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3. Mapping the OSI-SM / TMN
Model Onto Object-Oriented
Programming Environments

3.1 Introduction

Chapter 3 of this thesis proposes a novel approach for the realisation of the OSI-SM/TMN

framework, based on object-oriented software platforms. While the TMN is object-oriented in

information specification terms, it is a communications framework and, as such, it does not

address software realisation aspects. The richness and complexity of the overall framework in

conjunction to the fact that non object-oriented approaches were initially adopted for its

realisation, resulted in doubts about its implementability, performance and eventual deployment.

In this chapter we demonstrate how the inherent object-oriented aspects of the OSI-SM/TMN

framework can be exploited through an object-oriented realisation model that hides protocol

aspects through abstractions similar to those of emerging distributed systems frameworks. The

resulting environment is an easy to use object-oriented distributed software platform that enables

the rapid development and deployment of TMN systems. The software architecture of the

proposed environment is presented while its power, expressiveness, usability and similarity to

recently emerging distributed object frameworks is demonstrated through examples. The

environment in which the relevant concepts and abstractions were validated is the OSIMIS TMN

platform which predated similar products by some years and influenced a number of subsequent

commercial developments.

Having demonstrated the mapping of the abstract OSI-SM/TMN framework to object-oriented

programming environments in the form of an object-oriented distributed software platform, we

subsequently demonstrate that the resulting framework has good performance characteristics. We

demonstrate in particular that the main performance cost is due to the Q3 protocol stack rather

than the proposed application framework. This is particularly important since we show in

Chapter 4 that it is possible to retain the TMN application aspects over a distributed object

framework such as OMG CORBA.
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This chapter is organised as a “super-chapter”, in a similar fashion to chapters 2 and 4 of this

thesis. Related research work is presented in the various sub-sections before the author’s research

work, in a similar style to the rest of the thesis.

Section 3.2 presents first an introduction to object-oriented software systems and subsequently

identifies a number of key properties of object-oriented distributed software frameworks against

which the proposed OSI-SM/TMN realisation framework will be measured.

Section 3.3 presents key issues in realising the protocol part of the Q3 interface, discusses

possible policies for the relevant API and investigates alternative mappings over different,

lightweight transport mechanisms. Section 3.4 discusses issues behind object-oriented ASN.1

manipulation, which is key to any OSI upper layer infrastructure and an essential ingredient of

the proposed TMN application framework.

Section 3.5 discusses the manager or client mappings of the proposed TMN application

framework. Two approaches are presented, one modelling whole remote agents and another one

modelling individual managed objects. The latter includes a manager mapping of GDMO to O-O

programming languages. A mapping to the Tcl/Tk interpreted scripting language is also

presented, being suitable for the rapid realisation of TMN WS-OS applications.

Section 3.6 discusses the agent or server mappings of the proposed TMN application framework.

It proposes an agent mapping of GDMO to O-O programming languages, discusses interaction

models between managed objects and associated resources, presents realisation aspects of the

OSI-SM SMFs and shows that the perceived “difficult” aspects of the OSI-SM/TMN framework,

i.e. scoping, filtering, event reporting and logging, are in fact easy to realise.

Section 3.7 discusses aspects of synchronous “remote procedure call” and asynchronous

“message passing” paradigms, which are both supported in the proposed environment. Section

3.8 presents a performance analysis and evaluation in terms of response times, application sizes

and the amount of management traffic incurred.

Section 3.9 examines the proposed framework against the desired properties of object-oriented

distributed frameworks identified in section 3.2. It also shows how the functional decomposition

of the TMN OS presented in Chapter 2 is mapped onto the proposed object-oriented realisation

framework. Since the ultimate validation of the latter was accomplished through research and

development work based on the proposed environment, such work is presented in Appendix A.

Finally, section 3.10 highlights the research contributions in this chapter.



3.2. Object-Oriented Distributed Systems

91

3.2 Object-Oriented Distributed Systems

One of the key contributions of this thesis is that it demonstrates how the OSI-SM / TMN model

can be mapped onto object-oriented programming environments using abstractions similar to

those of emerging object-oriented distribution frameworks. It is thus important to define first the

terms object-oriented programming environment and object-oriented distribution framework.

3.2.1 Object-Oriented Development Principles

Object-orientation has been a cultural achievement of software engineering in the mid and late

eighties. It proposes a new approach for specifying, designing and implementing software systems

which takes further the structured approach of the past and achieves new levels of software

reusability, extensibility and genericity. Object-oriented concepts and principles have already

been mentioned when describing the OSI-SM information model in section 2.2.3 of Chapter 2.

Here we attempt a more systematic definition.

In traditional or structured software engineering, programs comprise data structures and logic

which are loosely coupled. Designers and programmers think of their programs in terms of the

required logic first and add data structures later in order to support the needs of that logic. The

relevant data structures are globally available and accessible by different program procedures

which manipulate them. Program logic is developed by “stepwise refinement” [Wirth71] while the

basic building block is the procedure. A typical programming language that supports this

paradigm is Pascal [Wirth75].

An evolution of the structured approach has led to the modular paradigm. A module implements

an abstraction that becomes the basic building block of complex programs. A module has well

defined functionality, e.g. it implements an abstract data type such as a linked list, and comprises

both procedures and data, in a similar fashion to a modular program. Data is hidden inside the

module so that it becomes invisible to procedures of other modules. This principle is known as

data-hiding or encapsulation and guarantees the internal consistency and integrity of the module.

The module’s functionality is made available to other modules through well-defined entry points,

implemented as “public” procedure calls.

A module can be thought as some form of object since it supports encapsulation. In fact, some

refer to this approach as object-based. A key drawback is that a module may only have one

“instance” since it contains a single copy of the private data. In addition, a module’s functionality

cannot be modified or extended without having access to its source code. As such, this approach
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supports only limited reusability and extensibility. Programming languages that support this

paradigm are C [Kern78], Modula [Wirth82] and Ada. It should be noted that the C

programming language supports this paradigm implicitly only, since there are no explicit

language constructs to support modules.

The evolution of the modular framework has led to the object-oriented paradigm. An object is

similar to a module since it contains procedures and data, but the two are tightly coupled and

constitute an object type or object class. The procedures of an object are known as methods and

its data as variables. Many instances of the same class may exist at any time, with their own

copies of instance variables. Access to the latter is allowed only through an object's methods.

Some of those are private and cannot be accessed from outside. Public methods can be accessed

by other objects in order to perform certain functions. A method may change the state of an

object, operate on some of its variables or act on other objects. In an object-oriented system, all

interactions among object instances take place through method calls or messages. This paradigm

provides better support for software reusability and system integrity.

The concept of an object is taken further through inheritance and polymorphism. Inheritance

allows a new class, called a subclass, to be an extension, modification or even restriction of the

original class, called the superclass. A subclass may include additional methods not present in the

superclass (extension), may override existing ones (modification) or may even prevent existing

ones from exercising their functionality (restriction). These features can be supported without

access to the source code of a superclass and provide excellent support for software re-usability

and extensibility.

Polymorphism is an intriguing characteristic which enables one to treat instances of derived

classes as instances of a generic superclass (from the Greek words poly: multi and morphe: shape

or form). A typical example demonstrating the use of polymorphism is that of a window manager

object which treats displayed objects in the same way, regardless of their particular specialisation

e.g. word processor window, task-bar, pointer etc. The window manager is programmed to

interact with instances of a generic class, e.g. displayableObject, which could be moved, resized,

iconified, brought forward or backward and so on. It can then interact with instances of particular

specialisations of that class and trigger associated behaviour without even knowing what the

relevant classes are.

Programming languages that support the object-oriented paradigm are Smalltalk [Gold83], C++

[Strau86], Objective C [Cox86], Eiffel [Meyer88] and more recently Java [Sun96]. The most

popular of those is C++ because of its compatibility with C and the fact it is highly efficient.
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Polymorphism in C++ is supported by virtual methods which may be redefined in derived classes.

A call to virtual method results in triggering the leaf-most method implementation in the

inheritance hierarchy of that instance, despite the fact that the caller “sees” the latter as an

instance of a generic superclass. This feature achieves polymorphic behaviour.

Object-oriented programming should be based on a sound object-oriented design. The latter

breaks away from the structured and even modular design practices and proposes a new approach

to the decomposition of complex systems. There exist a number of books addressing object-

oriented decomposition methodologies. [Booch91] and [Rumb91] are the classical references,

discussing both issues of object-oriented decomposition and proposing modelling techniques for

documenting an object-oriented design, the Object-Oriented Design (OOD) and the Object

Modelling Technique (OMT) respectively. [Cox86] and [Meyer88] address mainly O-O

programming languages, Objective C and Eiffel respectively, but they also contain useful

material on object-oriented design. This thesis uses OMT, C++ class specifications and object

instance diagrams to demonstrate aspects of object-oriented design.

The OSIMIS platform, which is the environment in which the ideas presented in this thesis have

been validated, was designed using object-oriented design principles and making extensive use of

concepts such as inheritance and polymorphism. The goal behind the design was to allow

reusability, extensibility and access to sophisticated features through simple-to-use object-

oriented APIs. The approach was baptised harness-and-hide [Pav94b]. C++ [Strau86] was

chosen as the programming language, the reasons being at the time (1989) compatibility with C,

ubiquity, strong type checking and performance.

3.2.2 Object-Oriented Distribution Frameworks

Distributed systems have been addressed since the early eighties by the research community and

have become a reality since the mid to late eighties through the advent of local area networks and

inexpensive workstations and personal computers. Distributed systems exhibit component

remoteness, component concurrency, lack of precisely determinable global state and potential for

partial failures. On the other hand, they offer potential advantages in availability, performance,

dependability and cost optimisation resulting from distribution. A key issue in distributed systems

is masking the heterogeneity of the hardware, operating systems and programming languages

used to build them. [Coul88] addresses the concepts and design of distributed systems in detail

while [Kram94] provides a concise introduction to the relevant issues. It should be noted that

most of the literature on distributed systems assumes silently a highly reliable and “fast” local
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area network as the supporting communications infrastructure. This is not the case with a TMN

which can be distributed over a wide area network, with parts of it communicating over slower,

less reliable links.

Since the early days of research in distributed systems, a key requirement has been the extension

of programming languages with constructs to support distributed computation. There exist two

different paradigms for those extensions: unidirectional asynchronous message passing or bi-

directional synchronous Remote Procedure Call (RPC), the latter having semantics similar to a

local procedure call. There exist both differences and complementary aspects in the two

approaches which are discussed in more detail in section 3.7 of this thesis.

The RPC paradigm is described in the seminal [Birr84]. Since its inception, a number of

distribution frameworks based on it appeared, providing support for the development and

deployment of distributed systems. Sun Microsystems’ RPC [Sun88] comes bundled with their

SunOS and Solaris operating systems and has been widely used. The UCL RPC environment is

described in [Wilb87] and included a binding service to support location transparency,

introducing aspects of an elementary platform. The ANSA platform [ANSA89a] introduced the

concept of trading and was more than an RPC environment, influencing the development of the

whole ODP framework [ODP]. The OSF DCE was a industrial approach, bearing more

similarities to the first two systems than to ANSA. OMG CORBA [CORBA] is another, more

recent, industrial approach, embracing for the first time true object-orientation. The author has

experimented with all of those frameworks apart from DCE. The ANSA, DCE and CORBA

frameworks are examined in more detail in Chapter 4 of this thesis.

Since we will later need to evaluate the proposed OSI-SM/TMN realisation approach against the

properties of object-oriented distribution frameworks, it is important to define what these

properties are. In an ideal distribution framework, one could take a non-distributed object-

oriented program, derive abstract specifications for the object interfaces, produce distributed

“stub” objects through relevant tools and re-use most of the existing implementation to fill-in the

stub objects with behaviour. After this reverse-engineering process, the system could be deployed

in a distributed fashion.

The observant and cognisant reader may remark that this is what Java’s [Sun96] Remote Method

Invocation (RMI) mechanism tries to achieve, without the need for an intermediate step of

abstract interface specification. The latter is exactly the point: the Java RMI assumes an

homogeneous environment where all distributed objects are programmed in Java. A distribution

framework should mask the heterogeneity of components, acting as a unifying “glue”. It should
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also allow for it in the first place and be able to cope with it. This is exactly what the Java RMI

does not do and this is why it is not considered as a distribution framework in this thesis. It

should be noted that distributed objects could be programmed in Java in any other framework.

Distributed objects need to be specified in an abstract language, which should be programming

language independent. That language should be object-oriented, supporting inheritance and

polymorphism, since the latter are key properties of object oriented systems as explained.

Distributed objects could be developed in different programming languages through multiple

language mappings. These should include mappings to object-oriented languages, which would be

most natural given the object-oriented nature of the abstract language itself. In complex

distributed systems there is a need for generic applications which can operate without statically

built-in knowledge of the objects they access. Such applications need to use a dynamic invocation

facility. Finally, the relevant environments should be easy to use by hiding communication details.

They should also be performant and scaleable in order to encourage distribution.

ODP [ODP], which is examined in more detail in Chapter 4, identifies a number of properties of

distributed systems. Openness addresses both software portability through standard APIs and

requires interoperability through agreed communications protocols. Distribution transparencies

mask the details of the mechanisms used to overcome distribution problems. These include among

other access transparency, which masks differences in data representations and remote execution,

and location transparency, which masks the location of a distributed component providing a

service.

We have thus identified the following key properties of object-oriented distribution frameworks:

• an abstract, object-oriented specification language that supports inheritance and

polymorphism

• mappings of the abstract language to object-oriented and also procedural/modular

programming languages

• user friendly APIs that hide communication and protocol details

• dynamic access facilities that obviate the need for static (i.e. pre-compiled) knowledge of

object specifications in client applications

• good performance and scalability so that distribution is encouraged and exploited

• openness in terms of both standard APIs and communication protocols
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• distribution transparencies, and in particular access and location

The rest of this chapter explains the issues behind a C++-based software architecture that realises

the OSI-SM / TMN model in a distributed object-oriented framework fashion. We will examine

the proposed framework against the above properties at the end of this chapter, in section 3.9.1.

We will also examine ANSA, the OSF DCE and OMG CORBA against the properties set above

in Chapter 4.
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3.3 Issues in Realising the Protocol Part of the Q 3

Interface

In this section, we consider issues associated to the mapping of the OSI-SM/TMN Common

Management Information Service and protocol (CMIS/P) [X710][X711] onto object-oriented

environments through suitable APIs. A brief introduction to CMIS/P has already been given in

section 2.1.4 of Chapter 2. We will start this section by examining CMIS/P and the supporting

OSI protocol stack in more detail. We will then discuss relevant research work and will present

our approach, discussing also alternative design possibilities.

3.3.1 The Q3 Protocol Stack

As discussed in section 2.2.1 of Chapter 2, TMN traffic may use the telecommunications network

being managed. In addition, parts of the TMN operate in other networks attached to the

telecommunications network. This implies that the TMN Q3 protocols need to operate over a

number of diverse lower layer data network technologies, spanning from X.25 and the Signalling

System No. 7 (SS7) to the Internet TCP/IP, which is rapidly becoming the dominant data network

technology. The lower layer stack profile for the Q3 interface is specified in [Q811]. This

comprises a number of sub-profiles as depicted in Figure 3-1.1
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MAC:   Medium Access Control
LAPB:  Link Access Procedure B

TCP:    Transmission Control Protocol
IP:        Internet Protocol
CLNP: ConnectionLess Network Protocol
DCE:    Data Communication Equipment
DTE:    Date  Termination Equipment

Figure 3-1  Lower Layer Protocol Profile for the Q3 Interface (from [Q811])

                                                  

1 Familiarity is assumed with the OSI 7 layer reference model [X200] and data network technologies in
general.  A good introduction can be found in [Tanen96].
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The X.25 wide area profile, the ISDN and the SS7 profiles are the natural candidates when

managing X.25, ISDN and SS7 networks respectively. It should be noted that the performance of

the ISDN and SS7 signalling protocols tends to be very high in a wide area, which may not be the

case with traditional data network technologies such as X.25 and the Internet TCP/IP. When

managing plain transmission networks such as SDH and SONET, any of the previous

technologies may be used over the “embedded communications channel”. In the case of the B-

ISDN which will be based on ATM technology, additional mappings will be defined over both the

relevant signalling [Q2931] and user planes. Finally, for parts of the TMN operating in local area

networks, it is possible to run either X.25 or the OSI ConnectionLess Network Protocol (CLNP).

In all the above combinations of network and data link protocols, the OSI Connection-Oriented

Transport Protocol (COTP) provides the end-to-end Connection-Oriented Transport Service

(COTS). The use of COTP class 0, 2 or 4 depends on the reliability characteristics of the

underlying network service. Interoperability between subnetworks of different network

technologies can be achieved either through network layer relaying, which involves protocol

conversion, or through transport service bridging. We have discussed briefly the issues of

protocol conversion and service bridging in section 2.3.2.2 of Chapter 2, while explaining aspects

of mediation functions.

All the above technologies are pure OSI ones. Over the last years though, the Internet TCP/IP has

undoubtedly become the dominant data network technology. As such, the ITU-T recognised the

need to support a TCP/IP-based profile for the Q3 interface. This can be done by treating TCP as

a reliable network protocol, in a similar fashion to X.25, and operating over it a convergence

protocol that provides the OSI COTS. The key difference between the COTS and the service

offered by TCP is that the former is packet-oriented while the latter is stream-oriented. As such,

the convergence protocol consists of two parts: a small “packetisation” protocol over TCP, which

makes it appear as an OSI network protocol; and the OSI TP class 0 over the packetisation

protocol that offers the COTS. This approach was standardised through the RFC 1006 [Rose87].

The intention is to enable OSI upper layer protocols and applications to operate over the Internet

lower layer protocols. A good discussion of the relevant issues can be found in [Rose90].

Using this approach, the Q3 upper layer protocols may operate over TCP/IP in a completely

transparent fashion. Note though that this approach is different and not interoperable to the

CMOT [Besa89] approach which will be discussed in section 3.3.2.4. Interoperability between

Q3 stacks based on TCP/IP and Q3 stacks based on any of the other OSI lower layer technologies

can take place through transport service bridging [Rose90]. The transport service bridge should
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run on the network node that interconnects the subnetworks of the two different technologies, e.g.

on the node that connects a TCP/IP local area network to the SS7 telecommunication network.

        

OSI CO Transport Protocol Class 0, 2, 4  /  RFC1006 over TCP
Transport
   Layer

Session
   Layer

Presentation
      Layer

Transport
  Service

OSI Session Protocol

OSI Presentation Protocol, ASN.1, BER

ACSE ROSE

CMISE

Application
      Layer

DASEFTSE

Kernel, Duplex         (all SEs)
MinorSync, Resync (FTSE only)

SE: Service Element
ACSE: Association Control SE
ROSE: Remote Operations SE

CMISE: Common Mgmt Information SE
DASE:   Directory Access SE
FTSE:    File Transfer SE

(for CMISE)

Figure 3-2 Upper Layer Protocol Profile for the Q3 Interface

While the lower layer Q3 profile may vary, the upper layer profile is always the same as shown in

Figure 3-2. The main Application Service Elements (ASEs) that are part of the Q3 interface are

CMISE [X710] and DASE [X511], while FTSE [FTAM] may be also used in the future. The

service provided at the Transport Service Access Point (TSAP) is a reliable, packet-based service

that does not support graceful connection release. The OSI Session Protocol adds graceful

connection release, half-duplex exchanges through token management, dialogue control through

checkpointing and synchronisation, activity management and exception reporting. Both CMISE

and DASE need none of the sophisticated functionality of the session layer and use only the basic

kernel and duplex services. The File Transfer SE needs also the Minor Synchronisation and Re-

synchronisation services.

While the Session Service Access Point (SSAP) supports data exchanges with no structure, the

Presentation Protocol adds structure to the data through the Abstract Syntax Notation One

(ASN.1) [X208] language. ASN.1 implements an abstract syntax whose data structures need to

be converted to byte streams and transmitted across the network and vice-versa. This

functionality is provided by various sets of Encoding Rules (ER) that implement different

transfer syntaxes. The mapping of an abstract syntax to a transfer syntax is termed a

presentation context. The various ASEs may use different presentation contexts which are
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negotiated at connection establishment time. The presentation layer keeps track of the

presentation contexts and provides syntax matching functions that serialise and de-serialise the

relevant data structures. The Q3 interface specification [Q3] suggests the use of the Basic

Encoding Rules (BER) [X209] as the transfer syntax.

The application layer structure consists of a number of layered ASEs. ACSE [X217] manages

application layer connections which are termed associations. It provides a combined interface to

the PSAP and SSAP connection management services but adds also Application Entity Title

(AET) parameters for the calling and called parties. A AET in its complete form is the directory

name of the application as explained in section 2.3.1 of Chapter 2, e.g. {c=GB, o=UCL, ou=CS,

cn=ATM-NM-OS}. A simpler form for an AET is the value of the application process relative

name, e.g. ATM-NM-OS. OSI applications use the ACSE services either directly, e.g. for

establishing CMISE associations, or indirectly through other ASEs, e.g. for establishing DASE

and FTSE associations (see Figure 3-2).

ROSE [X719] realises the OSI mechanism for building distributed applications based on a

request/response paradigm. Though asynchronous in nature, it can also support synchronous

Remote Procedure Call (RPC) semantics [Birr84], which is what many distributed applications

are built on. Both CMISE [X710] and DASE [X511] use ROSE to implement management

information and directory access operations respectively. We are going to discuss ROSE and

CMISE in more detail while addressing their realisation, since they are the main components of

the upper layer Q3 profile. The picture of the latter is completed by FTSE for file transfer

[FTAM], which uses directly the presentation layer services.

    

request

indication

response

confirmation

INVOKER PERFORMER

SAP SAP

time

SAP: Service Access Point

Figure 3-3  OSI Invoker and Performer Interactions
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In general, interactions between adjacent OSI layers or application layer ASEs take place at

Service Access Points (SAPs), which offer the services of the subordinate layer or ASE.

Exchanges between peer entities across the network follow a request-indication cycle, followed by

a response-confirmation cycle for confirmed exchanges. The requesting user of a service is

termed an invoker while the accepting user is termed a performer. This interaction model is

depicted in Figure 3-3.

3.3.2 Issues in Realising the Upper Layer Part of Q 3

3.3.2.1 General Issues in Realising Upper Layer Infrastructures

Realising an upper layer Q3 stack profile requires lower layer protocol infrastructure. Lower

layers based on TCP/IP, X.25 and TP4/CLNP exist for most multi-purpose operating systems

such as UNIX and WindowsNT. It should be noted that TCP/IP support comes typically bundled

at no additional cost, while one has to pay extra for OSI lower layer protocols. Upper layer

infrastructure, including Q3 support for CMISE at least, can be bought today from many vendors

of OSI and TMN systems. Back in the mid eighties there were no products available while the

provision of efficient and reusable upper layer OSI stack infrastructure was a research issue. A

major research effort in realising OSI upper layer protocols and applications and validating the

relevant specifications has been the ISO Development Environment (ISODE) [ISODE][Rose90].

This provided support for the upper layer stack including ACSE, ROSE, DASE and FTSE and

was used as the basis for the OSIMIS platform.

When designing software abstractions for ASEs based on a particular upper layer stack, one has

the freedom to be different from the supporting infrastructure since the latter can be hidden using

encapsulation. For example, ISODE is based on the structured or modular paradigm with APIs in

the C programming language [Kern78] while OSIMIS is based on the object-oriented paradigm,

with APIs in C++ [Strau86][Ellis91]. The ISODE APIs are not at all visible when using OSIMIS

since they are encapsulated in the OSIMIS infrastructure. An important aspect related to the

supporting environment though is that it might not be possible to hide all its aspects completely.

This concerns in particular ASN.1 manipulation, as explained next.

Presentation layer support comes typically through ASN.1 compilers which produce concrete

programming language representations for the relevant types. They also produce relevant logic

for converting those representations to and from a generic representation that is understood by the

presentation layer; the latter converts those to and from byte streams according to the relevant

transfer syntax. An ASN.1 compiler with C mappings produces C data structures and separate
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encode, decode and print functions while a compiler with C++ mappings produces C++ classes

with relevant encode, decode and print behaviour. A good discussion on ASN.1 compilers and

relevant issues can be found in [Neuf90].

The mapping of ASN.1 to a programming language realises a ASN.1 API. This can be modified

to reflect the taste of the designer of an application layer infrastructure. For example, the ISODE

ASN.1 API is procedural while the author designed and implemented an additional “wrap-up”

compiler that produces encapsulating C++ classes, which will be described in section 3.4. The

functionality of the latter though depends on the conventions behind the encapsulated C structures

produced by the native ISODE ASN.1 compiler. This observation can be generalised as follows:

the designer of application layer infrastructure is somewhat “restricted” by the native ASN.1

API. This restriction can be completely removed only if a new ASN.1 compiler and associated

API is designed and implemented.

3.3.2.2 Related Work on CMISE APIs

Before we move on to discuss issues behind the realisation of CMISE and relevant APIs, let’s

look at related work in this area and position the work presented here. The author’s design and

implementation of an ISODE-based CMISE that constituted the initial component of OSIMIS

dates back to 1989. At that time, there was no related research work or a similar commercial

product. In fact, the OSIMIS CMISE implementation served for some time as the only available

reference implementation and was subsequently used as the basis for a number of products. The

OSIMIS CMISE design decisions and relevant abstractions are described in [Pav93a], a tutorial

on “Implementing OSI Management”. The relevant API is documented in [Pav93b], the OSIMIS-

3.0 manual. Brief descriptions are also given in [Pav95a] and [Pav96b] which describe the

OSIMIS platform as a whole.

The only other work in the literature that discusses CMISE realisation issues is [Dens91], [XMP]

and [Chat97]. The first one [Dens91] discusses the realisation of DEC’s CMIS services while the

latter two present work of standards bodies. The first of those is X/Open’s Management

Protocols API specification (XMP) [XMP], released in 1992. The second is a recent attempt by

the NMF to provide object-oriented TMN APIs [Chat97], including a CMIS API known as

CMIS/C++.

[Dens91] describes DEC’s approach for a CMIS API in their Enterprise Management

Architecture (EMA) [Strut94]. The particularly interesting aspect of their approach is that their

API is a generic protocol-independent one, which can be mapped onto particular protocols



3.3. Issues in Realising the Protocol Part of Q3

103

through different Access Modules (AMs) [Struct89]. The interface consists of a single procedure

which takes as parameters the verb or directive, the in_entity or object to access, the attributes

for get and set directives, the in_q for additional qualifiers (e.g. access control) and the in_p for

additional input arguments (e.g. action argument). The out_p contains the results/errors while the

out_entity parameter contains information on the object(s) on which the directive was performed

e.g. the class and name of the object. Scope and filter information are part of the in_entity

parameter but only single level scoping is possible while not all the aspects of CMIS filtering are

possible. This interface was obviously designed before CMIS and cannot cope fully with the

richness of the latter. On the other hand, it is an interesting attempt on a generic, polymorphic,

dynamic invocation interface that can be mapped onto different protocols.

The X/Open XMP interface was the first attempt from a standards body to standardise a CMIS

API. The intention behind such an API is to separate OSI-SM/TMN applications from the

underlying CMIS/P protocol stack so that portability across different vendors’ stacks is possible.

This API was first introduced in 1992 and has similarities to the OSIMIS one which had been

publicly available since 1990. This is a procedural API in the C language. Every CMIS request

and response primitive maps to a corresponding procedure that can be called asynchronously e.g.

