
1111

GENERAL PURPOSE CLASSES

2222

Class List

Inherits from: None

Classes used: Link

Classes related: ListIterator

Interface file: GenList.h

Implementation file: GenList.cc

Containing library: util

Introduction
The List class provides a generic linked-list facility. It may be used as is, for non-ordered lists containing elements
with no special destructing needs. It may be also used, more commonly, as the parent class of specific lists that rede-
fine thecompare anddeleteElem methods. The ListIterator class may be used to walk-through the elements of a list.

Methods
class List
{
 // ...
protected:
 virtual int compare (void*, void*);

public:
 virtual void deleteElem (void*);

 void append (void*);
 void prepend (void*);
 void* get ();
 void* getLast ();
 void* first ();
 void* last ();
 int insert (void*);
 void* remove (void*);
 void* find (void*);
 int getCount ();
 void clear ();
 void setDeleteMode (Bool);

 List (Bool = True);
 virtual ~List ();
};

#define NULLIST ((List*) 0)

3333

Polymorphic Methods

virtual int compare (void* elem1, void* elem2);

Ordered lists need a means to compare stored elements so that order can be maintained. In some other lists there is the
need to find if a particular item is in the list. These requirements mean that theinsert, remove andfind methods need
to be used. For those lists this method need to be redefined.

Arguments point to elements of the list and should be casted back to the right type. The return value should be 0 or
OK if the elements are equal, a negative value ifelem1 < elem2 and a positive value otherwise. If equality but no
ordering applies, NOTOK may be returned ifelem1 != elem2. In such lists,find andremove may be used but not
insert.

virtual void deleteElem (void* elem);

Lists contain elements with allocated storage space. The elements fall into three categories:

• simple types such as e.g. int, double, char* (for the first two, the contained elements are int*, double*)

• C structures that do not point to other allocated space, except from that of the structure itself, or C++ classes
with no destructors

• C structures that point to additional allocated space or C++ classes with destructors

The default behaviour of the List class with respect to destruction is to simply release the pointed space (or not to
release any space if this is desirable). This is adequate for the first two cases above which means that this method
does not need to be redefined. In the third case, the method needs to be redefined to use the specific de-allocation
mechanism for the elements in hand. The argument needs thus to be casted back to the right type.

Note that this method is public which means it may be used to destruct an element after the latter has been possibly
removed from the list and “inspected”. In this case, the list object serves as an engine with destruction knowledge.

General Manipulation Methods

void append (void* elem);

void prepend (void* elem);

Appends an element to the end (tail) and the beginning (head) of the list respectively.

void* get ();

void* getLast ();

Remove and return the head and tail of the list respectively. The first is not calledgetFirst for historical reasons
(backwards compatibility). A synonymousgetFirst method has been added in versions > 4.0 .

void* first ();

void* last ();

Return the head and tail of the list respectively without removing it (useful for simple inspection).

int insert (void* elem);

Inserts an element keeping the list sorted assuming that the compare method has been redefined. If this is not the case,
NOTOK is returned. OK is return upon success and the element is inserted in place.

4444

void* find (void* elemCopy);

void* remove (void* elemCopy);

find finds if the same element as its argument exists in the list whileremove both finds and removes it. They both
assume that thecompare method has been redefined. If the latter is not the case or if such an element does not exist,
NULLVD is returned. A (pointer to an) element is returned upon success. It is noted that in the case offind the
returned element pointed to is STILL in the list, so it should not be free’d.

int getCount ();

It returns the number of elements in the list.

void clear ();

It deletes all the elements. It should always be called before deleting a list or before the list object goes out of scope
and thedeleteElem method has been redefined (see general comment on C++ destructors in ?.?).

int setDeleteMode (Bool delMode);

The default list destruction behaviour is to simply release the pointed element space (seedeleteElem above). In spe-
cial circumstances, the elements of a list may not have their own allocated space but they may be simple pointers to
space elsewhere. In that case, the default behaviour should be altered not to release any space at all. This method
allows to do that by setting the delete mode toFalse. If the usage of the list later on changes, the delete mode may be
set again to the default i.e.True. See also the constructor below.

Constructor

List (Bool delMode);

The only instance variable that may be set through the constructor is the destruction mode. The default isTrue which
means that the pointed memory is released - see alsodeleteElem andsetDeleteMode above.

5555

Class ListIterator

Inherits from: None

Classes used: Link, List

Interface file: ListIterator.h

Implementation file: GenList.cc (the only non-inline method)

Containing library: util

Introduction
The ListIterator class may be used to walk-through the elements contained by an instance of the List class.

Methods
class ListIterator
{
 // ...

public:
 void setList (List*);
 void* getNext ();
 void reset ();

 ListIterator (List* = NULLIST);
};

ListIterator (List* list);

void setList (List* list);

The list to iterate upon can be set either through the constructor (default case no list) or through the special setList
method. The argument is the address of the list. The latter may be also used to reset a new list to the iterator.

void* getNext ();

Returns (a pointer to) the next element of the list. The element remains in the list i.e. it is not removed. NULLVD is
returned when the end of the list is reached.

void reset ();

It resets the iterator to the beginning of the list. It may be used for successive iterations over the same list at different
points in time i.e. the same iterator and list objects are used.

6666

Class Array

Inherits from: None

Classes used: None

Interface file: GenArray.h

Implementation file: GenArray.cc

Containing library: util

Introduction
The Array class is very similar to the List one but provides a generic array facility. Elements of an array are not
ordered but may be compared for equality in order to support search facilities. Arrays have less overhead than lists in
terms of memory management as array cells are allocated in chunks and not on a per element basis. The size of an
array is automatically incremented whenever instantaneously exhausted. They should be preferred to lists for fairly
static non-ordered collections of objects.

Methods
class Array
{
 // ...
protected:
 virtual int compare (void*, void*);

public:
 virtual void deleteElem (void*);

 void* get (int);
 int set (int, void*);
 int add (void*);
 void* remove (int);
 int remove (void*);
 int find (void*);
 int getCount ();
 int getSize ();
 void compact ();
 void reset (int);
 void setIncrement (int);
 void setDeleteMode (Bool);

 Array (Bool = True);
 Array (int, Bool = True);
 virtual ~Array ();
};

#define NULLARRAY ((Array*) 0)

7777

Polymorphic Methods

virtual int compare (void* elem1, void* elem2);

virtual void deleteElem (void* elem);

These are exactly the same as those of theList class. The only minor difference is that thecompare method should
only test for equality and not ordering as the latter does not make sense (this class does not support ordering). 0 or OK
should be returned if the two elements are equal and a non-zero value or NOTOK otherwise.

General Manipulation Methods

void* get (int cellNo);
Returns a (pointer to an) element given a cell number (array index). The returned element remains in the array and
should not be free’d. If the cellNo is bigger than the array size (maximum index = sz-1), NULLVD is returned. NUL-
LVD may be also returned if that cell is “empty”. In general, in a compact array cellNo should not be bigger than the
element count (maximum index = cnt-1).

int set (int cellNo, void* elem);

Adds an element to the array at cellNo position. If another element was stored in that position it will be lost (free’d).
If the cellNo is bigger than the array size (>= sz), NOTOK is returned.

void add (void* elem);

Adds an element to the array at the first free available position. If the element count has reached the array size, the
array is resized according to the available increment (seesetIncrement).

void* remove (int cellNo);

int remove (void* elemCopy);

These support two different ways to remove an element. The first takes as parameter the cell number and restrictions
similar to those ofget above apply. The second assumes that thecompare method has been redefined and takes as
argument a copy of the element to be removed (removalby value). It returns -1 (NOTOK) if such an element was not
found or the cell number if the element was found and removed (free’d).

int find (void* elemCopy);

This is similar to the secondremove method above but it simply checks if such an element exists without removing it.

int getCount ();

int getSize ();

getCount returns the number of the actual elements in the array whilegetSize returns the array size. It always holds
thatcnt <= sz .

void compact ();

An array may end-up with “holes” of empty cells as elements are removed.compact moves active cells “downwards”
so that it results in a contiguous space of cells with elements, from 0 until cnt-1 .

8888

void reset (int newSize);

It resets the array size. If the new size is smaller than the current element count,newSize-count elements will be lost.
ThegetCount method may be used in advance in order to avoid this behaviour.

void setIncrement (int incr);

Every time the element count exceeds the array size, the latter is immediately incremented. The default increment is
20 but it can be changed throughsetIncrement to reflect the nature of the specific array.

void setDeleteMode (Bool delMode);

The default array destruction behaviour is to simply release the pointed element space (seedeleteElem above). In
special circumstances, the elements of an array may not have their own allocated space but they may be simple point-
ers to space elsewhere. In that case, the default behaviour should be altered not to release any space at all. This
method allows to do that by setting the delete mode toFalse. If the usage of the array later on changes, the delete
mode may be set again to the default i.e.True. See also the constructors below.

Constructors

Array (Bool delMode);

Array (int size, Bool delMode);

The only instance variables that may be set through the constructors are the destruction mode and the size. The
default destruction mode isTrue which means that the pointed memory is released - see alsodeleteElem andsetDele-
teMode above. The size may be an initial guess of the array size to avoid re-allocating cells many times. If not sup-
plied, cells are allocated in chunks ofincr each time - see alsosetIncrement above.

9999

PROCESS COORDINATION SUPPORT CLASSES

10101010

Class KS

Inherits from: None

Classes used: Coordinator and derived classes

Interface file: GenericKS.h

Implementation file: GenericKS.cc

Containing library: kernel

Introduction
The knowledge source (KS) is an abstraction of a general application object being able to receive data asynchro-
nously in external communication endpoints and to be awaken-up periodically in real-time to perform various tasks.
The term has its roots to AI blackboard systems and generally KSs implement an application’s intelligence with
respect to external communications and periodic real-time activities. The KS is an abstract class.

Methods

class KS
{
protected:
 // real time wake-up capabilities
 int scheduleWakeUp (long, char*, Bool = False);
 int scheduleWakeUps (long, char*, Bool = False);
 int cancelWakeUps (char*);

 // listening on external communication endpoints
 int startListen (int);
 int stopListen (int);

 // notify process shutdown
 int notifyShutdown ();

 // protected constructor (abstract class)
 KS ();

public:
 // call-backs for wake-ups, external events, process shutdown
 virtual int wakeUp (char*);
 virtual int readCommEndpoint (int);
 virtual int shutdown (int);

 // destructor
 virtual ~KS ();
};

11111111

Real-time wake-up requests

int scheduleWakeUp (long period, char* token, Bool onlyForNotification);

int scheduleWakeUps (long period, char* token, Bool onlyForNotification);

int cancelWakeUps (char* token);

The first two methods request the initiation of real-time wake-up(s) while the third requests their cancellation.

