
IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 1

Core Failure Mitigation In Integer Sum-of-Product
Computations On Cloud Computing Systems

Ijeoma Anarado and Yiannis Andreopoulos∗, Senior Member, IEEE

Abstract—The decreasing mean-time-to-failure estimates in
cloud computing systems indicate that multimedia applications
running on such environments should be able to mitigate an
increasing number of core failures at runtime. In this paper,
we propose a new roll-forward failure-mitigation approach for
integer sum-of-product computations, with special emphasis on
high-performance generic matrix multiplication (GEMM) and
convolution/cross-correlation (CONV) routines. Our approach
is based on the production of redundant results within the
numerical representation of the outputs via the use of numerical
packing. This differs from all existing roll-forward solutions
that require a separate set of checksum (or duplicate) results.
Our proposal imposes 37.5% reduction in the maximum out-
put bitwidth supported in comparison to integer GEMM or
CONV realizations performed on 32-bit integer representations.
However, this bitwidth reduction is comparable to the one
imposed due to the checksum elements of traditional roll-forward
methods, especially for cases where multiple core failures must
be mitigated. Experiments with state-of-the-art GEMM and
CONV routines running on a c4.8xlarge (shared-memory, 18-
core) compute-optimized instance of Amazon Web Services Elas-
tic Compute Cloud (AWS EC2) demonstrate that the proposed
approach is able to mitigate up to one quadcore failure while
achieving processing throughput that is: (i) comparable to that
of the conventional, failure-intolerant, integer GEMM and CONV
routines; (ii) substantially superior to that of the equivalent roll-
forward failure-mitigation method based on checksum streams.
Furthermore, when used within an image retrieval framework
deployed over a cluster of AWS EC2 spot (i.e., low-cost albeit
terminatable) instances, our proposal leads to: (i) 16%–23% cost
reduction against the equivalent checksum-based method and
(ii) more than 70% cost reduction against conventional failure-
intolerant processing based on AWS EC2 on-demand (i.e., higher-
cost albeit guaranteed) instances.

Index Terms—integer matrix products, convolution, core fail-
ures, multimedia cloud computing

I. INTRODUCTION

CLOUD computing clusters today provide for significant
parallelism possibilities at the cost of decreased mean-

time-to-failure (MTTF) characteristics in comparison to con-
ventional desktop multicore systems [1], [2]. For example,
high-performance clusters can now be deployed using Ama-
zon Web Services Elastic Compute Cloud (AWS EC2) spot

*Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
The authors are with the Electronic and Electrical Engineering Department,
University College London, Roberts Building, Torrington Place, London,
WC1E 7JE, UK; tel. +44 20 7679 7303; fax. +44 20 7388 9325 (both
authors); email: {ijeoma.anarado.12, i.andreopoulos}@ucl.ac.uk. I. Anarado
acknowledges support from the Federal Government of Nigeria under the
PRESSID Scheme and Y. Andreopoulos acknowledges support from EPSRC,
grant EP/M00113X/1.

instances with substantially-reduced billing cost [3]. However,
AWS reserves the right to terminate EC2 spot instances at any
moment with little or no prior notice. In addition, service inter-
ruptions may occur at unpredictable intervals, since processor
cores in spot instance reservations may not be solely dedicated
to the cluster under consideration. More broadly, other types
of disruptions, such as vibration, power, or network-induced
performance degradations, are also frequently reported in
large computing clusters [2], [4]. Such interruptions tend
to result in substantial reduction in processing throughput
and are therefore extremely detrimental in the performance
of high-volume, low-latency, multimedia applications [5]–
[9] on cloud computing clusters [10], [11]. Beyond such
cluster-level threats, at the processor core level, the increased
integration density, process variations, hardware component
reuse, and inadvertent circuit overclocking or undervolting
also contribute to increasingly-lower MTTF per core [12].
Therefore, multimedia applications requiring data-intensive
and high-throughput processing (e.g., webpage or multimedia
retrieval [13], [14], relevance ranking [15] and object or face
recognition in video [16], [17], transform decompositions [6]–
[8] and image/video coding [5], [9], [18], [19]) on such
clusters are now prone to core failures, which incur their data
unrecoverable, occurring at increasing rates. Within all these
applications, the compute and memory-intensive parts com-
prise large sum-of-product computations, i.e., inner and outer
products, generic matrix multiplication (GEMM) [20]–[26],
and multidimensional convolution/cross-correlation (CONV)
operations [6]–[8], [27], [28]. These operations are typically
performed using vectorized integer sum-of-product routines, or
optimized single/double-precision floating-point libraries [e.g.,
sGEMM and dGEMM routines of a mathematics kernel library
(MKL)] [20], [21], [29]. Therefore, ensuring the robustness of
these operations to core failures is of paramount importance
for large-scale multimedia application deployment in cloud
computing clusters exhibiting low MTTF characteristics.