Get-req() and Get-rsp(). A Receive() procedure needs to be called to receive the result. A

synchronous call model with RPC semantics is also supported e.g. Get(). Management “sessions”

need to be established before sending and receiving messages through the Bind() call while they

may be terminated through the Unbind() call. Finally, automatic name to address resolution is

provided that maps application names to addresses.

While all this design makes sense and is in fact extremely similar to that of the OSIMIS CMIS, it

has two serious drawbacks. First, the API tries to cater both for CMIS and SNMP and this

creates unnecessary complexity. CMIS and SNMP follow very different philosophies as

explained in [Pav94d][ Pav97a] and also in [Geri94] and elsewhere. As such, there is no tangible

benefit from unifying their access APIs while additional complexity is introduced for dealing with

the different object models, parameters to common primitives etc. A second and more important

drawback concerns the use of the associated X/Open ASN.1 API [XOM]. This takes an object-

oriented view of structural information but does not incorporate the characteristics of object-

oriented systems as explained in section 3.2.1. In particular, the functions for manipulating

objects are separate from the definitions of those objects and there is no notion of encapsulating

or hiding the information associated with objects. We could characterise both XMP and XOM as

object-based instead of object-oriented. In summary, the combined XOM/XMP API is complex

and daunting to use.
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The object-based nature and complexity of XOM/XMP has led the NMF to define recently the

NMF/C++ API, which comprises ASN.1, CMIS and GDMO APIs [Chat97]. This work is very

much related to the work described in this chapter and has been produced by a group of experts

over a 2-3 year period. The author has initially participated in that group and the OSIMIS APIs

have been one of the relevant inputs. The CMIS API is known as CMIS/C++. This offers a set of

C++ classes for modelling the CMISE and ACSE primitives and their parameters in an

asynchronous fashion only. It also offers a set of objects for referring to outstanding operations

(invocation handles) and two different mechanisms in order to receive operation indications and

confirmations: a callback facility through a callback class and a queue facility through a queue

class. A “convenience” API is also available for automatic association management but

applications can avoid using this and can take explicit control of association establishment and

release.

3.3.2.3 Issues in Realising CMISE Over ROSE

The OSIMIS CMISE implementation is based on the ISODE environment and uses the relevant

ASN.1 compiler known as pepsy and the associated ASN.1 API. An early implementation based

on the still evolving CMIS/P ISO documents was produced by S. Walton of UCL under the

auspices of the ESPRIT INCA project, in 1988. A management system for monitoring the

activity of the OSI transport protocol was developed based on it, as described in [Knig89]. The

CMIS/P standards [X710][X711] achieved a state of maturity in 1989 and the author re-designed

and re-implemented completely CMISE in late 1989. This became the fundamental building block

for the OSIMIS platform and has remained fairly stable ever since, used subsequently in a

number of commercial products.

Since CMISE is based on ROSE, a ROSE implementation is necessary while ACSE is also

necessary for association management. ISODE provided both ACSE and ROSE implementations.

In cases where the available OSI stack provides presentation layer services only, implementing

ACSE and ROSE is fairly straightforward. ACSE is essentially a wrap-up of the PSAP

connection management features. ROSE implements a simple, generic request/response protocol

for distributed OSI applications. It also provides a facility of operations linked to another

operation, which can be thought as remote callbacks. This facility is used by CMISE for

operations resulting in multiple replies through scoping.
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ro-invoke invokeId,  linkedId,  operation,    argument

ro-result invokeId,                  operation,    result

ro-error invokeId,                  error,           parameter

Table 3-1  ROSE Primitives and Associated Parameters

Table 3-1 shows the ROSE primitives (apart from ro-reject) and associated parameters. Because

of its asynchronous nature, a unique identifier needs to be associated with every outstanding

request (invokeId). Callback invocations are linked to the initial operation through a linked

identifier (linkedId) which should have the value of the original invoke identifier. The operation

code, argument, result, error code and error parameter are defined by higher level protocols e.g.

CMISE.

Implementing a ROSE protocol machine is not difficult. The simplest policy for an associated

API is a procedural asynchronous one, with a procedure modelling each of the primitives and

their parameters, e.g. RoInvoke(), RoResult(), RoError(), and a separate procedure for receiving

indications and confirmations, e.g. RoWait(). This is exactly the API policy ISODE implements.

A relevant design decision is if the user of ROSE will be given responsibility for the uniqueness

of the invokeId parameter or if the latter will be assigned by ROSE, passing it back to the caller

as a “voucher” in order to be matched against the reply and linked invocations. ISODE has

decided to leave this responsibility to the caller.

The state information required by a ROSE protocol machine is very little i.e. the outstanding

request and indication invokeId’s for a session so that further invocations, results and errors can

be checked for consistency. ROSE implementations support typically at most once reliability

characteristics, with an operation requested exactly once and the performer keeping no state of

previous invokeId’s. Exactly once reliability characteristics are also possible, with the invoker

requesting repeatedly the operation with the same invokeId until a result/error or a “duplicate

operation” rejection is received. In this case, the performer needs to keep additional state of the

invokeId’s of operations in a session from an epoch date. ROSE supports total distributed

operations: for any given operation, the result and all exceptions (errors and rejections) are well-

defined and distinguishable. The concept of totality is important for reliable distributed systems.
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m-create invokeId,  access,  objClass,  objName,  referenceName,        attrList

m-cancelGet invokeId,  getInvokeId

m-get invokeId,  access,  objClass,  objName,  scope,  filter,  sync,  attrIdList

m-set invokeId,  access,  objClass,  objName,  scope,  filter,  sync,  setReqList

m-action invokeId,  access,  objClass,  objName,  scope,  filter,  sync,  actionInfo

m-delete invokeId,  access,  objClass,  objName,  scope,  filter,  sync

m-eventRep invokeId,               objClass,  objName,  eventTime,  eventType,  eventInfo

m-createRes invokeId,              < objClass,  objName,  time,  attrList        | error,  errorInfo >

m-cancelGetRes invokeId,              <                                                              | error,  errorInfo >

m-getRes invokeId,  linkId,  < objClass,  objName,  time,  getAttrList  | error,  errorInfo >

m-setRes invokeId,  linkId,  < objClass,  objName,  time,  setAttrList  | error,  errorInfo >

m-actionRes invokeId,  linkId,  < objClass,  objName,  time,  actionReply | error,  errorInfo >

m-deleteRes invokeId,  linkId,  < objClass,  objName,  time,                     | error,  errorInfo >

m-eventRepRes invokeId,              < objClass,  objName,  time,  eventReply  | error,  errorInfo >

Table 3-2  CMIS Primitives and Associated Parameters

Table 3-2 shows the CMIS request and response primitives and associated parameters. The m-

get, m-set, m-action and m-delete primitives may operate on many managed objects through the

scope, filter and sync parameters. The base object for the search is identified by the objName

parameter. When these primitives are applied to a single object instance (i.e. without scope and

sync), the optional objClass parameter may be used to request allomorphic behaviour. In the case

of the m-create primitive, the objClass parameter is mandatory while objName is optional for

classes with “automatic instance naming” properties. The setReqList parameter of m-set is a list

of {attrId, attrVal, modifyOperator}  tuples. The modify operator can take the values

replace, setToDefault, add and remove, the latter two for multi-valued attributes [X720]. The

access parameter is reserved for access control [X741] but its use has not yet been defined. The

rest of the parameters are self-explanatory.

The response primitives model both result and error conditions. The relevant result parameter is

passed back together with the objName, objClass and a timestamp. In case of an error, the error
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code is passed back together with relevant error information. CMIS/P defines a comprehensive

set of errors [X711]. It also allows for object-specific errors through the processingFailure error.

Implementing a CMISE protocol machine over ROSE is not difficult, despite the fact that

CMISE [X711] is a much more complex protocol than ROSE [X219]. While a ROSE protocol

machine can be implemented without the need for an ASN.1 compiler due to the reduced

primitive set and the simple parameter types (ASN.1 INTEGER and ANY), CMISE needs

ASN.1 compiler support because of its complexity. In the case of requests and responses, the

main task of a CMISE protocol machine is to assemble the API parameters, create and encode a

CMISE Protocol Data Unit (PDU) and use the relevant ROSE primitive. In the case of

indications and confirmations, the CMISE PDU should be decoded and the API parameters

should be populated. The only state information that needs to be kept concerns outstanding m-get

requests so that m-cancelGet requests are validated at source.

3.3.2.3.1 Association Management

A CMISE API should provide access to the relevant services in an efficient, flexible and easy-to-

use manner. CMISE services can only be used after an association has been established through

ACSE. An important design decision to make is whether the CMISE user will be given control of

establishing and releasing ACSE associations or such activities will be handled transparently by

the infrastructure. This decision has an impact on the API and there are three possible design

decisions:

a) association management becomes an explicit part of the CMIS API; this is the approach

followed in OSIMIS [Pav93b] and the NMF CMIS/C++ [Chat97];

b) Bind and Unbind facilities to management applications are part of the API but

association management takes place transparently while in the bound state; this is the

approach followed by XMP [XMP]; and

c) all the CMIS operations accept some form of global names, with the prefix part denoting

the management application.

The third one is the most abstract. In the case of a procedural API with a procedure for each

primitive, an additional API parameter is required for those CMIS primitives that do not include

a name in the remote system, i.e. m-cancelGet, m-create and m-eventRep. This parameter should

be the distinguished name of the target application. An important drawback of this approach is

that it hides completely the relevant negotiation capabilities at association establishment, which

can only take place in a pre-packaged fashion behind the API. This is fine only as far as the
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applications’ requirements are in accordance with the pre-packaged policy. But as [Chat97]

points out, “a convenience interface is only convenient if it does what you need”!

In the case of b), association options to a particular destination can be specified through the

Bind() primitive. Some form of identifier is passed back from Bind() which should be used as a

prefix to all the primitives. Note that this is not an association handle but denotes the binding

with that system. Associations will be opened and closed transparently by the infrastructure

thereafter. Finally, a) is the most “low level” approach but also most powerful, since it allows

explicit control of associations. Connect and disconnect primitives are available, with Connect()

typically returning an association handle to be used as a prefix in the other primitives.

In any of the schemes presented above, the destination can be specified through a logical

application name e.g. NM-OS or the full name {c=UK, o=UCL, ou=CS, cn=NM-OS}. The latter

is typically required only when crossing domain boundaries since the local domain name is known

by the infrastructure. If location transparency is supported through the OSI Directory [X750] or

any similar mechanism, the infrastructure will map this name to an address. If location

transparency is not supported, the location name needs to be passed together with the application

name e.g. NM-OS@athena or {c=UK, o=UCL, ou=CS, cn=NM-OS, cn=athena}. In this case,

some form of local database is used to map this name to an OSI presentation address. The

problem with this approach is twofold, as already discussed in section 2.3.1 of Chapter 2: first,

there is no location transparency; and second, it is very difficult to keep those local databases

consistent in a large-scale distributed system.

From the three schemes presented above, the author chose to implement a) because it offers the

maximum expressive power. In addition, it models explicitly the ACSE [X217] specification and

its use dictated by CMISE [X711]. The latter is an important reason since the relevant standard

documents or typical textbook explanation of the OSI application layer structure could serve as

reference documents on the structure and semantics of the API. The same reasons hold also for

the NMF CMIS/C++ [Chat97], though the latter also offers an additional “convenience” API for

automatic association management. In OSIMIS, such an API is only offered at a higher level as

described in section 3.5.

The author also chose to unify the ACSE and CMISE APIs under one common API. This API

supports location transparency through the OSI Directory as dictated by [X750], but it can also

be used in a non-transparent fashion through a local database. In the former case, directory

access takes place “underneath” the combined CMISE / ACSE API.
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3.3.2.3.2 Procedural vs. Object-Oriented APIs

Another important decision regarding the API concerns the use of a structured, object-based

approach or an object-oriented one. The decision here should be clear-cut: an object-oriented

approach offers important advantages in terms of reusability, simplicity, easier state and memory

management, etc. For example, one could model the CMISE protocol machine as an object, with

methods corresponding to the relevant service primitives. This object would also encapsulate

ACSE features as described above. An instance of that object would model a (remote)

management interface, encapsulating the relevant binding and association information.

The X/Open XMP [XMP] has chosen an object-based as opposed to an object-oriented approach.

The NMF CMIS/C++ [Chat97] follows a fully object-oriented approach; this is also the case

with the OSIMIS high-level manager API known as Remote MIB (RMIB) [Pav94b] that will be

described in section 3.5. On the other hand, the OSIMIS CMIS API, known as the Management

Service Access Point (MSAP) API [Pav93b] follows a procedural approach and is implemented

in C, in a similar fashion to the XMP one.

The main reasons for the decision not to follow an object-oriented approach, at least for the

CMIS API, were political rather than technical. At that time (second half of 1989), the intention

was to make the CMISE protocol machine part of the ISODE distribution. This would increase

the popularity and acceptance of OSI-SM as a whole due to the wide deployment of ISODE in

the research community. ISODE is written in C and follows a procedural approach throughout,

so the same approach should be followed for CMISE. It should be noted that the main ISODE

contributor, M. Rose, was at the time involved in the standardisation of SNMP [SNMP] and his

views were pretty vitriolic regarding OSI-SM; an amusing tale of his can be found in [Rose91].

Because of his views, the OSIMIS CMISE implementation was never incorporated in ISODE,

which meant that the original CMISE design and implementation could have been object-oriented.

In fact, after the wide deployment of OSIMIS in the mid-90’s, the fact that OSIMIS required the

ISODE stack and its ASN.1 tools was considered by many as a liability.

The OSIMIS CMISE implementation follows an asynchronous procedural paradigm, with every

request and response primitive in the Table 3-2 mapped to a separate procedure. The parameters

of those primitives are mapped directly to those in Table 3-2, with the addition of an association

descriptor parameter. Responsibility for invokeId consistency is left to the user of CMISE, in a

similar fashion to the ISODE ROSE. A “m-wait” procedure models indications and

confirmations, following a queue model as opposed to a callback or upcall model [Clark85]. The

m-wait request primitive may be instructed to simply inspect the queue i.e. return immediately, to
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wait for a specified period or to wait indefinitely until an indication or confirmation arrives. A

relevant application could be organised in a single or multi-threaded fashion. In the case of a

single-threaded execution paradigm, the incoming indications and confirmations need to be

managed. The relevant mechanism is orthogonal to the MSAP API and is discussed in more detail

in section 3.7.

A part of the MSAP CMIS API is shown in Table 3-3. The approach taken corresponds very

closely to the CMIS standard [X710], which can serve as relevant documentation. The reader

may observe the similarity between the programmatic CMIS interface of Table 3-3 and the

abstract CMIS primitives of Table 3-2.

int  M_Get         (  int assocId,  int invokeId,  External* access,

                              MIDentifier* objClass,  MNane* objName,

                              CMISScope* scope,  CMISFilter* filter,  CMISSync sync,

                              int nattrs,  MIDentifier attrIdList[],  MSAPIndication* mi  );

int  M_GetRes  (  int assocId,  int invokeId,  int linkedId,

                             MIDentifier* objClass,  MNane* objName,

                             char* currentTime,  int nattrs,  CMISGetAttr attrList[],

                             CMISErrors error,  CMISErrorInfo* errorInfo,  MSAPIndication* mi  );

int  M_Wait       (  int msd,  int waitPeriod,  MSAPIndication* mi  );

Table 3-3  (Part of) The MSAP CMIS API

3.3.2.3.3 Attribute, Action, Event and Specific Error Values

Another important decision behind a CMIS API concerns the representation of parameters with

dynamic nature whose exact type is not known by the CMIP protocol. These are the attribute

value, action information and reply, notification information and reply and object-level error

information in the case of a processingFailure error. All these are specified as ASN.1 ANY

parameters by CMIP [X711], acting essentially as place holders for information that will be

defined at a higher-level, by managed object classes. Their exact definition at the CMIP level uses

the ANY DEFINED BY ASN.1 construct, which associates a name to an ASN.1 type e.g. an

attribute name to the corresponding type. For example, the specification of the uxObj class in

Appendix C associates the nUsers attribute to the ObservedValue ASN.1 type defined in [X721]

and the echo action information and reply arguments to the GraphicString type [X209].
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When designing a CMISE API, the key question is if responsibility for encoding and decoding

those values will be left to the application, as the type ANY implies, or it will be undertaken by

CMISE. The second approach is obviously more user-friendly since it results in additional

information hiding. It implies though that the CMISE layer should be able to determine the exact

data type for an ANY value and invoke the appropriate encode / decode method. This can be

accomplished through access to meta-data produced from the GDMO and ASN.1 specification

for a particular information model. These should map attribute, action, event and specific error

names to ASN.1 types and associated manipulation logic i.e. encoding and decoding procedures.

An object-oriented API can unify the ASN.1 data structures and relevant manipulation logic

through object classes, allowing for a natural representation of the ANY type in higher layer

APIs. In fact, this is what the OSIMIS object-oriented ASN.1 API does as will be described in

section 3.4.

The procedural MSAP API follows the ISODE policy, which always passes control to the API

user for dealing with the ANY type. XMP [XMP] is fairly flexible, accommodating both

approaches: the programmer can instruct the CMISE infrastructure to either encode/decode ANY

values or leave them to be manipulated by the application. Finally, the CMIS/C++ API [Chat97]

uses the separate ASN.1/C++ API which is object-oriented, supporting a natural manipulation of

the ANY type.

An associated design decision has to do with the API representation of the attribute, action,

notification and specific error names. These are defined at the CMIP level as ASN.1 OBJECT

IDENTIFIER (OID) types, with their values defined in a GDMO specification through

“REGISTER AS” clauses. For example, the objectClass attribute of the top class [X721] is

registered as {joint-iso-ccitt(2) ms(9) smi(3) part2(2) attribute(7) objectClass(65)} or, more

concisely, as 2.9.3.2.7.65 . It is this value that is communicated across the Q3 interface, encoded

according to the transfer syntax in use, and not the user-friendly string representation

“objectClass”. The simplest API policy is to pass the actual OID in a concrete representation e.g.

a C data structure. A better API policy that results in more information hiding is to pass the user-

friendly string and let the CMISE layer map it to the associated OID. In the latter case, the

CMISE layer should have access to meta-data associated with a particular GDMO information

model. The OSIMIS MSAP API follows the former, more “low-level” approach in order to be

consistent with the ISODE API policy.
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3.3.2.3.4 The OSIMIS CMISE

CMISE / MSAP

DASE
ACSE ROSE

OSI PP

PSAP API

MSAP API

MSAP: Management Service Access Point
PSAP:   Presentation Service Access Point

Figure 3-4  The OSIMIS CMISE Realisation

Figure 3-4 shows the layered OSIMIS CMISE realisation. When this figure is contrasted with

Figure 3-2, which depicts the upper layer protocol profile for the Q3 interface, it shows two

important design decisions which have already been described above. First, the incorporation of

association control primitives in the CMISE API; and second, the incorporation of location

transparency features in the CMISE API through the use of DASE for accessing the OSI

Directory. These decisions make the CMISE API self-contained i.e. the user does not need to

either learn and or access a separate ACSE or DASE API. In OSIMIS the name MSAP describes

both for the CMISE implementation, i.e. the relevant library, and the CMISE API.

From an engineering perspective, all the upper layer protocols, including CMISE, are realised as

libraries linked with a management application. This means that each management application

contains its own “instance” of the upper layer protocol stack. The lower layers are typically part

of the operating system’s kernel, so all the applications use a single instance of the lower layers.

In a general purpose operating system such as UNIX, TCP/IP, TP4/CLNP and X.25 are part of

the kernel. This means that RFC1006 in the case of TCP/IP and TP0 / TP2 in the case of X.25

run in user space, together with the upper layer stack. An evaluation of the impact of the “tightly-

coupled” upper layers to the size of management applications is presented in section 3.8.

In summary, realising a CMISE API and protocol machine involves a number of important

design decisions as described in this section. It is not difficult though, assuming the existence of

ASN.1 tools and disregarding, at least initially, location transparency features. The author spent

around 3 months for the design, implementation and testing of the bare-bone OSIMIS CMISE in

late 1989. The API paradigm was procedural instead of object-oriented in order to maintain

ISODE compatibility, which finally proved to be unnecessary. C. Stathopoulos of ICS
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implemented the location transparency features first in early 1993 and re-implemented them in

1995 to track the [X750] standard.

The popularity of this procedural CMISE implementation proved to be remarkable, used in many

research projects and products and promoting the concept of OSI-SM as a whole. It should be

finally noted that the discussion and the issues raised in this section, though targeted at CMIS/P,

can be generalised for any other application service element.

3.3.2.4 Alternative Mappings for CMISE

In the previous sections we discussed the issues behind realising CMISE over a full upper layer

Q3 protocol stack [Q812]. While CMIP [X711] is specified in ASN.1 and uses the OSI ROSE

[X219], it is a general management protocol that can be put over a different transport

infrastructure. In fact, the whole of OSI-SM including GDMO, the SMFs and the manager-agent

application framework can be adapted and used over environments other than OSI. In this section

we examine the issues behind alternative mappings for CMISE.

The first key requirement for CMISE is reliable transport infrastructure. This can be provided

either by the OSI TP over pure OSI lower layer protocols or by the Internet TCP/IP, in the latter

case with or without the RFC 1006 packetisation protocol. The second key requirement is a

presentation facility of similar expressive power to ASN.1.

As it was already mentioned, CMISE and ROSE-based ASEs do not use any of the sophisticated

functionality of the session protocol. This means it should be possible to provide a lightweight

mapping for an upper layer stack by using a modified version of the OSI presentation protocol

operating directly over a reliable transport mechanism. This was exactly the thinking behind the

mapping specified in [Rose88], which is known as the Lightweight Presentation Protocol (LPP).

That particular mapping exploits the fact that BER streams are “self-delimited” because of the

tag-length-value approach [X209], so it maps LPP directly over the Internet TCP which provides

a stream-oriented reliable transport service. The LPP “hardwires” a number of parameters which

are generally negotiated at association establishment and restricts the transfer syntax to be the

BER.
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Figure 3-5 The CMOT Protocol Stack

The mapping of CMISE over the LPP is shown in Figure 3-5 and is known as CMOT - CMIP

Over TCP/IP [Besa89]. Since ISODE supports the LPP, OSIMIS subsequently supports the

CMOT stack. This mapping is a Qx protocol in TMN terms but it has not had much use in

telecommunications environments. The key reason is that it sacrifices interoperability in

comparison to the full Q3 stack while it does not bring significant improvements to the size and

performance of relevant applications, as it will be discussed in section 3.8. The LPP approach as

a whole has remained mostly a paper exercise, without any real deployment.

Another approach towards lightweight mappings of OSI application layer protocols has been

taken by the Lightweight Directory Access Protocol (LDAP) [LDAP]. LDAP has been recently

very popular because of the commercial interest in OSI directory technology [X500] over the

Internet. Its key aspects are:

• protocol data units are carried directly over the TCP or the OSI transport service,

bypassing completely both the presentation and session overhead;

• many parameters of the protocol primitives are encoded as strings e.g. distinguished

names, attribute types and values, etc.; and

• the protocol data units themselves are specified in ASN.1 and encoded in BER which is

used in a restricted form in order to simplify implementations.

LDAP-based applications do not need presentation facilities since they communicate attribute

values in pretty-printed string form. LDAP is typically used for lightweight DUAs and it is

relevant PDUs are converted to DAP through LDAP-DAP gateways or service relays. Many

recent commercial DSAs support LDAP directly, in addition to DAP, in which case there is no

need for gateways.
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The author was intrigued by the principles behind LDAP and adopted similar concepts for the

specification of the Lightweight CMIP (LCMIP) protocol [Pav95c]. The latter uses the same

principles described above for LDAP but introduces a number of additional simplifications.

While ASN.1 and BER are used to describe and encode the LCMIP PDUs, only a limited set of

ASN.1 types are allowed, namely NULL, INTEGER, OCTET STRING, SEQUENCE, SET OF

and SEQUENCE OF. The LCMIP PDU specification was structured in such a way as to allow

maximum reusability of encoding and decoding procedures. There are no ASN.1 optional

elements while numeric tags have been kept to a minimum, since they result in different

encodings. The idea was to be able to implement LCMIP by hand, without the need for ASN.1

compilers which inevitably introduce inefficiencies.

Distinguished names are communicated as strings using the ISODE string convention, used also

in LDAP e.g. “logId=1@logRecordId=5 ”. CMIS filters use the string format described in

Appendix D. Attribute, action, notification and specific error values are communicated as pretty-

printed strings whose structure should be agreed. OSIMIS provides already “standard” string

representations for the DMI types [X721]. New GDMO/ASN.1 specifications should always

define the string representations for the ASN.1 types they introduce. For example, the

MeanStdDev type defined in Appendix C could have the string representation

“ { mean: <val> stdDev: <val> } ”.

LCMIP includes a number of other optimisations that simplify the structure of the CMIP PDUs.

The LCMIP structure of the GetArgument and GetResult LCMIP types is presented in Appendix

E, highlighting some of the major design decisions and simplifications. The LCMIP approach

was never implemented, mainly because of lack of resources but also because the use of full Q3-

capable applications proved to be less expensive than widely believed, as explained in section 3.8.

It would be interesting though to be able to quantify the savings of this approach compared to the

full Q3 one, the author intends to pursue this in the future. The - very simple - LCMIP protocol

stack is shown in Figure 3-6.
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Figure 3-6  The Lightweight and String-based CMIP Protocol Stack

While LCMIP is much simpler than CMIP and uses strings for attribute, action, notification and

specific error values, its PDUs are still specified in ASN.1 while BER is used for their encoding.

Taking the concept of a string-based representation further, a possibility would be to

communicate the whole of the lightweight CMIP PDUs in a pretty-printed string form. The key

issue in this case is the definition of this pretty-printed PDU format.

When the author initially implemented the OSIMIS CMISE and generic agent infrastructure, he

also implemented a number of generic command line manager programs that provided the full

functionality of the CMIS primitives, namely mibdump (or mget), mset, maction, mcreate,

mdelete and evsink. Their syntax, which follows the UNIX convention for command line

arguments, is described in [Pav93b] and realises essentially a string form for the CMIS request

primitives. Since these programs parse their input, the relevant logic can be reused as part of a

CMIP protocol machine. A full string-based CMIP requires also the specification of the string

form for the reply and error PDUs, which can be based on the same principles.

Table 3-4 presents the PDU structure of a string-based lightweight CMIP protocol which is

largely based on the syntax of the OSIMIS generic command-line manager programs [Pav93b].

The author named this Simple String-based Management Information Protocol (SSMIP). Figure

3-6 shows the protocol mapping which exactly the same as that of LCMIP. The SSMIP should

be more lightweight than LCMIP while its big advantage is that it can be implemented without

the need for ASN.1 compiler support. Its PDUs can be encapsulated in protocols such as HTTP

so that it can drive WWW displays. The SSMIP was never implemented in OSIMIS but a

variation of it was implemented in a commercial product which is based on OSIMIS.
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mcre  invId [-A access]  -c class  [-n name | -s superiorName] [-r referenceName] [-a attrName=value ...]

mcgt  invId

mget  invId [-A access] [-c class] [-n name] [ [-s scope] sync ] [-f filter] [-a attrName ...]

mset  invId [-A access] [-c class] [-n name] [ [-s scope] sync ] [-f filter] [ -[w|d|a|r] attrName[=value] ...]

mact  invId [-A access] [-c class] [-n name] [ [-s scope] sync ] [-f filter] -a attrName[=value]

mdel  invId [-A access] [-c class] [-n name] [ [-s scope] sync ] [-f filter]

mevr  invId                   [-c class] [-n name] [-t time] -a eventName[=value]

mres <op>2 invId [-l linkId]  [-c class] [-n name] [-t time]  [-a [-e error] [name[=value] [-m modify]] …]

merr  invId error [<errInfo>3]

Table 3-4  String-based CMIP PDUs

In summary, comparing the LCMIP and SSMIP approaches, it is worth going all the way and

adopting the SSMIP approach as opposed to the LCMIP one since it uses a simpler, fully string-

based approach. Such protocols are useful for driving TMN WS applications [Pav96d] which

typically manipulate management information in string form. They may not be particularly good

for applications that examine management information and perform numerical calculations. In

those cases, a significant amount of processing time will be spent in converting management

information from numeric to string form and vice-versa. It should be finally mentioned that when

these protocols drive TMN WS applications, they may be thought as “proprietary” F protocols.