 The scheduleWakeUps method schedules wake-ups to take place every period seconds. The token argument should
be a unique character string that distinguishes this series of wake-ups from any others possibly requested by the same
knowledge source. The token does not need to have allocated memory as the kernel infrastructure makes a copy e.g.
a constant string such as “<token>” will be adequate. NULLCP may be supplied if this distinction is not needed or if
only one series of wake-ups is scheduled by that knowledge source.

The onlyForNotification parameter supports an optimisation relevant only to applications in OSI agent roles, and as
such it is optional with default value False. If it is True, the knowledge source will be awaken only if event forward-
ing discriminators or log support managed objects are present in the system. This is useful when the wake-ups are
only used to support notifications via real resource polling. The default case (parameter not supplied) is to request
wake-ups independently of the notification function. OK is returned upon success, NOTOK if the scheduling period
is invalid i.e. less than or equal to zero.

The scheduleWakeUp method is exactly the same as above with the difference that only one wake-up is scheduled.

The cancelWakeUps method will cancel either multiple or single wake-ups identified by token. Note that if token is
NULLCP only wake-ups with exactly that token will be cancelled i.e. NULLCP does NOT mean “cancel all the
pending wake-ups for that knowledge source”. OK is returned upon success, NOTOK if the cancel operation failed
i.e. there was no scheduled wake-up with this token.

External listening and termination notification requests

int startListen (int fd);

int stopListen (int fd);

startListen enables to register an external point of communication (typically a Unix file descriptor) on which to start
listening for information. OK is returned upon success, NOTOK otherwise (if fd < 0 or already registered).

stopListen enables to de-register an external point of communication so that no more listening on that endpoint takes
place. OK is returned upon success, NOTOK if the operation failed i.e. there was no such endpoint registered.

int notifyShutdown ();

This method provides the capability to request to be notified at process shutdown time.

12121212

Polymorphic callback events

The following methods are callbacks for wake-ups, external communication events and process shutdown as results
of the above requests. They should be supplied in derived classes according to the use of the above request methods.

virtual int wakeUp (char* token);

This is called as a result of the scheduleWakeUp(s) methods. The token is the one supplied in the scheduling call.
The method should return OK when redefined by a user in a derived class. NOTOK is returned at the KS level i.e.
when a wake-up is requested and the method has not been redefined (development time bug).

virtual int readCommEndpoint (int fd);

This is called every time there is data at the external communication endpoint identified by fd. The latter serves to dis-
tinguish the endpoint in hand from other endpoints used by the same knowledge source. The method returns OK or
NOTOK in the same fashion as wakeUp above.

virtual int shutdown (int fd);

This method is called at process shutdown time as a result of both the startListen and notifyShutdown methods. In the
former case, it is called once for every external communication endpoint identified by fd this application is still listen-
ing to so that the latter is closed-down gracefully - note that there is no need for a stopListen call in this case.

In the latter case the method is called with fd = -1 as an indication of process termination so that the knowledge
source can do any other necessary cleaning up. If both cases hold i.e. both endpoints open and a notifyShutdown
request, the call with fd = -1 is the last one after the calls for all the endpoints.

The method returns OK or NOTOK in the same fashion as wakeUp above.

13131313

Class Coordinator

Inherits from: None

Classes used: KS, List

Interface file: Coordinator.h

Implementation file: Coordinator.cc

Containing library: kernel

Introduction
An instance of this class coordinates activity in distributed applications, acting as a central point for communication
through all the external endpoints and for all the scheduled alarms in real-time. Only one instance of this or any
derived classes should be present in an application that is realised as a single operating system process.

In UNIX systems it uses the select(2) facility, enhanced in ISODE as xselect to be portable across UNIX platforms. A
fully event-driven scheme is exercised with respect to all external communications and scheduled real-time alarms v
through a first-come-first-served policy.

This class is written in such a way to allow integration through inheritance with other packages that have their own
coordinating mechanisms. This is necessary for distributed applications with graphical user interfaces that receive
asynchronous events from both the keyboard and the network. It may be also necessary in order to integrate OSIMIS
with other distributed systems platforms. There exist already extensions of this class to work with X-Windows and
the ISODE platform (XCoordinator and ISODECoordinator respectively).

It should be noted that the existence of a coordinator instance is totally transparent to application implementors who
can access its services through KS-derived classes. It is only visible at initialisation time as explained below.

Methods

class Coordinator
{
 // ...

public:
 // central listening loop

 void listen ();

 // interface to other coordinating mechanisms

 static void setTerminateSignalHandler ();
 static void setAlarmSignalHandler ();

 // ...
};

14141414

Central listening

void listen ();

This method realises the central listening loop of an application implemented as one operating system process. It is
the last method call that is part of the main() program and it should be called after all the necessary application initial-
isation has finished. It never returns but the process will terminate upon the receipt of a termination signal. The coor-
dinator will then call the shutdown method of knowledge sources as explained in the KS class specification.

It is noted that this method should only be called if the central listening loop is under the full application’s control.
This is the case for applications that are not graphical user interfaces. The latter use the XCoordinator class, see the
relevant specification.

Interface to other coordinating mechanisms

static void setTerminateSignalHandler ();
static void setAlarmSignalHandler ();
These can be used to define who handles the termination and alarm signals in the case of integration with another
coordination mechanism e.g. that of X-Windows. They are only meaningful if the listen method above is not called
but listening is under the full control of the other mechanism. The former method should be always called in that case
while the latter may or may not be called.

If setAlarmSignalHandler is not called, alarms will be handled by the other mechanism. This provides the capability
to use both the KS API and that of the other mechanism to deal with real-time alarms. If it is called, the latter is not
possible as alarms will be handled by OSIMIS but a marginally better performance should be expected.

In general, setAlarmSignalHandler should not be called only if OSIMIS code is integrated with that of a user inter-
face which has already been using the GUI’s alarm API. In all other cases, it should be better called so that alarm sig-
nals are handled by OSIMIS.

15151515

Class ISODECoordinator

Inherits from: Coordinator

Classes used: None

Interface file: IsodeCoord.h

Implementation file: IsodeCoord.cc

Containing library: kernel

Introduction
The ISODECoordinator class is a special coordinator for ISODE applications that wish to receive ACSE association
requests. Such processes are all management agents, all hybrid applications (both agents and managers) and those
managers that may receive management association requests for event reporting.

The reason a special coordinator is needed is that ISODE uses a special mechanism to initialise a process listening for
associations (iserver_init) and to listen for incoming association requests or data on existing associations
(iserver_wait) - see ISODE User Manual Volume 1 Chapter 2 “Association Control”. These hide the PSAP descriptor
so that explicit use of the UNIX select(2) or any other similar facility is not possible. All this class does is to simply
redefine the polymorphic readCommEndpoints method to use iserver_wait instead of (x)select.

It should be noted that in this case OSIMIS has still control of the coordination mechanism and the listening proce-
dure should be initialised through the Coordinator::listen method. Since X-Windows based GUIs need their own
XCoordinator class, it is not possible to have GUI applications that wish to receive association requests realised as
one operating system process (e.g. TMN OSs). This is not a problem if TCL/TK is used as the GUI building mecha-
nism as it encourages a two-process model, with the GUI handler in TCL/TK and the application engine in C/C++
(???).

16161616

Class XCoordinator

Inherits from: Coordinator

Classes used: None

Interface file: XCoord.h

Implementation file: XCoord.cc

Containing library: kernel

Introduction
The XCoordinator class is a special coordinator for OSIMIS applications that wish to use X-Windows based graphi-
cal user interfaces, usually applications in manager roles only. It essentially integrates the OSIMIS coordinating
mechanism with that of X-Windows.

Note that it is not possible for such applications to receive association requests e.g. in cases where an agent tries to
establish one in order to send an event report (see also the IsodeCoordinator class). They may request and receive
event reports though through an existing association they have established to an agent.

An application using the XCoordinator class should not call the Coordinator::listen method. It should call the setTer-
minateSignalHandler while it may also call the setAlarmSignalHandler (see the Coordinator class specification).
You may inspect a trivial example of using the OSIMIS coordination mechanism together with X-Windows in
$(TOP)/kernel/example/XExample.cc

17171717

HIGH-LEVEL ABSTRACT SYNTAX SUPPORT CLASSES

18181818

Class Attr

Inherits from: None

Classes used: None

Interface file: GenericAttr.h

Implementation file: GenericAttr.cc

Containing library: kernel

Introduction
The Attr class represents an abstract syntax type, encapsulating both data and manipulation behaviour (encoding,
decoding etc.) The ASN.1 abstract syntax language that is used by all OSI applications has been the basis for this
abstraction. The latter is nevertheless general enough to cope with other abstract syntax frameworks. In OSIMIS, the
Attr class is used to model management attributes, actions and notifications. It should be noted that the name Attr
denotes any instance of an abstract syntax, as e.g. in attribute value assertion, and not a management attribute.

Attr contains the actual attribute value as a C data structure corresponding to the ASN.1 type. The value is held as a C
structure because the pepsy ASN.1 compiler does not support C++: the Attr class provides essentially the C++ wrap-
per. It may also contain an ASN.1 presentation element corresponding to that value if the latter has been encoded in
order to optimise ASN.1 processing i.e. avoid encoding a value every time it is requested through the management
interface.

This class defines a set of virtual methods which may be redefined in derived classes. Such classes for the generic
management attribute types i.e. counter, gauge, counter-threshold, gauge-threshold and tide-mark, commonly used
data types e.g. strings, integer, real, time etc. and common DMI types e.g. administrative and operational state,
attribute value change etc. are provided by OSIMIS. It is almost certain though that applications introducing new
managed objects will need additional types. The documentation of this class together with the general guidelines in
the section describing the specific OSIMIS realised provide the framework for introducing these.

Methods

class Attr
{
 // ...

public:

 // general syntax manipulation methods

 virtual char* getSyntax ();
 Bool isMultiValued ();

 PE encode ();
 char* print ();
 void ffree ();
 void* copy ();
 int compare (void*);
 void* find (void*); // only for multi-valued syntaxes

19191919

 PE encode (void*);
 void* decode (PE); // no corresponding method above
 char* print (void*);
 void ffree (void*);
 void* copy (void*);
 int compare (void*, void*);
 void* find (void*, void*); // only for multi-valued syntaxes

 void* getElem (void*); // ..
 void* getNext (void*); // ..