A. Summary of Prior Work

Core failures in parallel compute-intensive routines are
currently mitigated via roll-back or roll-forward methods.
Roll-back methods are based on periodic checkpointing and
recomputation if failures are detected. The vast majority of
roll-back methods comprise backward error recovery (BER),
where system states are stored periodically and computations
are restarted from the last stored state when a failure happens
in the computing environment [1], [30]–[34]. Several BER
studies show that, depending on the desired level of resilience

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 2

to core failures, substantial resources may be spent on check-
pointing, system state storage/recovery, and recomputation.
This has been identified as a major challenge for future
exascale systems [1], [35], [36].

Roll-forward methods ensure result recovery from the func-
tioning processor cores without recomputation when core
failures occur in the system. Examples include: forward error
recovery (FER) methods that recover the lost data from pre-
established (and stored) input data checksum relationships
without repeating computations [37]–[41], algorithm based
fault tolerance (ABFT) [42] and modular redundancy [30],
[31]. Computations examined in such proposals include matrix
products [37], matrix factorization [43], convolution [41], [44]
and iterative solvers [45]. The overarching concept of these
methods is the production of checksum rows and columns (or
entire checksum matrices) so that the performed computation
can be applied to the checksum elements alongside the input
matrices or vectors. These additional elements can then be
used for FER by solving a system of linear equations if core
failures are detected. Therefore, all FER approaches incur
overhead due to the storage and processing of the checksum
vectors or matrices. Moreover, the requirement of additional
cores for checksum processing in FER decreases the achiev-
able peak performance, as less cores are dedicated to actual
input-data computations. Nevertheless, for failure resilience
in compute-intensive routines like GEMM and CONV, roll-
forward methods are preferable to roll-back methods, as they
achieve higher reliability and can immediately mitigate the
effect of failures without service interruption [31], [35], [37],
[38], [40], [45].

B. Contribution

The proposed method comprises a novel FER mechanism
for integer matrix multiplication and convolution operations
that creates redundant results within the numerical representa-
tion of the output results. This is achieved by packing pairs of
inputs within one integer number1 and carrying out the actual
GEMM or CONV operations with packed inputs. Because the
packed outputs contain redundant sum-of-products, up to a
certain number of failures of consecutive cores can be miti-
gated based on the available outputs. Importantly, the proposed
approach does not require the processing of additional check-
sum inputs. Therefore, unlike all existing FER approaches,
this is the first time a core failure recovery mechanism is
proposed that does not require additional processor cores
(e.g., for checksum computations or modular redundancy) in
comparison to the conventional (fault-intolerant) routine.

Unlike our previous work on packing for detection of silent
data corruptions (SDCs) in GEMM products [47], this paper
focuses on core failure recovery in distributed systems as-
suming that the underlying parallel programming environment

1The proposed algorithm is presented for integer representations, with the
packed inputs being typecast to floating point in order to utilized optimized
mathematics libraries for GEMM and CONV (e.g., sGEMM/dGEMM of Goto or
Intel MKL [20], [21]). Even though the usage of floating-point representations
for integer GEMM and CONV routines may seem counter-intuitive, it is in
fact commonplace today since all processors have native support for floating
point [46] and, in the case of CONV, floating point allows for Fourier-domain
implementations.

(like FT-MPI [48] and Open MPI [49]) detects such failures.
However, if all output streams are received from all cores,
our proposal can also be used for the detection of SDCs,
since results can be cross-validated from outputs produced by
execution in separate processing cores. Therefore, unlike our
previous work [47], our current proposal can operate both for
SDC detection, as well as core failure mitigation. We focus
on the latter in this paper, as it has already been deemed as
a problem of high relevance to current cloud-computing de-
ployments of multicore multimedia signal processing systems.