One of the reasons we have proposed not to standardise the TMN F interface in Chapter 2 is

because there exist many different styles of string-based CMIP protocols over various different

transport mappings. WS applications that use SSMIP should communicate with the rest of the

TMN through service relays that convert SSMIP to the Q3 protocol stack.

While in this section we have considered alternative mappings for CMISE that use simple string-

based representations of attribute, action, event and specific error values, the applicability of

those protocols is typically restricted to workstation applications as explained above. In Chapter

4 we examine a more general mapping to OMG CORBA and distributed object technologies.

                                                  

2 The operation type is the name of the operation i.e. mcre, mcgt, mget, mset, mact, mdel, mevr.

3 The error information has structure that is specific to the particular error code.
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3.3.2.5 Summary

In this section we described in detail the issues behind realising the protocol part of the TMN Q3

interface and examined possible policies for the relevant API. Since CMIS/P requires only a

reliable transport service and a presentation facility, it can be mapped onto alternative transport

infrastructures as discussed in section 3.3.2.4.

In summary, CMIP is a modestly complex protocol that can be relatively easily realised. The

necessary infrastructure should be an OSI development environment that includes a procedural

ASN.1 compiler. An aspect that makes the protocol more complex than necessary is the use of

object identifiers instead of user-friendly string names. This is something pertinent to all the OSI

applications and introduces unnecessary complexity. Proponents of the solution claim that it

provides guaranteed uniqueness of names, which is true. On the other hand, such uniqueness

could be policed by a central authority that would endorse new GDMO specifications.

While CMIS services are relatively easy to provide, the real difficulty lies in providing a

development environment that hides CMIS/P and provides an object-oriented distributed platform

that supports the rapid development of TMN applications by developers with little or no

knowledge of network programming. The relevant issues are examined in sections 3.5 and 3.6,

after we examine issues on object-oriented ASN.1 manipulation in the next section.
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3.4 Issues in Object-Oriented ASN.1 Manipulation

A important aspect of OSI upper layer is the manipulation of ASN.1 data structures. Typically,

ASN.1 compilers map those abstract data structures to concrete programming language

representations, as already discussed in section 3.3.2.1. This mapping can be procedural, with

separate data structures and syntax manipulation procedures, or object-oriented, with classes

mapped to ASN.1 types and relevant syntax manipulation methods. An important issue in the

latter case is the polymorphic design of the relevant API. OSIMIS is based on ISODE which

supports a procedural ASN.1 manipulation style through the pepsy ASN.1 compiler, in a similar

fashion to most ASN.1 infrastructures of the late eighties and early nineties [Neuf90]. As such, it

has been necessary to define object-oriented ASN.1 abstractions in OSIMIS and to provide an

object-oriented ASN.1 compiler with C++ mappings. The issues behind high-level object-oriented

ASN.1 manipulation are discussed in this section.

There is very little work in the literature on issues related to flexible high-level ASN.1 APIs, as

opposed, say, to work on ASN.1 performance measurements and comparisons. One well-known

approach to ASN.1 manipulation is X/Open’s XOM API [XOM] that has been described in the

previous section. Its key drawback is that it is object-based as opposed to object-oriented. One of

the main reasons behind the fact that the XOM/XMP API has been rather unpopular has to do

mostly with the XOM rather than the XMP part.

Another more recent and much more promising approach is the NMF ASN.1/C++ API, which is

part of the overall TMN/C++ series of APIs [Chat97]. This maps ASN.1 types to C++ classes

that derive ultimately from the abstract class AbstractData ; the latter heads the C++ class

hierarchy for ASN.1 types. This class provides functionality inherent in ASN.1 data types, such

as encode, decode, print, compare, discover its type information etc. For each ASN.1 built-in

type, a C++ subclass of AbstractData provides a type-specific representation, e.g. Boolean,

Integer, Sequence, etc. Other ASN.1 types map to classes derived from those. The whole

approach is in fact extremely similar to the one designed by the author and described in this

section. It should be noted that the OSIMIS approach was passed as input to the NMF

TMN/C++ team.

Before we describe our approach, we need to clarify further some issues behind the representation

and use of the ASN.1 ANY type in upper layer infrastructures. The ANY type is typically used

to pass “unknown” types between layered ASEs. For example, the CMISE m-get PDU is of
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ASN.1 type GetArgument [X711] but is passed to ROSE [X219] as an ANY type. This is

because ROSE is unaware of higher-level ASEs, so it specifies the arguments and results of its

operations as of type ANY. The extensive use of the ANY type in upper layer infrastructures

implies that a relevant API representation is necessary. One may suggest that this should be a

byte stream, encoded according to the transfer syntax in use. The problem with this approach is

that it increases the complexity for the relevant applications since they have to deal explicitly with

encoding and decoding. It also violates the layering principle since the application layer becomes

explicitly aware of the transfer syntax, which is normally a function of the presentation layer. In

addition, the logic produced by the ASN.1 compiler becomes dependent on the particular transfer

syntax. This reduces flexibility, in the sense that a different transfer syntax can be supported only

after recompiling the application software.

A generic procedural approach for representing the ASN.1 ANY type was first pioneered in

ISODE [ISODE][Rose90]. According to this, a special data structure can represent any ASN.1

type in a transfer syntax independent fashion. This can be generally termed an “intermediate

ASN.1 representation” and in ISODE it is specifically called a Presentation Element (PE). ASN.1

compilers produce logic that converts a concrete representation to an intermediate one and vice-

versa (encode and decode a type). Such generic structures can be passed through the upper layer

APIs and can be serialised (and de-serialised) in the presentation layer, according to the relevant

presentation context. This is exactly the policy followed in the ISODE ASEs and in many other

non object-oriented OSI infrastructures.

The key ingredient of high-level TMN APIs is the object-oriented manipulation of ASN.1. The

author realised this early in the initial design of OSIMIS (around 1990). This led to the design of

the generic Attr class, whose polymorphic interface defines the rules for generic object-oriented

ASN.1 manipulation in OSIMIS [Pav93a][Pav93b]. Every ASN.1 type is modelled by a class

that derives either directly from Attr, or indirectly through another generic class such as

Enumerated, Integer, String, List, etc. In addition, the AnyType class models specific types in a

generic fashion and is typically used by generic manager applications. Finally, the generic AVA

class (Attribute Value Assertion) was added later to model the ANY DEFINED BY ASN.1

construct, which associates attribute, action, event, and specific error names to ASN.1 types. An

O-O ASN.1 compiler wraps up the output of the ISODE pepsy compiler and produces C++

classes for specific ASN.1 types.
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class Attr
{
protected:
    virtual PE _encode ();
    virtual void* _decode (PE);
    virtual char* _print ();
    virtual void* _parse (char*);
    virtual void _free ();
    virtual void* _copy ();
    virtual int _compare (void*, void*);
    virtual void** _getElem (void*);
    virtual void** _getNext (void*);
    // . . .
    Attr (); // abstract class

public:
    virtual char* getSyntax ();
    Bool    isMultiValued ();

    PE encode ();
    char* print ();
    void ffree ();
    void* copy ();
    // . . .
    void* getval ();
    void setval (void*);
    int setstr (char*)

    virtual Bool filter (int, void*);

    void    clear ();
    virtual ~Attr ();
    // . . .
};

Code 3-1  The Generic Attr Class that Models an ASN.1 Type

We will start discussing the aspects of object-oriented ASN.1 manipulation by examining the

features of the Attr class, which realises the fundamental aspects of the ASN.1 API. Attr is an

abstract class which is never instantiated but serves as the root of the relevant C++ class

hierarchy, in a similar fashion to the AbstractData class in the ASN.1/C++ API [Chat97]. The O-

O ASN.1 compiler produces automatically derived classes that the model specific ASN.1 types

e.g. Integer, OperationalState, etc.. The Attr class encapsulates the relevant data type while

derived classes redefine the associated manipulation functions. It comprises the following

polymorphic manipulation methods:

• _encode and _decode, which convert to and from the intermediate representation;

• _print and _parse, which convert to and from a pretty-printed string;

• _free, which releases memory and _copy, which makes a copy;

• _compare, which compares two instances of the encapsulated data type; and

• _getNext and _getElem which can be used to walk through a multi-valued type (ASN.1

SET OF or SEQUENCE OF) and access the contained elements.
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All these methods can be produced automatically through an ASN.1 compiler. The produced

print and parse functions may use a “not-so-pretty” string representation while the _compare

method may not be able to exploit “buried in” semantics of a particular type , e.g. order

comparisons for a “time” type. The user might want to overwrite those methods through manually

supplied ones or even add new methods. Such a facility needs to be supported by the relevant O-

O ASN.1 compiler. It should be noted that CMIS filtering is automatically supported through the

filter method. Finally, it is possible to use string representations to construct and manipulate a

type e.g. Integer(“5”), AdminidtrativeState(“locked”). It is also possible to use intermediate

representations, e.g. ISODE PEs, which is important for constructing relevant objects when

ascending the protocol stack, i.e. in indications and confirmations.

A number of additional generic classes model generic properties of a “family” of types, such as

enumerated, null-terminated string, list, etc. An example inheritance hierarchy is depicted in

Figure 3-7 in OMT notation. The count, gauge, threshold and tide-mark classes model the

relevant types defined in [X721]. It should be noted that those types have well-defined behaviour

which has to be hand-written. They can be implemented once though and be subsequently re-

used.

Attr

Integer

Count

String

StringListGraphicString IA5String

GraphicStrList

TideMarkThreshold

CountThld GaugeThld

Enumerated

AdminState UseState

IntList

Gauge List

IA5StrList

AnyType

Figure 3-7  Example ASN.1 Class Hierarchy

In an object-oriented CMISE protocol stack, values of the “unknown” ANY type i.e. attribute,

action, event and object-specific error values, can be passed through the API as Attr parameters.

These can descend the stack in the case of requests and responses, carrying with them behaviour

to produce the required intermediate representation at some point. In the case of indications and

confirmations, the CMISE layer needs to know which ASN.1 type corresponds to a particular

name so that it can construct the corresponding object e.g. Count for the bytesSent attribute. This
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can only be achieved if the CMISE layer has access to meta-data for a particular GDMO/ASN.1

object model. The exact information required is the mapping of the relevant name to the

corresponding ASN.1 type. This information can be produced by GDMO compilers and stored in

some form of database that implements an information model repository. We will discuss issues

on such a repository in section 3.5.6.

In management environments, there is a particular class of manager applications which are

information model independent in the sense that they do not depend on the semantics of the

particular model they access. An example of such an application is a MIB browser [Pav92a]

which allows a human user to browse through the MIT across a management interface and set

attribute values, perform actions and create/delete managed objects. Such an application is

written once, in a generic fashion, and needs simply to be “updated” (i.e. linked with in software

terms) with the particular ASN.1 syntaxes for a new GDMO information model [Pav92a]. Such

an application cannot use the specific C++ classes that model particular syntaxes, e.g. Integer,

GraphicStringList etc., since it is supposed to deal with any future types introduced by new

GDMO models. This necessitates the introduction of a generic type, the AnyType, which is a

generic specialisation of the Attr class (see Figure 3-7). This type implements its functionality by

having access to meta-data, which include in this case the encoding, decoding, printing and

parsing procedures produced by the ASN.1 compiler or supplied by the human user. This type is

of paramount importance for generic applications and was conceived early in OSIMIS, together

with the Attr class. It should be noted that the NMF NMF/C++ API [Chat97] includes such a

facility.

Finally, the mapping of arbitrary ASN.1 types to names is modelled in ASN.1 via the ANY

DEFINED BY construct. This is a powerful feature but can also be easily misused. It can be

thought as the ASN.1 equivalent to the “void pointer” in C and C++. For example, the

programmer may map the wrong type to a particular name which will be transmitted correctly

across the network but will most probably result in an obscure error produced by the other end

(or in a core dump in the case of not-so-bullet-proof software!). In order to harness the relevant

power, the author designed the Attribute Value Assertion (AVA) class, whose salient features are

depicted in the Code 3-2 caption.
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class AVA
{
    // . . .
public:
    static Bool createError ();

    char* getName ();
    Attr* getValue ();
    CMISErrors getError ();
    CMISModifyOp getModifyOp ();

    char* print ();
    void clear ();
    // . . .

    AVA (char*, void*, CMISModifyOp = noModifyOp);
    AVA (char*, char*, CMISModifyOp = noModifyOp);
    AVA (char*, Attr*, CMISModifyOp = noModifyOp);
    AVA (OID, PE, CMISErrors, CMISModifyOp);
    // . . .
    ~AVA ();
};

Code 3-2  The AVA Class

The AVA class encapsulates the relevant syntax object together with the corresponding name. It

also encapsulates a modify operator, used in CMIS m-set requests, and an error value, used in

CMIS results to denote some error condition e.g. attribute not set because of access, invalid value

or other problem. When constructing a AVA instance, the consistency of the name and type are

checked through access to the information model repository, so the programmer is protected in

the case of an error. Both the Attr and AVA classes are used extensively in the OSIMIS high-

level APIs.

The Code 3-3 caption shows some of the power and expressiveness of the object-oriented ASN.1

API through brief examples. The latter show the manipulation of the base ASN.1 type INTEGER

through C++ classes. Initially, an Integer instance is constructed, first through the encapsulated

data structure, i.e. the C++ int built-in type, and then through an equivalent string value. The

encapsulated data structure can be accessed either through the generic Attr::getval() method or

through the type-specific user-supplied Integer::getint() method. The next example shows the

construction of a generic AnyType instance that realises an integer with the same value as before.

The type can be specified either explicitly, e.g. “Integer”, or implicitly through the associated

name, e.g. “bytesSent”. Note that the value may be printed without any knowledge of the

encapsulated data structure. This form of manipulation is typical in generic manager applications.

Finally an AVA instance is constructed and printed, first by using explicit type knowledge and

then generically. Programming with explicit types has the advantage of additional type-specific

methods which may be manually supplied, e.g. Integer::getint(). It is also more performant since

there is no need to access meta-data at construction time, as it is the case with the AnyType class.
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// Integer construction with the encapsulated data structure

int* val = new int;
*val = 10;
Integer* i = new Integer(val);

// Integer construction with string

Integer* j = new Integer(“10”);
cout << “j is ” << j->getint() << endl; // getint() is user-added

// generic AnyType construction based on type knowledge (Integer)

AnyType* k = new AnyType(“Integer”, “10”);
char* cp;
cout << “k is ” << cp = k->print(); // generic print
delete cp;

// generic AnyType construction based on name knowledge (bytesSent)

AnyType* l = new AnyType(“bytesSent”, “10”);
cout << “l is ” << *(int*) l->getval() << endl;

// AVA construction based on name (bytesSent) and value (Integer)

AVA*     m = new AVA(“bytesSent”, i);
cout << “m name is ” << m->getName();
cout << “ and value is ” << *(int*) m->getValue->getval() << endl;

cout << “m is ” << cp = m->print() << endl; // prints name: value
delete cp;

Code 3-3  Example Use of the O-O ASN.1 API

We will finalise this section with a brief discussion of the realisation issues. Ideally, one would

like to implement an ASN.1 compiler that produces directly the relevant C++ classes for the

various types. Since users might also want to overwrite some of the produced methods, such a

facility needs also to be supported. Unfortunately, most OSI upper-layer environments come with

their own, typically procedural, ASN.1 compilers which follow their own conventions. One may

try to encapsulate their output, which is what the author has done with the ISODE pepsy

compiler, but there are limits as to how far one can go with this approach. For example, the C

structures produced by a procedural compiler are still visible in the C++ API presented above and

have to be manipulated by programmers. Removing all the dependencies on a procedural ASN.1

API means essentially implementing a new native object-oriented ASN.1 compiler and this can be

a lot of work (ASN.1 is a pretty complex language). The “wrap-up” approach though is

acceptable and can go a long way towards supporting object-oriented APIs for ASN.1

manipulation.

The OSIMIS O-O ASN.1 compiler wraps-up the output of the ISODE pepsy compiler. It

performs first some rudimentary parsing of the ASN.1 input file, invokes the pepsy compiler and

parses partially the output of by the latter. It knows the ASN.1-to-C data structure conventions

used by pepsy and uses this and the parsing information to build a symbol table and to drive the

generation of C++ classes that correspond to the ASN.1 types. User’s code that overwrites
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produced methods can also be incorporated. The process of producing C++ classes for ASN.1

types is shown in Figure 3-8. This wrap-up compiler is a modestly complex program, written

using the GNU version of the UNIX awk tool [Kern84]. The latter provides a very flexible

“interpreted C”-like facility. The author spent about a month for the relevant implementation. On

the other hand, it took almost a year to realise the possibility for such a solution and work out the

relevant details. The O-O ASN.1 compiler was implemented in the course of 1994.

The heart of the ASN.1 API is the Attr class whose polymorphic interface took quite some time

to finalise. A first version was designed and implemented in 1990 with the early version of

OSIMIS but it took a number of iterations to get it right. It is difficult to quantify such a task in

terms of complexity and time, since it involves very delicate aspects of polymorphic object-

oriented design. The same is true for all the high-level object-oriented OSIMIS APIs. Finally, the

AVA class was conceived and added in 1993, while designing the RMIB high-level manager API;

the latter will be described in section 3.5.

ASN.1
 spec.

C structures and
syntax functions

O-O ASN.1
  compiler

pepsy ASN.1
   compiler

  C++
classes

 Users’
methods

Figure 3-8  C++ Class Generation for ASN.1 Types

In summary, object-oriented ASN.1 manipulation is key for user-friendly upper layer APIs. The

author recognised early the need for such a facility and designed and implemented first the

relevant classes and later the O-O ASN.1 compiler. For a number of years, the only available

compilers and APIs were procedural while there is very little research work discussing the issues

behind object-oriented ASN.1 APIs. The need for such an API was recognised in the mid-90’s by

the NMF TMN/C++ team, with the author’s approach being an input to that work. Their

ASN.1/C++ solution [Chat97] bears a lot of similarities to the approach presented here, which

was conceived, designed, realised and made publicly available much earlier.
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3.5 Issues in Realising Object-Oriented Manager
Infrastructures

3.5.1 Introduction

In section 3.3.2.3 we concentrated on issues related to the realisation of CMISE and discussed

policies for the relevant API. The author chose to design a relatively “low-level”, procedural

CMISE API in accordance to the ISODE conventions, the latter being the supporting OSI upper

layer development environment; this API is known as MSAP. Such an API can be cumbersome

and difficult to use while it typically results in increased code size for management applications.

As already explained, the author adopted such an approach for non-technical reasons and had

already in mind higher-level, object-oriented APIs while designing the MSAP one. In fact,

developers of OSIMIS-based TMN applications that use those object-oriented APIs are not

aware of the MSAP API at all.

Because of the manager-agent duality, there exist two types of higher-level APIs: APIs in

manager roles, which should provide access to managed objects in a user-friendly, high-level

fashion, hiding CMIS/P access details but not sacrificing its expressive power. And APIs in agent

roles, providing an environment for the realisation of managed objects which hides the underlying

CMIS/P access aspects, allowing implementers to concentrate in the realisation of the associated

behaviour. It should be noted that this separation is not specific to the manager-agent model and

the OSI-SM/TMN information architecture but it is an inherent aspect of any distributed object-

oriented environment that follows the client-server model. For example, the OMG CORBA

[CORBA] mapping of the relevant abstract language to concrete O-O programming languages

has also two distinct client and server facets.

In this section, we concentrate in high-level object-oriented infrastructures and associated APIs

for applications in manager roles. There can be two types of such APIs: those that provide an

object-oriented abstraction of an application in agent role; and those that provide object-oriented

abstractions of its individual managed objects. In both cases, by object-oriented abstractions we

mean objects in local address space which model either an agent application or an individual

managed object, in a “proxy” fashion. One may remark that CMISE APIs model to some extent

an agent application. This is true, but none of the existing CMISE APIs, i.e. the OSIMIS MSAP

[Pav93b], the X/Open XMP [XMP] and the NMF CMIS/C++ [Chat97], provide the level of

abstraction and functionality we will propose here.
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3.5.2 Related Work

There is less research work on higher-level manager APIs, as opposed to research work in

designing and developing agent infrastructures and APIs, which will be considered in section 3.6.

In particular, there is very little research work on abstractions modelling remote agents, similar in

scope and functionality to the proposal of the author detailed in section 3.5.3. It seems that

relevant research work either concentrates in modelling raw CMIS functionality, e.g. the X/Open

XMP [XMP], the NMF CMIS/C++ [Chat97], or addresses directly abstractions at the managed

object level, e.g. the IBM Object-Oriented Interface (OOI) [Holb95], the NMF GDMO/C++

[Chat97] and even CORBA [CORBA][BenN94].

The IBM Object-Oriented Interface (OOI) [Holb95] presents an approach for modelling remote

managed objects in a manager application through Proxy Managed Objects (PMOs) associated to

a Proxy Agent object that models the remote agent. The latter provides an object-oriented view of

CMIS, realised over XOM/XMP. It encapsulates the XMP “session” and provides access to

XMP operations through its methods, the key advantage being the use of an O-O ASN.1 API

which is also part of the OOI framework. The proxy agent provides methods for accessing

multiple objects through scoping, filtering and may create a number of PMOs as a result of those

operations. It also allows manager objects to request event reports and supports a relevant “event-

queue” facility. In summary, the Proxy Agent provides facilities similar to some extent to those of

the Remote MIB (RMIB) agent proposed by the author. It should be noted that the author’s work

[Pav94b] predated the relevant work by IBM and has been taken into account in the latter.

The PMOs model remote managed objects and the emphasis is on strong typing that results in a

friendlier interface for novice application developers, providing compile-time checking. Specific

PMO classes, produced through a GDMO compiler, include methods for accessing attributes and

invoking actions. Both the attribute access methods (get, set) and the action methods take as

parameters the precise C++ classes that model ASN.1 types according to the GDMO/ASN.1

specification. In addition, a weakly-typed generic PMO class is also provided which can be used

in generic applications such as MIB browsers. This uses a generic ASN.1 type, similar to the

AnyType presented in section 3.4. When weak-typing is used, run-time checking is supported

through access to meta-data. IBM’s approach was the main input to the NMF TMN/C++ API

team for the object oriented manager API. As such, it has influenced strongly the latter which is

described below.

The NMF GDMO/C++ API [Chat97] is a complete approach towards such an API. It is to an

extent a superset of the IBM OOI one, incorporating also aspects from other proposals, including
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the OSIMIS high-level manager APIs. A remote agent is modelled through an Agent Handle (AH)

class, through which multiple managed objects can be addressed through scoping and filtering. A

MO is modelled through a Managed Object Handle (MOH) class, which is specific to the

particular GDMO class and is produced automatically by the GDMO compiler. A Managed

Object Handle Factory (MOHF) contains a set of “machine objects”, one for each of the GDMO

classes the manager knows about. New MOHs can be created through the factory for a particular

Agent Handle or as a result of linked replies from scoped operations. The whole framework is

strongly-typed, providing compile-time error checking,. There is also a weakly-typed version

which can be used in generic manager applications. Finally, the user may introduce specific

MOH-derived classes which implement particular policies with respect to the relevant remote MO

e.g. attribute value caching, periodic updating, etc.

Although CORBA will be introduced formally in Chapter 4 and despite the fact that its

underlying protocol is not CMIP/Q3, it is worth examining briefly its client or “manager” API. In

CORBA [CORBA][BenN94], remote objects are accessed through object references which point

to a local proxy object. The latter is similar to the NMF GDMO/C++ MOH, providing strongly-

typed access to either general or to attribute access methods (get, set). Here, there is no notion of

agents since these do not exist in the CORBA framework. A difference between CORBA proxy

objects and MOHs is that every access to a proxy object results in an operation to the relevant

master object, while this is not the case with a MOH. In addition, in CORBA it is not possible to

implement access policies “inside” a proxy object through inheritance. Finally, weakly-typed

access is possible through the Dynamic Invocation Interface (DII).

3.5.3 The Remote MIB Manager Infrastructure

The need for a higher-level manager API was identified early while designing and developing

OSIMIS. Having developed first the Generic Managed System (GMS) agent support

infrastructure which will be described in section 3.6, it became clear that a similar environment

was required for manager applications. The initial approach for developing those was to use the

native MSAP CMISE API. This necessitated low-level CMIS primitive manipulation and

resulted in a lot of complex code for management applications.

The first relatively sophisticated TMN system that was developed using OSIMIS was the RACE

NEMESYS service management system during 1991. This comprised a combined Q-Adapter /

Mediation device for an ATM simulator, an Element Manager OS and a Service Manager OS,

organised in a hierarchical fashion [Pav91b][Pav92b]. The two OSs were going to be designed
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and developed by people who had little or no experience of network programming. It was

necessary to provide them with high-level abstractions, so that the author investigated the relevant

issues and designed the framework for two infrastructures:

• the Remote MIB (RMIB) agent level infrastructure; and

• the Shadow MIB (SMIB) managed object level infrastructure.

J. Cowan of UCL implemented the first embryonic version of the RMIB infrastructure in 1991.

This version served as a proof of concept and was successfully used in the NEMESYS project,

allowing relatively inexperienced people to develop (the manager parts of) TMN OSs. It was

though skeletal and incomplete and, as such, it was not released with OSIMIS-3.0 [Pav93b]. A

more complete approach to the design and implementation of the RMIB infrastructure took place

during 1993 in the RACE ICM project. The author together with T. Tin of UCL revised the

model and redesigned the relevant API. T. Tin subsequently implemented the RMIB

infrastructure which was publicly released with OSIMIS-4.0 [Pav95b].

3.5.3.1 Design Issues and Objectives

One of the key objectives while designing such an infrastructure was to hide the intricacies of the

underlying communication infrastructure as much as possible, without sacrificing any of the

available expressive power. This implies a genuine object-oriented abstraction of the OSI

management access service which would be programmer-friendly and easy to use, making

possible the development of TMN applications by users with very little or no knowledge of

network programming. We examine in detail below the sub-objectives accruing from this main

objective.

As already explained, most CMISE APIs leave the implementer to deal with the low-level

mechanics of management information access. Managed object class, attribute, action,

notification and specific error names are typically passed across the API as Object Identifiers

(OIDs), leaving to the user the responsibility to convert from and to user-friendly strings.

Managed object names (i.e. distinguished names) are passed across as list-like data structures or

objects, while the user typically deals with names as strings. The CMIS filter parameter is passed

again as a complex data structure while the user would like a string-based, symbolic

manipulation paradigm. In the case of non object-oriented CMISE APIs such as the OSIMIS

MSAP, attribute, action, event and specific error values are passed across encoded in an

intermediate representation. It is the responsibility of the API user to encode and decode native

data structures to this representation.
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In addition to the relatively low-level parameters to primitives, the CMIS service is by nature

asynchronous and this is the way it is typically modelled in relevant APIs e.g. the OSIMIS MSAP

and the NMF CMIS/C++. In this case, the application is responsible for assembling linked replies

and identifying the empty PDU that denotes the termination of a particular series. While an

asynchronous remote execution model is necessary in single-threaded execution environments, it

requires state information to be kept by the application. A synchronous execution paradigm with

RPC-like semantics is more natural to programmers, so a synchronous mode of CMIS operations

should be supported. In this case though, a multi-threaded execution paradigm is necessary for

increased performance. A discussion on the issues of synchronous vs. asynchronous execution

paradigms for distributed management applications will be presented in section 3.7.