 // methods to access and modify the contained attribute value

 void* getval ();
 void setval (void*);
 void replval (void*);
 int setstr (char*);

 // methods that may be redefined in derived classes to associate behaviour

 virtual void* get ();
 virtual int set (void*);
 virtual int setDefault (void*);
 virtual int add (void*); // only for multi-valued syntaxes
 virtual int remove (void*); // ..

 // destruction

 void clear ();
 virtual ~Attr ();

 // ...
};

#define NULLATTR ((Attr*) 0)

Syntax manipulation methods

The following set of methods fall into four categories:

• methods that check the syntax type

• methods that manipulate the encapsulated value

• methods that manipulate an externally supplied value or values (similar to the ones of the first category)

• methods that allow one to walk through the values of a multi-valued syntax

All these methods, apart from the first one below (getSyntax), use protected polymorphic syntax manipulation meth-
ods (_encode, _decode, etc.) for the syntax in hand. The latter are produced automatically by the object-oriented
ASN.1 compiler - see section ?.

20202020

virtual char* getSyntax ();

Bool isMultiValued ();

getSyntax is automatically produced in derived classe by the object-oriented ASN.1 compiler and returns the syntax
type exactly as registered in oidtable.at .

isMultiValued returns True if the syntax is multi-valued (ASN.1 SET OF or SEQUENCE OF), False otherwise.

PE encode ();

char* print ();

void ffree ();

void* copy ();

int compare (void* val);

void* find (void* val);

encode encodes the contained value. The presentation element returned is not a copy and should not be free’d.

print pretty-prints the contained value. The returned string has allocated memory and should eventually be free’d.

ffree frees the contained value. It is called ffree as free is a C/C++ reserved word.

copy returns a copy of the contained value. The returned value should eventually be free’d, using possibly the
ffree(void*) method.

compare compares its argument to the contained value (see _compare for the returned values).

find finds if its argument is an element of the encapsulated multi-valued syntax. Only the first element of the argu-
ment is examined. Note that the argument should be a pointer to the outermost structure e.g. IntegerListVal* instead
of the contained int*. NULLVD is returned is such an element is not found.

void* decode (PE pe);

PE encode (void* val)

char* print (void* val);

void ffree (void* val);

void* copy (void* val);

int compare (void* val1, void* val2);

void* find (void* val1, void* val);

These are exactly the same as the ones in the group above but they operate on the argument(s) instead of the con-
tained value. They are very useful in treating an instance of this class as a syntax engine. Note that decode has not
counterpart in the group above while find checks if val1 is a part of val.

void* getElem (void* val);

void* getNext (void* val);

These two together may be used to walk through the elements of a multi-valued syntax. If the value of getNext is
NULLVD, the first element i.e. the encapsulated value is returned. An example of their use:

21212121

 IntegerList intList;
 // ...
 void* cur = NULLVD; // signif ies the beginning

 while (cur = intList.getNext(cur)) {
 int* elem = (int*) intList.getElem(cur);
 printf(“int elem is %d\n”, *elem);
 }

Attribute value access and manipulation

void* getval ();

It returns the contained (pointer to the) C language datastructure corresponding to the ASN.1 type. The returned value
is not a copy and should NOT be free’d.

void setval (void* newValue);

It sets the contained value to the supplied one via the argument. Memory for the data type supplied should have been
previously allocated. Memory for the previous value (if any) is released.

void replval (void* newValue);

It sets replaces the contained value with the supplied one via the argument. By replace is meant that memory for the
previous value is NOT released. This is useful when the memory of the data type stored is to be re-used: in that case,
the value should be acquired via getval, altered and replaced. This is particularly useful for complex or multi-valued
types where only a particular element needs to be modified.

int setstr (char* strValue);

It sets the contained value to the equivalent structure to strValue which is its pretty-printed representation e.g. set-
str(“5”) for an Integer type. The _parse(char*)method is used for the parsing. The contained value is always free’d.
NOTOK is returned upon failure to parse the supplied argument.

Polymorphic attribute value access and manipulation

The following set of methods allow to access and manipulate the contained attribute value and may be redefined to
perform additional checks, associate behaviour etc. If the method is redefined to perform additional checks e.g. for
the range of values, add and remove do not need to be redefined for the same purpose as they use set at the Attr level.

The setDefault method simply uses set at the Attr level and needs to be redefined only if special behaviour should be
associated to the set-to-default operation e.g. for a CounterThreshold or TideMark the value of the associated Coun-
ter or Gauge is respectively needed.

Another reason for redefining the get, set, add and remove methods is in order to possibly associate real resource
behaviour for applications in agent roles. Associating an attribute to a real resource should only be done when the lat-
ter is “tightly-coupled” to the agent i.e. shares a common address space. When the real-resource is loosely coupled,
this knowledge should be preferably put in the managed object in order to optimise access to the real resource by
grouping requests for more than one attribute (see section ?.?).

22222222

virtual void* get ();

It returns the contained (pointer to the) C data type In the case of a tightly-coupled real resource it may be redefined
to actually fetch that value. If not, it is equivalent to getval.

virtual int set (void* newValue);

It sets the contained value to the supplied one. It may be redefined to perform additional checks on the value range or
to actually set the value in the case of a tightly-coupled real resource. When not redefined, it is equivalent to setval.
It returns OK upon success and NOTOK upon failure (invalid value), the latter only if it has been redefined.

virtual int add (void* addValue);

It may be redefined to associate the attribute to a real resource. It may return NOTOK if the supplied value is invalid.

virtual int remove (void* addValue);

It may be redefined to associate the attribute to a real resource. It may return NOTOK if the supplied value is invalid.

virtual int setDefault (void*);

This method simply uses set to set the attribute to the supplied default value. It is mentioned here that the managed
object class knows the default value for every settable attribute and this is supplied through this method. There is no
point redefining it to associate the attribute to a real resource and this could be done for the set method and serve this
one as well. The only reason for redefining it is when an additional value is needed from somewhere else to deduce
the default value e.g. for a counter threshold the value of the associated counter is needed etc.

23232323

Class AnyType

Inherits from: Attr

Classes used: None

Classes related: other Attr-derived types, AVA

Interface file: AnyType.h

Implementation file: AnyType.cc

Containing library: kernel

Introduction
OSIMIS uses syntax tables to provide high-level abstract syntax support facilities. These are the oidtable.gen for gen-
eral object identifiers and the oidtable.at for identifiers with associated syntax e.g. management attributes, actions and
notifications. Specific abstract syntaxes can be implemented by the AnyType class through a table look-up every time
a new type is instantiated. This should be avoided by agents but could be used by managers or hybrid units where
memory and processing requirements are less critical.

The Attr class is designed so that the use of tables can be avoided by explicitly redefining the virtual syntax manipu-
lation methods. The AnyType class is an extension of Attr which provides those methods through the tables. Though
this class can be used as a base class for specific attribute types with the gain of avoiding to redefine those methods,
this is discouraged as it will result in making agents bound to the use of tables. Nevertheless, this class is very useful
for high-level manager access APIs such as the RMIB.

Methods

class AnyType
{
 // ...

public:
 // constructors

 AnyType (char*, void*);
 AnyType (char*, char*);
 AnyType (OID, PE);

 static Bool createError ();

 // ...
};

24242424

Constructors

AnyType (char* sntx, void* val);

The sntx argument can be either the name of the associated identifier as in the first column of oidtable.at e.g. logId,
pdusSentThld, or the actual syntax name as in the third column of that table e.g. Integer, CounterThreshold. The
former is checked first and as such it should be preferred in terms of performance. Note that the resulting object does
not keep the associated object identifier or name but it does point to the syntax name in oidtable.at.

The val argument should be the value as a (pointer to a) C structure corresponding to the ASN.1 syntax as produced
by the pepsy ASN.1 compiler or as hand-crafted. Space for that structure should have been allocated before hand. A
simple example:

int* i = new int; *i = 10;
AnyType intType(“Integer”, i);
char* cp; printf(“%s\n”, cp = intType.print()); free(cp);

AnyType (char* sntx, char* val);

This is the same as above but the value is passed as a string argument. In this case memory does not need to be allo-
cated as an internal representation (C structure) is built. The string value should be exactly according to the printing
convention for the type, else construction will fail. The same example as above would be:

AnyType intType(“Integer”, “10”);

AnyType (OID sntx, PE val);

This is a special constructor for values coming encoded from the network. sntx is the object identifier of an entity
with that syntax and val is the associated value encoded as a presentation element. Note that the value is decoded at
construction and, as such, the val memory is not utilised i.e. can be free’d after the construction - the same applies to
sntx (the pe_free and oid_free ISODE routines may be used).

static Bool createError ();

When constructing an instance, an error may occur if the syntax and value arguments are not in accordance. This
static method provides a means to check for such an error by returning a boolean value denoting if an error took place
or not during the last construction. If it returns True, the resulting object should be deleted. Note that this should only
be a development or testing time error.

25252525

Class AVA

Inherits from: None

Classes used: Attr and derived classes

Interface file: AVA.h

Implementation file: AVA.cc

Containing library: kernel

Introduction
The AVA (Attribute Value Assertion) class provides an attribute type and value pair, together possibly with a CMIS
modify operator and an error. A AVA instance with the first three may be used as argument to CMIS operations in
high-level manager access APIs while the fourth may be used in get and set results to denote partial errors. A AVA
instance with a CMIS error, a type and possibly a value may be used as the parameter carried in CMIS processing
failure errors. The AVA class uses oidtables to map types to values.

In short, all possible uses of the AVA information in high level APIs are:

type - get attribute
type, value - action argument/result, event information,
 attr get/set/create result,
 initial create attribute value
type, value, modify - set attribute value

error, type - partial get error
error, type, value, modify - partial set error

error - error code only
m_processingFailure, type, value - error parameter with specific error/info

Methods

class AVA
{
 // ...

public:
 // general access methods

 char* getName ();
 OID getOid ();
 Attr* getValue ();
 CMISErrors getError ();
 char* getErrorStr ();
 CMISModifyOp getModifyOp ();
 char* print ();
 void clear ();
 int adjustActionOid ();

26262626

 // constructors

 AVA (char*, char*, CMISModifyOp = m_noModifyOp);
 AVA (char*, void*, CMISModifyOp = m_noModifyOp);
 AVA (char*, Attr*, CMISModifyOp = m_noModifyOp);

 AVA (CMISErrors, char*, Attr* = NULLATTR);
 AVA (CMISErrors, OID, Attr* = NULLATTR);
 AVA (CMISErrors);

 static Bool createError ();

 // ...
};

#define NULLAVA ((AVA*) 0)
#define DISCARDAVA ((AVA*) -1)

General access methods

char* getName ();

Returns the name of the associated type as registered in the first column of oidtable.at. The returned value points to
storage used for that table and, as such, it should NOT be free’d.

