) USER COMMANDS MSET (1C)

Option Mode Comments
-w w-rite (replace/set)
-a a-dd value (for set-valued attributes)
-r r-emove value (for set-valued attributes)
-d d-efault set (no value required)

After each of these options, there should be an attribute value assertion of the form
<attrType>=<attrValue> with the exception of -d after which there should simply be an attribute type
(value not required for set to default). The attribute value format is determined by the print and parse
methods for a particular ASN.1 syntax. The OSIMIS convention for set valued attributes is that they should
be enclosed in angular brackets and items should be separated by a "%". Note that set-valued attributes
should also be enclosed in double quotes to avoid the special interpretation of those characters by the
UNIX shell. Note that the convention for the value part is the same in filtering expressions (see below).
Some examples of attribute value assertions:

wiseSaying=foobar
wiseSaying = "Its always easy if you’re told how"
nUsersThreshold = "{ Low: 5 Switch: On High: 7 Switch: On }"
pdusResentThld = "{ Level:10 Offset:5 Switch:On %

Level:20 Offset:2 Switch:On }"

If one or more of the requested attributes does not exist for a selected object instance, a noSuchAttribute
error is returned. If the user has no write access rights for a particular attribute/object or if an attribute is
not settable a accessDenied error is returned. If the operation is meaningless, e.g. an add or remove opera-
tion to a non set-valued attribute, a invalidOperation error is returned. Finally if the attribute value is mal-
formed or out of range, a invalidAttributeValue is returned. All these are partial errors in the sense that
correctly specified operations will be performed. The fact that inexistent attributes for an object class may
be requested to be set and still receive a partial result can be exploited to combine attributes of different
classes in one operation.

The following errors may occur with respect to the base object in which case no result is returned:

noSuchObjectClass when the specified object class is unknown by the agent

noSuchObjectInstance when the specified object instance is unknown by the agent

classInstanceConflict when the specified object instance does not belong to the specified class

syncNotSupported when the agent does not support atomic operations

processingFailure when a general error has occurred

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows : (<cmisfilter>) where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form : (!(<cmisfilter>)) A <andfilter> has the form : ((<cmisfilter>) & (<cmisfilter>)
...) A <orfilter> has the form : ((<cmisFilter>) | (<cmisfilter>) ...) A <filteritem> has one of the two forms
: (<attributename>) for creating a CMISFilter item with the assertion test for "present", or (<attribu-
tename> <assertiontype> <attributevalue>) for the other assertion types :

Character Assertion type
"=" equality
":=" substrings

Sun Release 4.0 Last change: January 1993 2

MSET (1C) USER COMMANDS MSET (1C)

">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions : "((objectClass = eventRecord) & (eventType = linkUpEvent))"
"((objectClass = log) & (!(administrativeState = unlocked)))" "((objectClass = log) & ((logId <= 2) | (logId
>= 10)))" "((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))" A "NULL" filter (one that always evaluates
to true) can be created using : "(NULL)"

(This is actually an empty AND filter.)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

For the OSIMIS convention on the string representation of attribute values, see above the discussion in the
‘-w|a|r’ option regarding the value assertions.

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
mibdump(1C), maction(1C), mcreate(1C), mdelete(1C), sma(8C), oimsma(8C)

NOTES
The abstract syntax of a CMISFilter is given in ISO 9596 : "Information Technology - Open Systems Inter-
connection - Common Management Information Protocol specification".

NOTE WELL
There is currently no access control implemented in OSIMIS. Set operations are allowed to management
control managed objects such as event discriminators and logs to control the level of event reporting and
logging. In the OIM-SMA, sets are also allowed to routing tables when the remote agent runs as root. Note
that this is very dangerous but the facility was added to show how intrusive management may be per-
formed. If you allow the OIM-SMA to run as root, know you are taking risks!

In the future when access control is implemented, user authentication information will be needed in addi-
tion to the other arguments and the accessDenied error will be returned for attributes/objects for which the
user has no write access rights.

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets : "(eventType = lin-
kUpEvent) | (eventType = linkDownEvent)" but instead of reading it as a badly formed OR filter, the
parser reads it as the <filteritem> : "(eventType = linkUpEvent)" Additionally, superfluous brackets, e.g :
((eventType = linkUpEvent)) will cause it to fail.

AUTHOR
George Pavlou, University College London.

Sun Release 4.0 Last change: January 1993 3

MSET (1C) USER COMMANDS MSET (1C)

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 4

MACTION (1C) USER COMMANDS MACTION (1C)

NAME
maction − allows to perform a management action on OSI MIBs

SYNOPSIS
maction <agent> <host> -c <class> [-i <instance>]

[-s <scope> [<sync>]] [-f <filter>]
-a <actionType[=<actionValue>]

DESCRIPTION
maction is a program that enables to connect to a a remote OSI management agent and perform an action
on managed objects. It establishes first a management association, requests the action operation to be per-
formed as specified through the command line arguments (using a M-ACTION CMIS request), pretty
prints the results and/or errors and then releases the association and exits.

OPTIONS
The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the agent runs - the management application
"designator". It should be the name with which the host has been registered in the isoentities database or
the global Directory. Note that for Internet hosts, this is usually the last component of its address e.g.
athena and NOT athena.cs.ucl.ac.uk .

The ‘-c’ option selects the base object class. It should be used in conjunction with ‘-i’ for the instance (i.e.
the object’s name). If it is set ‘-c system’, the -i option may be omitted as there is always only one instance
of class system.