A key aspect of OSI-SM / TMN is their event-driven management approach. Particular events

may be requested at a fine level of granularity by setting relevant filters in Event Forwarding

Discriminator (EFD) objects as explained in Chapter 2. The manager application needs to

explicitly manipulate EFDs while some “dispatching” mechanism is necessary to deliver an

arriving event report to the right manager objects inside that application. This functionality could

be undertaken by the supporting infrastructure. Finally, association management could be

supported transparently by the infrastructure but the facility to explicitly initiate, terminate and

abort associations should be also available to applications.

In summary, a high-level manager API has the following requirements as presented above:

• attribute, action, event and specific error names should be manipulated through user-

friendly strings instead of object identifiers;

• attribute, action, event and specific error values should be manipulated through objects

that correspond to the relevant ASN.1 type, rendering unnecessary any explicit encoding

and decoding manipulation;

• object names and CMIS filters should be manipulated in a symbolic, string-based

fashion;

• both asynchronous and synchronous remote operation paradigms should be supported;

• linked replies should be assembled in the synchronous mode; in the asynchronous mode,

both an assembly of the whole series and a “n-by-n” callback facility should be

supported;
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• a high-level facility for the requesting and delivery of event reports should be supported,

hiding the explicit manipulation of EFDs;

• association management should be transparent but also explicit control of associations

should also be supported; and

• location transparency should be supported, in a similar fashion to CMISE APIs.

3.5.3.2 The RMIB Model

RMIB [Pav94b] is an object-oriented model that encapsulates the agent and associated MIB of a

remote management interface. This is done through a class called RMIBAgent since it acts as an

agent within the manager application for the remote system. It should be noted that the term

“remote” implies logical as opposed to physical remoteness. For example, the co-operating

manager and agent applications can be co-located at the same network node, interworking either

through a full Q3 interface or through a more lightweight interprocess communication i.e. a q3

reference point in TMN terms.

  

<RMIB Mgr>

RMIB Mgr

RMIBAgent

ManagerObj

Managing Application

Agent Application

Q3

MOs

API

<RMIBM gr> - specific class derived from RMIBMgr

Figure 3-9  Remote MIB Model and Interactions

Typically there exists one RMIBAgent instance within a manager application that corresponds to

a particular remote agent, modelling a “binding” to that system. It is of course possible to

instantiate more than one RMIBAgent for the same remote agent. The RMIBAgent class provides
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methods that correspond to the manager role CMIS primitives i.e. m-get, m-set, m-action, m-

create, m-delete and m-cancelGet, methods to request, terminate, suspend, resume the forwarding

of event reports and methods for association management. The forwarding of event reports is

inherently asynchronous while remote operations on managed objects are supported in both a

synchronous and an asynchronous fashion. An abstract RMIBManager class provides the

interface for the asynchronous “callbacks” or “upcalls” [Clark85], which should be specialised in

derived classes. The relationship between the RMIBManager and RMIBAgent instances is many-

to-many.

The RMIB model and relevant interactions is shown in Figure 3-9, in the form of co-operating

object instances. In case a manager object does not need callbacks because it is not interested in

event reports and uses only the synchronous operation facility, then it does not need to be of type

RMIBManager. The shaded parts of the diagram indicate generic re-usable classes. Note that the

RMIBAgent class encapsulates the CMISE functionality, which in the case of OSIMIS is

provided by the MSAP procedural realisation. An OMT relationship of the relevant classes is

also shown in Figure 3-11 in the next section, depicting both the RMIB and SMIB models.

Aspects of the RMIB model have been adopted in the IBM OOI [Holb95] and the NMF

GDMO/C++ [Chat97] approaches. A difference is that these support both callback and event-

queue facilities for asynchronous operations, while the RMIB supports only a callback model4.

Another more important difference is that those models combine a RMIB and SMIB approach in

one framework. For example, as a result of scoped operations on the equivalent remote agent

object, a set of new “shadow” objects are created which can be then accessed then locally in order

to retrieve the results. The OSIMIS RMIB approach has been deliberately kept separate from the

more sophisticated SMIB approach, the latter being a clear superset.

The requirements presented above are all met with the above model and associated design.

Distinguished names follow the ISODE string notation e.g. “ logId=1@logRecordId=5 ” .

CMIS filters follow a special string notation [Pav93b] which the author devised together with S.

Bhatti of UCL. The latter implemented the relevant conversion logic to and from the native

complex data structures. An example filter is:

“( (objectClass=log) & (!(logId=1))& (eventType=stateChange) ) ”.

A complete description of the string “language” for CMIS filters can be found in Appendix D.

                                                  

4 In OMG CORBA [CORBA], the callback and event-queue models are called the “push” and “pull”
model respectively.
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Attribute, action, event and specific error values are passed through the Attr and AVA classes of

the O-O ASN.1 API. Both synchronous and asynchronous operations are supported. In the case

of scoped asynchronous operations, the relevant RMIBManager may request the assembly of

linked replies which will be passed to it in a single callback. It may also request separate

callbacks for every linked reply or even for every group consisting of n linked replies as they

arrive. In the asynchronous case, the specific RMIBManager is able to exercise the m-cancelGet

facility.

Associations can be either explicitly manipulated or left to the infrastructure i.e. the RMIBAgent.

In the latter case, the application may manipulate a time-out for “caching” an association. If no

traffic to the remote real agent is encountered during that period, the association is terminated and

re-established when the next operation to that agent is requested. Location transparency is

supported through the OSI Directory [X750] in a similar fashion to CMISE as described in the

section 3.3.2.3.

The RMIB model supports programming with local rather than global distinguished names. The

RMIBAgent is identified through the remote agent’s name e.g. the full directory name

c=UK@o=UCL@ou=CS@cn=NM-OS or simply NM-OS when in the local domain. Subsequent

operations on managed objects through the RMIBAgent should use local names e.g.

logId=1@logRecord=5 . This is in accordance with the TMN model in which managed object

clusters are manipulated together, as explained in Chapter 2. A TMN OS is typically configured

with the names of other OSs it needs to access instead of global names of individual managed

objects. The RMIB model supports naturally this mode of operation.

The RMIBAgent supports also a high-level event reporting API. Event reports may be requested

through a string filter, they can be subsequently suspended, resumed and finally terminated. The

RMIBAgent needs to create and manipulate one or more EFDs with the event filtering

requirements of the RMIBManager instances. with a. When an event report is received, the

RMIBAgent needs to identify the relevant RMIBManager and “push” the event report to it

through an upcall. The necessary “demultiplexing” has revealed an important limitation in CMIS:

it is not possible to distinguish which EFD an event report originates from since the CMIS m-

eventReport primitive does not contain the name of the relevant EFD that triggered it. This makes

impossible to demultiplex the event reports arriving at a manager application.

The solution adopted in the RMIB design overcomes this limitation in the following fashion. A

separate EFD is created for each RMIBManager, with a filter which is a union, i.e. an OR filter,

of all the assertions a particular RMIBManager has requested. Each such EFD is created on a
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different association, with an empty destination attribute. The OSIMIS agent realisation of an

EFD conceives such a request to imply “use the association in which you were created to report

future events”. If the manager terminates this association without deleting the EFD, the EFD’s

operational state becomes “disabled”. The RMIBAgent is thus able to demultiplex event reports

and pass them to the relevant RMIBManager based on the association it receives them. This of

course requires that the underlying CMISE API supports explicit association control. Though this

approach works, there are two problems with it:

a) the proposed EFD behaviour in the agent is not standard, i.e. not prescribed in [X734],

but was simply devised by G. Knight of UCL together with the author; and

b) the manager needs to keep the relevant association open continuously, which results in

consuming network resources in connection-oriented networks and increases the memory

size of the relevant applications.

It should be noted that despite the fact this approach is not standard, it was pioneered in OSIMIS

and was subsequently adopted by many other commercial products. This means that

interoperability between those products is possible. On the other hand, an implementation

adhering strictly to [X734] should reject the creation of an EFD with no destination attribute

value supplied. The problem can be properly solved if the name of the EFD that triggered the

event report is added in the m-eventReport primitive as shown in the Code 3-4 caption. This of

course requires a revision of the CMIS/P recommendations [X710][X711].

EventReportArgument ::= SEQUENCE {
    managedObjectClass ObjectClass,
    managedObjectInstance ObjectInstance,
    eventTime [5] IMPLICIT GeneralizedTime OPTIONAL,
    eventType EventTypeId,
    eventInfo ANY DEFINED BY eventType OPTIONAL,
    efdObjectInstance ObjectInstance –- added parameter
}

Code 3-4 Proposed Modification of the CMIS/P EventReport PDU

3.5.3.3 The RMIB API

A part of the API specification for the RMIBAgent and RMIBManager classes is shown in the

Code 3-5 caption. A number of customised versions of the same method with different parameters

are offered to suit different requirements. For example, the most powerful m-get method allows

one to request many attributes from different objects through scoping and filtering in a

synchronous or asynchronous fashion. Once though the name of an object is known, simpler

methods may be used e.g. a synchronous method to retrieve a single attribute. Requests for
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asynchronous operations manifest themselves through an argument that passes the “identity” of

the relevant RMIBManager in order to be called back.

class RMIBAgent : public KS {
    friend class SMIBAgent
    // . . .

public:
    int bind (char* applName, char* host = NULL);
    int unbind ();

    int connect ();
    int disconnect ();

    // most powerful m-get with scope/filter (sync or async)

    int Get (char*objName, char* scope, char* flt, CMISSync sync,
             char* attrNames[], CMISObjectList*& resultList,
             RMIBManager* rmibMgr = NULL, int nByN = 0);

    // synchronous m-get for one object, one attribute only

    int Get (char* objName, char* attrName,
             Attr*& attrVal, AVA*& errInfo = NULLAVAREF);

    // synchronous m-get for one object only, many attributes

    int Get (char* objName, char* attrNames[],
             AVAArray*& attrs, AVA*& errInfo = NULLAVAREF);

    // synchronous m-action for one object only

    int Action (char* objName, char* actionType,
             Attr* actionInfo, Attr*& actionReply,
             AVA* errInfo = NULLAVAREF);

    // request and cancel event reports through string filter

    int receiveEvent (char* flt, RMIBManager* rmibMgr);
    int stopReceiveEvent (char* flt, RMIBManager* rmibMgr);

    // . . .
};

class RMIBManager {
public:
    virtual int EventReport (char* objClass, char* objName,
                 char* eventType, char* eventTime,
                 Attr* eventInfo, Attr*& eventReply,
                 RMIBAgent* rmibAgent);

    // . . .
};

Code 3-5  The RMIB O-O API

The Code 3-6 caption shows two usage examples which demonstrate the nature of the RMIB

API, which is similar to that of recent object-oriented frameworks such as OMG CORBA. The

GDMO/ASN.1 specification of the uxObj and simpleStats managed object classes used in the

examples can be found in Appendix C. We will “walk through” the example and explain what is

happening in order to demonstrate how the various features are used.
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// bind to the application with name “SMA-athena”

RMIBAgent rmibAgent;
if (rmibAgent.bind(“SMA-athena”) != OK)
    error(“cannot bind to SMA-athena!”);

// find the name of uxObj instance through scoping/filtering

rmibAgent.Get(NULL, “1stLevel”, “(objectClass=uxObj)”,
NULL, NULL, resultList);

if (resultList->getError())
    error(“problem with the uxObj instance at SMA-athena”);
char* uxObjName = resultList->first()->getName();
delete resultList;

// request the value of the nUsers attribute

GaugeInt* nUsers; AVA* errInfo;
rmibAgent.Get(uxObjName, “nUsers”, nUsers, errInfo);
delete uxObjName;

if (! errInfo) {
    cout << “nUsers is ”, nUsers->getint() << endl;
    delete nUsers;
}

// bind to the application “STATSRV” (statistics server)

if (rmibAgent.bind(“STATSRV”) != OK)
    error(“cannot bind to STATSRV!”);

// perform a sq. root calculation on the object “statsId=null”

Real arg(4), *res;
rmibAgent.Action(“statsId=null”,“calcSqrt”, &arg, res, errInfo);
if (! errInfo) {
    cout << res->getreal() << endl;
    delete res;
}

Code 3-6  Example Use of the RMIB Infrastructure

The initial knowledge is that the uxObj class is realised by agents with the name SMA-<host>

(SMA stands for System Management Agent). We would like to see how many users are

currently logged in at the host “athena”. This means the application name we are interested in is

“SMA-athena”. Note that this is not a violation of location transparency since we do not specify

the location where that application runs. It might not run at host athena but communicate with

through another protocol i.e. be a Q-Adapter in TMN terms. We first instantiate a RMIBAgent

and bind through it to “SMA-athena”. The RMIBAgent knows the local domain and will

construct the directory name for the SMAP object of that application as explained in Chapter 2

e.g. c=UK@o=UCL@ou=CS@cn=SMA-athena. It will then contact the directory, retrieve the

presentation address of the contained SMAE object and try to connect to that address. If any of

those remote operations fails, NOTOK will be returned from the bind method and the program

subsequently will exit through error. If an association is established, it will be “cached” for 60

seconds which is the default caching period.

Now we are bound to that system and would like to retrieve the nUsers attribute of the uxObj

instance, but we do not know its name. We know though from its GDMO specification that it



Chapter 3: Mapping the OSI-SM /TMN Model Onto
                 Object-Oriented Programming Environments

138

should be in the first level of the MIT as it is “bound” to the class system [X721] which is always

at the top of the MIT. We then perform then a m-get operation to the top MIT object whose LDN

is “empty”, request the first level subordinates, apply the filter (objectClass=uxObj) and request

no attributes. This will result in two CMIP PDUs passed back to the RMIBAgent, one with the

uxObj instance information and one being the empty terminator (note that scoping results in

linked replies even if one object only is selected). This request took place in a synchronous

fashion and we now know the name of the uxObj instance. We subsequently perform another

synchronous m-get operation to the latter, request the nUsers attribute and print its value. We

could have retrieved the nUsers attribute with the first operation which would have avoided the

second one, but we are trying to demonstrate more aspects of the RMIB API.

We subsequently bind to another application, called STATSRV, which contains an instance of

the simpleStats class. The RMIB agent terminates first the connection to SMA-athena which is

still established and then goes through the same process of constructing the directory name of the

application, retrieving its address and connecting to it. It should be noted that the connection to

the directory server exists already as it has been “cached-in” by the underlying infrastructure in a

similar fashion. In the second example we know in advance the name of the simpleStats instance

which is simpleStatsId=null. The latter is a convention used for single-instance classes i.e. the

value of naming attribute to be “null” . We subsequently perform the “calcSqrt” action with

argument 4 and print the result, which should be 2.

The above example, though simple, demonstrates the power and simplicity of the RMIB

infrastructure. It should be noted that the O-O ASN.1 API contributes significantly to the

relevant power and simplicity. Finally, it should be stated that this is a “weakly-typed”

environment, where type mismatch errors are discovered only at run-time. For example, if the

argument to the calcSqrt action was defined as “GraphicString arg(“4”)”, the program would

compile happily but the action method call would return NOTOK when validating the consistency

of the arguments and would print a diagnostic error message. If, the reply was specified of type

GraphicString, the program would compile happily, perform the action fine but it would either

crash when trying to print the type or it would simply print garbage.

In an agent-level infrastructure such as the RMIB it is impossible to support strong typing since

the relevant methods operate still at the CMISE level and precise ASN.1 types are not known.

This observation brings us naturally to the next level of management infrastructure that operates

at the managed object level and can be strongly-typed, the Shadow MIB.
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3.5.4 The Shadow MIB Managed Object Level Infrastructure

The idea for a facility that “caches” managed objects in manager applications was conceived

early in the NEMESYS project, before the use of OSIMIS and TMN Q3 protocols. At the time

(1988-1989), Objective C [Cox86] was used which supports an object serialisation facility in a

similar fashion to Java [Sun96]. The first NEMESYS management platform used Sun RPC

[Sun88] to communicate management information in the form of serialised managed objects or

simply serialised attributes, operation parameters and results. Based on this “management

protocol”, an application infrastructure was developed, known as the Management Unit

Information Base (MUIB). This provided support for remote operations through local operations

on “cache” objects. The reader may observe the similarity of this approach to the much more

recent Java Remote Method Invocation (RMI). The main contributor of this idea and implementer

of the relevant infrastructure was P.-E. Stern of GSI Erli, France.

When OSIMIS was introduced in the last phase of the NEMESYS project, the author thought of

reproducing the MUIB functionality over true Q3 interfaces in order to support novice application

developers by hiding the details of Q3. The concept was named Shahow MIB (SMIB) and a

detailed specification was produced, following a weakly-typed approach. The concept was

embraced with enthusiasm by IBM ENC, Heidelberg, who were a NEMESYS partner, and D.

Jordaan provided an embryonic OSIMIS-based implementation of the initial SMIB specification

as a proof of concept. This was not used in NEMESYS but IBM ENC took the concept further a

few years later, resulting in the Object-Oriented Interface (OOI) specification [Holb95] which

influenced the NMF GDMO/C++ API [Chat97]. The author independently explored the concept

further during 1993, together with A. Carr of Cray Communications, UK, in the context of the

RACE ICM project. The relevant issues were revisited and a new specification was produced and

implemented in OSIMIS by A. Carr. It should be mentioned that the SMIB infrastructure was

never released with OSIMIS since it was more of an experimental prototype rather than robust

infrastructure for building TMN applications.

3.5.4.1 The SMIB Model

The key characteristic of the SMIB approach is that it supports a local cache of (parts of) the

remote MIB within the manager application in the form of Shadow Managed Objects (SMOs)

[Pav94b]. These are administered by a Shadow MIB Agent (SMIBAgent) which models the

“binding” to that system, in a similar fashion to the RMIBAgent. In fact, the SMIBAgent

contains a RMIBAgent instance which it makes available to its users. This means that the SMIB
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framework is a clear superset of the RMIB one. The difference between this approach and the

IBM OOI or the NMF GDMO/C++ is that the RMIB and SMIB infrastructures are distinct, so

that the RMIB infrastructure can be used without the SMIB. In those frameworks, the relevant

concepts are tightly-coupled and, as such, inseparable.

<SMIBMgr>

SMIBMgr
ManagerObj

Managing Application

Agent Application

Q3

SMIBAgent

MOs

SMOs

API

<SMIBM gr> - specific class derived from SMIBMgr

Figure 3-10  Shadow MIB Model and Interactions

The Shadow MIB model is shown in Figure 3-10, in the form of co-operating object instances.

The API can be both synchronous and asynchronous, with the SMIBManager class providing the

abstract callback interface. It should be emphasised that only the MOs the application is

interested in are shadowed; these are shown in shaded form in Figure 3-10. SMOs can be created

either explicitly, through a request to the SMIBAgent with their name, or implicitly as a result of

a scoped request either to the SMIBAgent or to another SMO. The SMOs typically hold

information regarding the name, class and attributes of the “master” MO in the agent. Note that

the SMIBAgent encapsulates and uses an instance of RMIBAgent, which provides O-O access to

the real remote agent. The RMIBAgent instance is not shown in Figure 3-10 but this relationship

is shown in the following figure.
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Figure 3-11  OMT Relationships of the RMIB and SMIB Classes

Figure 3-11 shows an OMT diagram of both the RMIB and SMIB models. Relationships other

than inheritance and containment are explicitly named while instance relationships include their

cardinality. The SMIBAgent contains one RMIBAgent and it is itself a RMIBManager in order

to receive events and asynchronous results. The SMIBManager derives from the RMIBManager

so that it can receive events and asynchronous results both from the SMIBAgent and the

contained RMIBAgent (the SMIB model is a clear superset of the RMIB one). The SMIBAgent

manages a number of SMOs which are members of the relevant group. Finally, the manager

objects request information from the agent and shadow objects and are informed of events and

asynchronous results.

Manager objects access typically the SMOs either in a local fashion, in order to retrieve values of

cached attributes, or in a fashion that triggers a remote operation to the associated master MO

(m-get, m-set, m-action). The creation and deletion of SMOs can also take place in two modes: a

local mode, which does not affect the master MO, and a remote or real mode, which results in the

creation and deletion of the master MO through m-create and m-delete. Operations with scope

and filter can be performed either to the SMIBAgent, using explicitly the base object’s name, or

to an SMO, which in this case assumes the role of the base object. In the same fashion, event

reports may be requested either from the SMIBAgent, when a general filter assertion is specified

that spans different object classes and instances, or from a particular SMO, requesting events

either from the individual instance or from all the instances of that class.

There are two different approaches for the design of an SMIB framework supporting the model

described above:
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• a weakly-typed approach, in which a single SMO class is used to model any managed

object class in the remote agent; and

• a strongly-typed approach, in which specific SMO classes are produced for the

corresponding MO classes through a GDMO compiler.

The weakly-typed approach is suitable for generic applications such as MIB browsers and its

main advantage over the RMIB is that it provides a cache for the MO’s attributes, alleviating the

task of the application developer. Individual attributes can be requested to be updated at regular

intervals, according to some predetermined schedule or through attributeValueChange and

stateChange event reports if the MOC supports those.

The strongly-typed approach adds the advantage that attribute access methods and actions are

strongly-typed. In addition, since the classes are produced through a GDMO compiler, the user

may add methods for adaptive polling or other behaviour according to the application’s

management policy and the semantics of the particular object class.

3.5.4.2 The SMIB API

The Code 3-7 caption shows an example of using the SMIB infrastructure. The first part

demonstrates the weakly-typed, generic approach which is very similar to the RMIB one. The

second part demonstrates the strongly-typed, information model specific approach, supported

through a GDMO compiler. The example is similar to the first one used in the RMIB case, i.e.

retrieve the nUsers attribute from the uxObj instance, but we now also perform an “echo” action

to that instance (the full class specification can be found in Appendix C). Incidentally, the echo

action demonstrates how to say “hello world” in an OSI-SM/TMN distributed fashion!

After the SMIBAgent is instantiated and bound to the SMA-athena application, we request the

creation of a SMO with name “uxObjId=null ”. In the general case, the SMIBAgent will

transparently send a m-get request to the master object, retrieving its objectClass, allomorphs and

packages attributes i.e. its top class [X721] part, in order to verify that the SMO is valid and

populate it with the necessary “base” information. The second boolean argument in our call

though indicates that we would also like to retrieve at the same time all its attributes, which

means that the SMIBAgent will request all the attributes in this case. Having succeeded, we

retrieve the nUsers attribute locally, which demonstrates the use of the shadow object as an

attribute cache. We subsequently perform the echo action. You may note that the latter is

extremely similar to the equivalent RMIB method in the Code 3-6 caption. In fact, there is no real

advantage in the SMIB approach over the RMIB one regarding actions, attribute sets and object
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creations / deletions. The key advantage is attribute value caching and relevant generic update

policies which can be encapsulated in the SMO class realisation.

// weakly-typed, generic SMIB approach

SMIBAgent smibAgent;
smibAgent.bind(“SMA-athena”);

AVA* errInfo;
GraphicString arg(“hello world”), *res;
Gauge* nUsers;

SMO* smo = smibAgent.getSMOHandle(“uxObjId=null”, True);

if (smo) {
    attr = (Gauge*) smo -> getAttr(“nUsers”, False);
    smo -> Action(“echo”, &arg, res, errInfo);
    // . . .
}

// strongly-typed, information model specific SMIB approach

SMIBAgentUx smibAgentUx;
smibAgentUx.bind(“SMA-athena”);

uxObjSMO* uxObjSmo = smibAgentStats.uxObjFactory(“uxObjId=null”);

if (uxObjSmo) {
    nUsers = smo -> get_nUsers(False);
    uxObjSmo -> echo(arg, res, errInfo);
    // . . .
}

Code 3-7  Example Use of the SMIB Infrastructure

The strongly-typed approach requires a GDMO compiler that will produce specific SMO-derived

classes, e.g. uxObjSMO, and also a specific SMIBAgent for the particular information model.

The latter is necessary in order to include strongly-typed methods for getting access to the

relevant specific shadow objects, as demonstrated in the example. There will typically exist one

specific SMIBAgent class for every information model the manager “knows” about e.g.

SMIBAgentG774 for the SDH element model [G774]. Returning to the example, we bind to that

system and request the creation of a shadow object in the same fashion as before. The key

difference is that the relevant method (uxObjFactory) is now strongly-typed. The same is true for

the subsequent attribute retrieval (get_nUsers) and the echo method call. For example, if the echo

argument or result was declared of type Real by mistake, the program would not compile. This

approach has significant advantages for program development by novice users.

3.5.4.3 Manager Mapping of GDMO to O-O Programming Languages

The SMIB approach requires essentially a “manager” mapping of the GDMO O-O abstract

language to concrete O-O programming languages. We have implicitly proposed aspects of such
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a mapping while discussing the SMIB model and explaining its features by example. We

elaborate on this mapping and present an explicit proposal below:

• Managed object classes map to C++ classes. In the weakly typed approach, every GDMO

class is modelled by the SMO class. In the strongly-typed approach, GDMO classes map to

corresponding C++ classes with the SMO suffix, following exactly the same inheritance

relationships as in GDMO. The topSMO class derives from SMO.

• Packages are not explicitly present in shadow managed objects. Their attributes, actions and

notifications map onto methods of the containing managed object class as proposed below.

These methods are produced for both mandatory and conditional packages. If a conditional

package is not present in the MO instance, the associated SMO methods to that package

should return an error.

• Attributes map to relevant access methods according to the access rights, i.e. get, set,

setToDefault, and also add and remove for settable multi-valued attributes. Access could be

either local or remote. Methods should be provided to allow the remote get and set of more

than one attributes at a time i.e. resulting in one CMIS m-get or m-set request. In the strongly-

typed approach, specific methods should be generated for each attribute with the exact ASN.1

type e.g. “Gauge* nUsers_get()”, “int wiseSaying_set(GraphicString*), etc.

• Actions map to relevant access methods, with an input argument modelling the GDMO

“action information” and an output argument modelling the GDMO “action reply”. In the

strongly typed approach, specific methods should be generated for each action with the exact

ASN.1 types e.g. “int echo(GraphicString*, GraphicString*&)”.

• In the weakly-typed approach, the SMIBManager provides a generic EventReport method,

inherited from the RMIBManager as in the Code 3-5 caption. This method is used to “push” a

notification to the RMIBManager. In the strongly-typed approach, notifications should be

mapped to generated methods of a specific SMIB manager class for that information model.

The notification methods should take event information and reply parameters with specific

ASN.1 types.

• Parameters for attributes, actions and notifications indicate essentially MOC-specific errors.

These should be mapped onto error parameters, with type-value information for the relevant

methods (OSIMIS maps those to AVA error arguments).
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• Name bindings do not map explicitly to shadow managed objects. Every SMO knows its name

and, as such, its position in the MIT. SMOs should provide facilities for getting the handle of

the superior SMO or the handles of subordinate ones through scoping and filtering.