OID getOid ();

Returns the object identifier of the associated type. The returned value is not a copy and should NOT be free’d.

Attr* getValue ();

Returns the value of the associated type (if any). The returned value is not a copy and should NOT be free’d.

CMISErrors getError ();

Returns the CMIS error associated with that AVA. If there is no error, m_noError is returned. CMISErrors is defined
in mparm.h (MSAP API).

char* getErrorStr ();

Returns the above CMIS error in string form. If there is no error, “noError” is returned. The returned value points to
static storage and should NOT be free’d.

CMISModifyOp getModifyOp ();

Returns the CMIS modify operator associated with that AVA. If there is no associated modify operator,
m_noModifyOp is returned. CMISModifyOp is defined in mparm.h (MSAP API).

27272727

char* print ();

It returns a string value with structure:

“[error: <error>] [<type>: [<value>]] [<modify>]”
The square brackets denote optionality. The returned string has allocated memory and should be free’d.

void clear ();

It deletes all the contained elements. It may be called explicitly but is also called from the destructor.

int adjustActionOid ();

This should be used only after creating an action argument through the “Info” type extension and a string form for the
value [AVA(char*, char*) constructor]. Its effect is to convert back the action type to the original i.e. without the
“Info” extension. The reason for that extension is that a type can have only one associated syntax in oidtable.at while
actions may have both an information and a reply syntax (see section ?.? for more information).

The use of that constructor for action arguments subsequently necessitates the use of this method and as such is dis-
couraged. Examples of alternative solutions (the above solution shown last) are:

actionArg = new AVA(“calcSqrt”, new Real(4));
actionArg = new AVA(“calcSqrt”, new AnyType(“calcSqrtInfo”, “4”);

actionArg = new AVA(“calcSqrtInfo”, “4”); // should be better avoided
actionArg -> adjustActionOid();

Constructors

AVA (char* sntx, char* val, CMISModifyOp modify);

AVA (char* sntx, void* val, CMISModifyOp modify);

AVA (char* sntx, Attr* val, CMISModifyOp modify);

AVA (OID sntx, Attr* val, CMISModifyOp modify);

The first three provide different ways to initialise the value while the fourth provides a different way to initialise the
type. The fourth argument (modify) is optional in all of them and should be used when setting attributes.

The three different ways of setting the value are char*, void* and Attr* with allocated space expected for the last two.
In the first two the validity of the type/value matching is checked while in the third (Attr*) it is NOT, so be careful.

In the last one the type is set through an object identifier which must have allocated space. You may use the oid_cpy
ISODE routine to copy an existing one. The advantage of the last constructor is that it does not incur a table search.

AVA (CMISErrors err, char* sntx, Attr* val);

AVA (CMISErrors err, OID sntx, Attr* val);

AVA (CMISErrors err);

Similar to the above but with emphasis on the error. They may be used in high-level agent APIs. No checking is done
for the validity of the type/value matching, so be careful. Allocated memory is expected for the OID and Attr* argu-
ments, see above.

static Bool createError ();

Exactly as the same method of the AnyType class, it provides a means for checking construction time errors. It is
meaningful only after the (char*, char*) and (char*, void*) constructors - see above.

28282828

Class AVAArray

Inherits from: Array

Classes used: AVA

Interface file: AVA.h

Implementation file: inline

Introduction
The AVAArray class implements a specialised array of AVA instances. There is nothing special about it but it is men-
tioned here because it is used in high-level manager access APIs. Its inline implementation shown below may serve
as a simple example of a specialised array.

Methods

class AVAArray
{
protected:
 void deleteElem (void*);

public:
 AVAArray (int);
};

#define NULLAVAARRAY ((AVAArray*) 0)

inline void AVAArray::deleteElem (void* e)
{ delete (AVA*) v; }

inline AVAArray::AVAArray (int n) : Array (n, True)
{ }

29292929

GENERIC MANAGED SYSTEM CLASSES

30303030

Class MOClassInfo

Inherits from: None

Classes used: NameBinding, Attr and derived classes

Interface file: MOClassInfo.h

Implementation file: MOClassInfo.cc

Containing library: gms

Introduction
The MOClassInfo class is a meta-class describing a managed object class. It is similar to the notion of the Smalltalk/
ObjectiveC class object and there is always one instance of it for every managed object class. It contains common
information to all the instances of the class, such as attribute, group, event and action identifiers, name bindings etc.
Instances of this class are linked hierarchically in a tree mirroring the GDMO inheritance hierarchy.

Such meta-class information is vital for applications in agent roles and may also be used by applications in manager
roles. In OSIMIS, it is only used by applications in agent roles. The code that initialises the meta-class objects is pro-
duced by the GDMO compiler as a static method of every managed object class (initialiseClass). Ideally, a database
representation should be produced (e.g. a flat-file) so that the same information could be parsed and stored internally
by applications in manager roles.

Most of the methods of this class are only used by the GMS to access information that is needed to verify requested
name bindings at creation and related behaviour at deletion, the existence and validity of attributes and values
accessed in get, set and create operations and the existence and validity of actions and their arguments. The only
methods that may be of interest to agent application implementors are those that provide access to the template
objects for the action information and reply (see also the MO::action method). ThegetParent method allows one to
ascend an inheritance branch while thegetFirst method provides access to the first instance of that class, from which
subsequent instances may be accessed. A number of other methods provide access to class information but are not
described here - the declaration header file may be consulted if needed.

Methods

class MOClassInfo
{
 // ...

public:
 Attr* getActionInfoTemplate (int);
 Attr* getActionReplyTemplate (int);

 MOClassInfo* getParent ();
 MO* getFirst (); // deprecated

 // ...
};

31313131

Action template access methods

Attr* getActionInfoTemplate (actionId);

Attr* getActionReplyTemplate (actionId);

Action argument and reply information is passed to the polymorphic MO::action method interface as C data struc-
tures produced by the pepsy ASN.1 compiler (void*). The specific Attr-derived classes produced by the O-O ASN.1
compiler that encapsulates pepsy that correspond to those types are stored in the class object. The user code of a spe-
cific action method may resort to these in order to manipulate the action parameter and reply information e.g. to print,
parse, free those values - see the Attr class specification.

The parameter to both methods is the actionId (an integer tag), as produced by the GDMO compiler for a specific
managed object class e.g. I_calcSqrt for the calcSqrt action of the simpleStats class. The Attr value returned may be
used as a syntax engine and should NOT be free’d.

Accessing the class hierarchy

MOClassInfo* getParent ();

Every specific MO class produced by the GDMO compiler contains a static instance of MOClassInfo which is shared
by all the instances of that class. The convention is that this meta-class instance can be accessed by a private instance
variable named _classInfo or by a public method getClassInfo(). All the meta-class instances are linked in a tree mir-
roring the inheritance hierarchy and the getParent method allows one to ascend this hierarchy. For example, event-
ForwardingDiscriminator::getClassInfo->getParent() will yield the meta-class object for discriminator.

Walking through all the instances of a class

MO* getFirst ();

This method was initially provided as a convenience to be able to access all the instances of a particular class by hav-
ing access to the meta-class object. It is obviously meaningful only in agent applications. Though it is still available,
it is DEPRECATED which means that it may NOT be provided in future major versions. The reason for that is that it
provides access to all instances of a particular actual class, independently of their position in the Management Infor-
mation Tree (MIT). It even provides access to instances in different MITs if there are many logical agent applications
present in the same physical block (e.g. TMN OSFs in an OS) and this is illegal and dangerous. The MO class pro-
vides a comprehensive set of other methods that allow one to search the MIT and can serve the same purpose. Please
change your software and avoid using this method for future compatibility.

It is worth mentioning its use: it provides access to the first instance of a particular actual class where first refers to
creation in time. The MO::getClassNext() method may then be used to walk through all the instances of that class -
this will be also eventually eclipsed. Note that e.g. eventForwardingDiscriminator::getClassInfo()->getFirst() will
give a handle to all eventForwardingDiscriminators but NOT to any instances of derived classes. It is only the
ACTUAL class instances that are linked together.

32323232

Class MOClassArray

Inherits from: Array

Classes used: MOClassInfo

Interface file: Create.h (will be moved eventually to MOClassInfo.h)

Implementation file: inline implementation

Containing library: inline implementation

Introduction
The MOClassArray class is a container class containing all the meta-class objects in a particular application. There is
always exactly one instance of this class in every (agent) application. It provides search facilities to enable access to a
particular meta-class object. The MOClassInfo::getParent method may be subsequently used to traverse (ascend) an
inheritance branch.

Methods

class MOClassArray : public Array
{
 // ...

public:
 static MOClassArray* getInstance();

 MOClassInfo* findClass (char*);
 MOClassInfo* findClass (OID);

 // ...
};

Instance access

MOClassArray* getInstance ();

As there is always one instance of this class in a particular application, this static method provides access to its single
instance e.g. MOClassArray::getInstance() .

Searching for a particular meta-class

MOClassInfo* findClass (char* className);
MOClassInfo* findClass (OID classOid);
The above methods return the desired meta-class object. The first takes as parameter the class name while the second
uses the Object Identifier as it registers this class in the GDMO module. User code should need only the former.

33333333

Class MO

Inherits from: None

Classes used: MOClassInfo, Attr

Interface file: GenericMO.h

Implementation file: GenericMO.cc

Containing library: gms

Introduction
MO is the abstract superclass of all managed object classes. It contains information related to the position of a man-
aged object instance in the containment tree and handles to all the meta-class objects for that instance. It provides a
set of polymorphic methods that may be re-defined in derived classes to achieve the desired functionality. MO is the
parent of Top which is subsequently the parent of specific derived classes produced by the GDMO compiler. Those
contain standard template generic code and may be augmented with code implementing the polymorphic methods
mentioned above. Special methods produced by the GDMO compiler for derived classes are mentioned last.

The documentation of this class is not yet complete in terms of the details associated with every method call. It will
be completed in the next version of this manual.

Methods
class MO
{
 // ...