The ‘-i’ option selects the base object instance. This is a distinguished name in the ISODE string represen-
tation form and may be either a global or a local name, the latter omitting the relative name for the system
object. For example,
systemId=athena@subsystemId=transport@entityId=isode and
subsystemId=transport@entityId=isode
are the global and local distinguished names respectively for a transport protocol entity managing the
ISODE implementation of the latter. Local names are shorter and useful as there is no need to know in
advance the relative name of the system object.

Having selected the base object, the operation may be applied to many objects using
scoping/synchronisation and filtering. The ‘-s’ option selects the scope and possibly the synchronisation.
The scope may be an individual level e.g. 1stLevel, 2stLevel etc., all the objects until a particular level e.g.
baseTo3rdLevel or the whole subtree e.g. wholeSubtree. By specifying baseObject, 0thLevel or
baseTo0thLevel the scope effect is nullified.

The synchronisation of the operations across the multiple scoped objects may be requested to be atomic, in
which case either all operations should succeed or none should be performed - in the latter case an empty
reply is returned. Synchronisation is only meaningful when more than one objects have been scoped.
Atomic synchronisation can be requested using atomic e.g. ‘-s 1stLevel atomic’. You must bear in mind
that atomic synchronisation is not supported by most agents, in which case a synchronisationNotSupported
error will be returned. The default synchronisation is bestEffort.

The ‘-f’ option selects the filter to be applied to the scoped objects. This enables to perform the operation
only on these objects for which the filter expression evaluates to true. Note that a filter may be also used
without scoping. A filter expression may contain assertions on the value of managed object attributes. See
the FILTER EXPRESSIONS section for details on their grammar/construction.

The ‘-a’ option should be used to specify the action type and value, the latter being optional. In the latter
case, only the attribute type needs to be specified. When both the attribute type and value are needed, an
attribute value assertion of the form <actionType>=<actionValue> should be given. The action value for-
mat is determined by the print and parse methods for a particular ASN.1 syntax. The OSIMIS convention

Sun Release 4.0 Last change: January 1993 1

MACTION (1C) USER COMMANDS MACTION (1C)

for set valued actions is that they should be enclosed in angular brackets. In the latter case they should be
also enclosed in double quotes to avoid the special interpretation of those characters by the UNIX shell.
Though the following are attribute rather than action value assertions (no OSIMIS MIB has any actions
defined yet), they are given as examples. Note that the convention for the value part is the same for filtering
expressions (see below):

wiseSaying=foobar
wiseSaying = "Its always easy if you’re told how"
nUsersThreshold = "{ Low: 5 Switch: On High: 7 Switch: On }"
pdusResentThld = "{ Level:10 Offset:5 Switch:On %

Level:20 Offset:2 Switch:On }"

If the action does not exist for a selected object instance, a noSuchAction error is returned. If the action
value is malformed or otherwise inappropriate, invalidArgumentValue is returned. The following errors
may occur with respect to the base object in which case no result is returned:

noSuchObjectClass when the specified object class is unknown by the agent

noSuchObjectInstance when the specified object instance is unknown by the agent

classInstanceConflict when the specified object instance does not belong to the specified class

syncNotSupported when the agent does not support atomic operations

processingFailure when a general error has occurred

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows : (<cmisfilter>) where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form : (!(<cmisfilter>)) A <andfilter> has the form : ((<cmisfilter>) & (<cmisfilter>)
...) A <orfilter> has the form : ((<cmisFilter>) | (<cmisfilter>) ...) A <filteritem> has one of the two forms
: (<attributename>) for creating a CMISFilter item with the assertion test for "present", or (<attribu-
tename> <assertiontype> <attributevalue>) for the other assertion types :

Character Assertion type
"=" equality
":=" substrings
">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions : "((objectClass = eventRecord) & (eventType = linkUpEvent))"
"((objectClass = log) & (!(administrativeState = unlocked)))" "((objectClass = log) & ((logId <= 2) | (logId
>= 10)))" "((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))" A "NULL" filter (one that always evaluates
to true) can be created using : "(NULL)"

(This is actually an empty AND filter.)

Sun Release 4.0 Last change: January 1993 2

MACTION (1C) USER COMMANDS MACTION (1C)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

For the OSIMIS convention on the string representation of attribute values, see above the discussion in the
‘-a’ option regarding the value assertions.

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
mibdump(1C), maction(1C), mcreate(1C), mdelete(1C), sma(8C), oimsma(8C)

NOTES
The abstract syntax of a CMISFilter is given in ISO 9596 : "Information Technology - Open Systems Inter-
connection - Common Management Information Protocol specification".

There is currently no access control implemented in OSIMIS which means that all management actions
will be attempted. In the future, user authentication information will be needed in addition to the other
arguments and the accessDenied error will be returned for objects for which the user has no action (write)
access rights.

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets : "(eventType = lin-
kUpEvent) | (eventType = linkDownEvent)" but instead of reading it as a badly formed OR filter, the
parser reads it as the <filteritem> : "(eventType = linkUpEvent)" Additionally, superfluous brackets, e.g :
((eventType = linkUpEvent)) will cause it to fail.

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

MCREATE (1C) USER COMMANDS MCREATE (1C)

NAME
mcreate − allows to create managed objects in OSI MIBs

SYNOPSIS
mcreate <agent> <host> -c <class>

[-i <instance> | -s <superiorInst>] [-r referenceInst]
[-a <attrType=<attrValue>] ...

DESCRIPTION
mcreate is a program that enables to connect to a a remote OSI management agent and create a managed
object in its MIB. It establishes first a management association, requests the create operation to be per-
formed as specified through the command line arguments (using a M-CREATE CMIS request), pretty
prints the result and/or error and then releases the association and exits.