Given that our algorithm can only be used for integer
data computations, we focus on large-scale, low-latency, mul-
timedia applications that require high-throughput integer-to-
integer sum-of-product computations [26]. To quantify the
complexity of the proposed approach, we derive its overhead in
terms of arithmetic operations in comparison to the equivalent
checksum-based method. We also present experimental results
on (i) an 18-core, shared-memory, AWS EC2 instance2, and
(ii) a StarCluster [50] of AWS EC2 spot instances that are
terminated and migrated to AWS EC2 on-demand instances
for the duration that the spot price exceeds a predetermined
threshold. For the former, we demonstrate that the pro-
posed method achieves substantially-higher peak performance
against the equivalent FER method based on checksums, both
under failure-free and failure-occurring conditions. For the
latter, we show that our approach provides for substantial
reduction in deployment cost, especially in comparison to
the failure-intolerant approach that cannot use spot instances.
Finally, the source code for the proposed approach is made
available online at https://github.com/NumericalPacking/Core-
Failure-Mitigation-Code.

C. Paper Organization

In Section II, we review the basics of checksum-based
FER methods for failure recovery in distributed systems and
Section III describes the underlying concept of numerical
packing. Section IV describes the packing, unpacking and
failure-recovery process of the proposed core failure mitigation
for both GEMM and CONV computations. Furthermore, we
present the theoretical complexity analysis for numerical-
packing–based and checksum-based core failure mitigation in
comparison to the conventional failure-intolerant algorithm for
GEMM computations. Experimental results are presented in
Sections V and VI and conclusion and future work aspects
can be found in Section VII.

D. Notations

Boldface uppercase and lowercase letters indicate matrices
and vectors, respectively. The corresponding italicized low-
ercase letters indicate their individual elements, e.g., w and
w [i]. Superscript T denotes matrix transposition. Notation
Acol indicates the submatrix of A constructed by retaining
the col subset of columns of A, with {col} ∈ {top, bot};

2This is a c4.8xlarge AWS EC2 instance composed of multiple dual-
nanocore physical processors (Intel Haswell) with hyperthreading.

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 3

e.g., given an L × L matrix A, Atop is the submatrix com-
prising all rows and only columns with index range be-
tween {0, . . . , ⌊L

2
⌋ − 1}, while Abot is the submatrix com-

prising all rows and only columns with index range between
{⌊L

2
⌋ , . . . , L − 1} of A. Assuming two integers a and b, a≫ b

shifts a by b bits to the right discarding the least-significant
bits and a ≪ b shifts a by b bits to the left discarding the
most-significant bits; a ← b assigns value b to a. Finally, Â
and Ã indicate the packed and extracted values of matrix A
(equivalently for vectors and scalars), respectively.

II. CHECKSUM-BASED METHODS FOR CORE FAILURES

We present a summary of checksum methods for the mit-
igation of core failures in integer GEMM products. Similar
pre- and post-processing is required for failure-tolerant CONV
operations.

Consider L concurrent matrix products carried out on L
cores of a multicore computing system. Each core multiplies
an M × N matrix Al (0 ≤ l < L) with an N × K matrix
(also called processing kernel) B in order for the multicore
system to produce L output matrices Rl. This is often the case,
for example, in covariance-matrix calculations [51], image
projections of groups of images [14], [17] (e.g., within a 2D-
PCA face recognition system [16], [52]), and several other
high-volume multimedia applications running on distributed
computing clusters [10], [11]. For our purposes, when F cores
(1 ≤ F < L) fail to return results after a predetermined
deadline, F core failures are said to have occurred in the
system. This could occur due to vibration, network, power,
or soft-error–induced disruptions, as described in Section I.

In order to recover from such failures, checksum-based
methods produce up to F checksum matrices, Ac1, . . . , AcF .
The number of checksum matrices is dependent on the number
of core failures that should be tolerated in the parallel GEMM
execution. The simplest checksum matrix that can be used to
recover from a single core failure in the L GEMM products
(0 ≤ l < L)

Rl = AlB (1)

is

Ac1 =
L−1

∑
l=0

Al. (2)

This checksum matrix undergoes the same GEMM operation,
Rc1 = Ac1B, which requires the usage of an additional core.
The dynamic range of Rc1 is increased by L in comparison
to GEMM products AlB. If the xth core fails, 0 ≤ x < L, we
recover Rx by Rx =Rc1−∑∀l≠x Rl. A failure occurring in the
core that computes the Rc1 checksum is ignored. Additional
checksums may be added to mitigate more than one failure
by using different linear combinations of the A0, . . . ,AL−1

matrices, as shown by Stefanidis and Luk [53], [54]. Overall,
in order to tolerate F core failures in a parallel computing
environment, F additional cores are set aside to compute the
results of the linear-checksum matrices [37], [40], [45], Rcf =
AcfB, 1 ≤ f ≤ F .