The proposed mapping highlights a “failing” of GDMO as an abstract O-O specification

language. Arbitrary methods of distributed managed objects are modelled in GDMO through

actions. These take only one input argument, the action “information”, and return one output

argument, the action “reply”. In the case of actions with more than one input or output

arguments, they have be artificially combined into one argument using typically the ASN.1

SEQUENCE type. This results in a non-natural mapping of the arguments to C++ method

signatures. As an example, the simpleStats class supports a calcMeanStdDev action which

calculates the mean and standard deviation given a list of real numbers (see Appendix C). The

action reply in this case should comprise two distinct output arguments, the mean of type REAL

and the stdDev, again of type REAL. This is not possible in GDMO, so one is forced to define a

new output argument of type MeanStdDev, which is of type SEQUENCE and comprises two

elements of type REAL for the mean and standard deviation. The “contrived” ASN.1 type and the

resulting action signature in C++ are shown in the Code 3-8 caption, together with the ideal

method signature for this type of action.

-- ASN.1 definition for “calcMeanStdDev” action reply

MeanStdDev ::= SEQUENCE {
    mean REAL,
    stdDev REAL
}

// resulting action signature in C++

int calcMeanStdDev(RealList* info, MeanStdDev*& reply);

// ideal action signature for the “calcMeanStdDev” action

int calcMeanStdDev(RealList* rList, Real*& mean, Real*& stdDev);

Code 3-8  The C++ Mapping “Problem” with GDMO Actions

The solution is to modify the GDMO Action template to allow for more than one information and

reply types. In this case, the action and reply information at the CMIS/P level will be a SET OF

ActionInfo and a SET OF ActionReply respectively. This implies a modification of CMIS/P in

addition to GDMO. The Code 3-9 caption depicts both the grammar for the new template and an

example for the calcMeanStdDev of the simpleStats class. The proposed syntax would result in

the more natural C++ signature for that action as explained above.
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<action-label> ACTION
    [MODE CONFIRMED ;
    ]
    [PARAMETERS   <parameter-label>

[,<parameter-label>]* ;
    ]
    [WITH INFORMATION SYNTAX

  [<argument-label>] <type-reference>
[,[<argument-label>] <type-reference>]* ;

    ]
    [WITH REPLY SYNTAX

  [<result-label>] <type-reference>
[,[<result-label>] <type-reference>]* ;

    ]
REGISTERED AS object-identifier ;

calcMeanStdDev ACTION
    MODE CONFIRMED;
    WITH INFORMATION SYNTAX
        numbers UCL-ASN1Module.RealList; -- SET OF REAL
    WITH REPLY SYNTAX
        mean UCL-ASN1Module.Real, -- REAL
        stdDev UCL-ASN1Module.Real; -- REAL
REGISTERED AS { uclAction 702 };

Code 3-9  Proposed Modification of the GDMO Action Template

A weakly-typed SMIB approach was prototyped during 1994 in the ICM project, validating the

design and GDMO to C++ mapping presented above. The reason the weakly-typed approach was

chosen was practical: the strongly-typed approach needs a GDMO compiler with an SMIB-

specific back-end for code generation. At that time (early 1994), the OSIMIS GDMO compiler

was not entirely stable. The SMIB prototype was incomplete, so it was never released with

OSIMIS. On the other hand, this implementation validated the relevant concept and model.
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3.5.5 The Tcl-RMIB Scripting Manager Infrastructure

The Tool Command Language (Tcl) [Oust94] emerged in 1994 as a general-purpose scripting

language that interfaces well with C/C++ and can be extended with commands implemented in

those languages. The key advantage of Tcl is its interpreted nature which accelerates the

development process and may also support code mobility. Tcl is a weakly typed language based

on strings and it is relatively easy to use compared to compiled programming languages such as

C/C++. On the other hand, it is about an order of magnitude slower compared to those.

One of the main reasons behind the popularity of Tcl is its extension for the MIT X Window

System and MS Windows, known as Tk [Oust94]. This is a graphical toolkit that extends the

core Tcl facilities with additional commands for constructing GUIs. The Tk toolkit exists in the

form of a collection of display “widgets”, providing a user-friendly way to compose graphical

primitives. The combination of Tcl and Tk presents a suitable environment for the rapid

construction of GUI-based applications. A Tcl extension of the compiled higher-level manager

infrastructures could support the rapid construction of TMN WS-OS applications.

We have chosen to provide RMIB extensions to Tcl since RMIB is the primary high-level

manager infrastructure. Providing those Tcl extensions was relatively straightforward since the

RMIB infrastructure supports already string parameter passing for distinguished names, filters,

and attribute, action, notification and specific error values. A more difficult aspect is the mapping

of the object-oriented RMIB model to the procedural Tcl one. Given the fact Tcl allows to

reference and invoke procedures in a similar fashion to the C language “function pointer” facility,

it is possible to emulate object-oriented style of programming in Tcl. [Meyer88] discusses how

object-oriented features can be supported in procedural languages that support a facility

equivalent to “function pointers”.

The resulting language is called Tcl-RMIB [Tin95][Pav96d] and allows interactions with remote

agents using the same abstractions as the compiled C++ RMIB. Tcl-RMIB provides a number of

extension commands to Tcl in which the underlying RMIB C++ objects are manipulated by their

interpreted counterparts. Commands are provided for the user control (creation, deletion, etc.) of

the agent and manager objects locally in Tcl and for performing management operations through

those objects. Both synchronous and asynchronous modes of operation are supported. The

management commands are shown in Table 3-5. Their syntax owes much to that of the generic

command line manager programs which also influenced the string-based CMIP that was

described in section 3.3.2.4.
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Management Command Description

m_bind agentId ?-a agentName? ?-h hostName? binds to a remote agent

m_unbind agentId unbinds from a remote agent

m_get agentId ?-c class? ?-n name? ?-s scope ?sync??

?-f filter_expr? ?-a attribute ...?

?-m managerId ?-o??

allows the M-Get invocation; may return
an invoke identifier for call-back
correlation

m_set agentId ?-c class? ?-n name? ?-s scope ?sync??

         ?-f filterExpr? ?-w|d|a|r attrType?=attrValue? ...?

?-m managerId?

allows the M-Set invocation; may return
an invoke identifier for call-back
correlation

m_action agentId ?-c class? ?-n name? ?-s scope ?sync??

?-f filterExpr? ?-a actionType?=actionValue??

?-m managerId?

allows the M-Action invocation; may
return an invoke identifier for call-back
correlation

m_delete agentId ?-c class? ?-n name? ?-s scope ?sync??

?-f filterExpr?

?-m managerId?

allows the M-Delete invocation; may
return an invoke identifier if call-back
correlation

m_create agentId ?-c class? ?-n name | -s superiorName?

?-r referenceName? ?-a attrType=attrValue ...?

?-m managerId?

allows the M-Create invocation; may
return an invoke identifier for call-back
correlation

m_notify agentId managerId

??-c class? ?-n name? ?-e eventType? |

?-f filterExpr? | ?-a??

?-s?

allows the call-back registration of a
manager to receive event reports and
also request termination of notification;
event reporting may be cancelled (using
-s).

Table 3-5  Tcl-RMIB Management Commands

The Tcl-RMIB approach has semantics of a weakly-typed dynamic invocation interface, in a

similar fashion to the RMIB one. It mirrors the functionality of the compiled RMIB approach and

provides an analogous interpreted interface. The full CMIS expressive power is available i.e.

scoping, filtering, linked replies and fine-grain event reporting based on filtering. Control over

management associations is provided while it may be also left to the underlying infrastructure. A

generic list structure that applies to all the requests is used for replies and errors as described in

detail in [Tin95].

While the Tcl-RMIB approach is agent-oriented in a similar fashion to the RMIB one, higher-

level managed object-oriented interpreted approaches are possible e.g. a Tcl-SMIB. It should be

mentioned that while Tcl was thought to be the definitive interpreted scripting language 2-3 years

ago, it has been recently overshadowed by the emergence of Java [Sun96]. The latter has all the
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advantages of Tcl/Tk, including facilities for rapid GUI construction. In addition, it is object-

oriented, it compiles into intermediate “byte-code” representation which results in better

performance and will be eventually supported by Java-capable hardware. In summary, Java is the

language to be used for TMN WS-OSs in the future. A Java-RMIB infrastructure is perfectly

feasible to provide since Java can interface to C++ (though not as easily as Tcl). In addition, the

fact that Java is object-oriented and has syntax similar to C++ will result in exactly one-to-one

mapping between the Java-RMIB and the RMIB features while equivalent methods will have

similar syntax.

The Tcl-RMIB infrastructure was designed together by T. Tin and the author while it was

implemented by T. Tin in early 1995. It was subsequently used successfully in the ICM project

for developing WS-OS applications. It was also publicly released with OSIMIS-4.0 [Pav95b], so

it was also used by the wider community. It demonstrates that the concepts and facilities of the

high-level manager infrastructure are general enough to allow mappings to programming

languages other than C++. In addition, it suggests that interpreted high-level manager support in

languages with built-in GUI capabilities is an important ingredient of a TMN distributed software

platform.

3.5.6 The Management Information Repository

While discussing both CMISE and higher-level manager infrastructures and APIs, we referred to

necessary knowledge of the GDMO information model. This is required in order to be able to

map user-friendly string names of attributes, actions, events and specific error names to the

respective object identifier and the corresponding syntax. This information should be made

available to such infrastructures in a data-driven fashion so that they are able to cope with new

information models without changes in their code. As such, it needs to be stored in a form of

database that can be accessed at run-time, hence the term management information repository.

This information is typically produced by compiling a GDMO information model and has to be

added to the information repository if it is not already there. This process can be automated so

that every time an information model is compiled, the repository is automatically updated. A

manager infrastructure, such as a high-level CMISE implementation or the RMIB, typically reads

this information when starting up and builds-up a core memory image of the relevant mappings.

Access to this information is provided either through the name or the associated OID, which

serves as the “key”. A typical realisation of this information is through a hash table in order to

support fast access to the relevant data.
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With this information in place, an attribute name such as the “wiseSaying” of the uxObj class can

be mapped onto the 2.37.1.1.7.503 OID and the GraphicString corresponding syntax. This

allows, for example, to check the consistency of an attribute value assertion that the user

constructs in order to set the value of this attribute. In addition, it allows the infrastructure to map

the attribute name to the corresponding OID. In the case of indications, it allows the

infrastructure to map the OID to the user friendly name and to construct the correct C++ type

with the value i.e. GraphicString in this case.

This is the minimum information required for supporting infrastructures such as the RMIB and

the weakly-typed SMIB. Additional information about the GDMO objects may also be part of the

repository, supporting further facilities. For example, it might be desirable to perform additional

checking in a manager application, before a request is forwarded to the agent. If, say, a manager

tries to perform a calcSqrt action on a uxObj instance which the latter does not support, it should

be possible to detect this locally and generate an error. This can only be achieved if the repository

contains additional information about managed object classes e.g. the packages, attributes,

actions, notifications and specific errors they support. This information is typically referred to as

meta-data or meta-information since it describes the information model itself.

The key benefit of having access to this type of information in manager applications is that

requests can be validated locally, before sending them to the agent. An additional benefit has to

do with generic applications such as MIB browsers. In those applications, it is possible to present

this meta-information to the user in order to support better a particular request. For example,

when creating a new object instance, the user may be presented with a list of those attributes that

may be initialised so that s/he may supply initial values. If this information is not available, the

human users need to have the GDMO model “in their head”, which is certainly not possible.

This meta-information can be produced through the GDMO compiler, stored in the repository and

read by manager applications at start-time in order to build an image in core memory.

Incidentally, the same type of information is required in agent applications. The core memory

representation of this type of information can be a tree of meta-class objects that model

accurately the GDMO inheritance relationships, together with a container object that provides

access to those through the class name or OID.
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# name OID
uxObj uclManagedObjectClass.50
uxObj-system uclNameBinding.50
uxObjPackage uclPackage.50

# attr name OID attr type
uxObjId uclAttributeID.501 SimpleNameType
sysTime uclAttributeID.502 UTCTime
wiseSaying uclAttributeID.503 GraphicString
nUsers uclAttributeID.504 ObservedValue

# action name OID info type        reply type
echo uclAction.502 GraphicString    GraphicString

Code 3-10  Structure of the OSIMIS Management Information Repository

The approach followed in OSIMIS was that of the minimum possible meta-information i.e. the

table mapping names to OIDs and ASN.1 types. This means that it is not possible to detect

“mismatch” errors locally, within manager applications. Requests are always sent to the agent

that will detect the error. This is acceptable, since such errors are typically development type

errors hat will be sorted out before the application is deployed in a real system. The real

drawback is that generic OSIMIS applications such as the MIB browser [Pav92a] do not have

access to class information that could be used to provide a friendlier interface as describe above.

Finally, the Code 3-10 caption shows the OSIMIS structure of the management information

repository using as an example the uxObj class which is formally specified in Appendix C. There

are three types of “database records”: those for classes, name bindings and packages which do

not have an associated syntax; those for attributes that have one associated syntax; and those for

actions and notifications that may have two associated syntaxes, one for the information and one

for the reply. Note that the OID prefixes are also part of the database so that OIDs are fully

resolved. Note also that the objectCreation, objectDeletion and attributeValueChange

notifications, which the uxObj class supports, are absent. This is because these are generic ones,

introduced by the Object Management SMF [X730] and specified in [X721]. As such, they are

already in the X.721 part of the repository. This means that the repository is constructed in a

modular fashion.



Chapter 3: Mapping the OSI-SM /TMN Model Onto
                 Object-Oriented Programming Environments

152

    

GDMO/ASN.1
 specification

GDMO/ASN.1
    compiler

stub MO 
  classes

stub SMO 
   classes

ASN.1 syntax 
     classes

MO meta-class
  information

    Agent
Application

  Manager
Application

for strongly-typed SMIB only

produces

input to

Figure 3-12  Information Produced Through the GDMO/ASN.1 Model

We will close this section with a note on realisation aspects and procedures. While these have

been pioneered in OSIMIS, they are also followed by most commercial TMN platforms. Every

time an agent application with a new management information model is implemented, the

following steps are followed. The GDMO/ASN.1 model is compiled first in order to produce the

“stub” C++ managed object classes to support the realisation of the agent part, as it will be

described in section 3.6. The compilation of the ASN.1 part will result in C++ classes for the new

ASN.1 types this information model introduces, produced through the O-O ASN.1 compiler. The

managed object classes and associated syntax classes need to be kept separate, since the syntax

classes are used by both agent and manager applications. If the relevant TMN platform supports

a strongly-typed SMIB infrastructure, shadow object classes will be also produced. Finally, the

meta-class information will be produced for the management information repository. The ASN.1

classes and the management information repository are used by both agent and manager

applications, as shown in Figure 3-12. Note that the information model which is “built-in” in both

the agent and manager logic constitutes the shared management knowledge which together with

the supporting Q3 protocol stack achieves interoperability, as discussed in Chapter 2.

High-level manager infrastructures will need to be made “aware” of the new ASN.1 syntaxes. In

software terms, this means that the relevant library should be linked with the application and that
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the RMIB code should be “told” somehow of the new syntaxes. In OSIMIS the latter involves

changing one line of code in a header file in order to include another header file produced by the

O-O ASN.1 compiler. This is not an issue for specific manager applications since these will be

implemented “from scratch” with information model specific logic and behaviour. Generic

manager applications though, such as an MIB browser [Pav92a], will need to be slightly modified

and re-linked with a new syntax library every time an information model with new syntaxes is

encountered.

While this is acceptable in most cases, there may exist situations in which it is not desirable to

stop a generic manager application, re-link it with new syntaxes and restart it. Commercial TMN

platforms support facilities so that new ASN.1 syntaxes can be incorporated “on the fly”. This is

done through additional meta-data produced by the ASN.1 compiler for every syntax which

“guide” the application how to print and parse relevant instances. In this case, whenever new

names and types are encountered, the generic application needs to read again the information

repository in order to “learn” how to manipulate those types. This type of behaviour is possible

but introduces additional complexity. The author thought of accommodating this feature when

designing the OSIMIS ASN.1 API but decided against it because of its complexity. The solution

adopted in OSIMIS has an impact on generic applications which cannot deal with new

information models and syntaxes in a fully dynamic fashion. On the other hand, this is acceptable

in most real-life situations.

3.5.7 Summary

In this major section we looked at issues behind realising high-level manager infrastructures and

APIs that hide the complexity of the underlying CMIS service without sacrificing any of its

expressive power. We identified two types of abstractions and relevant APIs:

• weakly-typed APIs that model a remote agent application; the relevant OSIMIS

infrastructure is known as the Remote MIB (RMIB); and

• both weakly-typed and strongly-typed APIs that model individual managed objects in a

shadow or proxy fashion; the relevant OSIMIS infrastructure is known as the Shadow

MIB (SMIB).

Both these infrastructures have a lot of commonality with emerging distributed object frameworks

such as CORBA [CORBA] and DCOM [DCOM], providing an easy to use APIs and supporting

access and location transparencies. Some of the relevant features were demonstrated through

examples in the Code 3-6 and Code 3-7 captions. A few lines of code are enough to perform
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operations on remote managed objects, in a similar fashion to emerging distributed object

frameworks. In addition, the CMIS scoping, filtering and fine-grain event-reporting power is

available through the same simple APIs. This is the major contribution in this section.

Having examined aspects of the RMIB and SMIB infrastructures in detail, we conclude here that

the right approach for the SMIB is the strongly-typed one, which has serious advantages over the

RMIB approach. Strong-typing can be combined with user-included behaviour in the relevant

shadow classes, alleviating the task of the management application developer. The weakly-typed

SMIB approach is syntactically very similar to the RMIB one as demonstrated through the

examples. In addition, the generic “caching” behaviour of that approach is only of limited

usefulness, since it can not exploit the semantics of the management information.

We have also shown how to map those infrastructures to interpreted scripting languages with

“integrated” GUI development support such as Tcl/Tk. The latter though has been rendered

“obsolete” by the emergence of Java, which is now the prime candidate for TMN workstation

development. Since Java is an object-oriented language, it would be natural to map to it the

RMIB and SMIB models presented in this section.

In summary, we demonstrated in this section how to provide an object-oriented platform

infrastructure for the manager part of the OSI-SM/TMN manager-agent model. As a result of the

relevant research towards providing such infrastructures, we identified weak aspects in the

CMIS/P and GDMO specifications for which we proposed relevant solutions. The RMIB and

SMIB models and APIs have been input to the NMF TMN/C++ effort [Chat97]. This proposes a

industrial solution to the problem of TMN high-level manager APIs which has a lot of

commonality with the models presented in this section.
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3.6 Issues in Realising Object-Oriented Agent
Infrastructures

3.6.1 Introduction

In the previous section we concentrated on issues related to the realisation of object-oriented

infrastructures for applications in manager roles. The key issue was to provide object-oriented

abstractions of whole agent applications or managed objects, giving the illusion that these objects

were available in the local address space. The result was user-friendliness and easy

programmability that hides underlying protocol aspects; this is an important attribute of

distributed object frameworks as identified in section 3.2.2.

A similar infrastructure is required for applications in agent roles. In this case, the behavioural

aspects of managed objects should be shielded from CMIS/P access aspects as much as possible,

allowing designers and implementors to concentrate in the intelligence of applications rather than

been concerned with the underlying access details and complexity. A key issue in such an

infrastructure is the mapping of the GDMO abstract language to a concrete object-oriented

programming language such as C++.

Other important issues in realising agent infrastructures are the following: support for CMIS

access aspects such as name resolution, scoping, filtering and linked replies; support for the

allomorphic behaviour of object instances; support for different models in maintaining the

consistency of managed object attributes and associated resources; support for managed object

persistency; and support for the systems management functions and in particular for event

reporting and logging.

The realisation of object-oriented agent infrastructures was an issue that attracted significant

attention from the research community. The author pursued early research in this direction which

resulted design and implementation of the OSIMIS Generic Managed System (GMS) [Pav91a].

Related research work is presented in the next sub-section, while the following sub-sections

discuss the relevant issues and present a concrete proposal for a generic agent infrastructure.
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3.6.2 Related Work

The author’s research work in realising object-oriented agent infrastructures preceded other

research work in this area. The fundamental principles behind agent infrastructures were

presented in [Pav91a] and were validated by the early implementation of the OSIMIS Generic

Managed System (GMS). This work was enhanced and refined over the years and has been

subsequently presented in more detail in [Pav93a], [Pav95a] and [Pav96b]. Related research

work in this area is described in chronological order below.

[Nakai91] proposes a GDMO MIB editor tool which acts also as GDMO/ASN.1 compiler,

producing a data dictionary for managed object classes. This is stored in a relational database

and it is parsed into core memory in order to validate the consistency of operations to managed

objects. It forms part of the agent process, which also contains a “protocol processor” and the

managed objects.

[Nakak91] proposes an agent infrastructure which contains the following modules: the protocol

processing module, the MIT module, the MIB access module and the managed object module.

The interesting aspect of this work is the separation of the MIT representation from the managed

objects themselves; this approach which has been later adopted by a number of products. A

GDMO/ASN.1 compiler called MINT is used to parse specifications and produce stub class

definitions. The programming language used is superC, a proprietary object-oriented extension of

the C language.

[Newn92] describes an agent object-oriented infrastructure in C++ which is built over the

XOM/XMP C-based API. This resembles a lot to the OSIMIS managed object stubs. The

realisation of the top class provides an API to the “object manager”, which performs the CMIS/P

functions. It also defines the get, set and action methods in polymorphic fashion, i.e. as C++

virtual methods, so that derived classes can redefine them and add behaviour. The proposed

design was validated through a prototype.

[Doss93] describes the design of an agent prototype which is driven by a GDMO/ASN.1

compiler. The internal decomposition of the agent functionality is presented only briefly but the

mapping of GDMO to C++ is presented in some detail. C++ classes model the GDMO classes

and packages while C++ classes model the ASN.1 attribute, action and notification types. Class

specialisation is supported through “class doubling” i.e. behaviour is not added to stub classes

produced by the GDMO compiler but a new class needs to be derived from the produced one. The
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approach is similar to the CORBA Interface Definition Language (IDL) to C++ mapping.

Aspects of this work were incorporated in Alcatel’s ALMAP TMN platform.

[Deri95] discusses in detail the mapping of the various GDMO templates to C++ classes. It also

discusses how filtering assertions can be supported by a generic attribute class, similar to the Attr

class presented in section 3.4. The approach reflects the authors’ experience from developing

various commercial and public domain OSI-SM infrastructures. It is quite similar to the OSIMIS

GMS apart from the fact that conditional packages are modelled by separate C++ classes. The

acknowledgements state that “the importance of the OSIMIS platform is acknowledged, since it

has greatly contributed to the diffusion of OSI-SM and has introduced a number of concepts

now adopted by many commercial implementations”.

[Flau95] discusses the object-oriented aspects of DEC’s TeMIP TMN platform. A particularly

interesting aspect is that the management applications themselves can be distributed, based on a

proprietary “object broker” model which supports a dynamic invocation interface and offers

“intra-application” location transparency. The whole framework is data-driven through

dictionaries so that new functionality can be added on the fly.

[Feri96] describes IBM’s Netview TMN platform and its support environment for hybrid

agent/manager applications e.g. TMN OSs. Its key feature is the MIBcomposer front-end GUI.

This serves as GDMO/ASN.1 editor and compiler but can be also used to associate behaviour to

managed object classes. The agent environment is modular and the functionality of new classes

can be introduced without having to shutdown the agent for a “cold start”.

[Chat97] describes the NMF GDMO/C++ API in agent role. The MIT is kept separate from the

managed objects so that parts of an agent application may be distributed. Behaviour is added

through separate classes which are derived from the GDMO produced ones. This approach is

similar to the CORBA IDL to C++ mapping. The whole framework bears a lot of similarities to

the OSIMIS GMS, which was input to the relevant standardisation work.
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3.6.3 The Overall Architecture

The key aspect behind an object-oriented agent infrastructure is to provide an environment which

supports the development and deployment of managed objects that form an agent “cluster”.

Management application developers should be able to concentrate in the provision of the

associated behaviour, without being concerned about the CMIS access details and underlying

protocol aspects. This implies that the APIs for such an infrastructure should be defined at the

managed object level, in a symmetrical fashion to the Shadow MIB infrastructure. The managed

objects in this case are the master objects, implementing the information aspects dictated by a

TMN Q3 or X interface.

Given the object-oriented nature of GDMO as information specification language, it is most

natural to map the abstract managed objects onto concrete C++ object instances. The exact

mapping of the various GDMO features to a language like C++ is a difficult task because of the

object model differences; this mapping will be discussed in detail in the next section.

A managed object should be able to respond to the CMIS get, set, action and delete primitives,

should know its name, should keep handles to its superior and first level subordinate objects in

the MIT and should be able to evaluate filters according to the Management Information Model

(MIM) [X720]. We have thus identified a core component of an agent application, the

management information tree.

An object instance contains information pertinent to that instance i.e. its attributes and other

instance variables that relate to its behaviour and state. Management requests passed to it need to

be validated e.g. verify that the relevant attributes or action type are supported by the instance,

convert the raw any values to specific types according to the associated ASN.1 syntaxes, etc.

Keeping this meta-information on a per instance basis means that it would be “n-plicated” for n

instances of the same class. Since the information is related to the class rather than the instance, it

should be kept in objects which model the managed object classes. We have thus identified

another agent component, the meta-class objects. Given the fact that classes are related through

inheritance, meta-class objects should be organised in a hierarchy that models the GDMO

inheritance tree. These class objects can also serve as “factories” for the relevant MO instances.

Access to managed object instances should be provided through a component that supports the

CMIS/P functionality i.e. performs CMIS/P PDU processing, resolves distinguished names to

MO handles, evaluates scoping and filtering, provides access control, takes care of atomic

transactions and forwards replies and event reports to manager applications. We will call this
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component the CMIS or MIB agent. This can be modelled by a single C++ object instance that

encapsulates the Q3 protocol stack. The CMIS or MIBAgent is in fact similar to the RMIBAgent

in manager applications. The difference is there is only a single instance per agent application.

A final consideration is event reporting and logging. EFDs and logs will be obviously part of the

MIT but the notification processing function, as specified in [X734][X735], should be a separate

object which receives notifications and evaluates them. It may subsequently instruct an EFD to

forward the event report through the MIB agent or instruct a log to create a new log record. The

Notification Processing (NP) processing function or object can be thought as part of the MIT

component. It is “invisible” though by the MIBAgent which accesses only managed objects.

A

NP

     meta-classes

MOs

  to / from
 “resources”

   Oper.  req.
EventRep repl.

   Oper.  repl.
EventRep req. 

   Oper.:  get, set, action, create, delete, cancel-get
   NP:       Notification Processing
   MO:     Managed Object

Figure 3-13  Object-Oriented OSI-SM Agent Decomposition

The initial decomposition of the agent application is shown in Figure 3-13. A management

request always arrives to the agent object. In the case of a m-create, the agent resolves the

superior and reference names to MO handles, locates the relevant meta-class object and requests

for the object instance to be created. In the case of any other request, the agent resolves the base

object name to a MO handle, evaluates scoping and filtering, checks the access control rights,

performs the operations and returns the replies. A notification emitted by a MO is passed to the

notification processing function which may instruct an EFD to forward it through the agent. If the

notification is confirmed, the agent will pass eventually the confirmation back to the EFD.



Chapter 3: Mapping the OSI-SM /TMN Model Onto
                 Object-Oriented Programming Environments

160

An important design decision concerns the MIT representation of a MO and the actual MO itself.

In the architecture presented above, these are mapped to the same C++ object instance. Another

approach would be to keep them separate so that the managed objects could be in different

operating system processes, using a proprietary distribution mechanism. In this case, the “core

agent”, i.e. the agent object, MIT representation and class dictionary could be in one operating

system process while the managed objects and associated meta-class objects could be distributed

in different processes. This approach has been adopted by a number of commercial products,

with distribution supported through proprietary lightweight object brokers. OSIMIS and a

number of other products follow a more “monolithic” approach, in which an agent application

maps always to a single operating system process.