OPTIONS
The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the agent runs - the management application
"designator". It should be the name with which the host has been registered in the isoentities database or
the global Directory. Note that for Internet hosts, this is usually the last component of its address e.g.
athena and NOT athena.cs.ucl.ac.uk .

The ‘-c’ option specifies the class of the object to be created.

None or one only of the ‘-i’ or ‘-s’ options should be used to specify the object or its the (parent in the con-
tainment tree) instance i.e. its name. This is a distinguished name in the ISODE string representation form
and may be either a global or a local name, the latter omitting the relative name for the system object. For
example,
systemId=athena@subsystemId=transport@entityId=isode and
subsystemId=transport@entityId=isode
are the global and local distinguished names respectively for a transport protocol entity managing the
ISODE implementation of the latter. Local names are shorter and useful as there is no need to know in
advance the relative name of the system object.

No object or superior instance is needed when automatic instance naming is used by the agent and there is
only one possible name binding for that object class e.g. for event discriminators and logs. If automatic
instance naming is used but there are more than one name bindings, the superior instance needs to be
specified to determine the specific binding to be used. Finally, the actual object instance is needed for non-
automatic instance naming as it will contain the relative distinguished name for the object to be created.

The ‘-r’ option may be used specify a reference object instance to be used for initial attribute values to be
copied.

The ‘-a’ option should be used to specify initial attribute values. Attribute values can ve specified through
attribute value assertions of the form <attrType>=<attrValue>. The attribute value format is determined by
the print and parse methods for a particular ASN.1 syntax. The OSIMIS convention for set valued attri-
butes is that they should be enclosed in angular brackets. In the latter case they should be also enclosed in
double quotes to avoid the special interpretation of those characters by the UNIX shell. Some examples of
attribute value assertions are:

wiseSaying=foobar
wiseSaying = "Its always easy if you’re told how"
nUsersThreshold = "{ Low: 5 Switch: On High: 7 Switch: On }"
pdusResentThld = "{ Level:10 Offset:5 Switch:On %

Level:20 Offset:2 Switch:On }"

Sun Release 4.0 Last change: January 1993 1

MCREATE (1C) USER COMMANDS MCREATE (1C)

In case of no error, all the attribute values of the newly created object are displayed. The following errors
may be returned:

noSuchObjectClass when the specified object class is unknown by the agent

duplicateManagedObjectInstance when the object instance already exists

noSuchReferenceObject when the reference instance does not exist

accessDenied when an instance of the specified class cannot be created through CMIS or when the user has
no access rights for object creation (if access control is in use)

invalidObjectInstance when the superior instance does not exist or if a full instance is specified for a class
with automatic instance naming and violates the naming rules

missingAttributeValue when a necessary initial attribute value was not specified e.g. the destination for
event discriminators

invalidAttributeValue when a specified initial value was malformed or inappropriate

processingFailure when a general error has occurred.

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
mibdump(1C), mset(1C), maction(1C), mdelete(1C), sma(8C), oimsma(8C)

NOTES
There is currently no access control implemented in OSIMIS which means that all management creation
operations will be attempted. In the future, user authentication information will be needed in addition to
the other arguments and the accessDenied error will be returned for objects for which the user has no
action (write) access rights.

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets : "(eventType = lin-
kUpEvent) | (eventType = linkDownEvent)" but instead of reading it as a badly formed OR filter, the
parser reads it as the <filteritem> : "(eventType = linkUpEvent)" Additionally, superfluous brackets, e.g :
((eventType = linkUpEvent)) will cause it to fail.

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

MDELETE (1C) USER COMMANDS MDELETE (1C)

NAME
mdelete − allows to delete managed objects from OSI MIBs

SYNOPSIS
mdelete <agent> <host> -c <class> [-i <instance>]

[-s <scope> [<sync>]] [-f <filter>]

DESCRIPTION
mdelete is a program that enables to connect to a a remote OSI management agent and delete managed
objects in its MIB. It establishes first a management association, requests the action operation to be per-
formed as specified through the command line arguments (using a M-DELETE CMIS request), pretty
prints the results and/or errors and then releases the association and exits.

OPTIONS
The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the agent runs - the management application
"designator". It should be the name with which the host has been registered in the isoentities database or
the global Directory. Note that for Internet hosts, this is usually the last component of its address e.g.
athena and NOT athena.cs.ucl.ac.uk .

The ‘-c’ option selects the base object class. It should be used in conjunction with ‘-i’ for the instance (i.e.
the object’s name). If it is set ‘-c system’, the -i option may be omitted as there is always only one instance
of class system.

The ‘-i’ option selects the base object instance. This is a distinguished name in the ISODE string represen-
tation form and may be either a global or a local name, the latter omitting the relative name for the system
object. For example,
systemId=athena@subsystemId=transport@entityId=isode and
subsystemId=transport@entityId=isode
are the global and local distinguished names respectively for a transport protocol entity managing the
ISODE implementation of the latter. Local names are shorter and useful as there is no need to know in
advance the relative name of the system object.

Having selected the base object, the operation may be applied to many objects using
scoping/synchronisation and filtering. The ‘-s’ option selects the scope and possibly the synchronisation.
The scope may be an individual level e.g. 1stLevel, 2stLevel etc., all the objects until a particular level e.g.
baseTo3rdLevel or the whole subtree e.g. wholeSubtree. By specifying baseObject, 0thLevel or
baseTo0thLevel the scope effect is nullified.