III. BRIEF REVIEW OF PACKING FOR INTEGER DATA

COMPUTATIONS

The concept of numerical packing was originally proposed
for throughput scaling in multimedia applications [27], [52],
[55] and soft-error tolerance in GEMM for fail-continue sys-
tems (e.g., due to silent data corruption) [47]. Packed process-
ing stacks multiple small dynamic-range inputs in a standard
32-bit or 64-bit representation using an integer packing factor,
k, to avoid overflow (or “invasion”), and thereby performs
computation on these inputs simultaneously. Packing can be
symmetric, where both matrix (or vector) inputs are packed,
or asymmetric, where only one of the input matrices (or
vectors) is packed [52]. A simple illustration of symmetric
packed processing for the product of two vectors is shown
in Fig. 1. In the figure, conventional processing performs a
2 × 1-by-1 × 2 product, while, in the packed domain, two
1 × 1-by-1 × 1 products ensue following the packing of b
to b̂ and a to âi and âj with k = 15, i.e., ri = âîb and
rj = âĵb. The results are unpacked (extracted) to form the final
outputs. Therefore, in packed processing, the overall number
of computations required for the outer product is reduced by
50% in comparison to the conventional computation, at the
cost of packing and unpacking and the use of higher-bitwidth
arithmetic units [27].

More generally, for the computation of the M ×M integer
matrix product R = AB via symmetric packing (with M
even), the packing process creates blocks Âi, Âj, and B̂ with
M
2
×M and M × M

2
coefficients (resp.) given by:

Âi = [(A
T
bot ≪ k) +AT

top]
T

(3)

Âj = [(A
T
top ≪ k) +AT

bot]
T

(4)

B̂ = (Btop ≪ k) +Bbot. (5)

with k ∈ N⋆ and carries out R̂i = ÂiB̂ and R̂j = ÂjB̂,
followed by unpacking. The utilized value for k depends on
the maximum possible value of the matrix product [27], [28],
[52]. It has been shown that, to ensure accurate recovery of
results after computation [27], [28], [47], [52], [56]:

k > log2 (max
∀l
∣Rl∣) + 1 and 3k ≤W, (6)

with W ∈ {32,64} if all processing is carried out in 32-bit
or 64-bit integer representations and W ∈ {24,52} if kernel
processing is carried out in single or double-precision floating-
point representations [27], [47].

IV. PROPOSED APPROACH

Let us consider: (i) L integer matrices A0, . . . , AL−1 (L ≥ 3),
comprising M ×N dimensions each, that must be processed3

3Supported algorithms include a range of linear and sesquilinear compute-
intensive operations including GEMM, Kronecker product, and multidimen-
sional CONV. In this paper we focus on the two illustrative and important
cases of matrix products and one-dimensional convolution operations since the
remaining operations follow in a straightforward manner from these results.

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 4

Figure 1. (a)–(c) Conventional integer subblock multiplication for the case of a 2 × 1-by-1 × 2 vector product. (d)–(g) Symmetric packing for the same
product via an integer representation with packing coefficient k = 15. The partitioning within the rectangles shows the location (shifts by k or 2k bits) of
inputs/outputs when packed within a single number.

via an N ×K integer kernel matrix B [57]; (ii) L integer input
signal vectors a0, , . . . , aL−1 (L ≥ 3), comprising N samples
each, that must be filtered by a K-sample integer kernel vector
b. In both cases, each operation is performed on a different
core in an L-core cluster. We shall present an approach that can
recover all L GEMM or CONV results even if up to F = ⌊L

3
⌋

consecutive cores fail, without requiring additional checksum
inputs. Recovery from up to ⌊L

3
⌋ consecutive failures is impor-

tant in the context of computing clusters comprising groups of
multicore processors, where a single failure on one multicore
board may translate in several consecutive core failures. In
order to achieve this, we utilize symmetric packing, where
both input and kernel matrices are packed, as elaborated in
Section III. Symmetric packing allows for the production of
redundant outputs, i.e., akin to the middle zone of k bits in the
example of Fig. 1(f). As shown in this paper, if constructed
appropriately, these redundant outputs allow for the recovery
from core failures.