There are advantages and disadvantages with both approaches. The obvious advantages of the

distributed approach is scalability and modularity: very large agent applications can be physically

distributed. In addition, new functionality may be added to an agent in terms of new or modified

classes by simply “detaching” and “attaching” new processes without having to shutdown the

agent. This is an important requirement in telecommunications environments: a “cold start” of the

management part of a network element may be undesirable. The key drawback of this approach is

it complicates the agent architecture, necessitates the design of an object broker and results in

slower response times. This approach goes to some extent beyond the OSI-SM model and

introduces an “intra-application” distributed object framework, with Q3/X interfaces retained for

“inter-application” interoperability.

The author considered distributing the OSIMIS agent infrastructure but this meant essentially

designing and implementing an object broker in addition to OSI-SM. The whole concept behind

OSIMIS was to prove the feasibility, implementability, economy and performance of OSI-SM

and not to provide a more general framework for distributed objects. Now that CORBA

platforms exist, it would be relatively easy to distribute an agent application and this is a

direction that a number of TMN platform vendors are taking. On the other hand, if CORBA is to

be used within an application, it might be also used across applications and replace OSI-SM

completely. This possibility is examined in detail in Chapter 4.
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3.6.4 A GDMO to C++ Mapping for Managed Objects

In section 3.5.4 we discussed the mapping of GDMO to shadow managed objects in manager

applications. Here we consider the mapping to master managed objects in agent applications.

A managed object is part of the MIT, so it should keep handles to the superior and first level

subordinate objects. In addition, it should know its relative name i.e. the name of its distinguished

attribute and value. In distributed agent environments, the MIT is a tree of “minimal” objects that

contain only this information together with a reference to the actual managed object. This

reference is according to a broker mechanism and can be used to invoke operations to the object.

In centralised agent environments, the managed object is part of the MIT and responds directly to

management operations. OSIMIS takes the approach of a centralised agent. The functionality

described above is provided by the MO class, which is the root of the C++ inheritance hierarchy

for managed objects.

class MO
{
    // . . .

public:
    MO* Resolve    (DName* name);
    int CheckClass (OIDentifier* cmisClass,

            Bool& allomorphic);

    MO*[] Scope (CMISScope* cmisScope);
    Bool Filter (CMISFilter* cmisFilter);

    CMISErrors Get (OIDentifier* objClass,
     int nattrs, OIDentifier*[] attrIds,
     int& nres, CMISGetAttr[] resAttrs,
     AVA*& errInfo);

    CMISErrors Set (Bool confirmed, OIDentifier* objClass,
     int nattrs, CMISSetAttr[] attrs,
     int& nres, CMISSetAttr[] resAttrs,
     AVA*& errInfo);

    CMISErrors Action (Bool confirmed, OIDentifier* objClass,
     CMISParam* actionInfo, CMISParam *actionResult,
     AVA*& errInfo);

    CMISErrors Delete (AVA*& errInfo);

    // . . .
};

Code 3-11  The MIB Agent to Managed Object Interface

Since an object knows its relative name and has access to its first level subordinates, it can

provide a find or resolve method which maps a distinguished name to an object handle through a

recursive descent algorithm. In the same fashion, it is easy to provide a method that evaluates the

CMIS scope parameter. The CMIS filter can also be evaluated if this class has access to all the

attributes of derived classes. The key methods of the MO class which provide an interface to the

MIB agent object are shown in the Code 3-11 caption.
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The GDMO top class [X721] maps to a top C++ class which derives from MO. All subsequent

GDMO derived classes should derive from top and mirror the GDMO inheritance in C++. There

exist two key issues with inheritance in GDMO and inheritance in C++:

a) how GDMO multiple inheritance will be handled in C++; and

b) how behavioural aspects of GDMO managed object classes will be implemented in the

corresponding C++ classes.

The immediate answer to the first question is to use C++ multiple inheritance to model the

GDMO multiple inheritance. The problem with this approach is that it will not work with

languages that do not support multiple inheritance such as Smalltalk [Gold83] and Java [Sun96].

Even in C++, it is necessary to eliminate duplicate attributes which should only appear once in a

MO instance . In addition, method resolution is required when the same method appears more

than once in parallel branches of the inheritance tree. The OSIMIS approach is to collapse the

GDMO multiple inheritance into single inheritance and implement this in the standard C++

fashion. This is also an approach followed by many commercial products and there exist various

algorithms for collapsing multiple to single inheritance. This can be done either automatically, by

a GDMO compiler with a built-in algorithm, semi-automatically by the human user guiding the

compiler, or manually. OSIMIS uses the third approach i.e. the user has to collapse manually

GDMO multiple to single inheritance.

Adding behaviour to a class can be handled either by adding methods to the relevant C++ class or

by “class doubling”, as in [Doss93], [Chat97] and [CORBA]. In the latter case, behaviour is

added through a derived class e.g. discrImpl for the discr class. The problem with this approach

is that multiple inheritance becomes necessary for classes in levels deeper than two in the

inheritance hierarchy. For example, the eventForwDiscrImpl class should inherit both from the

eventForwDiscr class and from the discrImpl class. The OSIMIS approach is to include methods

with behaviour rather than use class-doubling. This is done by files with the suffixes .inc.h and

.inc.cc which should be present while compiling the GDMO specifications. This approach works

with any object-oriented programming language that supports only single inheritance.

The next important issue concerns packages. An initial thought would be to map those to separate

C++ classes, so that they become reusable entities. The problem is that while conditional

packages are re-usable when considered as units of specification, their behaviour is in most cases

dependent on the class in which they are contained. As such, the case for re-usability is weak

while the complexity of a MO instance is increased. OSIMIS models the functionality of

mandatory and conditional packages through the C++ class that models the GDMO class. This
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means that packages do not map to separate C++ classes. An instance keeps state information

regarding which conditional packages are “active” so that it can respond correctly to management

requests.

Attributes map to C++ classes that model the corresponding ASN.1 types. When an object

instance is created, the attributes of the mandatory and active conditional packages form an array.

Such arrays exist for all the classes of the inheritance branch, e.g. for top, discr and

eventForwDiscr, and their handles are passed to the MO part at construction time. Since the

latter has access to all the attributes of the instance, it can evaluate CMIS filters and respond to

“get all” operations.

Polymorphic get, set, action, delete and create methods are defined by the MO class and may be

redefined by derived classes to add behaviour. The get and set methods operate on a per attribute

basis and are called for every attribute in the m-get and m-set request. They inform the object

instance to either “refresh” those attributes or to do something to the associated resource as a

result of a set request. The actual get and set operations to the attributes are performed

transparently by the MO class. The action method instructs the behavioural part of an object

instance to perform the action to the associated resource. The delete and create methods trigger

associated behaviour, if any. Finally, the “trigger notification” method is called by the

behavioural part of an MO to emit a notification.

class MO
{
    // . . .

protected:
    virtual int get (int attrId, int classId, AVA*& errorInfo,

     Bool checkOnly = False, int asyncInvokeId = -1);
    virtual int set (int attrId, int classId, ModifyOp mode,

     Attr* setVal, Attr*& resVal, AVA*& errorInfo,
     Bool checkOnly = False, int asyncInvokeId = -1);

    virtual int action (int attrId, int classId,
     Attr* info, Attr*& reply, AVA*& errorInfo,
     Bool checkOnly = False, int asyncInvokeId = -1);

    // . . .
public:
    virtual int ddelete (DeleteType dtype, AVA*& errInfo,

         Bool checkOnly = False,
         int asyncInvokeId = -1);

    virtual int create  (CreateType ctype, AVA*& errInfo,
         int asyncInvokeId = -1);

    int triggerNotification (int notifId, int classId,
                     Attr* notificationInfo);

    // . . .
};

Code 3-12  The Polymorphic Managed Object Methods
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The polymorphic MO methods are shown in the Code 3-12 caption. A dynamic, weakly-typed

approach has been followed, in a similar fashion to the RMIB model. If the GMS was to be

redesigned now, the author might have followed a static, strongly-typed approach, similar to the

NMF GDMO/C++ [Chat97] and CORBA [CORBA]. On the other hand, a static approach is

much more complex and results in the generation of more code. The reader is reminded here that

the advantage of the strongly-typed approach is compile-time as opposed to run-time checking.

An important aspect of the polymorphic API is that these methods can be asynchronous as well

as synchronous. The asynchronous option is typically used in single-threaded environments when

the relevant method involves remote access of a subordinate information model.

Finally, aspects pertinent to a managed object class are modelled by a meta-class object. The

general meta-class is called MOClassInfo and keeps information about the class, name bindings,

packages, attributes, actions, notifications and the respective syntaxes and OIDs. The MO part of

an object instance is told about the actual class by its leaf-most derived class and keeps a handle

to the relevant class object. This means it has access to all the meta-class information so that it

validate and handle a particular management request. Figure 3-14 shows the layout of a uxObj

instance and its access to meta-class object instances.

. . .
. . .

     top
meta-class

   uxObj
meta-class

MO
part

 top
part

uxObj
 part

Attribute

Figure 3-14 The Internal Layout of a uxObj Instance and Associated Meta-Class Objects
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In summary, the rules for mapping GDMO to C++ presented above are the following:

• Managed object classes map to C++ classes. In the case of GDMO multiple inheritance, this

is collapsed first to GDMO single inheritance and subsequently mapped to C++ single

inheritance. The root of the C++ inheritance hierarchy is the MO class.

• Packages are implicitly present in managed object instances through their attributes, actions

and notifications. The attributes of conditional packages are only instantiated if the package is

present. An object instance keeps state information about the active conditional packages so

that it can respond correctly to requests.

• Attributes map to C++ instances that model the relevant ASN.1 type. Every class keeps an

array of its attributes and passes its handle to the MO part, which has access to all the

attributes of that object instance. The get and set polymorphic MO methods are called to

refresh an attribute value or to perform an operation to the associated resource.

• Actions map to the polymorphic action method which is called as a result of an action request.

The action information and reply map to C++ instances that model the associated ASN.1 type.

• Notifications are supported by the triggerNotification method of the MO class which is called

when a notification is emitted. The notification information maps to a C++ instance that

models the associated ASN.1 type.

• Parameters to attributes and actions indicate MOC-specific errors and are mapped onto C++

AVA instances in the relevant polymorphic methods.

• Name bindings map to special C++ instances kept by the meta-class object. Every object

knows its name and the active name binding through the nameBinding attribute of the top

class.

• Finally, any other information pertinent to the class is mapped to instance variables of the

meta-class object.

This approach has been validated by the implementation of the OSIMIS GMS which has been

used to realise various applications in agent roles as described in Appendix A. Most of the

abstractions presented above have been adopted by a number of commercial products. The

presented APIs hide the underlying protocol aspects as much as possible and leave an

implementor to concentrate in the behaviour of the managed objects, which is provided by the

redefinition of the polymorphic methods.
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As an example, the implementation of the uxObj class presented in Appendix B involves the

following. The get method should be redefined to refresh the sysTime and nUsers attributes when

these are requested by name or when all the attributes are requested; and the action method

should be redefined to respond to the echo action. The set method does not need to be redefined

for the wiseSaying attribute since there is no associated resource. The agent and the MO part

perform transparently all the checking, decoding, encoding and behaviour triggering. The

objectCreation, objectDeletion and attributeValueChange notifications are also emitted

transparently, without any additional code by the implementor. The GDMO compiler produces

the object skeleton in uxObj.h and uxObj.cc files while the behaviour is included through

uxObj.inc.h and uxObj.inc.cc files supplied by the implementor. The uxObj implementation

involves only a few lines of code.

3.6.5 The Relationship of Managed Objects and Associated Resources

A managed object always represents a real resource. This may be a fine-grain resource at the

lowest level of the TMN hierarchy, i.e. in network elements, or a more abstract resource in higher

TMN layers. Network element resources can be thought as tightly-coupled with the associated

managed objects since they are co-located in the same network node e.g. an ATM switch. In this

case, access time between objects and resources is typically small. Resources in higher TMN

layers can be also tightly coupled with the associated managed object, e.g. a customer record in

the service management layer. Most typically though, a resource in a higher TMN layer is loosely

coupled with the managed object in the sense that it maps onto lower layer resources in a

recursive manner. In this case, an operation to the associated managed object may result in

operations to subordinate managed objects as described in Chapter 2.

An important issue is how the attributes of the managed object will present a consistent and up-

to-date view of the resource in the case of m-get operations. There are three major approaches for

maintaining the MO and associated resource consistency:

a) “access upon request” - the resource is accessed only as a result of the m-get request;

b) “cache ahead periodically” - the resource is accessed periodically and the relevant

attributes are refreshed; and

c) “update through events” - in this case the resource sends changes to the managed object

asynchronously and this updates its attributes.

The first approach has the advantage of reduced management traffic in the case of loosely

coupled resources but at the cost of increased response time. In the case of tightly-coupled
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resources within network elements, it is the most sensible approach. The second approach has the

disadvantages of increased network traffic and potentially reduced information timeliness. Its only

advantage is fast response time since the managed object is able to respond immediately to the m-

get request. The third approach generates less traffic than the second one and retains the

advantage of fast response. On the other hand, it incurs more management traffic than the first

one. When using b) and c) above, the polymorphic get method does not need to be redefined since

the attribute values will be up-to-date upon the reception of a get request.

There can be variations and combinations of those approaches. OSIMIS supports all three

methods of operation: a) by redefining the polymorphic get method, b) through support for

periodic polling (it will be described in section 3.7.2) and c) through events from subordinate

systems.

3.6.6 Realisation of the “Difficult” Agent Aspects

In this section we look at those features of OSI-SM which are considered difficult to implement

and explain how they are supported by the underlying agent infrastructure.

The MIT is a n-ary tree which can be represented internally as a binary tree. The manipulation of

binary trees has been addressed in detail in the literature. The author used data structures and

algorithms described in [Aho83]. An issue related to the MIT representation is CMIS scoping.

This is almost trivial to provide: a recursive method is used which performs a pre-order search

down to the required level and adds object handles to an array.

Another aspect that was initially considered difficult to implement is filtering. Attributes are

mapped to C++ Attr instances which can evaluate filter assertions as explained in section 3.4. A

CMIS filter is a tree data structure in which all the leaves are filter items (see Appendix D). A

recursive algorithm can be used to scan the filter expression and evaluate the filter items linked

by boolean operators. The attribute name in the filter item is first verified through the meta-class

information and the relevant assertion is then evaluated. The filter method is supported by the

MO class which has access to the meta-class information and the attributes of the object instance.

Before filtering is applied, the object instance is requested to “refresh” the relevant attributes.

Resolution of distinguished names is also supported by the MO class. Since every MO knows its

relative name and keeps handles to superior and subordinate objects in the MIT, a recursive

method can perform a breadth-first search and compare relative names. This means that the

associated computing cost is generally a linear function of the breadth and depth of the MIT for a

particular object. Another approach which could result in a flat response time is a hash-table
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approach. In this case the choice of the hash algorithm becomes crucial in order to result in a

relatively even distribution and avoid collisions which cause inefficiencies.

One of the most difficult OSI-SM aspects is atomicity which may be requested through the CMIS

synchronisation parameter. OSIMIS implements atomicity through an internal two-phase commit

approach. Initially all the selected managed objects are asked by the agent if they can perform the

requested operation. This is done by calling the relevant polymorphic method with the checkOnly

flag set to True (see Code 3-12). If at least one object does not accept, the operation is rejected.

Otherwise, the objects are requested to commit the operation. This approach provides a

rudimentary atomicity facility. Distributed transaction processing [DTP] may be used in

conjunction with CMIS to “bracket” a number of operations to different agents in an atomic

transaction.

Another difficult aspect related to the realisation of the GDMO model is allomorphism. This is

supported in the following fashion. The MO part initially checks the asserted class and makes

sure that the attributes or specific action are supported by it (or by its parent classes). The

behavioural code of a leaf most class subsequently checks the class asserted in the operation. If

this is one of the parent classes, it calls the equivalent method of the parent class. In this way, the

behaviour of the right class is always invoked even if an attribute or action has been redefined in

a derived class. This implies that support for allomorphism should be explicitly provided by the

behavioural parts of managed objects.

Finally, managed objects need to be persistent so that they can survive re-starts of the agent.

Another reason for object persistence is that it may be impossible to hold all the managed objects

in core memory in the case of agents with a very large amount of objects. Object persistence can

be provided by storing the state of an object through its attribute values in secondary storage. The

fact that attributes in OSIMIS have a well-defined string representation can be used to serialise a

MO and “save” it on disk. A database with random access is necessary to “revive” a particular

MO. The GNU version of the UNIX dbm database was used in OSIMIS for object persistency.

3.6.7 Systems Management Functions

The OSI Systems Management Functions (SMFs) [SMF] have been introduced in detail in

Chapter 2. In this section we consider briefly their agent realisation aspects.

The most important SMFs are event reporting [X734] and logging [X735]. Their rationale and

model is explained in [Laba91a]. When a managed object emits a notification, this is passed to

the notification processing (NP) function. The latter could be modelled by a separate object as it
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was depicted in Figure 3-13 but in the case of OSIMIS it is part of the MO class. A notification

is triggered by the behavioural part of a managed object through the triggerNotification MO

method. A “potential event report” or “potential log record” is subsequently created. This. is a

specific log record object according to the notification type e.g. an attributeValueChangeRecord.

This object is not part of the MIT but serves solely the purpose of evaluating the EFD and log

filters. The NP runs subsequently through the EFDs and logs and evaluates their filter on the

potential event report. If the filter evaluates to true, it instructs the relevant EFD to send the event

report or instructs the relevant log to create a copy of the log record. The event report is sent

through the agent. The EFD may need to retransmit confirmed event reports until a confirmation

is received through the agent.

The power of the OSI-SM event reporting model stems mainly from the fact that EFDs and logs

may contain sophisticated filters which can be applied to the potential event report objects. This

allows assertions on the class and name of the emitting object, on the event type and time and on

information specific to the event e.g. the attribute name, its previous value and its new value for

an attributeValueChange event.

Other important SMFs are object [X730] and state [X731] management. The object lifecycle

notifications, i.e. objectCreation, objectDeletion, are automatically supported when an object is

created and deleted. In addition, the attributeValueChange and stateChange notifications are also

supported automatically when the attribute changes as a result of a CMIS m-set request. The

relationship management SMF [X732] specifies relationships through “pointer” attributes that

contain the distinguished name of another object. These can be resolved to the pointed object

handles through the find or resolve MO method.

The only other SMF which has an impact on the agent infrastructure is access control [X741].

The agent object will contain an Access Decision Function (ADF) object which will check access

control rights and will grant or deny access for a management operation. The MIB agent is

seeded with hooks which will invoke the ADF functionality and check access rights.

The rest of the SMFs consist simply of support managed objects which are implemented and

linked with agent infrastructures so that they can be instantiated by manager applications.

OSIMIS supports the SMFs mentioned above and also the metric monitoring objects [X739], the

summarisation objects [X739] and a combination and extension of the previous two known as the

intelligent monitoring objects [Pav96c].
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3.6.8 Summary

In this major section we looked at issues related to the realisation of object-oriented agent

infrastructures. The target was to provide an object-oriented decomposition of an agent

infrastructure, propose a concrete mapping of GDMO to object-oriented programming languages

and provide an environment for the realisation of managed objects which shields implementors

from the underlying access service and protocol complexity.

We proposed an agent architecture known as the Generic Managed System which separates

service and protocol processing from the managed objects through an MIB agent object. We also

proposed a GDMO mapping to C++ which uses only single inheritance and can be provided in

languages such as Smalltalk and Java. The managed object class specifications are compiled

through a GDMO/ASN.1 compiler which produces stub MO classes. These can be augmented

with behaviour by redefining the polymorphic methods of the generic MO class. The attributes,

action and notification information are modelled though C++ instances according to the O-O

ASN.1 principles presented in section 3.4. The resulting environment shields implementors from

protocol details and enables them to concentrate in the object behaviour and associated

application intelligence. The whole approach is very similar to CORBA but was designed,

specified and implemented much before the CORBA IDL to C++ mapping.

We also discussed issues related to the maintenance of consistency between managed object

attributes and associated resources. Three different schemes were identified which have different

properties in terms of incurred management traffic and information timeliness. We finally

discussed the “difficult” implementation aspects of OSI-SM and explained that they are in fact

easy to provide through object-oriented design principles. These included the MIT representation,

scoping, filtering, name resolution, atomicity, allomorpism and persistence. We also explained

how event reporting, logging and the rest of the OSI SMFs can be supported.

In summary, this section demonstrated the feasibility and implementability of the agent aspects of

the OSI-SM model. The author designed and implemented the majority of the agent

infrastructure. He would like though to thank other members of the UCL team for their

contributions and in particular: G. Knight for various discussions and direction and also for

conceiving and implementing the uxObj example; J. Cowan for implementing the GDMO

compiler in an ingenious fashion so that its back-end can be easily customised; S. Bhatti for

designing and implementing the log control SMF and the managed object persistency; and K.

McCarthy for trying to “break” the agent infrastructure in every conceivable fashion while

implementing the generic CMIS/P to SNMP gateway.
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3.7 Issues On Synchronous vs. Asynchronous Remote
Execution Models

In the previous sections of this chapter we have demonstrated how to map the OSI-SM/TMN

model onto O-O programming environments in the form of a distributed management platform.

The realisation model for both the agent and manager infrastructure included both synchronous

and asynchronous API facilities. In this section, we investigate the relevant issues behind the use

of synchronous and asynchronous options. We also present the solution adopted in OSIMIS for

co-ordinating the activity of a management application.

3.7.1 Remote Procedure Call and Message Passing Paradigms

The synchronous remote execution model was first presented in [Birr84] through the notion of

Remote Procedure Calls (RPCs). A remote operation is modelled through a procedure in the

calling entity, with semantics similar to those of local procedures, which takes as input and

output arguments those of the remote operation. When this procedure is called, it triggers the

actual remote operation to another entity, possibly across the network, and returns with the result

or error. While a remote procedure call looks exactly like a local procedure call from a

programmatic point of view, it has very different performance characteristics. A message needs to

descend and ascend the local and remote protocol stack, including the relevant encoding and

decoding overhead. In addition, the end-to-end network latency for the request and response adds

to the overall delay. In general, the difference in performance between local and remote method

calls is at least two orders of magnitude (102).

The asynchronous remote execution model predated the RPC model and is often referred to as

“message passing”. A remote operation is modelled through two different operations in

programmatic terms: a “send” procedure, which takes as arguments only the input parameters for

the operation; and a “receive” procedure”, either in a callback [Clark85] or in a message queue

fashion. In the case of the callback or “push” model, the “send” procedure also passes as an

argument (a pointer to) the “receive” procedure, which is eventually invoked by the infrastructure

with arguments the output parameters for the operation. In the case of the event queue or “pull”

model, the “receive” procedure needs to be invoked by the caller. The receive procedure is

typically generic, i.e. the same for all the different send procedures, and fills-in a data structure

which is the “union” of all the possible output parameters for the remote operations.
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The performance cost of calling the send or receive procedures is exactly that of descending or

ascending the protocol stack. This means that the relevant cost is only a fraction of the total cost

of a remote procedure call. Exact figures of this difference in the case of CMIS/P will be

presented in the next section. According to the models described above, the MSAP API is an

asynchronous one using the event queue model while the RMIB/SMIB and GMS APIs are both

synchronous and asynchronous, using the callback model.

The main advantage of the synchronous execution model is that it is natural to the programmer: a

remote method call appears exactly like a local method call, so the logical flow of a program that

uses remote operations is not different to a program that invokes no remote operations at all. The

RMIB and SMIB examples in the Code 3-6 and Code 3-7 captions used the relevant API in a

synchronous fashion. In comparison, the asynchronous execution model appears less natural for

the programmer: every time a remote method is invoked, the logical flow of the program is

“interrupted” i.e. the method that contains the “send” method invocation typically keeps some

state and returns. If, say, the callback model is used for the result, the logical flow of the program

will continue again when the callback method is invoked with the result. In summary, the

asynchronous execution model necessitates to keep some state information while it also splits the

logical flow of control in two parts: one before the remote method is called and one after the

callback method is called with the result, the two parts being in different program methods.

While from the above discussion it appears that a synchronous execution model is more natural,

and thus desirable, it also has a relevant limitation which requires special support. Synchronous

method calls block the performing application until they return (by application in this case we

mean a single operating system process). Since the cost of remote method call is much higher

than that of a local method call, the overall performance of the application will degrade since it

will stay idle for relatively long periods of time, while there may something else that needs

attention. For example, a TMN OS may be performing a number of sequential synchronous

operations to subordinate OSs while a peer or superior OS has sent a request to it which is being

“queued up”.

In the above discussion we have assumed a single-threaded execution paradigm i.e. the

application is a “heavyweight” operating system process that does not contain “lightweight”

processes or threads internally. The answer thus to the above performance problem is to use

multi-threading. The latter though introduces the need for concurrency control: different threads

inside the same program may try to access the same data, so some form of locking is required.

This in fact requires state information while it also introduces the possibility of deadlocks. In fact,
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it is difficult to harness the power of multi-threading in complex programs such as a TMN OSs,

where many things make take place in parallel, and make sure they will never deadlock.

An additional issue with multi-threading is the fact it is not yet supported by every operating

system in a native fashion, i.e. through the operating system kernel. For example, it is supported

in the Sun Solaris version of UNIX and the MS Windows NT but it is not yet supported in the

increasingly popular Linux version of UNIX. In fact, “native” threads have only been available

during the last 2-3 years. In the past there had been user-space thread packages which did not

have proper support for system facilities. They made programs difficult to debug because

debuggers were “unaware” of them. In addition, they added their own performance overhead. The

author had some “interesting” experiences with the ANSA [ANSA89a] user-space threads

package before he decided to switch into single-threaded execution mode to solve those problems.

It should be noted though that nowadays multi-threading has become much easier to use with

native operating system support and languages like Java [Sun96] which provide built-in support.

When OSIMIS was first designed (circa 1989-90), it was necessary to support asynchronous

APIs for applications that were conscious about performance, in addition to synchronous ones. It

is interesting to observe that the NMF TMN/C++ family of APIs, which represents a serious

industrial approach towards TMN platform APIs, provides both synchronous and asynchronous

APIs, in a similar fashion to OSIMIS. It is also interesting the fact that OMG has in its plans a

specification an asynchronous API facility for CORBA version 3. The author has always

expressed the necessity for asynchronous APIs, in addition to synchronous ones, and this seems

to be in line with the current industry approach to distributed systems. Finally, [Crow93] points

out problems of the synchronous remote execution paradigm when used without multi-threading.

OSIMIS was designed to operate initially in a single-threaded execution mode, leaving the

introduction of multi-threading for a later stage. In fact, the latter never happened because the

author got too busy with other things, but at least two commercial TMN platform vendors whose

products are based on OSIMIS have introduced multi-threading. Given the fact that OSIMIS is

single-threaded, asynchronous remote method execution is necessary for increased performance in

complex applications. Asynchronicity requires state management, so it is necessary to support the

application programmer through relevant platform facilities. As such, an object-oriented

application co-ordination mechanism was designed and developed. This makes possible to

organise a complex program that receives external input and generates output in a single-threaded

fashion. The principles of this important mechanism are described in the rest of this section.
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3.7.2 The OSIMIS Coordination Mechanism

The idea of a co-ordination mechanism with a central facility in each application that becomes the

focal point of all external input was contributed by G. Knight of UCL in late 1989 i.e. in the very

early days of OSIMIS. The author researched into the relevant issues and designed and developed

this mechanism in an object-oriented fashion, using inheritance and polymorphism. A particular

objective in this design was that it should be able to coexist with similar mechanisms of other

systems. The only other system in mind at the time was the X Windows system, which was going

to be used for TMN WS-OSs. The relevant design has been general enough though, so it has been

possible to extend the mechanism later and add support for the Tk widget set [Oust94] and more

recently for the Orbix CORBA platform.