The synchronisation of the operations across the multiple scoped objects may be requested to be atomic, in
which case either all operations should succeed or none should be performed - in the latter case an empty
reply is returned. Synchronisation is only meaningful when more than one objects have been scoped.
Atomic synchronisation can be requested using atomic e.g. ‘-s 1stLevel atomic’. You must bear in mind
that atomic synchronisation is not supported by most agents, in which case a synchronisationNotSupported
error will be returned. The default synchronisation is bestEffort.

The ‘-f’ option selects the filter to be applied to the scoped objects. This enables to perform the operation
only on these objects for which the filter expression evaluates to true. Note that a filter may be also used
without scoping. A filter expression may contain assertions on the value of managed object attributes. See
the FILTER EXPRESSIONS section for details on their grammar/construction.

If the object cannot be deleted, a accessDenied error is returned. The following errors may occur with
respect to the base object in which case no result is returned:

Sun Release 4.0 Last change: January 1993 1

MDELETE (1C) USER COMMANDS MDELETE (1C)

noSuchObjectClass when the specified object class is unknown by the agent

noSuchObjectInstance when the specified object instance is unknown by the agent

classInstanceConflict when the specified object instance does not belong to the specified class

syncNotSupported when the agent does not support atomic operations

processingFailure when a general error has occurred

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows : (<cmisfilter>) where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form : (!(<cmisfilter>)) A <andfilter> has the form : ((<cmisfilter>) & (<cmisfilter>)
...) A <orfilter> has the form : ((<cmisFilter>) | (<cmisfilter>) ...) A <filteritem> has one of the two forms
: (<attributename>) for creating a CMISFilter item with the assertion test for "present", or (<attribu-
tename> <assertiontype> <attributevalue>) for the other assertion types :

Character Assertion type
"=" equality
":=" substrings
">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions : "((objectClass = eventRecord) & (eventType = linkUpEvent))"
"((objectClass = log) & (!(administrativeState = unlocked)))" "((objectClass = log) & ((logId <= 2) | (logId
>= 10)))" "((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))" A "NULL" filter (one that always evaluates
to true) can be created using : "(NULL)"

(This is actually an empty AND filter.)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

Please note that the string representation of attribute values is determined by the print and parse methods
for the particular ASN.1 syntax. The OSIMIS convention for set valued attributes is that they should be
enclosed in angular brackets and items should be separated by a "%". Note that set-valued attributes should
also be enclosed in double quotes to avoid the special interpretation of those characters by the UNIX shell.
Examples of attribute values are:

foobar - string
"Its always easy if you’re told how" - string
"{ Low: 5 Switch: On High: 7 Switch: On }" - gaugeThreshold
"{ Level:10 Offset:5 Switch:On %

Level:20 Offset:2 Switch:On }" - counterThreshold

Sun Release 4.0 Last change: January 1993 2

MDELETE (1C) USER COMMANDS MDELETE (1C)

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
mibdump(1C), mset(1C), maction(1C), mcreate(1C), sma(8C), oimsma(8C)

NOTES
The abstract syntax of a CMISFilter is given in ISO 9596 : "Information Technology - Open Systems Inter-
connection - Common Management Information Protocol specification".

There is currently no access control implemented in OSIMIS which means that all deletions of managed
objects will be attempted. In the future, user authentication information will be needed in addition to the
other arguments and the accessDenied error will be returned or objects for which the user has no deletion
(write) access rights.

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets : "(eventType = lin-
kUpEvent) | (eventType = linkDownEvent)" but instead of reading it as a badly formed OR filter, the
parser reads it as the <filteritem> : "(eventType = linkUpEvent)" Additionally, superfluous brackets, e.g :
((eventType = linkUpEvent)) will cause it to fail.

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

EVSINK (1C) USER COMMANDS EVSINK (1C)

NAME
evsink − requests and receives event report from an OSI MIB

SYNOPSIS
evsink <agent> <host> [<eventType> ...]

evsink <agent> <host> [<filter>]

DESCRIPTION
evsink is a program that enables to connect to a a remote OSI management agent and request and receive
event reports. It establishes first a management association, requests the event reports as specified through
the command line arguments by creating a event forwarding discriminator management control object
(using a M-CREATE CMIS request) and then listens for event reports which it pretty prints to the standard
output.

The program terminates by receiving a SIGQUIT signal when in the forground (Control-\ for most key-
boards) or a SIGTERM signal when in the background (produced by the Unix program kill(1)). Upon the
reception of the termination signal, it deletes the event discriminator it created and releases the manage-
ment association before it exits.

OPTIONS
The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the agent runs - the management application
"designator". It should be the name with which the host has been registered in the isoentities database or
the global Directory. Note that for Internet hosts, this is usually the last component of its address e.g.
athena and NOT athena.cs.ucl.ac.uk .

If no optional argument is given, all event reports are requested. Discrimination on the type of event
reports is allowed by specifying either the types of events to be received or a CMIS filtering expression
which may contain any other assertions in addition to ones regarding event types.