 // polymorphic methods (to be possibly provided in derived classes)
public:
 /* static RDN makeRdn (MO*); // produced for derived classes */
 virtual int createRR (AVA*&, void* = NULLVD, int = -1);
 virtual int deleteRR (AVA*&, void* = NULLVD, Bool = False, int = -1);
protected:
 virtual int get (int, int, AVA*&, Bool = False, int = -1);
 virtual int set (CMISModifyOp, int, int, void*, AVA*&,
 Bool = False, int = -1);
 virtual int action (int, int, void*, void*&, Bool&, AVA*&,
 Bool = False, int = -1);
 virtual int buildReport (int, int, void*&, Bool&);
 virtual int refreshSubordinates (AVA*&, int = -1);
 virtual int refreshSubordinate (RDN, AVA*&, int = -1);

 // asynchronous callbacks (resulting from the above calls)
public:
 int createRRes (int, AVA*);
 int deleteRRes (int, AVA*);
 int getRes (int, AVA*);
 int setRes (int, AVA*);
 int actionRes (int, void*, Bool, Bool, AVA*);
 int refreshSubordinatesRes (int, AVA*);

34343434

 // General MIT access methods
public:
 static int initialiseMIB (char*);
 static MO* getRoot ();
 static DN mn2localdn (MN);
 static DN getAgentNameDomainDN ();

 void deleteWholeSubtree (DeletionType = dt_undefined, Bool = False);

 int update (AVA*&);
 Attr* getUpdatedAttr (OID, AVA*&); // forces a CMIS GET
 MO* getMO (DN, Bool, AVA*&);
 MO* getMO (char*, Bool, AVA*&);
 MO* getSubordinate (RDN, Bool, AVA*&);
 MO* getSubordinate (char*, Bool, AVA*&);
 MO** getSubordinates (Bool, AVA*&);
 MO** getWholeSubtree (Bool, AVA*&, Bool = False);

 MO* getSubordinate (); // first subordinate in binary MIT
 MO* getSuperior ();
 MO* getPeer ();

 MOClassInfo* getClassInfo ();
 MO* getClassNext (); // deprecated

 OID getClass ();
 char* getClassName ();
 int checkClass (char*, Bool* = NULL);
 int checkClass (OID, Bool* = NULL);
 RDN getRDN ();
 char* getRDNString ();
 DN getDN (Bool = False);
 char* getDNString (Bool = False);

 // ...
};

35353535

Polymorphic methods and related asynchronous callbacks

These methods may be all redefined in specific derived class to implement the associated behaviour. The makeRdn
method is actually produced by the GDMO compiler for classes with the “automatic-instance-naming” property, so it
is not as such a polymorphic method and is presented in a commented-out fashion in this class.

The polymorphic methods and properties are related to CMIS operations, namely Get, Set, Action, Create and Delete.
The buildReport method is only a remnant of the past, the triggerEvent method of the Top class could be enhanced to
support the information passing needed (see Top class). The refreshSubordinate(s) methods relate to object address-
ing and scoping when a “fetch-upon-request” policy is exercised between managed objects and associated resources.

The philosophy behind the API of the createRR, deleteRR, get, set and action methods is that a class can be aug-
mented with behaviour in such a way to make possible the total re-usability of that class by future derived classes. As
such, each of those calls should be passed from the leaf to the parent of the inheritance branch in any implementation.
In the case of createRR, though the calls should have the same “upwards” direction, the actual behavioural code in
those calls should operate in a “downwards” fashion, as during the construction of objects in typical object-oriented
languages. This is possible by organising the contents of createRR suitably.

In the case of get and set, each attribute is requested / set separately and a “no-more-attributes” indication is passed at
the end. If all the attributes are requested , only one “get-all” call is passed to the object. In the case of the get method,
the behavioural code has to update the requested attributes (or all of them according to the update policy). If a peri-
odic “cache-ahead” policy is exercised, then the get method does not need to be redefined at all. In the set method, the
newAttrValue argument should be used only for any real-resource specific interaction: it is the GMS that updates the
attribute with the new value. If there is no such interaction, the set method does not need to be redefined.

In the case of get, set, action and deleteRR, the remote managing system may have requested the atomicity of opera-
tions, in which case the calls take place twice: first with the checkOnly flag set to True and then without it. In the first
pass, the specific class code should check if the requested operation can be performed. If at least one of the involved
objects can not perform it, the whole series of operations is aborted. A “no-more” call then follows.

As OSIMIS is designed to operate over a single-threaded paradigm, those operations may happen asynchronously if
they involve access to a remote entity. In this case, the methods should return a suitable value that signifies they will
perform the operation or check asynchronously. They should then get hold of the operId argument which will serve
as the “voucher” for the asynchronous result later. In the case of an action, a series of asynchronous results is possible
and as such a “more” field is present in the asynchronous call back to indicate this.

Finally all of these calls may fail for any reasons related to managed object and real resource interaction: the errorInfo
in that case should contain the error code and may possibly contain an additional type/value pair for a processing fail-
ure error.

It is noted that OSIMIS does not yet implement the full asynchronous API. An implementation of asynchronous
actions will be supported in the next version. Finally, more detailed description for all these calls will be supplied in
the next version of this manual.

36363636

// polymorphic methods and their arguments

RDN makeRdn (MO* superior) // GDMO compiler produced in derived classes

int createRR (AVA*& errorInfo, void* createInfo,
 int operId);
int deleteRR (AVA*& errorInfo, void* deleteInfo,
 Bool checkOnly, int operId);
int get (int attrId, int classLevel, AVA*& errorInfo,
 Bool checkOnly, int operId);
int set (CMISModifyOp setMode, int attrId, int classLevel,
 void* newAttrValue, AVA*& errorInfo,
 Bool checkOnly, int operId);
int action (int actionId, int classLevel,
 void* actionInfo, void*& actionReply,
 Bool& freeFlag, AVA*& errorInfo,
 Bool checkOnly, int operId);
int buildReport (int eventId, int classLevel,
 void*& eventInfo, Bool& freeFlag);
int refreshSubordinates (AVA*& errorInfo,
 int operId);
int refreshSubordinate (RDN rdn, AVA*& errorInfo,
 int operId);

// resulting asynchronous callbacks

int createRRes (int operId, AVA* errorInfo);
int deleteRRes (int operId, AVA* errorInfo);
int getRes (int operId, AVA* errorInfo);
int setRes (int operId, AVA* errorInfo);
int actionRes (int operId, void* actionReply, Bool freeFlag,
 Bool moreFlag, AVA* errorInfo);
int refreshSubordinatesRes (int operId, AVA* errorInfo);

37373737

General management information access methods

The management information tree is represented internally as a binary tree. A number of methods allow to walk
through it and access information. In may of these, one may explicitly request to refresh the MIT before returning
particular information. In that case, if the refreshing or updating involves remote communication things may go
wrong. This is the reason a errorInfo parameter may be supplied by the user of those calls to be filled-in. If the user is
not interested in this information, the DISCARDAVA value can be passed. The calls that do not involve MIT refresh-
ing cannot go wrong.

If asynchronous communications are implemented by particular object classes for MIT refreshing or updating, then a
special error will be returned which will mean “you cannot get this information in a synchronous fashion”. Since
though it is the user’s code that will invoke those calls, it should know the semantics of the involved classes (after all,
this is his/her application) and such errors should only take place during the development period.

The full set of methods that the user may use are presented below. A more detailed description on a per method basis
will be supplied in the next version of this manual.

// General MIT access methods

int initialiseMIB (char* mibInitFileName);
MO* getRoot ();
DN mn2localdn (MN mname);
DN getAgentNameDomainDN ();

void deleteWholeSubtree (DeletionType deleteType, Bool includingBase);

int update (AVA*& errorInfo);
Attr* getUpdatedAttr (OID attrOid, AVA*& errorInfo);
MO* getMO (DN dn, Bool refresh, AVA*& errorInfo);
MO* getMO (char* dnStr, Bool refresh, AVA*& errorInfo);
MO* getSubordinate (RDN rdn, Bool refresh, AVA*& errorInfo);
MO* getSubordinate (char* rdn, Bool refresh, AVA*& errorInfo);
MO** getSubordinates (Bool refresh, AVA*& errorInfo);
MO** getWholeSubtree (Bool refresh, AVA*& errorInfo, Bool includingBase);

MO* getSubordinate (); // first subordinate in binary internal MIT
MO* getSuperior ();
MO* getPeer ();

MOClassInfo* getClassInfo ();
MO* getClassNext (); // deprecated
OID getClass ();
char* getClassName ();
int checkClass (char* className, Bool* onlyActualAndAllomorphs);
int checkClass (OID className, Bool* onlyActualAndAllomorphs);
RDN getRDN ();
char* getRDNString ();
DN getDN (Bool global);
char* getDNString (Bool global);

38383838

Methods produced by the GDMO compiler in derived classes

A number of methods are produced by the GDMO compiler and may be used by application implementors. If a class
has the “create-with-automatic-instance-naming” property, a stub for the makeRdn method is produced. If an action
is present in the GDMO, the relevant stub is also produced. This is not the case regarding the set method as attributes
may be settable but without associated real-resource behaviour,. The same applies to the get method as it may only
be needed according to the update policy. Finally, the buildReport method is not produced as it is not needed for the
object, state and relationship management notifications and will be eventually eclipsed.

The static getClassInfo method provides access to the meta-class object for a particular class while a static create
method enables to create an instance. The latter will be eventually augmented with a parameter denoting the condi-
tional packages to be created as the latter are not yet properly supported.

Finally, attributes of a particular instance may be accessed through inline methods produced by the GDMO compiler
which have exactly the same name as the attribute e.g. OperationalState* operationalState() .

MOClassInfo* getClassInfo ();
MO* create (RDN rdn, MO* superior);

39393939

Class Top

Inherits from: MO

Classes used: MOClassInfo,

discriminator, eventForwardingDiscriminator, log, logRecord, eventLogRecord,

AttrValue (for notifications),

ObjectClass, ObjectClassList, ObjId, ObjIdList (attributes)

Interface file: Top.h

Implementation file: Top.cc

Containing library: gms

Introduction
The Top class implements the root of the management information inheritance tree i.e. the class from which all the
other managed object classes are derived. Its attributes describe the managed object itself for the purpose of manage-
ment access and are fundamental for allowing the discovery of the capabilities of a MIT in a generic fashion. These
attributes are the objectClass, nameBinding, packages and allomorphs.

OSIMIS supports allomorphism but packages are not yet properly supported through the GDMO compiler. The latter
recognises conditional packages but does not produce (yet) the necessary code to support their dynamic creation. An
interim approach that has been used is to make them mandatory. This may not always be easy as some times condi-
tional packages are used to configure a particular instance in conflicting ways. In such cases, non-standard mecha-
nisms should be used to control that e.g. additional “switch” attributes etc.

The reason for describing this class is twofold: first, because of its position as the root of the managed object inherit-
ance tree. Second and most important, because of the fact it offers the interface to the event notification management
function (event reporting and log control).