[Coord]

<KS>

<KS>

<KS>

. . .

asynchronous
    requests &
      replies

asynchronous
     replies

single operating system process

  KS       -  Knowledge Source
<KS>    -  KS  derived class
[Coord] - Coordinator or derived class

external requests
 (sync or async)

Figure 3-15  The OSIMIS Co-ordination Model

The OSIMIS co-ordination mechanism allows to organise a management application which is

realised as a single operating system process in a fully event-driven fashion. All external input is

serialised and taken to completion on a “first-come-first-served” basis. In every application, there

exists a single instance of class Coodinator or of a derived class. This implements the central

listening loop of the application, in fact the last line of the main program of any OSIMIS

application is always “coordinator.listen(); ”. Any other object in the system that expects

external input should derive from the abstract class KS which stands for “Knowledge Source”, its

name having the roots in Artificial Intelligence (AI) Blackboard Systems. KSs register
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“communication endpoints” with the Coordinator and are informed when there is relevant input.

In addition, the Coordinator handles timer alarms and wakes-up periodically KSs that have

requested this facility. This is because most operating systems do not “stack” timer alarms, so a

central facility for taking care of them is necessary.

This model is depicted in Figure 3-15. The various KSs in the system should perform only

asynchronous operations, with the replies passed back to them through the Coordinator. Every

time there is external input or a timer alarm expires, the Coordinator informs the relevant KS who

starts some activity. During the period of this activity, any other external input or timer event will

have to be queued up. This means it is up to the objects involved in a particular sequential thread

to relinquish control i.e. this is not pre-emptive round-robin scheduling. As a consequence, time-

consuming activities should be ideally delegated to other processes so that the system remains

responsive. For example, if as a result of a number of alarms, a TMN OS needs to evaluate a

large rule base which is expected to take time, the rule-based system should be ideally

implemented in another process that communicates with the OS through some Inter-Process

Communication (IPC) mechanism, e.g. shared memory. Of course, nothing prevents any part of

the application from performing time consuming activities, invoking remote operations in a

synchronous fashion etc. This attitude though is not recommended since it will affect the

application’s performance and responsiveness.

Coordinator

TkCoordXWCoord

KS
1+

requestsinforms
1

OrbixCoord

Figure 3-16 OMT Relationships of the Co-ordination Classes

In a TMN OS realised using OSIMIS, the only KSs that expect external input are the MIBAgent

and the various RMIBAgents. There may be of course many other KS objects that require to be

“awaken up” periodically. This mechanism has been tried and tested with complex TMN

applications and has proved remarkably successful. In fact, this mechanism could also provide

the basis for introducing multi-threading: the central listening loop will be realised in a central

thread, while new threads will be spawned for every new external input or timer alarm. While this
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is trivial to introduce, the key issue becomes then concurrency control and this involves a lot of

work. One commercial product which is based on OSIMIS has introduced multithreading exactly

in this fashion. In this case, pre-emption is taken care by the operating system. The advantage is

that spawned activities need not be “conscious” anymore about their duration.

Figure 3-16 shows an OMT diagram of the relevant classes. There exists always one instance of

Coordinator or of any derived class in the application while there exist one or more KSs. These

request to be informed of external input or to be informed at regular time intervals and the

Coordinator subsequently informs them. The Coordinator derived classes allow OSIMIS

applications to coexist with other systems. For example, OSIMIS-based TMN WS-OSs may use

X Windows or the Tk widget set. In addition, OSIMIS applications may contain CORBA objects,

as it will be explained in Chapter 4.

class KS {
protected:
    // request wake-ups, register commEndpoints with Coord

    int scheduleWakeUps (long period, char* token = NULL);
    int cancelWakeUps   (char* token = NULL);

    int startListen (int commEndpoint);
    int stopListen  (int commEndpoint);
    // . . .

public:
    // callbacks for wake-ups, external events, process shutdown

    virtual int wakeUp (char* token);
    virtual int readCommEndpoint (int commEndpoint);
    virtual int shutdown ();
};

Code 3-13  The O-O Coordination API - the KS Class

The Code 3-13 caption above shows the object-oriented co-ordination API realised by the KS

class. This provides methods to register external communication endpoints and to request periodic

“wake-ups”. Derived classes should implement the behaviour of the callback methods. Note that

the Coordinator class is not visible to KS-derived classes but is hidden behind this O-O API.

The author designed and implemented the OSIMIS co-ordination mechanism, which is the “heart”

of OSIMIS-based applications, early in the design of OSIMIS. It does not involve a lot of

software in terms of lines of software but it took some time to get the object-oriented design right.

In addition, the implementation of the Coordinator class and the relevant derived classes contain

very complicated and relatively low-level software. Through object-orientation though this

complexity is encapsulated and reused. The OSIMIS co-ordination mechanism was quite unusual

at the time and still stands out for its object-oriented design and extensibility. It is now very

similar though to the event model adopted for GUI implementation in many systems.
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3.8 Performance Analysis and Evaluation

Object-oriented technology is generally thought to be expensive in terms of both processing and

memory overhead, in comparison to non object-oriented systems. In addition, OSI technology is

also considered expensive and non-performant. Since the proposed TMN framework is realised

using object-oriented technology over OSI protocols, it is interesting to evaluate the relevant

performance overheads and attribute them to the various parts of the system. This is necessary in

order to validate the proposed framework from a performance point of view. While we have

already demonstrated its flexibility, simplicity, user-friendliness and support for rapid application

development in the previous sections, the significance of those would be undermined if the

proposed environment is expensive in terms of required resources, resulting in poor performance

for the relevant applications.

In this section, we measure the performance of the proposed framework in terms of program size,

response times and amount of communicated information for a number of carefully chosen

“benchmark” operations. In the relevant measurements, we try to separate the protocol overheads

from those of the OSI-SM application framework. This is particularly important since the latter

may be mapped onto other environments and protocols, e.g. over OMG CORBA, as proposed in

Chapter 4. The overhead of the protocol stack and the application framework are also analysed

further. We measure the overhead of every layer of the protocol stack while we also measure

particular aspects of the proposed application framework.

3.8.1 The Environment and Methodology Used in the Experiments

The environment for the experiments was the following. The applications ran on two different

UNIX workstations, connected to a lightly-loaded Ethernet local area network. The round trip

delay was 1.5-2 msecs measured with the UNIX ping program. The applications operated the full

Q3 stack over TCP/IP, using the RFC 1006 method to emulate TP0 [Q811] - the Q3 protocol

stack was described in detail in section 3.3.1. TCP/IP ran in the UNIX kernel while RFC1006

and the rest of the upper layer stack were linked with the applications and, as such, ran in user

space. The OSI upper layer stack, including ACSE, ROSE and DASE, and the QUIPU Directory

Service Agent (DSA) [QUIPU] were provided by ISODE-8.0 [ISODE]. CMISE and the rest of

the TMN application framework were provided by OSIMIS-4.0 [Pav95b], which is the

environment resulted from the research work described in this thesis.
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Two different pairs of UNIX workstations were used in the experiments:

a) a Sun SPARC 5 and a Sun SPARC 20, running Sun’s Solaris 2.5 version of UNIX; in

this environment, the Sun C++ and C compilers version 4.1 were used; and

b) a Dell Latitude XP 486-75 laptop PC and a Viglen Genie 486-100 desktop PC, running

the Linux 1.12 version of UNIX; in this environment, the GNU C++ and C compilers

version 2.6.3 were used.

The first pair represents typical UNIX workstations used in work environments while the second

pair represents fairly old technology PC’s. The reason for the second pair is that they are in fact

the author’s home desktop and laptop PC’s. The second pair offered the possibility to conduct

tests in a fairly isolated environment i.e. a home Ethernet LAN. All the experiments were

conducted in such a way as to make sure that the programs were kept in core memory, so that no

paging took place which could affect the relevant performance figures.
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Figure 3-17  The Experiment Environment

All the experiments involved interactions between simple manager and agent applications. Since

the computers in each of the two pairs were not the same, the agent application was run typically

in the more powerful computer (i.e. the Sparc 20 and the 486-100 desktop). The experiments

were also performed in the opposite direction i.e. with the agent running in the less powerful

computer, without experiencing any significant differences in the pattern of the results. When a

third application was involved, i.e. the DSA for location transparency, this was run at the same

computer with the agent, so that the manager had to access it across the network. The

environment for the experiments is depicted in Figure 3-17, showing the kernel / user space
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separation inside every workstation and the protocol stack supporting the application. Note that

the transport layer runs partly in the kernel (the TCP part) and partly in user space (the TP0

emulation through RFC1006).

The methodology for the measurements was the following. Program size was measured using the

UNIX top utility program, with measurements taken on both the Solaris and Linux systems. The

resulting differences were only minor while the program sizes reported are those experienced on

Solaris. Packet sizes were measured using the popular tcpdump program, developed at the

Lawrence Berkeley Laboratory. The sizes reported reflect the TCP payload as introduced by

higher layers i.e. TCP, IP and Ethernet headers are not included. This is desirable since the same

upper layer stack can operate over different lower layers, as it was described in section 3.3.1.

Response times were measured using the UNIX gettimeofday system call and comparing

measurements taken on the same computer in order to avoid the need for synchronised clocks.

Timestamps were taken at different points of a sequential execution thread within a program and

were kept in core memory, to be printed out only after the last significant timestamp had been

taken. This was in order to reduce the overhead and discrepancy introduced by the measurement

mechanism itself. It is not though possible to minimise totally its impact, in fact the author

observed behaviour similar to the principle of Heisenberg in atomic physics: when trying to

observe minuscule things, the measurements themselves had a significant impact in the observed

results. Every experiment was conducted a number of times. Unusual results were discarded

while the mean was derived from the rest. The results were fairly uniform and the standard

deviation small.

OSIMIS CMISE

ACSE ROSE

OSI PP
PSAP

MSAP”

ACSAP / ROSAP

OSI SP

OSI TP

SSAP

TSAP

OSIMIS GMS / RMIB
MSAP

SAP:  Service Access Point

Management Applications

Figure 3-18  Service Access Points for the Performance Measurements
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Special client and server applications were developed to echo data at every level of the protocol

stack, including the TSAP, SSAP, PSAP, ACSAP/ROSAP and MSAP access points as shown in

Figure 3-18. Two different notions of MSAP were used. The first was a “contrived” one, directly

over the CMISE service without any agent and manager infrastructure, aiming to measure only

the overhead of the OSIMIS CMISE layer over ACSE and ROSE; we will term this MSAP”. The

second is a “proper” MSAP, with the agent and managed objects in place through the GMS and

the manager sending the request and receiving the response through the RMIB high-level API.

Response times in the TSAP and SSAP access points were measured using an “echo” operation

with a byte string. Response times in PSAP were measured using an “echo” operation for an

instance of the ASN.1 GraphicString type. Response times in ROSAP were measured by defining

an echo remote operation with a GraphicString argument and result type. Finally, response times

in MSAP” and MSAP were measured using the echo action of the uxObj class specified in

Appendix C. The relevant CMIS request was the following:

m-action(objClass=uxObj, objName={uxObjId=null},

         actionType=echo, actionInfo=hello) ,

3.8.2 Program Size

We start first by examining the size of applications. Table 3-6 shows the size of client and server

programs at the various SAPs identified above while Figure 3-19 depicts the same data in a graph

form. A MSAP agent application with the object management [X730], event reporting [X734]

and logging [X735] SMF capabilities and one instance of the system [X721] and uxObj classes

amounts to 1340 Kb at run time. A MSAP manager implementing the echo action mentioned

above amounts to 1060 Kb at runtime. Two similar but trivial MSAP” programs that contain no

agent, manager or O-O ASN.1 infrastructure amount to 800 and 780 Kb or 59.7% and 73.5% of

the overall size respectively as shown in Table 3-6. The equivalent ACSAP / ROSAP programs

are 43.2% and 50.9% of the overall size respectively. This means that the overhead of CMISE

together with the O-O TMN application framework amounts to 56.8% of the agent size and to

40.1% of the manager size. This can be explained as follows: CMISE is a fairly complex

protocol compared to the rest of the underlying protocol stack. In fact, it is four times bigger than

that of ACSE / ROSE according to those figures. The rest of the TMN application framework is

pretty complex as well and it is implemented in C++ instead of C, which increases the relevant

overhead. In summary, the overhead of the overall management infrastructure is roughly as much

as that of ACSE/ROSE together with the rest of the underlying OSI protocol stack.
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In TMN environments, OSs are hybrid manager-agent applications. If we link together the agent

and manager described above so that echo actions can be performed in a peer-to-peer fashion, the

run-time size becomes 1400 Kb. This is slightly bigger than the size of the plain agent, the

difference (60 Kb) being the overhead of the RMIB infrastructure. This modest increase in size is

easily explained since the two applications contain already a lot of common infrastructure i.e. the

O-O ASN.1 support, the DMI syntaxes [X721] and the O-O co-ordination mechanism. In

summary:

• the smallest OSIMIS-based TMN OS with object management, event reporting, logging

and one “useful” managed object class with one relevant object instance amounts to 1400

Kb at run time.

Service Access Point Server Size (Kb - %) Client Size (Kb - %)

TSAP 390 - 29.1 350 - 33

SSAP 470 - 35 420 - 39.6

PSAP 530 - 39.5 480 - 45.2

ACSAP / ROSAP 580 - 43.2 540 - 50.9

MSAP” 800 - 59.7 780 - 73.5

MSAP 1340 - 100 1060 - 100

Table 3-6  Application Sizes at the Various Service Access Points

Another interesting aspect of the data in Table 3-6 is that the overhead of the RFC 1006 transport

protocol appears to be around 30% of the overall client or server size. It is not the actual RFC

1006 code that causes this overhead, in fact this should be smaller than the session and

presentation protocols which are around 80 Kb and 60 Kb respectively. This “initial fat” amounts

to the overhead of the ISODE environment and, in particular, is due to the fact that the transport

code has been written in a way to operate over a number of underlying protocols and

environments. Even so, this overhead is pretty high (around 300 Kb) and could probably be

reduced in a more carefully engineered protocol stack.
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Figure 3-19  Application Sizes at the Various Service Access Points

We will finalise the discussion on the protocol stack overhead by examining the overhead of the

CMOT instead of the full Q3 stack. The CMOT protocol stack [Besa89] uses a Lightweight

Presentation Protocol (LPP) [Rose88] that operates directly on top of the TCP. This is supposed

to save mainly the session protocol overhead, given the fact that no sophisticated session layer

services are needed for request-response protocols which are based on ROSE. Having rebuilt the

ACSAP / ROSAP and MSAP programs over the LPP, it resulted in a reduction of about 150 Kb

at runtime. This is only 10.7% of the size of the smallest TMN OS and it would be even smaller

for OSs with real intelligence. As such, the CMOT memory savings are relatively insignificant.

Having examined the run-time memory overhead of the “base” management infrastructure, we

will examine now the overhead of adding new classes, the overhead of object instances and the

overhead of keeping management associations open. The overhead of linking in the uxObj class

with the relevant behaviour amounts to 18 Kb at run time. The same overhead for the simpleStats

class is 12 Kb. These two are example classes that were used for the purpose of demonstrating

OSIMIS features. The performance monitoring classes scanner, monitorMetric and

movingAverageMeanMonitor [X739] provide useful functionality for performance management

and contain fairly complex behaviour. Linking those in amounts to another 76 Kb at run-time i.e.

roughly 25 Kb for each of them. In summary, the minimal overhead of a new class with no

behaviour seems to be about 12 Kb while the overhead for classes with significant behaviour can

vary.
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In order to evaluate the overhead of object instances, we implemented a simple manager that

requests the creation of N instances of a particular object class. We used the uxObj class of

Appendix C, with the values for the attributes depicted in the Code 3-14 caption. The data

overhead of this particular instance is 420 bytes at runtime.

objectClass 2.37.1.1.3.50  (uxObj)
nameBinding 2.37.1.1.6.50  (uxObj-system)
uxObjId <n>            (number in the 1-n range)
sysTime 19971223xxxxx  (time in UTC string form)
wiseSaying “hello world”
nUsers <m>            (small number e.g. 5)

Code 3-14  The uxObj Instance Used for the Memory Measurements

An agent containing 1 uxObj instance amounts to 1.34 Mb, 103 instances increase its size to 1.76

Mb, 104 instances to 5.54 Mb, 5*104 instances to 22.34 Mb and 105 instances to 43.34 Mb. The

agent with 105 or 100000 instances was running on a Sparc 5 with 64 Mb of RAM, which

ensured there was no performance degradation when accessing those objects since the whole

process image was kept in core memory. An agent with half a million or even one million MOs is

possible through a computer with 256 and 512 Mb of RAM respectively, assuming all the MOs

need to be kept in core memory. In general though, “inactive” MOs can be put on secondary

storage through the persistency service, reducing the requirements for the required core memory.

Another important aspect worth measuring is the memory overhead of open associations. One of

the arguments behind SNMP is its connectionless nature, which allows centralised management

of thousands of network nodes. While this is not exactly a requirement in the TMN because of its

distributed hierarchical nature, it is worth investigating if connection-oriented management scales.

Experiments involved establishing multiple associations between a simple manager and agent.

The memory overhead of an existing association was found to be 9.2 Kb for the initiator and 7.2

Kb for the responder. The asymmetry of the observed overhead has to do with the way the

ISODE infrastructure handles associations since it was also observed by repeating the experiment

at the ACSAP point. Assuming that the manager initiates those associations, the overhead is 920

Kb or roughly 1 Mb for every 100 associations. This does not pose a difficult problem, since a

manager managing 1000 devices would be 10 Mb bigger at runtime. A particular issue though is

that UNIX systems allow a only a maximum number of file descriptors open per process at a

time, typically 64 or 256. Dealing with more descriptors necessitates to re-build the UNIX kernel.
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Description Size (Kb)

Minimal TMN application size 1400

Overhead of a “typical” MO class with no behaviour 10-15

Overhead of the uxObj class 18

Overhead of the uxObj instance as in Code 3-14 0.42

Overhead of an association (initiator) 9.2

Small DSA size 1500

Table 3-7  Summary of Q3 Memory Overheads

Table 3-7 shows a summary of the application size overheads. In practice, fairly complex TMN

applications like the ones implemented in the ICM project [Gri95][Gri96a] had a typical size

between 3 and 5 Mb at runtime. As another benchmark, an agent implementing the OSI version

of the Internet SNMP MIB-II [Laba91b] in a non-proxy fashion amounts to 3.2 Mb at runtime.

The size of the equivalent SNMP agent is 1 Mb i.e. one third of the OSI-SM agent size. While it

still does not make sense to manage devices such as video-recorders, set-top boxes, modems and

repeaters with full Q3 agents, the application sizes described above pose hardly a problem for

typical telecommunication devices e.g. switches, multiplexors, exchanges, intelligent peripherals,

etc. In fact, the size of a TMN OS with useful intelligence can be actually smaller than the size of

a word-processing program on a desktop or laptop PC.

We will finally examine the application size of the QUIPU Directory Service Agent (DSA),

which is used for dynamic address resolution and location transparency. The typical size of a

DSA which serves the needs of the management environment, i.e. not a general purpose DSA

with tens of thousands of directory objects, amounts to around 1.5 Mb at run time. This is

reasonable and is in fact very similar to the minimal size of a TMN OS.
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3.8.3 Response Times

In this section we examine the response times of management operations. Despite the fact that the

TMN does not operate with the same stringent real-time requirements as the control plane, it still

needs to react relatively fast to evolving network conditions. As such, it is important that the

supporting infrastructure exhibits good performance characteristics.

SAP Sparc 5 - Sparc 20

(msecs - %)

486/75 - 486/100

(msecs - %)

Connection
Establishment

Connection
Release

Connection
Establishment

Connection
Release

TSAP 10 - 25.6 0.9 - 13.8 19.1 - 18.7 2 - 16.7

SSAP 15.5 - 39.7 3 - 46.2 33.1 - 32.4 6.25 - 52.1

PSAP 19 - 48.7 3.5 - 53.8 51 - 50.0 7.4 - 61.5

ACSAP 22 - 56.4 5 - 76.9 64.2 - 62.9 9.5 - 79.2

MSAP” 37.7 - 96.7 6.25 - 96.1 100 - 98.0 11.6 - 96.7

MSAP 39 - 100 6.5 - 100 102 - 100 12 - 100

Table 3-8  Response Times for Association Establishment and Release
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Figure 3-20  Response Times for Association Establishment and Release
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We will examine first the performance aspects of establishing and releasing management

associations. Table 3-8 shows the response times for association establishment and release at the

various access points defined before. Both the absolute and normalised response times for the two

pairs of computers and relevant environments used for the measurements are shown. Figure 3-20

depicts the same data in a graph form.

In general, establishing an association is expensive because of the various negotiations that need

to take place in the session, presentation and application layer. It should be noted that while a

transport connection requires only one request-response exchange, session / presentation

connections and application associations require two request-response exchanges. Connection

establishment times increase almost linearly until the ACSAP point. Establishing an ACSE

association takes around 60% of the time of establishing a full Q3 association with the

information specified by CMIP [X711]. The overhead imposed by CMISE is almost 35% of the

overall association time and this can be attributed mostly to the overhead of encoding and

decoding the relevant negotiation information. The overhead of the proposed TMN application

framework, which is reflected by the difference between the MSAP and MSAP” access points, is

minimal i.e. around 3-4% of the overall association establishment time.

Association release is much faster in absolute figures i.e. around 15% of the association

establishment time. In general, it is much easier to tear something down than it is to build it in the

first place! It should be also noted that transport connections are torn down with a single packet

exchange while session / presentation connections and applications associations require three

packets: request, response and final confirmation packet sent by the initiator. Apart from the fact

that closing down the association is faster, Figure 3-20 shows also that the overhead is more or

less equally shared at each layer. This is logical since CMIP does not require to pass any

information when closing down an association. Finally, the overhead of the proposed TMN

application framework is again very small i.e. again between 3-4% of the overall association

release time.

Association establishment and release to the DSA for location transparency purposes exhibits

very similar response times to those presented above. This makes sense since the protocol stack is

exactly the same until ACSE while the Directory Access Service (DAS) [X511] specifies initial

association information similar to the one passed across for CMISE associations.

We will examine now the response times for management operations. While the performance of

association control is important, it is reminded here that many operations are typically

“multiplexed” onto the same association, with associations “cached” and released after a period
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of inactivity. Given this mode of operation, response time for management operations are more

critical. We will use the echo operation described in section 3.8.1 as a benchmark management

operation. Table 3-9 shows the response times in the various access points echoing the “hello”

string. Figure 3-21 shows the same information in a graph form.

SAP Sparc 5 - Sparc 20

(msecs - %)

486/75 - 486/100

(msecs - %)

TSAP 2.2 - 18.3 4.7 - 17.4

SSAP 3.2 - 26.7 6.2 - 23.0

PSAP 4.2 - 35.0 9.3 - 34.4

ROSAP 5.5 - 45.8 13 - 48.1

MSAP” 10.7 - 89.2 25 - 92.5

MSAP 12 - 100 27 - 100

Table 3-9  Response Times for an Echo Operation
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Figure 3-21  Response Times for an Echo Operation

The pattern experienced is similar to that for association establishment. The overhead of the echo

operation at the ROSAP point is roughly half of that at the MSAP point. The overhead of the

CMISE layer, as reflected by the difference between the MSAP” and ROSAP access points, is

around 45% of the overall overhead. This can be explained by the fact that CMIP PDUs are
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fairly complex ASN.1 structures and a significant overhead is involved in encoding and decoding

them.

In general, ASN.1 encoding and decoding in ISODE is dealt with is in two stages, involving

substantial memory manipulations in both. While this approach is general and flexible, as

discussed previously in this chapter, it seems to incur a substantial performance overhead.

[Huit92] claims that ASN.1 performance can be in fact higher than other similar mechanisms

such as Sun’s eXternal Data Representation (XDR) [Sun87], but their approach is a one pass

encoding / decoding together and the lightweight encoding rules are used instead of the BER

[X209].

The overhead of the proposed TMN application framework is reflected by the difference between

the MSAP and MSAP access points, i.e. the overhead of the GMS generic agent and RMIB

generic manager infrastructure, and amounts roughly to 10% of the overall overhead. This is a

particularly important result, since the same application framework can be mapped over other

mechanisms. In Chapter 4, we will discuss such a mapping on OMG CORBA.

While not shown in Table 3-9, using the CMOT instead of the full Q3 stack results in MSAP

response times that are around 15% smaller. In general, both the response time and memory

advantages of CMOT are not significant, while Q3 compliance and interoperability is lost. In

summary, it is really not beneficial to use the CMOT stack.

The above experiments at the MSAP” and MSAP access points were conducted with the manager

application operating in an asynchronous fashion. This means the request was sent through the

asynchronous RMIB API and execution control was passed to the coordination mechanism. The

latter passed control back to the RMIB infrastructure when the confirmation packet arrived,

which in turn passed the result to the performing managing object.

An interesting finding is that exactly the same request in a synchronous fashion resulted in 7-8%

faster response times. While this is initially surprising, it reveals that the cost of the coodination

mechanism which was described in section 3.7.2 is not negligible. In addition, there is more

context switching. Despite the fact that operations are slightly more expensive when performed in

an asynchronous fashion, the performing application may be doing something useful while

waiting for the confirmation packet. Of course, this can be also the case with synchronous

operations performed in a multi-threaded execution environment.

We will now examine where exactly the overall end-to-end overhead is attributed to. We seeded

both the manager and agent applications with instrumentation that took timestamps at various



3.8. Performance Analysis and Evaluation

189

stages of the operation in progress. Having analysed those, the results are very interesting. The

procedure of sending the request down the protocol stack in the manager amounts to around 25%

(3 msecs) of the overall response time. When the confirmation arrives, it also takes around 25%

of the overall response time for the message to ascend the protocol stack.. The same figures for

the indication and response messages at the agent amount to 15% of the overall time (1.8 msecs).

This means that 25+25+15+15=80% of the overall time (9.6 msecs) is spent for the CMIS

messages to descend and ascend the protocol stack. If we add to that the overhead of the

asynchronicity and coordination mechanism (1 msec) and the network latency (0.5 msec), we are

close to 90% of the overall time (11 msecs) which is the overhead at the MSAP” point. The rest

10% of the overhead (1 msec) is due to the RMIB and GMS infrastructure. The absolute figures

mentioned above are for the Sparc 5 - Sparc 20 pair of computers.

What is particularly interesting with these figures is the asymmetry of the overhead of sending

and receiving messages in both the agent and manager. Since the difference is not negligible, i.e.

25% vs. 15% of the overall time respectively (or 3 vs. 1.8 msecs), a number of additional

measurements were conducted which verified this behaviour. The author cannot find a suitable

explanation since the CMIP action request and reply packets are not that dissimilar. Detailed

profiling is necessary to see what exactly causes this discrepancy but this was outside the scope

of this study.

We will examine now the performance impact of a number of other parameters. We will consider

first the size of the data in the management operation. The response times for the echo operation

with a string of length 5 (“hello”) was shown in Table 3-9. Increasing gradually the size of the

echoed string results in an almost linear increase of the response time. The additional overhead is

0.21 msecs or 0.0175% of the overall response time per 100 bytes. The response time increase

for amounts of data seems reasonable.