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows : (<cmisfilter>) where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form : (!(<cmisfilter>)) A <andfilter> has the form : ((<cmisfilter>) & (<cmisfilter>)
...) A <orfilter> has the form : ((<cmisFilter>) | (<cmisfilter>) ...) A <filteritem> has one of the two forms
: (<attributename>) for creating a CMISFilter item with the assertion test for "present", or (<attribu-
tename> <assertiontype> <attributevalue>) for the other assertion types :

Character Assertion type
"=" equality
":=" substrings
">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

Sun Release 4.0 Last change: January 1993 1

EVSINK (1C) USER COMMANDS EVSINK (1C)

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions : "((objectClass = eventRecord) & (eventType = linkUpEvent))"
"((objectClass = log) & (!(administrativeState = unlocked)))" "((objectClass = log) & ((logId <= 2) | (logId
>= 10)))" "((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))" A "NULL" filter (one that always evaluates
to true) can be created using : "(NULL)"

(This is actually an empty AND filter.)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

Please note that the string representation of attribute values is determined by the print and parse methods
for the particular ASN.1 syntax. The OSIMIS convention for set valued attributes is that they should be
enclosed in angular brackets and items should be separated by a "%". Note that set-valued attributes should
also be enclosed in double quotes to avoid the special interpretation of those characters by the UNIX shell.
Examples of attribute values are:

foobar - string
"Its always easy if you’re told how" - string
"{ Low: 5 Switch: On High: 7 Switch: On }" - gaugeThreshold
"{ Level:10 Offset:5 Switch:On %

Level:20 Offset:2 Switch:On }" - counterThreshold

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

EXAMPLES
evsink SMA athena tConnectionCreation tConnectionShutdown

evsink SMA athena "((eventType=tConnectionCreation) | (eventType=tConnectionShutdown))

evsink SMA athena "((objectClass=transportEntity) & (entityId=isode))"

Note that the first two examples are exactly equivalent.

SEE ALSO
mset(1C), evlog(1C), sma(8C), oimsma(8C)

NOTES
The abstract syntax of a CMISFilter is given in ISO 9596 : "Information Technology - Open Systems Inter-
connection - Common Management Information Protocol specification".

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets : "(eventType = lin-
kUpEvent) | (eventType = linkDownEvent)" but instead of reading it as a badly formed OR filter, the
parser reads it as the <filteritem> : "(eventType = linkUpEvent)" Additionally, superfluous brackets, e.g :
((eventType = linkUpEvent)) will cause it to fail.

AUTHOR
George Pavlou, University College London.

Sun Release 4.0 Last change: January 1993 2

EVSINK (1C) USER COMMANDS EVSINK (1C)

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 3

EVLOG (1C) USER COMMANDS EVLOG (1C)

NAME
evlog - OSI eventLog utility.

SYNOPSIS
evlog <agent> <host> [{<filter> | <event> ... }]

evlog <agent> <host> D <n>

evlog <agent> <host> D <n> <m>

evlog <agent> <host> S <n> <attributeName> <attributeValue>

DESCRIPTION
evlog is a program that allows the use of logging activities on an OSI agent. It does this by allowing the
creation and deletion of eventLog objects and eventRecord objects, and by allowing certain attribute values
of the eventLog object to be set, controlling its behaviour.

It returns the following values on exit :

Exit Meaning
0 OK
-1 Bad command line syntax
-2 Could not open a connection to the agent specified
-3 The connection was broken prematurely
-4 Invalid/Bad argument values provided
-5 Other error

The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214).

The <host> argument specifies the name of the host where the application runs - the application "designa-
tor". It should be the name with which the host has been registered in the isoentities database or the global
Directory. Note that for Internet hosts, this is usually the last component of its address e.g. lemma and NOT
lemma.cs.ucl.ac.uk.

In the first form of usage :

evlog <agent> <host> [{<filter> | <event> ...}]

if no optional argument is given, then an attempt will be made to create an eventLog object at the specified
agent. If this is completed successfully, then the eventLog object created will log all notifications emitted at
that agent. Created logs are identified by a logId (an integer) which will be displayed on the terminal on
successful creation.

If the <filter> expression is given, then a CMISilter will be an be sent as the initial value for the discrimina-
torConstruct for that eventLog object. (The syntax for the filter expression is described below.) All
notifications will have to pass through the filter before being logged. If the <event> names are given, then
only those events will be logged by that eventLog. (This is achieved by constructing an OR filter specifying
the eventTypes as given by the <event> names provided.)

In the second form of usage : evlog <agent> <host> D <n>

evlog attempts to delete an eventLog object with logId=<n> at the specified agent.

In the third form of usage :

evlog <agent> <host> D <n> <m>

evlog attempts to delete an eventRecord object with logRecordId=<m> at the eventLog with logId=<n>.

Sun Release 4.0 Last change: January 1993 1

EVLOG (1C) USER COMMANDS EVLOG (1C)

In the fourth form of usage :

evlog <agent> <host> S <n> <attributeName> <attributeValue>

evlog attempts to set the value of the attribute given by <attributeName> to the value given by <attribu-
teValue>, for the eventLog object with logId=<n>. The values for <attributeName> and <attributeValue>
are as follows :

<attributeName> <attributeValue>
discriminatorConstruct {<filter> | <event> ... }]
administrativeState {locked | unlocked}
maxLogSize <k>
logFullAction {wrap | halt}

<filter> is a filter expression. <event> is an event name. <k> is an integer that is greater than or equal to
zero.

The attribute discriminatorConstruct controls which notifications are to be logged. The type of this value is
CMISFilter, and all notifications to be logged must pass through this filter.

The attribute administrativeState effectively switches logging on or off. In the "locked" state, no logging
occurs. In the "unlocked" state, logging can occur.

The attribute maxLogSize controls the size of the log. The units of <k> are taken to be octets. <k> should
not be less than the present value of maxLogSize. <k> = 0 is taken as meaning infinity.

The attribute logFullAction controls the behaviour of the log when it is full. If the value is "wrap" then
when the size of the log reaches the value of maxLogSize, the oldest records in the log will be deleted until
there is enough room to store the current one. If the value is "halt" then no more logging will occur - to res-
tart logging, either reset the value of maxLogSize or change the value of logFullAction to "wrap".