Methods
class Top : public MO
{
 // ...

protected:
 int addAllomorphicClass (OID);

public:
 Bool hasPackage (char*);
 Bool hasPackage (int, int);

 // interface to the general notification function

 int triggerEvent (char*);
 int triggerEvent (int, int);

 static int relayEventReport (OID, MN, char*, OID, PE);

40404040

 // interface for object and state management notifications

 int triggerObjectCreation (
 int = int_SMI_SourceIndicator_resourceOperation,
 char* = NULLCP);
 int triggerObjectDeletion (
 int = int_SMI_SourceIndicator_resourceOperation,
 char* = NULLCP);

 int triggerAttributeValueChange (AttrValue*,
 int = int_SMI_SourceIndicator_resourceOperation,
 char* = NULLCP);
 int triggerAttributeValueChange (List*, // of AttrValue
 int = int_SMI_SourceIndicator_resourceOperation,
 char* = NULLCP);

 int triggerStateChange (AttrValue*,
 int = int_SMI_SourceIndicator_resourceOperation,
 char* = NULLCP);
 int triggerStateChange (List*, // of AttrValue
 int = int_SMI_SourceIndicator_resourceOperation,
 char* = NULLCP);

 // ...
};

Allomorphic behaviour

int addAllomorphicClass (OID allomorph);
As there is no GDMO construct to specify that a class is allomorphic to another class, the implementor of the former
should provide this information through this call. This method is usually called in the polymorphic MO::createRR()
method for a particular class. OSIMIS accepts only parent classes of a class to be specified as allomorphs. The argu-
ment is the Object Identifier of tha allomorphic class as registered in the GDMO module. A typical way of invoking
this method is e.g. in the uxObj2::createRR method through addAllomorphicClass(name2oid(“uxObj1”));

OK is returned upon success while NOTOK is returned upon failure e.g. invalid allomorph (not parent).

Package information

Bool hasPackage (char* packageName);
Bool hasPackage (int packageId, int classLevel)
These two methods enable to interogate a MO instance about the existence of a particular conditional package. The
first accepts the package name while the second accepts the packageId label produced by the GDMO compiler for
every conditional package and the class level as in many other MO class methods. Note that these are not yet imple-
mented. When implemented, they may be used by behavioural code to tailor an instance’s behaviour according to the
presence of conditional packages (if any).

41414141

General notification interface

int triggerEvent (char* eventName);
int triggerEvent (int eventId, int classLevel);
These methods offer an interface to trigger notifications according to the object’s specification. The latter may be con-
verted to event reports and/or specific log records according to the presence of even forwarding discriminator and log
managed objects in the local MIT. This procedure is totally transparent to managed object class implementors.

They are overloaded methods that offer the same interface through the notification name or the notification id / class
level. The second is mostly used by derived class behavioural code while the first may be used to trigger a notifica-
tion from outside a MO instance.

As a result of calling these, the polymorphic MO::buildReport method will be called which will have to be filled with
the notification information. This separation is due to historical reasons, the notification information could have sim-
ply being a void* additional parameter.

OK is returned upon success and NOTOK upon failure (invalid notification for this object).

static int relayEventReport (OID moClass, MN moName, char* eventTime,
 OID eventType, PE eventInfo);
Hybrid units which act in both agent and manager roles may receive event reports. These could be possibly for-
warded and/or logged according to the presence of event forwarding discriminators and/or logs in the local MIT. This
is possible through this static method as the event report is not emitted by any of the local objects. The arguments are
the class, instance, event time, event type and event information as received from the other agent via CMIS. The
parameters are as in the OSIMIS MSAP CMIS API.

42424242

Object and state management notification interface

The objectCreation, objectDeletion, attributeValueChange, stateChange and relationshipChange notifications are
extremely important and as such are treated specially (the relationshipChange not yet). Special methods are provided
to trigger those and they all have two common arguments: the sourceIndicator and additional text. The sourceIndica-
tor indicates if it was a resourceOperation that triggered the notification (default) or a managementOperation. Any
space for the additionalText parameter is not free’d by those calls (it is the caller’s responsibility to do it, if needed).
There is a number of other common optional arguments for these notifications that are not yet supported.

int triggerObjectCreation (int sourceIndicator, char* additionalText);
int triggerObjectDeletion (int sourceIndicator, char* additionalText);
These do not take any additional arguments. The full list of instance attributes will be sent with the notification.

int triggerAttributeValueChange (int attrId, int classLevel, void* prevValue,
 int sourceIndicator, char* additionalText);
int triggerAttributeValueChange (AttrValue* attrValue,
 int sourceIndicator, char* additionalText);
int triggerAttributeValueChange (List*, // of AttrValue
 int sourceIndicator, char* additionalText);
These take information that specifies the attribute(s) that changed and possibly the previous value. The first two sup-
port one only attribute while the third passes a list of attributes that changed. The AttrValue class is very simple and
its declaration can be found in Top.h. In the first two, only the prevValue is free’d by the GMS while in the third case
the whole list should have allocated space and is free’d.

The previous value should be saved before changing it to the new one through the Attr::copy() method.

int triggerStateChange (int attrId, int classLevel, void* prevValue,
 int sourceIndicator, char* additionalText);
int triggerStateChange (AttrValue* attrValue,
 int sourceIndicator, char* additionalText);
int triggerStateChange (List*, // of AttrValue
 int sourceIndicator, char* additionalText);
These are exactly the same as the previous ones but for state changes.

43434343

REMOTE MIB ACCESS CLASSES

44444444

Class CMISObject

Inherits from: None

Classes/Types used: OID, DN, AVA, AVAArray, CMISErrors

Interface file: RMIBresult.h

Implementation file: RMIBresult.cc

Containing library: rmib

Introduction
The CMISObject class is a general purpose result containing class used in the RMIB API. It is used to hold a single
managed object result. This class has parameters which are common to all management operations (i.e. the invoke
identifier, the class name, the OID value, the instance name, the DN value, the time at which operation was per-
formed, and the error). This class also has parameters which are specific to the type of operation (i.e. attribute value
assertions in the case of a Get, Set or Create operation, and an action result in the case of an Action operation).

Methods

class CMISObject
{
 // ...

public:

 char* getClass ();
 OID getClassOid ();
 char* getInstance ();
 DN getInstanceDn ();
 char* getTime ();
 AVAArray* getAttrs ();
 AVA* getActionRes ();
 CMISErrors getError ();
 char* getErrorStr ();
 AVA* getErrorInfo ();
 int getInvoke ();
 int getOperation ();
 void print ();

 CMISObject (OID, DN, char*, AVAArray*, AVA*, CMISErrors, int = 0, int = 0);
 CMISObject (OID, DN, char*, AVAArray*, AVA*, AVA*, int = 0, int = 0);
 ~CMISObject ();
};

#define NULLCMISOBJECT ((CMISObject*) 0)

45454545

char* getClass ();

getClass returns the class name of the managed object. The returned value is in static storage and should not be freed.

OID getClassOid ();

getClassOid returns the OID of the managed object. The returned value has memory allocated and should be freed
using oid_free.

char* getInstance ();

getInstance returns the distinguished name of the managed object. The returned value is a copy obtained using dn2str
and should be freed using free.

DN getInstanceDn ();

getInstanceDn returns the DN of the managed object. The returned value has memory allocated and should be freed
using dn_free.

char* getTime ();

getTime returns the time (in the ASN.1 GeneralizedTime format for the OSIMIS agents) at which the operation was
applied to the managed object. This parameter is optional and in cases where the agent does not support time
NULLCP is expected. The returned value, if non-null, has memory allocated and should be freed using free.

AVAArray* getAttrs ();

getAttrs returns a pointer to AVAArray which contains the attribute value assertions. If not applicable, this method
returns a NULLAVAARRAY. If the returned value is non-null, the member elements should be freed using clear and
the array finally disposed using delete.

AVA* getActionRes ();

getActionRes returns a pointer to AVA which contains the action result in the type/value combination. If not valid, this
method returns a NULLAVA. If the returned value is non-null, it is a copy and should be freed using delete.

CMISErrors getError ();

getError returns the error identifier (an enumerated type) of the error occurred when the operation was applied to the
managed object. If no error, m_noError is returned.

char* getErrorStr ();

getErrorStr returns the human-readable string version of above, pointing to a static storage area and should not be
freed. If no error, “noError” is returned.

AVA* getErrorInfo ();

getErrorInfo returns a pointer to AVA which contains the error code and the error information (in some cases) using
the type/value combination. The error information is available only when the error code is either m_noSuchAttribute,
m_invalidAttributeValue, m_missingAttributeValue or m_processingFailure, otherwise the error code by itself
should be retrieved using either getError or getErrorStr described above. If the returned value is non-null, it is a copy

46464646

and should be freed using delete.

int getInvoke ();

getInvoke returns the invoke identifier used in the operation.

int getOperation ();

getOperation returns one of M_GET, M_SET, M_ACTION, M_CREATE or M_DELETE indicating the type of
operation. If not available, 0 (zero) is returned.

void print ();

print can be used to pretty print the managed object’s information to the standard output.

Constructors

CMISObject (OID oid, DN dn, char* time, AVAArray* attrs, AVA* actionRes,

CMISErrors error, int id = 0, int op = 0);

CMISObject (OID oid, DN dn, char* time, AVAArray* attrs, AVA* actionRes,

AVA* error, int id = 0, int op = 0);

47474747

Class CMISObjectList

Inherits from: List

Classes/Types used: CMISObject, CMISErrors

Classes related: ListIterator

Interface file: RMIBresult.h

Implementation file: RMIBresult.cc

Containing library: rmib

Introduction
The CMISObjectList class is derived from the generic List class. This class is designed to contain instances of CMI-
SObject and used in the RMIB API. Typically, this class is used with the Get, Set, Action, and Delete operations
where the result can consist of a number of managed objects. As such, CMISObjectList provides the means to hold a
number of CMISObject results collectively.

Methods

class CMISObjectList : public List
{
 // ...

public:

 CMISErrors getError ();
 char* getErrorStr ();
 CMISObject* getErrorObj ();
 int getInvoke ();
 int getOperation ();
 void print ();

 CMISObjectList (int = 0, int = 0);
 ~CMISObjectList ();
};

#define NULLCMISOBJECTLIST ((CMISObjectList*) 0)

CMISErrors getError ();

getError returns the error identifier (an enumerated type) of the first CMISObject with an error. If no error found,
m_noError is returned.

char* getErrorStr ();

getErrorStr returns the human-readable string version of above, pointing to a static storage area and should not be
freed. If no error found, “noError” is returned.

48484848

CMISObject* getErrorObj ();

getErrorObj returns the first CMISObject with an error. If none, NULLCMISOBJECT is returned. If the returned
value is non-null, it is a copy and should be freed using delete.

int getInvoke ();

getInvoke returns the invoke identifier used in the operation.

int getOperation ();

getOperation returns one of M_GET, M_SET, M_ACTION or M_DELETE indicating the type of operation. If not
available, 0 (zero) is returned.

void print ();

print can be used to pretty print the CMISObject elements to the standard output.