A. Proposed Packing Method for Failure-tolerant GEMM

The first step of the proposed approach packs pairs from
the L input matrices, thereby generating L “packed” input
matrices Â0, . . . , ÂL−1 given by (0 ≤ l < L):

Âl = (Al ≪ k) +A(F+l)mod L (7)

where F is the number of consecutive core failures to be
mitigated and k the packing factor introduced in Section III,
which is set such that (6) holds with W = 64.

For example, for L = 3, and F = 1, we have

Â0 = (A0 ≪ k) +A1

Â1 = (A1 ≪ k) +A2

Â2 = (A2 ≪ k) +A0.

(8)

Packing of the kernel matrix B is also performed. This packing
produces the N × K

2
matrix4 B̂ by:

B̂ = (Btop ≪ k) +Bbot. (9)

Given that the packing factor k in (7)–(9) will increase the dy-
namic range of all Âl and B̂, we utilize 64-bit representations
for Âl and B̂.

B. Packed GEMM Computations

All M × N -by-N × K
2

matrix products can be computed
concurrently on L processors via the use of L 64-bit GEMM
calls (e.g., OpenMP framework with MKL dGEMM),

∀l ∶ R̂l = ÂlB̂, (10)

thereby producing all required results, as well as a number of
“duplicate” results within the numerical representation of the
packed outputs R̂l. Fig. 2 illustrates the simple case of three
1×1-by-1×2 matrix products (L = 3, M = N = 1, K = 2) after
packing has been carried out via (8) and (9). The contents of
the M × K

2
output matrices R̂0, R̂1 and R̂2 can be expressed

mathematically by:

R̂0 = Â0B̂

= (A0Btop ≪ 2k) + [(A0Bbot +A1Btop)≪ k] +A1Bbot

= (R̃0,top ≪ 2k) + [(R̃0,bot + R̃1,top)≪ k] + R̃1,bot
(11)

R̂1 = Â1B̂

= (A1Btop ≪ 2k) + [(A1Bbot +A2Btop)≪ k] +A2Bbot

= (R̃1,top ≪ 2k) + [(R̃1,bot + R̃2,top)≪ k] + R̃2,bot
(12)

4For simplicity of exposition, we assume that K is even.

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 5

Figure 2. Illustration of failure mitigation in integer matrix product for the elementary case of three 1×1-by-1×2 matrix products in an integer representation
with k = 15. Assuming that the core that computes r̂2 failed, the results of the other two cores (r̂0 and r̂1) are used to produce all three outputs r̃0, r̃1 and
r̃2 after unpacking. The partitioning within the rectangles shows the location (shifts by k or 2k bits) of inputs/outputs when packed within a single number.

R̂2 = Â2B̂

= (A2Btop ≪ 2k) + [(A2Bbot +A0Btop)≪ k] +A0Bbot

= (R̃2,top ≪ 2k) + [(R̃2,bot + R̃0,top)≪ k] + R̃0,bot.
(13)

C. Unpacking of the Results

Our key insight is that out of the L packed matrices
R̂0, . . . , R̂L−1, L−F matrices suffice for the recovery of all L
outputs. For example, for L = 3 and F = 1, any two matrices
out of R̂0, R̂1 and R̂2 can produce all outputs, R̃0, R̃1 and
R̃2, as illustrated in Fig. 2. For instance, assuming R̂0 and
R̂1 are used for the recovery of R̃0, R̃1 and R̃2, the required
steps are given by:

R̃0,top = R̂0 ≫ 2k (14)

T0 = R̂0 − (R̃0,top ≪ 2k) (15)

T1 = T0 ≫ k. (16)

Because of the complement-two arithmetic used in integer
representations in commodity hardware, all negative elements
(i, j) of T1 will be found to be larger or equal to 2k−1

(maximum positive value within a packed output element)
and R̃0,top [i, j] (contained in the most-significant bits of
R̂0 [i, j]) will be found to be one less than their correct
value. To compensate for these effects of the complement-
two arithmetic, we first define the intermediate matrix E0 to
store the signed values of T1 therein, and adjust the values of
R̃0,top as follows:

● ∀i, j ∶ if T1[i, j] ≥ 2k−1 , then set E0 [i, j] = T1 [i, j]−2k

(convert to negative number); else set E0 [i, j] = T1 [i, j]
(no change);

● ∀i, j ∶ if E0 [i, j] < 0, then set R̃0,top [i, j] ←
(R̃0,top [i, j] + 1).