FILTER EXPRESSIONS
A filter expression is used to construct a CMISFilter value. A CMISFilter contains attribute value assertions
(AVAs) that are grouped with the logical operators AND, OR and NOT. The filter expression syntax is as
follows :

(<cmisfilter>)

where <cmisfilter> is one of <notfilter>, <andfilter>, <orfilter> or <filteritem>.

The characters used to represent the logical operators are :

Character Operator
"!" NOT
"&" AND
"|" OR

A <notfilter> has the form :

(!(<cmisfilter>))

A <andfilter> has the form :

((<cmisfilter>) & (<cmisfilter>) ...)

A <orfilter> has the form :

((<cmisFilter>) | (<cmisfilter>) ...)

A <filteritem> has one of the two forms :

(<attributename>)

for creating a CMISFilter item with the assertion test for "present", or

Sun Release 4.0 Last change: January 1993 2

EVLOG (1C) USER COMMANDS EVLOG (1C)

(<attributename> <assertiontype> <attributevalue>)

for the other assertion types :

Character Assertion type
"=" equality
":=" substrings
">=" greater or equal
"<=" less or equal
":<" subset of
":>" superset of
"><" non-null intersection

With the substrings operator, the character "∗" can be used as a wild card.

Some examples of filter expressions :

"((objectClass = eventRecord) & (eventType = linkUpEvent))"

"((objectClass = log) & (!(administrativeState = unlocked)))"

"((objectClass = log) & ((logId <= 2) | (logId >= 10)))"

"((wiseSaying := ∗hello∗) | (!(wiseSaying = bye)))"

A "NULL" filter (one that always evaluates to true) can be created using :

"(NULL)"

(This is actually an empty AND filter.)

The use of the brackets, "(" and ")", is very important, as they are used to delimit the strings used to
represent the components of the filter. Also, please enclose your filter expression in quote marks, as in the
examples above, so that the your UNIX shell does not interpret special characters such as "!", "|", "&", ">",
"<", "(" and ")".

PLEASE NOTE that for an attribute type to be used in a filter expression, there should be a "parse" func-
tion defined for its syntax and the function should be registered in the syntax tables. This parse function
reads the attribute’s value from a "pretty-printed" form and converts it to a value, i.e. a C structure. There is
no methodology applied in OSIMIS (as yet) to the way in which values are "pretty-printed", however a
loose convention is :

"scalar" values are represented as single strings e.g.,

logId = 1 /∗ INTEGER ∗/

objectClass = eventRecord /∗ OID ∗/

wiseSaying = Hello World /∗ Strings ∗/

administrativeState = unlocked /∗ ENUMERATED ∗/

"set" values are enclosed in curly brackets. e.g.,

availabilityStatus :< {inTest offLine offDuty}

nUsersThld = {Low:7 Switch:On High:10 Switch:On}

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[at,gen] - syntax and OID information.

Sun Release 4.0 Last change: January 1993 3

EVLOG (1C) USER COMMANDS EVLOG (1C)

$(ETC)/isoentities - PSAP address information of agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
evsink(1C), readevlog(1)

NOTES
The abstract syntax of a CMISFilter is given in ISO 9596 : "Information Technology - Open Systems Inter-
connection - Common Management Information Protocol specification".

The Log Control function is described in ISO 10164-6 : "Information Technology - Open Sytems Intercon-
nection - System Management Functions - Part 6: Log Control Function".

BUGS
The filter expression parser is a bit shaky! You must have the correct number of brackets, as it keeps a
count! For instance the filter expression below is missing the outermost set of brackets :

"(eventType = linkUpEvent) | (eventType = linkDownEvent)"

but instead of reading it as a badly formed OR filter, the parser reads it as the <filteritem> :

"(eventType = linkUpEvent)"

Additionally, superfluous brackets, e.g :

((eventType = linkUpEvent))

will cause it to fail.

Also, the program does not allow all attribute values to be set when creating the eventLog object, just
discriminatorConstruct.

AUTHOR
Saleem N. Bhatti, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS, and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 4

CMISBROWSER (1C) USER COMMANDS CMISBROWSER (1C)

NAME
cmisbrowser − a generic OSI MIB browser

SYNOPSIS
cmisbrowser [standard X arguments]

cmisbrowser [standard X arguments]

DESCRIPTION
cmisbrowser is an X Windows HCI tool that allows you to "browse" through the objects in a OSI Manage-
ment Information Base (MIB). The browser is generic in that it can connect to a CMIS agent without hav-
ing any prior knowledge of the structure of its MIB.

The browser provides three kinds of window, a Hosts window that allows a user to connect to various
agents, a Browser window that displays the Managed Objects in the MIB and a Monitor window that allows
you to "monitor" a particular Managed Object. Each of the windows has a number of button operations.

Host window operations
There are two button options in this window. The Connect button allows you to connect to a remote host-
agent. After you have clicked on the button, to select a host agent combination you must double click on an
entry in the the list displayed. The list of hosts and agents is extracted from the isoentities file in the
OSIMIS ETC directory.

The Quit button terminates the browser and automatically closes all windows and connections to remote
agents.

Browser window operations
The browser window allows you to move up and down the MIB containment hierachy. Only one Managed
Object is displayed at a time. To display the contents of many Managed Objects at one time, you must use
the Monitor command (see below).

The browser window is sub-divided into three sections, one that displays that the class and distinguished
name of the Current Object
eg transportEntity systemId=athena@subsystemId=transport
, one that displays the names and values of the Attributes of the current object and another that displays the
names of the subordinate objects in the containment hierarchy.