Constructors

CMISObjectList (int id = 0, int op = 0);

49494949

Class RMIBAgent

Inherits from: KS

Classes/Types used: OID, MN, CMISScope, CMISFilter, External, CMISSync, AVA, AVAArray,

CMISObject, CMISObjectList, RMIBManager

Interface file: RMIBAgent.h

Implementation file: RMIBAgent.cc

Containing library: rmib

Introduction
The RMIB Access API provides an object-oriented abstraction of OSI MIBs using the notion of an “association
object”. The RMIBAgent class implements the association object, providing the high-level means of association con-
trol, string-based management operation and event reporting interfaces, and the provision of interaction in the syn-
chronous RPC-like fashion and in the asynchronous fashion using callback facilities. The latter facilities require the
use of the RMIBManager class. For the full explanation of the RMIB concept please see section ?.?.

Methods

class RMIBAgent : public KS
{
 // ...

public:

 // management association

 int connect ();
 int connect (char*, char*);
 int disconnect ();
 int reset (char* = NULLCP, char* = NULLCP);
 int notifyBrokenAssociation (RMIBManager*);

 // event reporting interface

 int receiveEvent (char*, char*, char*, char*, RMIBManager*);
 int stopReceiveEvent (char*, char*, char*, char*, RMIBManager*);
 int receiveEvent (char*, RMIBManager*);
 int stopReceiveEvent (char*, RMIBManager*);
 int receiveEvent (CMISFilter*, RMIBManager*);
 int stopReceiveEvent (CMISFilter*, RMIBManager*);
 int cancelTimeAssertion (RMIBManager*);

 // for the simulated time manager

 CMISEventReportArg* getCMISEventReportArg ();

50505050

 // low-level management opreations interface

 int CmisGet (OID, MN, CMISScope*, CMISFilter*, External*, CMISSync,
 int, OID[], CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER,
 Bool = False);

 int CmisSet (OID, MN, CMISScope*, CMISFilter*, External*, CMISSync,
 AVAArray*, CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER,
 Bool = False);

 int CmisAction (OID, MN, CMISScope*, CMISFilter*, External*, CMISSync,
 AVA*, CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER,
 Bool = False);

 int CmisCreate (OID, MN, int, MN, External*, AVAArray*, CMISObject*&,
 RMIBManager* = NULLRMIBMANAGER);

 int CmisDelete (OID, MN, CMISScope*, CMISFilter*, External*, CMISSync,
 CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER);

 // high-level management operations interface

 int Get (char*, char*, int, int, char*, External*, CMISSync, char**,
 CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER, Bool = False);

 int CancelGet (int);

 int Set (char*, char*, int, int, char*, External*, CMISSync, AVAArray*,
 CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER, Bool = False);

 int Action (char*, char*, int, int, char*, External*, CMISSync, AVA*,
 CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER, Bool = False);

 int Create (char*, char*, int, char*, External*, AVAArray*,
 CMISObject*&, RMIBManager* = NULLRMIBMANAGER);

 int Delete (char*, char*, int, int, char*, External*, CMISSync,
 CMISObjectList*&, RMIBManager* = NULLRMIBMANAGER);

 // other member functions

 int getMsd ();
 Bool isListening ();
 int getTimeOut ();
 void setTimeOut (int);
 char* getAgentName ();
 void setAgentName (char*);
 char* getHostName ();

51515151

 void setHostName (char*);
 int getnAll ();
 int getnFlt ();
 int cancelCallbacks (RMIBManager*);
 void print ();
 static int getInvoke ();

 // provide KS callbacks to the Coordinator
 // (not to be used by the top-level application)

 int readCommEndpoint (int);
 int shutdown (int);

 // constructors/destructor

 RMIBAgent (char* = NULLCP, char* = NULLCP);
 ~RMIBAgent ();
};

Management association

int connect ();

This method should be used to establish association only if the agent and host names are available from the instance
variables. OK is returned if established and NOTOK otherwise. This method should also be used to re-establish an
association if the remote agent aborted in which case the agent and host names will be kept.

int connect (char* agent, char* host);

This method should be used to establish association to agent at host only if the agent and host information are not
available from the instance variables. OK is returned if established and NOTOK otherwise.

int disconnect ();

This method should be used to release the association gracefully. All instance variables will then be restored to the
default values. If an event forwarding discriminator object exists then it will be deleted. Any pending asynchronous
results will be lost. OK is returned upon success and NOTOK otherwise. Once the association is cleanly terminated
the object can be reused in a future association using connect(char* agent, char* host).

int reset (char* agent = NULLCP, char* host = NULLCP);

This method can be used to reset the object providing that it is not in an association. Agent and host names may be
optionally supplied. This method is useful if the object had become redundant due to the remote service provider
rejection or the remote agent abortion and is needed to be reused elsewhere in the application with a different set of
agent/host parameters. OK is returned if successful and NOTOK otherwise.

int notifyBrokenAssociation (RMIBManager* mgr);

This method is part of the asynchronous service interface, and should be used to register mgr with the agent object
such that mgr can be informed when the remote agent terminates or aborts. The callback required in this case is bro-

52525252

kenAssociation and as such this method must be redefined in the RMIBManager-derived class. OK is returned if the
registration is accepted and NOTOK otherwise.

Event reporting interface

int receiveEvent (char* objClass, char* objInst,

char* eventType, char* eventTime, RMIBManager* mgr);

This method allows the manager instancemgr to register to receive events of typeeventType from the emitting
managed object whose class and distinguished names areobjClass andobjInst respectively. The event time is
in the ASN.1 GeneralizedTime format for the OSIMIS agents, andeventTime may be used in an expression to dis-
criminate on this parameter. E.g., “((eventTime>=19940101000000Z) & (eventTime<=19940131235959Z))” to
accept only those event reports generated during January 1994. Supplying NULLCP to the first four parameters is
equivalent to receive all event reportsproviding that no manager is registered with a filter expression. Event reports
are notified through theeventNotification callback of the RMIBManager-derived class. This method returns OK if the
registration is accepted, otherwise NOTOK if an identical one exists or ifmgr is already registered to receive all
event reports.

int stopReceiveEvent (char* objClass, char* objInst,

char* eventType, char* eventTime, RMIBManager* mgr);

This method should be used to cancel the registration done with the above method by providing the same arguments.
OK is returned if the registration is cancelled, NOTOK otherwise.

int receiveEvent (char* filter, RMIBManager* mgr);

This method allows the manager instancemgr to register to receive event reports which will be subjected to the filter
expression provided infilter. In constructing the filter expression, attributes of the eventRecord class (which
inherits from eventLogRecord) should be used (i.e. managedObjectClass, managedObjectInstance, eventType and
eventTime). For example, “((managedObjectClass = uxObj1) & (wiseSaying := *hello*))”. Event reports are notified
through theeventNotification callback of the RMIBManager-derived class. This method returns OK if the registration
is accepted, otherwise NOTOK if there exist a manager registered to receive either using a filter or all event reports.†

int stopReceiveEvent (char* filter, RMIBManager* mgr);

This method should be used to cancel the registration done with the above method by providing the same arguments.
OK is returned if the registration is cancelled, NOTOK otherwise.

int cancelTimeAssertion (RMIBManager* mgr);

This method should be used to cancel all assertions involving theeventTime parameter registered using the first
receiveEvent method.

†. This is due to the limitations of CMIS event reporting where there is no official means of associating the distinguished name of the
event forwarding discriminator object with the event report. This prevents us from identifying the correct (filter, manager) pair. To work
around this problem, the only way to assert more than one filter expression is to OR the expressions into one big expression and register
this using a dedicated event manager. The latter will be an RMIBManager-derived one which takes the responsibility of demultiplexing
the event reports.

53535353

High-level management operations

int Get (char* objClass, char* objInst, int scopeType, int scopeLevel,

char* filter, External* access, CMISSync sync, char* attrs[],

CMISObjectList*& objList, RMIBManager* mgr = NULLRMIBMANAGER,

Bool oneByOne = False);

objClass and objInst are used to specify the class and distinguished names of the base managed object respec-
tively. scopeType is used to specify the type of subtree to be scoped below the base managed object (see table ?.?
for the possible values). scopeLevel is required to indicate the level of subtree if scopeType is either
Sc_IndividualLevel or Sc_BaseToNthLevel, otherwise 0 (zero) should be supplied. filter can be provided to test
on the value assertions of attributes of the selected set of managed objects. MParse(3N) describes how to construct
string filter expressions. access is an application defined parameter used for the access control. For the creation and
deletion of this parameter please refer the MSAP manual pages. If no access control is exercised NULLMACCESS
should be supplied. sync is used to specify the type of synchronisation required which can either be s_bestEffort (for
best effort) or s_atomic (for atomic).

attrs should be used to specify the attributes to be retrieved where NULLCP must be given as the last entry, other-
wise supply NULL (or “all” as the first entry) to retrieve all the attributes or “none” as the first entry to retrieve none.
objList is a reference to an object list pointer that must be used to obtain the managed object results only if the
operation is synchronous, and should be freed using delete. The mgr instance should otherwise be supplied if the
operation is asynchronous in which case the result is returned through the generalResult callback of the RMIBMan-
ager-derived class. Boolean parameter oneByOne should be given as True if the managed object results are to be
returned on the one-by-one basis through the singleGetResult callback of the RMIBManager-derived class. This
method returns OK (synchronous case) or the invoke identifier (asynchronous case) if the request is successful, and
NOTOK if failure.

int CancelGet (int getId);

This method should be used to cancel an asynchronous Get operation issued with the invoke id getId.

int Set (char* objClass, char* objInst, int scopeType, int scopeLevel,

char* filter, External* access, CMISSync sync, AVAArray* attrs,

CMISObjectList*& objList, RMIBManager* mgr = NULLRMIBMANAGER,

Bool noConf = False);

objClass and objInst are used to specify the class and distinguished names of the base managed object respec-
tively. scopeType is used to specify the type of subtree to be scoped below the base managed object (see table ?.?