We will consider now the response times using CMIS scoping. Performing an operation on more

than one objects through scoping results in a 25% increase of the response time per additional

object. This means that 5 scoped operations take the same time as 2 non-scoped ones and this 5:2

ratio holds for other sizes. The 25% overhead per additional object is smaller than the expected

overhead according to the above figures for descending and ascending the protocol stack: it

should be at least 25%+15%=40% for every additional response. The fact that additional results

are sent and received “back-to-back” has positive effects in the overall latency, resulting in

smaller times for processing those packets. This behaviour was verified by additional

measurements.
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We will now investigate the overhead of name resolution, scoping and filtering inside the agent.

Name resolution is implemented through a MIT recursive descent and comparison of relative

names. As such, it should be a function of the breadth and depth of the MIT, i.e. f(b,d). In order

to measure this, we created 5000 uxObj instances and performed various experiments. The

additional overhead for searching through 100 MOs until the specified one is found is 1.5%. This

means a 15% overhead for searching through 1000 MOs. As discussed in section 3.6, a hash

table approach would result in a more or less “flat” delay for locating the object anywhere in the

MIT. Even with the current approach though, the overhead is fairly small i.e. an additional 1.5%

for searching through 100 objects.

The cost of performing the scope operation within the agent is negligible. This operation simply

assembles the right MO pointers by traversing the MIT, starting at the base MO. This is not

surprising since assembling pointers through a recursive tree descent algorithm is something that

modern processors do very quickly. The same is true for evaluating a filter on a managed object.

We tried a number of filters on the uxObj MO and the evaluation time was negligible compared

to the end-to-end response time. These filters were evaluated without “refreshing” the attribute

values first, so that only the overhead of filtering was measured.

Finally, the cost of accessing the directory for location transparency reasons is very similar to the

cost of performing a read or action operation on a managed object. The cost of establishing an

association to the DSA, retrieving the presentation address of a TMN application, establishing an

association to the latter and performing a management operation takes in total 40 + 10 + 40 + 10

= 100 msecs using the Sparc 5 / Sparc 20 setup. It should be noted though that this sequence of

operations takes place only the first time. The presentation address of the target application is

“cached” in the performing application while the same is true for the association to that

application. The second operation will take in this case around 10 msecs.

3.8.4 Packet Sizes

We finally consider the sizes of management packets. These include the payload measured over

the TCP, as explained in section 3.8.1.

Table 3-10 and Table 3-11 show the sizes of the packets exchanged for establishing and releasing

connections at the various service access points. As already mentioned, from the session layer and

above connection establishment requires 4 packet exchanges (2+2) while connection release

requires 3 packet exchanges (2+1). It should be also mentioned that none of those packets are

“piggy-backed” on the TCP packets for connection establishment and release, so we should count
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another two packet exchanges with no data. In summary, upper layer connection establishment

requires 6 while connection release requires 5 overall packet exchanges.

SAP Data sent

(bytes / packet )

Data Received

(bytes / packet)

Total

(bytes)

TSAP 21 17 38

SSAP 18

29

14

31

92

PSAP 18

40

14

42

114

ACSAP 18

132

14

130

294

MSAP 18

140

14

138

310

Table 3-10  Packet Sizes for Connection Establishment

SAP Data sent

(bytes / packet )

Data Received

(bytes / packet)

Total

(bytes)

TSAP 11 11

SSAP 12

11

9 32

PSAP 12

11

9 32

ACSAP 28

11

25 64

MSAP 28

11

25 64

Table 3-11  Packet Sizes for Connection Release

A graph depiction of the total data in Table 3-10 and Table 3-11 is shown in Figure 3-22. ACSE

adds another 180 bytes on top of the presentation layer connection setup, which requires the

exchange of 114 bytes. CMISE adds another 16 bytes of initial information over ACSE. A

substantial amount of traffic is required to setup a management association: 6 packets and 310
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bytes in total. Connection release requires the exchange of 5 packets but the amount of overall

data exchanged is much smaller, 64 bytes in total. In summary, management association

establishment and release require a significant number of packet exchanges. In addition,

association establishment incurs also a significant traffic overhead.
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Figure 3-22  Connection Establishment, Release and Echo Operation Packet Sizes

SAP Data sent (bytes) Data Received (bytes) Total (bytes)

TSAP 7 7 14

SSAP 14 14 28

PSAP 24 24 48

ROSAP 34 36 70

MSAP 72 88 160

Table 3-12  Packet Sizes for the Echo Operation (zero length string)

Table 3-12 shows the packet sizes at the various SAPs for the echo operation, echoing an empty

string. Figure 3-22 shows also the overall data exchanged in graph form, together with the same

data for connection establishment and release. The echo operation requires a request and a

response packet in all the SAPs. In this case, the CMISE layer (difference between the MSAP

and ROSAP access points) adds a substantial amount of data because of the parameters in the

relevant PDUs. It should be noted that both the action request and response PDUs include the



3.8. Performance Analysis and Evaluation

193

name of the addressed object which is “uxObjId=null”. The overhead of that particular

distinguished name component is exactly 16 bytes, including 4 bytes for the “null” string. In

general, the request and response packet sizes will be larger for objects located “deeper” in the

MIT.

Retrieving the wiseSaying attribute with value “hello world” of the uxObj instance incurs a

request packet of 67 bytes and a response packet of 100 bytes. Retrieving all the attributes of the

uxObj instance as depicted in the Code 3-14 caption but with the relative name “uxObjId=null”

results in a request packet of 62 bytes and a response packet of 142 bytes.

3.8.5 Summary

In this section we looked at the performance aspects of the proposed object-oriented development

environment in terms of application size, response times and packet sizes.

In subsection 3.8.2 we looked at TMN application size. A summary of the relevant overheads

were presented in the Table 3-6. The minimal TMN application is about 1.4 Mb at run-time

while example applications with fairly complex behaviour and a number of object were 3-5 Mb at

run-time. The impact of additional object instances depends on the number and size of relevant

attributes and other private instance variables. A typical overhead of an instance is smaller that 1

Kb, which means that applications with tens of thousands of managed objects are feasible. While

the minimal application size, which effectively represents the overhead of the infrastructure, is not

small, it is hardly a challenge for today’s computers and typical memory sizes. In fact, such

applications run happily on the author’s laptop computer with 8 Mb of RAM and an Intel 486

processor.

In subsection 3.8.3 we looked at response times and presented results for two types of fairly

modest computers. Association establishment is around four times more expensive than

performing a simple management operation and this highlights the fact that associations should be

typically “cached” and released only after a period of inactivity. Absolute times for association

establishment are around 40 msecs for the relatively powerful computers and around 100 msecs

for fairly old technology PCs. Absolute times for simple management operations are around 10

and 40 msecs respectively. While these absolute numbers are only meaningful when compared

with similar operations in other frameworks, they confirm the subjective feeling of fast operation

for the overall framework, which is also acknowledged by other researchers. For example,

[Deri97] compares the performance of a number of management environments, including
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OSIMIS, and characterises it as “performant” while it characterises typical commercial TMN

platforms as “partially performant, requiring powerful hosts and a lot of memory”.

What is more important is that the detailed measurements at various service access points and

within management applications reveal that the main performance overhead is due to the protocol

stack rather than the proposed TMN application framework. This is particularly important since

the protocol stack can be replaced with other, more lightweight stacks. Alternative mappings for

CMIP were discussed in section 3.3.2.4 while in the next chapter we will present a totally

different mapping over OMG CORBA and will evaluate its performance.

Finally, in subsection 3.8.4 we looked at packet sizes. Association establishment seems to incur a

significant amount of traffic, involving 6 overall packet exchanges. On the other hand, the packet

sizes of management operations seem relatively reasonable, considering in particular the fact that

OSI protocols and the BER are used. In subjective terms, the author was expecting much higher

figures before conducting the experiments. It should be finally mentioned that packet sizes are

pertinent to the specification of the OSI-SM/TMN framework while application sizes and

response times are pertinent both to the specification and the proposed software realisation

framework, including the ISODE OSI upper layer environment.

It should be finally mentioned that the performance evaluation in this section was not exhaustive.

A detailed performance analysis of an OSI-SM platform and possibly its comparison to emerging

distributed object frameworks such as OMG CORBA could be the subject of a whole thesis. The

relevant study had as target to show the salient performance characteristics of the proposed OSI-

SM / TMN software framework. Despite its limited scope, this work is significant since it shows

that the proposed framework is performant, as detailed above. In addition, it is the very first of

this type i.e. no relevant work can be found in the literature.
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3.9 Validation

In the previous sections of this chapter we presented various aspects related to the object-oriented

realisation of the TMN framework. Throughout those sections we explained how the proposed

solutions contribute towards the goals of this thesis, validating the relevant assertions made in the

beginning. In this section, we summarise the already presented validation aspects and validate

further the proposed framework against additional criteria.

3.9.1 The Proposed Environment as an Object-Oriented Distributed Framework

We will examine first if the OSI-SM / TMN architectural framework together with the proposed

realisation framework satisfy the key properties of object-oriented distribution frameworks, as

identified in section 3.2.2. We re-iterate through those properties below and examine if and how

these are satisfied.

• An abstract object-oriented specification language that supports inheritance and

polymorphism. GDMO satisfies those requirements with the only drawback that actions and

notifications do not map in a satisfactory fashion to abstract remote method calls. The

modifications proposed in section 3.5.4.3 rectify this drawback. Of course it is not claimed

here that GDMO is a general purpose O-O specification language in the same fashion as

CORBA IDL, we comment further on this at the end of this section.

• Mappings of that abstract language to multiple object-oriented and procedural/modular

programming languages. We have shown mappings of GDMO to C++ in this section that are

general enough to be mapped onto other O-O programming languages e.g. Smalltalk, Java.

We have also shown a manager mapping to Tcl/Tk which is a procedural scripting language.

• User-friendly APIs that hide communication and protocol details. Such APIs were presented

through the ASN.1, RMIB/SMIB and GMS O-O concepts and infrastructures. It should be

noted that powerful CMIS access aspects (scoping, filtering) and fine-grain event reporting

are still available in a natural, “harness and hide” fashion.

• Dynamic access facilities that obviate the need for static (i.e. pre-compiled) knowledge of

object specifications in client applications. Both the RMIB and weakly-typed SMIB APIs

support this requirement. ASN.1 manipulation is static in OSIMIS, i.e. generic applications

need to be re-linked with new types, but we have explained how this can be avoided through a

data-driven approach in section 3.5.6.
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• Good performance and scalability so that distribution is encouraged and exploited. The

performance was shown to be good from a number of perspectives in the previous section. In

addition, both the average application and object sizes are reasonable. Though scalability was

not explicitly addressed from a global system perspective, the performance and size figures do

not reveal any major deficiencies.

• Openness in terms of both standard APIs and communication protocols. The O-O APIs

presented in this section could support “horizontal” openness and portability if they were

standardised. The NMF TMN/C++ [Chat97] family of APIs, which has re-used many of the

concepts proposed here, will be the relevant industrial standard. “Vertical”, on-the-wire

openness is provided through the Q3 protocol stack [Q3].

• Distribution transparencies, in particular access and location. Access transparency is

supported through the Q3 protocol stack, including ASN.1 [ASN1] and BER [BER] for data

representation. Finally, location transparency is provided through the OSI directory [X750]

mechanism discussed in Chapter 2 and the realisation model proposed in the previous sections

of this chapter.

In conclusion, these properties are largely satisfied. The one that is only partly satisfied concerns

the standard mapping to multiple programming languages. The NMF TMN/C++ API covers

only the mapping to C++. Standard mappings to other object-oriented and procedural

programming languages are not currently addressed. In comparison, OMG CORBA [CORBA]

offers mappings to C, C++, Smalltalk and Java. The approach in this chapter though has shown

that “horizontal”, O-O distributed system-like APIs are feasible for harnessing the OSI-SM/TMN

power and complexity. Standard APIs may be specified for a number of programming languages

in the future.

It should be also noted that the OSI-SM/TMN model is not a general distributed systems model

but targets distributed management systems. It is a composite model in which managed objects

are clustered together in “ensembles”, handled by applications in agent roles as it was explained

in Chapter 2. Despite the fact we have used distributed systems examples to demonstrate the

distributed system-like nature of the proposed realisation model, e.g. those involving the

simpleStats class, these are degenerate cases in which the ensemble becomes essentially a single

object. On the other hand, the fact that such cases can be accommodated reinforces the validity of

the assertion that the OSI-SM / TMN framework can be realised in a distributed system like

fashion.
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3.9.2 Object-Oriented Support for TMN Operations Systems

In Figure 2-22 of Chapter 2 we presented a functional decomposition of the OSF which is the

fundamental TMN building block. Having presented the object-oriented realisation framework in

the previous sections, we present in Figure 3-23 a concrete engineering object-oriented

decomposition of a TMN Operations System, as supported by the proposed OSI-SM / TMN

realisation framework. This is a generic decomposition which shows how the various facilities of

the proposed infrastructure are used.

A

Q3

OSF-MAF (A)

Q3
X

ICF

...SA SA

OSF-MAF (M)

X

Q3  (to DSA)

Q3

Q3  (to DSA)

Q3

MOs

M”Os

M”O: Managing Object
SA:      Shadow/Remote Agent
SMO: Shadow Managed Object

Manager to Agent
DUA to DSA

Inter-TMN Intra-TMN

OS

SMOs

Figure 3-23  Object-Oriented Decomposition of a TMN OS

The Management Application Function in agent role (MAF-A) is realised through the generic

agent infrastructure, the Generic Management System (GMS). The managed object classes

available across the Q3 and X interface are compiled through the GDMO compiler and enhanced

with behaviour, as was described in section 3.6. Access to them is provided through the agent

object instance, which encapsulates the interoperable protocol stack and provides the various

CMIS services, including scoping, filtering, synchronisation and event reporting. The
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authentication, stream integrity and confidentiality services are provided by the protocol stack,

either by the presentation layer [GULS] or by CMISE/ROSE [Bhat96]. The access control

service is provided by an Access Decision Function (ADF) object instance which is also

encapsulated by the agent object [Pav96b]. The MAF-A contains pre-compiled knowledge of the

managed object classes of the Q3 and X ensembles, including also event reporting, logging and

any other SMFs required by the relevant specifications e.g. metric monitoring [X739],

summarisation [X738], performance management [Q822], fault management [Q821], etc. Any

differentiation between the X and Q3 interfaces offered to peer and superior OSs is provided

through access control [X741].

The Management Application Function in manager role (MAF-A) is realised through the generic

manager infrastructure, the Remote MIB (RMIB) and/or Shadow MIB (SMIB). The managed

object classes of the Q3 and X information model in superior and peer systems need to be

compiled in order to produce the information necessary for the relevant repository. In addition, if

a static, strongly-typed SMIB model is followed, specific SMO classes are produced and possibly

enhanced with behaviour as it was described in section 3.5.4. Typically one Shadow/Remote

agent and associated SMOs exist for every accessed TMN, as shown in Figure 3-23. Various

managing objects implement the OS managing intelligence. A part of the application’s

management intelligence is realised by various objects implementing the Information Conversion

Function (ICF). These interact both with managed and managing objects while their functionality

is typically triggered by operations to managed objects “downwards” or through received event

reports and results of access to subordinate or peer systems “upwards”.

Directory access is required in order to update the directory about the location and capabilities of

the OS and in order to discover the location and capabilities of other TMN. It is reminded here

that directory access facilities are integrated with the CMISE API, as described in section

3.3.2.3. These are used by the MIB agent, which updates the directory about the location,

capabilities and supported managed objects classes and instances for this OS. They are also used

by the various RMIB and subsequently SMIB agents (a SMIB agent always contains a RMIB

agent) which discover the location and capabilities of other applications.

Finally, such an application can be organised either in a multi-threaded fashion or in a single-

threaded fashion as described in section 3.7. In the latter case, manager access to peer or

subordinate systems should be asynchronous so that the application can still be active while

waiting for a result or results.
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3.9.3 Support for Peer-to-Peer Interactions

Another interesting point related to the validation of the proposed framework is natural support

for peer-to-peer interactions. As already mentioned in section 2.4.5 of Chapter 2, the inherent

asymmetry of the manager-agent model can be a limitation if the relevant engineering concepts

separate completely the manager and agent aspects. This is certainly not the case with the

proposed realisation model. Though Figure 3-23 presents a hierarchical internal decomposition

with the MAF-A, ICF and MAF-M separation, this need not be so if particular peer-to-peer

exchanges require it. For example, a managed object and managing object can be realised by the

same object instance, acting in both roles. In this case, an operation to that instance may trigger

an operation in the opposite direction, with the managed object becoming instantly a managing

object. In fact, such operations may also pass the global distinguished name of the invoking

object as an action parameter so that the accessed object can perform an operation in the opposite

direction. This bears an exact analogy to the passing of object references in distributed system

frameworks such as OMG CORBA, as discussed in Chapter 4.

3.9.4 Implementability in Terms of the Overall Required Software

Since one of the objectives of this thesis is to show the feasibility and implementability of the

OSI-SM/TMN framework, it is interesting to investigate how much software in terms of lines of

code is necessary to provide this type of flexible object-oriented environment. We will assume

that there exists an upper layer OSI stack, including ACSE, ROSE, DASE implementations and

a procedural ASN.1 compiler, which is what most OSI infrastructures provide.

Table 3-13 shows the size of the generic parts of the infrastructure in lines of code. This is in

C++ unless it is indicated otherwise. The grand total is 55000 lines which seems reasonable for

the relevant functionality and demonstrates the feasibility of the approach. Of course, turning this

prototype this into production software would require a substantial amount of additional

development. This has been done though by more than one commercial vendors of TMN

infrastructure, validating further the relevant concepts.

It should be noted that the Table 3-13 includes only the absolutely necessary TMN platform

facilities. As such, it does not include the generic MIB browser [Pav92a] (5000 lines), the generic

CMIS/P to SNMP adapter [McCar95] (12000 lines together with the SNMP SMI to GDMO

compiler) and the lightweight, secret key based authentication, integrity and confidentiality

services [Bhat96]. It should be finally mentioned that the author developed around 65% of the

amount of software mentioned in the Table 3-13.
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Component Lines of code5 and description

CMISE 10000  (in C, includes also higher-level support functions)

X.500 access for X.750   3000  (in C)

O-O ASN.1 API / compiler
and X.721 attributes

10000  (1000 the compiler in gawk, 2000 the generic ASN.1 classes,
8000 the rest)

GDMO compiler 10000  (8000 the compiler, 2000 the code generating scripts)

GMS Agent infrastructure 10000  (6000 the “kernel”, 1500 event reporting, 1500 logging, 1000
access control)

RMIB Manager
infrastructure

  3000

Tcl-RMIB Manager
infrastructure

  3000

Generic command-line
manager programs

  3500  (these are required as debugging tools)

Coordination support   1500

Generic library classes   1000  (string, list, array)

Total 55000

Table 3-13  Amount of Software in the OSIMIS TMN Platform

3.9.5 Further Validation

Finally, the true validation and verification of the proposed framework has been achieved through

its use to develop and deploy experimental TMN systems and through its use for additional

research by the author and many other researchers. Appendix A provides a short description of

the known research work that has been based on the proposed object-oriented TMN platform.

                                                  

5 In C++, unless mentioned otherwise.
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3.10 Summary

3.10.1 Overview of this Chapter

In this chapter we presented first an introduction to object-oriented design and development

principles, followed by the identification of desired properties of object-oriented distributed

frameworks. These were used later to measure against them the proposed object-oriented TMN

platform. The same properties will be also used in Chapter 4 to measure against them ODP-

influenced distributed object technologies.

We subsequently looked at issues behind the realisation of the Q3 protocol stack. We discussed

aspects of realising ROSE and CMISE over the presentation service and presented possible

design policies for a CMIS API. The latter is completely hidden behind higher level object-

oriented infrastructures but is the fundamental building block for those. We also presented two

lightweight mappings for CMISE that operate directly over the transport service and use string

encodings for attribute, action and notification values.

We then discussed aspects behind object-oriented ASN.1 manipulation and presented a design

that uses polymorphic principles. ASN.1 types map to C++ classes which are automatically

produced by an O-O ASN.1 compiler and may be further customised by the implementor.

Additional classes provide support for the ASN.1 ANY and ANY DEFINED BY constructs.

These generic classes are used extensively in the higher-level managed and agent infrastructures

and APIs.

We then discussed extensively aspects behind the realisation of object-oriented manager

infrastructures and proposed two models, the Remote MIB and Shadow MIB. These hide

completely underlying protocol details but provide access to powerful CMIS aspects such as

multiple object access through scoping and filtering and fine-grain event reporting. A mapping of

the RMIB infrastructure to the scripting Tcl language was also presented. This may be used for

applications with GUIs, i.e. TMN WS-OSs, because of the associated Tk graphical toolkit. We

also discussed aspects of the management information repository which represents the necessary

“shared knowledge” between agent and manager applications that support a Q3 interface.

A discussion on the aspects behind the realisation of object-oriented agent infrastructures

followed. We presented a generic agent architecture known as the Generic Managed System

which separates service and protocol processing from the managed objects. We also proposed a

mapping of the GDMO abstract language to C++ in a fashion that behaviour is added through the
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redefinition of polymorphic methods, shielding the implementor from unnecessary details. Stub

managed objects are produced through a GDMO/ASN.1 compiler and are augmented with

behaviour. We also discussed how the “difficult” aspects of OSI-SM can be implemented using

O-O principles that harness and hide the relevant complexity.

We then discussed briefly issues behind synchronous vs. asynchronous remote execution models.

Synchronous models are more user-friendly but require support for multithreaded execution and

concurrency control. Asynchronous models are less user-friendly but do not necessarily require

support for multithreading. In either of the two models, a coordination mechanism is needed to

“dispatch” activities within a complex application implemented as a single operating system

process. An object-oriented coordination infrastructure was presented which shields application

objects from the underlying complexity.

We then presented a performance analysis and evaluation of the proposed object-oriented

environment, addressing program size, response times and packet sizes. It was shown that the

overheads of TMN applications are reasonable and much smaller than widely believed, though

this is a relatively subjective judgement. In Chapter 4 we will perform similar measurements for

CORBA. These will put the measurements for the OSI-SM based framework into perspective.

Finally, a validation of the proposed framework was presented by examining it against the

properties of object-oriented distributed frameworks identified in the beginning. We also

explained how the proposed O-O infrastructure can support the various aspects of a TMN OS

and considered the amount of software required to build such an infrastructure. Since the ultimate

validation of the proposed environment was achieved through its use for further research, design

and development, relevant efforts are presented in Appendix A.



3.10. Summary

203

3.10.2 Research Contribution

The key research contributions in this chapter are the following:

• The identification and discussion of the general issues in realising transaction-based OSI

upper layer protocols that rely on ROSE and ASN.1 in section 3.3.2.

• The detailed presentation of various issues and alternative approaches in realising

CMISE APIs that include association control and location transparency features in

section 3.3.2.3.

⇒ The validation of the procedural, asynchronous, “lowest common denominator”

CMISE API approach through the author’s design and implementation of the

OSIMIS CMISE. This has been used world-wide and influenced both commercial

products and subsequent API standards.

• The presentation of issues behind alternative lightweight mappings for the CMIP

protocol and the specification of two approaches of a “string-based” CMIS/P that can

operate directly over various reliable transport mechanisms in section 3.3.2.4.

• The presentation of the issues behind object-oriented, polymorphic ASN.1 manipulation

in OSI upper layer infrastructures and the specification of the generic classes realising

the relevant API in section 3.4.

⇒ The validation of the O-O ASN.1 approach and API through the author’s design

and implementation of the relevant generic classes and of an O-O ASN.1 compiler

that generates specific classes for ASN.1 types. The O-O ASN.1 is used in the

other OSIMIS high-level O-O APIs.

• The presentation of the issues and the design behind object-oriented, polymorphic

manager infrastructures and the identification of two major approaches in section 3.5:

∗ An agent-based approach of dynamic, weakly-typed nature which was termed the

Remote MIB (RMIB).

∗ A managed object-based approach which can be both dynamic / weakly-typed or

static / strongly-typed, termed the Shadow MIB (SMIB). This includes the mapping

of GDMO to O-O programming languages from a client or manager viewpoint.
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∗ The specification of the relevant classes and APIs and the demonstration through

examples of their flexibility, user-friendliness and economy in terms of lines of code

required for distributed operations, resulting in a rapid system development cycle.

∗ The specification of a string-based RMIB API and its integration in the Tcl/Tk

scripting language.

⇒ The validation of both approaches through the design and implementation of the

relevant infrastructures. The RMIB and Tcl-RMIB have been part of OSIMIS and

have been widely used for prototype TMN system development. Both the RMIB

and SMIB infrastructures have influenced products and subsequent API standards.

• The identification of a logical “bug” in the CMIS/P m-event-report primitive which

makes difficult to demultiplex event reports and pass them to the right managing object

within a manager application. This was revealed through the validation of the manager

aspects of the OSI-SM framework through the RMIB / SMIB infrastructures. The

subsequent proposal of a CMIS/P modification that overcomes this limitation was

presented in section 3.5.3.2.

• The identification of an inefficiency in the GDMO Action template which results in non-

natural mappings to object-oriented programming languages. This was revealed through

the validation of the framework through the RMIB / SMIB infrastructures. The

subsequent proposal of a GDMO modification that overcomes this limitation in section

3.5.4.3.

• The presentation of the issues and the design behind object-oriented polymorphic agent

infrastructures in section 3.6:

∗ The presentation of an object-oriented architecture which separates service and

protocol aspects from the managed objects - the Generic Managed System (GMS).

∗ The presentation of a GDMO to C++ mapping which uses only single inheritance

and can be also provided in languages such as Smalltalk and Java.

∗ The presentation of a polymorphic managed object class API which can be used to

add behaviour by redefining the relevant polymorphic methods.

∗ The presentation of three different approaches for maintaining consistency between

managed objects and associated resources.
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∗ The discussion how the “difficult” OSI-SM aspects can be provided, including

name resolution, scoping, filtering, atomicity, allomorphism and persistence.

∗ The discussion on how event reporting, logging and the rest of the OSI SMFs can

be supported in agent environments.

⇒ The validation of all those concepts through the design and implementation of the

GMS infrastructure. This has been widely used for prototype TMN system

development and influenced commercial products and subsequent API standards.

• The demonstration that the OSIMIS O-O manager and managed object APIs bear a lot of

similarities to those of distributed object frameworks such as OMG CORBA which were

developed later. This shows that the complexity and power of the OSI-SM/TMN model

can be harnessed behind O-O platform APIs that support abstractions similar to those of

emerging distributed object frameworks.

• The demonstration that the perceived limitations of the OSI-SM manager-agent

separation can be overcome through O-O realisation infrastructures that allow objects to

take managed or managing roles at any time. This supports the natural realisation of

peer-to-peer interactions for TMN OSs.

• The demonstration that the proposed object-oriented TMN realisation framework has

modest requirements in terms of memory resources and it has good performance

characteristics, even with modest computing infrastructures. In addition, the generated

packet traffic from the supporting OSI protocols is reasonable. These conclusions were

drawn through a detailed performance analysis and evaluation in section 3.8 which is the

first of this type i.e. there is no similar work in the literature.

• The demonstration through the whole approach that the TMN is not a pile of complex

and difficult to implement recommendations. On the contrary, the relevant O-O

methodology and specification aspects lend themselves naturally to object-oriented

realisation through the “harness and hide” principles presented in this chapter. The result

is a powerful, flexible, performant and easy-to-use distributed environment.

• Finally, a more general contribution to telecommunication problem solving which moves

away from the protocol-based “bits-and-bytes” approach of the past towards general-

purpose, easy-to-use distributed computing environments that satisfy the relevant

requirements of both interoperability and software openness.
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