The Up button allows you to move up the containment hierarchy.

The Down button allows you to move down the containment hierarchy. When you have clicked on the
down button, you must select a name from the list of Subordinate Objects (again by double clicking). If
there is only one subordinate, the browser will automatically move down to the next level.

The Modify button allows you to change attributes of the current object. When you have clicked on the
Modify button, a menu with two options, to Change or Set Default is displayed. Once you have selected an
option, the menu disappears and you must select an attribute by double clicking on one of the entries in the
Attributes list. A dialog box will appear that allows you to change the value of the attribute. Use the
mouse to position to the cursor within the edit window and the del key to delete letters.

The Monitor button will activate a Monitor window (see below).

The Refresh button refreshes the Current Object. This allows you to see if the current object in the remote
agent has changed without going up and down the hierarchy. If the object has been deleted, the browser
will automatically move one level up the hierarchy.

The Quit button terminates the browser window and automatically closes all monitor windows and the con-
nection to the remote agent.

Monitor window operations
The monitor window constantly polls the remote agent for the contents of a managed object. You create
monitored objects by selecting the Monitor button in the browser window. There are two button operations
in the window. The Interval button allows you to change the polling interval. The Quit button closes the
window.

Sun Release 4.0 Last change: January 1993 1

CMISBROWSER (1C) USER COMMANDS CMISBROWSER (1C)

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the correct OSIMIS ETC directory before
starting this program.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Should be obvious.

SEE ALSO
mibdump(1C), set(1C), maction(1C), mcreate(1C), mdelete(1C)

OPTIONS
The cmisbrowser will take any of the standard X arguments: eg -display hostname:0.0 -fg white -bg black.
This defaults can also be set in

AUTHOR
James Cowan, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

IPROUTE (IC) MISC. REFERENCE MANUAL PAGES IPROUTE (IC)

NAME
iproute - routing table manager utility for OIM SMA

SYNOPSIS
iproute <agent> <host> [n]

iproute <agent> <host> C

iproute <agent> <host> D

iproute <agent> <host> C <destination> <gateway>

iproute <agent> <host> D <destination>

DESCRIPTION
iproute allows the management of routing tables when using the OIM SMA. It will display the routing table
to be displayed, and allow entries in the table to be created and deleted. Please read the WARNING section
before using iproute.

The <agent> argument is mandatory and expresses the remote logical management application "qualifier".
In OSIMIS there are two such application qualifiers, SMA for the ISO Transport and the example UNIX
MIB agent and OIM-SMA for the OSI Internet MIB agent (OSI view of the SNMP MIB-II for TCP/IP, as
described in RFC 1214). Normally for iproute, use OIM-SMA.

The <host> argument specifies the name of the host where the application runs - the application "designa-
tor". It should be the name with which the host has been registered in the isoentities database or the global
Directory. Note that for Internet hosts, this is usually the last component of its address e.g. lemma and NOT
lemma.cs.ucl.ac.uk.

In the first form of usage :

iproute <agent> <host> [n]

iproute will print out the routing table for the <agent> specified. The routing tables is displayed in rows,
with each row showing the follwoing information :

destination : This is the IP address of the destination. This could be a host or a network entry.

gateway : This is the IP address of the gateway that is used for routing packets to destination.

interface name : The name of the local network interface, e.g. "le0".

interface type : The type of the sub-network technology for an interface, e.g. "ethernet-csmacd".

interface status : This will be "up" if the interface is in operation, or "down" if it is not.

The addresses destination and gateway will be resolved to names, of which the "last part" will be printed,
e.g. "lemma.cs.ucl.ac.uk" will be printed as "lemma". If the [n] option is specified, the addresses will be
printed in the familiar "dot notation", e.g. "128.16.8.60".

In the second form of usage :

iproute <agent> <host> C

iproute creates the ipRoutingTable object at the specified host <agent>. Note that this does not mean that a
new routing table is created - if an instance of this object already exists then the request will fail.

In the third form of usage :

iproute <agent> <host> D

iproute deletes the ipRoutingTable object at the specified <agent>. Note that this will cause only the
ipRoutingTable object to be deleted, not the actual routing table itself.

Sun Release 4.0 Last change: January 1993 1

IPROUTE (IC) MISC. REFERENCE MANUAL PAGES IPROUTE (IC)

In the fourth form of usage :

iproute <agent> <host> C <destination> <gateway>

iproute will create a routing table entry (ipRouteEntry object) for <destination> via <gateway> at the agent
specified.

In the fifth form of usage :

iproute <agent> <host> D <destination>

iproute will delete the routing table entry (ipRouteEntry object) for <destination> at the <agent> specified.

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the OSIMIS OIM-ETC directory before start-
ing this program.

WARNING
There is currently NO ACCESS CONTROL implemented in OSIMIS. Note that to demonstrate the use of
intrusive management, iproute(1c) creates and deletes routing table entries (ipRouteEntry objects) via
CMIS. This facility is enabled by having oimsma(1C) running with root permission. Please be aware of the
risks you are taking when running the oimsma with root permission!

FILES
$(ETC)/oidtable.[at,gen] - syntax and OID information.
$(ETC)/isoentities - PSAP address information of agents.

DIAGNOSTICS
Should be obvious.

NOTES
The definition of the OIM MIB can be found in RFC 1214 : "OSI Internet Management: Management
Information Base", L. Labarre (Editor).

BUGS
THERE IS NO ACCESS CONTROL when using iproute. Allowing the ipRoutingTable object to be
created and deleted is a poor attempt at restricting access to the routing information.