Table 1: Scope types

Type of scope Value

base managed object alone Sc_BaseObject

first level subordinates only Sc_FirstLevel

base managed object and all subordinates Sc_WholeSubtree

individual level subordinates only Sc_IndividualLevel

base managed object to Nth level subordinates Sc_BaseToNthLevel

54545454

for the possible values). scopeLevel is required to indicate the level of subtree if scopeType is either
Sc_IndividualLevel or Sc_BaseToNthLevel, otherwise 0 (zero) should be supplied. filter can be provided to test
on the value assertions of attributes of the selected set of managed objects. MParse(3N) describes how to construct
string filter expressions. access is an application defined parameter used for the access control. For the creation and
deletion of this parameter please refer the MSAP manual pages. If no access control is exercised NULLMACCESS
should be supplied. sync is used to specify the type of synchronisation required which can either be s_bestEffort
(for best effort) or s_atomic (for atomic).

attrs should be used to provide the attribute value assertions which require modification (see table ?.? for the pos-
sible modify operators to be used in the AVA creations). objList is a reference to an object list pointer that must be
used to obtain the managed object results only if the operation is synchronous, and should be freed using delete. The
mgr instance should otherwise be supplied if the operation is asynchronous in which case the result is returned
through the generalResult callback of the RMIBManager-derived class. If a non-confirmed operation is required, the
optional parameter noConf should be supplied as True where objList and mgr should be NULLCMISOB-
JECTLIST and NULLRMIBMANAGER respectively. This method returns OK (synchronous case) or the invoke
identifier (asynchronous case) if the request is successful, and NOTOK if failure.

int Action (char* objClass, char* objInst, int scopeType, int scopeLevel,

char* filter, External* access, CMISSync sync, AVA* action,

CMISObjectList*& objList, RMIBManager* mgr = NULLRMIBMANAGER,

Bool noConf = False);

objClass and objInst are used to specify the class and distinguished names of the base managed object respec-
tively. scopeType is used to specify the type of subtree to be scoped below the base managed object (see table ?.?
for the possible values). scopeLevel is required to indicate the level of subtree if scopeType is either
Sc_IndividualLevel or Sc_BaseToNthLevel, otherwise 0 (zero) should be supplied. filter can be provided to test
on the value assertions of attributes of the selected set of managed objects. MParse(3N) describes how to construct
string filter expressions. access is an application defined parameter used for the access control. For the creation and
deletion of this parameter please refer the MSAP manual pages. If no access control is exercised NULLMACCESS
should be supplied. sync is used to specify the type of synchronisation required which can either be s_bestEffort
(for best effort) or s_atomic (for atomic).

action is used to specify the type of action requested. objList is a reference to an object list pointer that must be
used to obtain the managed object results only if the operation is synchronous, and should be freed using delete. The
mgr instance should otherwise be supplied if the operation is asynchronous in which case the result is returned
through the generalResult callback of the RMIBManager-derived class. If a non-confirmed operation is required, the
optional parameter noConf should be supplied as True where objList and mgr should be NULLCMISOB-
JECTLIST and NULLRMIBMANAGER respectively. This method returns OK (synchronous case) or the invoke
identifier (asynchronous case) if the request is successful, and NOTOK if failure.

Table 2: Modify operators

Type of modification Value

set to default m_setToDefault

replace current value m_replace

add value (set-valued attributes only) m_addValue

remove value (set-valued attributes only) m_removeValue

55555555

int Create (char* objClass, char* objInst, int instType, char* refInst,

External* access, AVAArray* attrs, CMISObject*& obj,

RMIBManager* mgr = NULLRMIBMANAGER);

objClass and objInst are used to specify the class and distinguished names of the managed object respectively.
instType is the type of the object instance. It may take one of the values CA_OBJECT_INST, specifying the name
of the actual object to be created or CA_SUPERIOR_INST, specifying the name of the parent object under which the
object will be created (the remote agent will assign the relative object’s name). If objInst is not specified, NULL
may be used for instType. refInst is a managed object instance of the same class as the object to be created,
which may be used to determine the initial attribute values, depending on the managed object class specification. It
may be composed in the same way as the objInst distinguished name and it is an optional parameter, in which case
NULLCP should be used. access is an application defined parameter used for the access control. For the creation
and deletion of this parameter please refer the MSAP manual pages. If no access control is exercised NULLMAC-
CESS should be supplied.

attrs should be used to provide the initial attribute value assertions in the creation, otherwise NULLAVAARRAY
should be used for the default initialisation. obj is a reference to an object pointer that must be used to obtain the
managed object result only if the operation is synchronous and should be freed using delete. The mgr instance should
otherwise be supplied if the operation is asynchronous in which case the result is returned through the createResult
callback of the RMIBManager-derived class. This method returns OK (synchronous case) or the invoke identifier
(asynchronous case) if the request is successful, and NOTOK if failure.

int Delete (char* objClass, char* objInst, int scopeType, int scopeLevel,

char* filter, External* access, CMISSync sync, CMISObjectList*& objList,

RMIBManager* mgr = NULLRMIBMANAGER);

objClass and objInst are used to specify the class and distinguished names of the base managed object respec-
tively. scopeType is used to specify the type of subtree to be scoped below the base managed object (see table ?.?
for the possible values). scopeLevel is required to indicate the level of subtree if scopeType is either
Sc_IndividualLevel or Sc_BaseToNthLevel, otherwise 0 (zero) should be supplied. filter can be provided to test
on the value assertions of attributes of the selected set of managed objects. MParse(3N) describes how to construct
string filter expressions. access is an application defined parameter used for the access control. For the creation and
deletion of this parameter please refer the MSAP manual pages. If no access control is exercised NULLMACCESS
should be supplied. sync is used to specify the type of synchronisation required which can either be s_bestEffort (for
best effort) or s_atomic (for atomic).

objList is a reference to an object list pointer that must be used to obtain the managed object results only if the
operation is synchronous, and should be freed using delete. The mgr instance should otherwise be supplied if the
operation is asynchronous in which case the result is returned through the generalResult callback of the RMIBMan-
ager-derived class. This method returns OK (synchronous case) or the invoke identifier (asynchronous case) if the
request is successful, and NOTOK if failure.

Other member functions

int getMsd ();

getMsd returns the Unix file descriptor used as the external communication endpoint. The returned value is positive if
the object is in association and UNCONNECTED (or -1) if not.

Bool isListening ();

56565656

isListening returns True if the object is listening through the application’s coordinator object which is needed for the
asynchronous service interface. False is returned if not registered to listen or if the coordinator object is not instanti-
ated.

int getTimeOut ();

getTimeOut returns the timeout interval in seconds.

void setTimeOut (int intvl);

setTimeOut should be used to change the timeout interval to intvl seconds which must not be less than the initial
default value of thirty seconds.

char* getAgentName ();

getAgentName returns the agent name. A valid string returned does not imply that the object is in association.
NULLCP is returned if the instance variable containing the agent name is not set.

void setAgentName (char* agent);

setAgentName should be used to overwrite the instance variable containing the agent name with agent.

char* getHostName ();

getHostName returns the host name. A valid string returned does not imply that the object is in association. NULLCP
is returned if the instance variable containing the host name is not set.

void setHostName (char* host);

setHostName should be used to overwrite the instance variable containing the host name with host.

int getnAll ();

getnAll returns the number of RMIBManager objects registered to receive all event reports.

int getnFlt ();

getnFlt returns the number of RMIBManager objects registered to receive filtered event reports.

int cancelCallbacks (RMIBManager* mgr);

cancelCallbacks should be used to cancel all registered callbacks of mgr. See also cancelTimeAssertion above.

void print ();

print can be used to pretty print the RMIBAgent instance to the standard output.

static int getInvoke ();

getInvoke returns the invoke identifier used in the last operation.

57575757

Constructors

RMIBAgent (char* agent = NULLCP, char* host = NULLCP);

The only instance variables which may be set during instantiation are the logical application name (agent) and the
host name (host). If these values are supplied then association can later be established using connect(). Otherwise,
connect(char* agent, char* host) must be used.

58585858

Class RMIBManager

Inherits from: None

Classes used: Attr, RMIBAgent, CMISObject, CMISObjectList

Interface file: RMIBManager.h

Implementation file: None

Containing library: rmib

Introduction
The RMIBAgent class provides a number of asynchronous services such as the notification of event reports, broken
association, and management operation results. These services can only be used by the management application
through the callback methods of the RMIBManager class. The latter is an abstract class which must be specialised to
get the required manager class in order to use one or more of the asynchronous services provided by the RMIBAgent.

Methods

class RMIBManager
{
public:

 virtual int eventNotification (char*, char*, char*,
 char*, Attr*, RMIBAgent*);
 virtual int generalResult (CMISObjectList*, RMIBAgent*);
 virtual int singleGetResult (CMISObject*, RMIBAgent*);
 virtual int createResult (CMISObject*, RMIBAgent*);
 virtual int noTimeAssertion (RMIBAgent*);
 virtual int brokenAssociation (RMIBAgent*);

 virtual ~RMIBManager ();
};

#define NULLRMIBMANAGER ((RMIBManager*) 0)

Polymorphic callback events

virtual int eventNotification (char* objClass, char* objInst,

char* eventType, char* eventTime, Attr* eventInfo, RMIBAgent* agent);

eventNotification should be redefined to receive event report notifications from the remote agent represented by
agent. objClass and objInst are the class and distinguished names of the emitting managed object from
which an event of type eventType is notified at eventTime (in the ASN.1 GeneralizedTime format for OSIMIS
agents). eventInfo contains the event report in the type/value combination and should be decoded accordingly.
The return value should be either OK or NOTOK.

59595959

virtual int generalResult (CMISObjectList* objList, RMIBAgent* agent);

generalResult should be redefined to receive asynchronous results of the Get, Set, Action, and Delete operations
issued to the remote agent represented by agent. objList contains the result managed objects and should be freed
using delete. The return value should be either OK or NOTOK.

virtual int singleGetResult (CMISObject* obj, RMIBAgent* agent);

singleGetResult should be redefined to receive asynchronous results of a Get operation issued with the one-by-one
delivery option to the remote agent represented by agent. obj contains the managed object result and should be
freed using delete. The return value should be either OK or NOTOK.

virtual int createResult (CMISObject* obj, RMIBAgent* agent);

createResult should be redefined to receive the asynchronous result of a Create operation issued to the remote agent
represented by agent. obj contains the result and should be freed using delete. The return value should be either
OK or NOTOK.

virtual int noTimeAssertion (RMIBAgent* agent);

noTimeAssertion should be redefined with an appropriate behaviour to allow agent to inform that the remote agent
which it represents does not support time. For instance, in event reporting, the CMIS event time field is optional and
in such cases filters with event time discrimination, if any, will not evaluate correctly and should therefore be can-
celled. The return value should be either OK or NOTOK.

virtual int brokenAssociation (RMIBAgent* agent);

brokenAssociation should be redefined with an appropriate behaviour to take action if the remote agent represented
by agent terminates or aborts. One appropriate action is to reset agent and reuse the object elsewhere in the appli-
cation. The return value should be either OK or NOTOK.