AUTHOR
Saleem N. Bhatti, University College London

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS, and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 2

SMA (8C) MAINTENANCE COMMANDS SMA (8C)

NAME
sma − system management agent

SYNOPSIS
sma
(manually or under /etc/rc.local)

DESCRIPTION
The sma server is a system management agent that implements a (non-standard) MIB for the ISO Transport
Protocol which is used to manage the ISODE implementation of the latter. It also implements an example
non-standard UNIX MIB with a trivial managed objects showing the number of users in the system.

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the OSIMIS ETC directory before starting the
agent.

FILES
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.

$(ETC)/isoentities - PSAP address information of management agents.

$(ETC)/mib.init - initial Management Information Base configuration.

SEE ALSO
mget(1C), mset(1C), maction(1C), mcreate(1C), mdelete(1C), evsink(1C), evlog(1C)

DIAGNOSTICS
Various diagnostics are printed when the program is compiled with the -DDEBUG flag.

AUTHOR
George Pavlou, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

OIMSMA (8C) MAINTENANCE COMMANDS OIMSMA (8C)

NAME
oimsma - system management agent using the OIM MIB

SYNOPSIS
oimsma (manually or under /etc/rc.local)

DESCRIPTION
The oimsma server is a system management agent that implements the OIM MIB described in RFC 1214.
If run with root permission, oimsma can be used in conjunction with iproute(1C), to perform routing table
management.

CONFIGURATION
oimsma uses two configuration files that will be found in the OSIMIS ETC directory. The two files are
called "if.config" and "sys.config" and are used to hold information used to initialise the ifEntry objects and
OIM system object, respectively, on a host. These two files must be modified for your site before starting
oimsma.

ENVIRONMENT
The OSIMISETCPATH environment variable should point to the OSIMIS OIM-ETC directory before start-
ing the agent.

There is currently NO ACCESS CONTROL implemented in OSIMIS. Note that to demonstrate the use of
intrusive management, iproute(1C) creates and deletes routing table entries (ipRouteEntry objects) via
CMIS. This facility is enabled by having oimsma(1C) running with root permission. Please be aware of the
risks you are taking when running oimsma with root permission!

FILES
$(ETC)/if.config - configuration information for ifEntry objects.
$(ETC)/sys.config - configuration information for the OIM system object.
$(ETC)/mib.init - MIB initialisation file.
$(ETC)/oidtable.[gen,at] - object identifier and syntax information.
$(ETC)/isoentities - PSAP address information of management agents.

DIAGNOSTICS
Various diagnostics are printed when the program is compiled with the -DDEBUG flag.

NOTES
The definition of the OIM MIB can be found in RFC 1214 : "OSI Internet Management: Management
Information Base", L. Labarre (Editor).

AUTHOR
Saleem Bhatti, University College London.

This work was supported by the ESPRIT projects INCA, PROOF and MIDAS and the RACE projects
NEMESYS and ICM.

Sun Release 4.0 Last change: January 1993 1

.

CONTENTS

1. Introduction . 4
1.1 Fanatics Need Not Read Further 4
1.2 A Note on the Implementation 4
1.3 Changes From Previous Releases 5

2. Overview . 7

3. Communication Services 8

4. General Management System Support 9
4.1 Support for Asynchronous Event-Driven Applications 10
4.2 Support For Transparent ASN.1 Handling 18

5. The Generic Managed System 28
5.1 A Tutorial Introduction 29

5.1.1 Implementing Managed Object Classes 29
5.1.1.1 Deriving New Managed Object Classes 29
5.1.1.2 Instantiation 31
5.1.1.3 Knowledge Sources 32

5.1.2 Communicating With Real Resources - Examples 33
5.1.2.1 Polling Example - the nUsers Attribute 33
5.1.2.2 Upon External Request Example - the sysTime

Attribute 33
5.1.2.3 Event Driven Example - the tpEntity Managed

Object 35
5.1.3 The Complete Example UNIX Managed Object 36

5.1.3.1 Methods 36
5.1.3.2 Attributes 37
5.1.3.3 Notifications 37
5.1.3.4 Creation 39

5.2 Managed Object Support 41
5.3 Attribute and Syntax Support 57

5.3.1 Attribute types in the GMS 57
5.3.1.1 C++ implementations of attribute types in the

GMS 60
5.3.1.1.1 Integer 60
5.3.1.1.2 Real 61
5.3.1.1.3 OctetString 62
5.3.1.1.4 String 63
5.3.1.1.5 DName 64
5.3.1.1.6 ObjId 64
5.3.1.1.7 CounterThreshold 65
5.3.1.1.8 GaugeThresholdInt and

GaugeThresholdReal 66

- i -

5.3.1.1.9 TideMarkMin and TideMarkMax 68
5.3.1.1.10 Counter 70
5.3.1.1.11 GaugeInt and GaugeReal 71
5.3.1.1.12 Time 74
5.3.1.1.13 Filter 75
5.3.1.1.14 ObjIdList 76
5.3.1.1.15 AdministrativeState 77
5.3.1.1.16 OperationalState 78
5.3.1.1.17 DestinationAddress 79
5.3.1.1.18 LogFullAction 80
5.3.1.1.19 AvailabilityStatus 80

5.3.2 Introducing your own syntaxes into the software 82
5.3.2.1 Implementing the syntax routines 82
5.3.2.2 The C++ class definition 83

5.3.2.2.1 Minimal requirements for the C++ attribute
implementation 84

5.3.2.2.2 A slightly more complex
implementation 86

5.3.2.2.3 The CMIS Interface to the attribute
definition 89

6. Generic Manager Support 90

7. Management Applications 91

- ii -