Next, a similar check is performed to extract the signed
representation of R̃1,bot and the values of E0 are adjusted,
i.e.,

T0 ← [T0 − (T1 ≪ k)] , (17)

● ∀i, j ∶ if T0 [i, j] ≥ 2k−1, then set R̃1,bot [i, j] =
R̃1,bot [i, j] − 2k; else set R̃1,bot [i, j] = T0 [i, j] ;

● ∀i, j ∶ if R̃1,bot [i, j] < 0, then set E0 [i, j] ←
(E0 [i, j] + 1).

Similarly, R̂1 undergoes the same processing as R̂0 in order
to extract R̃1,top, the intermediate matrix E1 = R̃1,bot + R̃2,top

and R̃2,bot. Finally, we perform the following operations to
complete the extraction of all results:

R̃0,bot = E0 − R̃1,top (18)

R̃2,top = E1 − R̃1,bot. (19)

Importantly, the _mm256_shuffle_epi32 and
_mm256_permute2f128_si256 instructions (which are
intrinsically supported in modern SIMD architectures [58])
can further be used to optimize the output matrix reordering
using the “top” and “bot” index subsets.

D. Proposed Approach for One-dimensional Convolution

The same process can be used to mitigate core failures
within L parallel convolution/cross-correlation (CONV) op-
erations of N -sample input signals al with a K-sample kernel
b, producing output vectors rl by (0 ≤ i < N +K, 0 ≤ l < L):

rl = al ⋆ b ⇐⇒ rl [i] = ∑
K−1
k=0 al [i − k] b [k] . (20)

Specifically, the proposed algorithm packs the signal vectors,
al, into the packed inputs, âl, following the same procedure

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 6

as for (7), while the convolution kernel b is packed into b̂ as
shown for GEMM in (9).

The convolutions (0 ≤ l < L):

∀l ∶ r̂l = âl ⋆ b̂ (21)

can then be carried out with any optimized library (e.g., In-
tel’s IPP ippsConvolve_64f routine [29], Matlab’s conv
function, etc.) in order to produce the (N + K

2
− 1)-sample

signals r̂0, . . . , r̂L−1. In addition, unpacking follows the same
procedure as for GEMM, except for an additional summation
operation. For example, for L = 3, given the unpacked out-
puts r̃0,top, r̃0,bot, r̃1,top, and r̃1,bot, the “top” vectors comprise
output signal samples with indices within [0,N + K

2
− 1],

while the “bot” vectors comprise signals with indices within
[K

2
,N +K − 1]. The recovered output signals are obtained by

the following concatenation operations (0 ≤ l < 3):

∀l ∶ r̃l = [̃rl,top 0K
2
] + [0K

2
r̃l,bot] (22)

with 0K
2

the 1 × K
2

vector of zeros.

E. Summary of Key Results

The proposed method utilizes packing to create L cyclically-
duplicated/double-bitwidth descriptions for the inputs of ma-
trix product and convolution operations. The packed inputs that
are then used within L 64-bit GEMM or CONV operations on
L processing cores. The proposed unpacking process recovers
all GEMM or CONV outputs with operations count that
depends only on the number of outputs and not on the inner-
product dimension of the GEMM or CONV processing. The
following four propositions formalize these key points.

Proposition 1. Let the packing of (7) and (9), and the exe-
cution of the L GEMM operations of (10) on L independent
processor cores. The results of (1) can be recovered under the
failure of any group of up to ⌊L

3
⌋ consecutive cores.

Proof: See Appendix.

Proposition 2. Let the packing of (7) and (9), and the
execution of the L CONV operations of (21) on L independent
processor cores. The results of (20) can be recovered under
the failure of any group of up to ⌊L

3
⌋ consecutive cores.

Proof: See Appendix.
If (6) holds, then the unpacking process guarantees that the

correct value is obtained for each output under the use of a
64-bit integer representation. However, the conditions of (6)
incur certain reduction in the achievable dynamic range in
comparison to 32-bit integer representations. This is quantified
in the following proposition.

Proposition 3. The proposed approach incurs loss of approx-
imately 37.5% of the dynamic range of the 32-bit integer
representation.

Proof: See Appendix.
While the proposed approach (approximately) halves the

overall multiply-accumulate (MAC) operations against the
conventional approach during GEMM, all operations are per-
formed in 64-bit representations. Under the assumption that

64-bit arithmetic operations require twice the cycles of 32-
bit arithmetic operations, which (amongst others) holds for
AVX2-based realizations, we can quantify the arithmetic op-
erations (additions and MAC operations) required by the pro-
posed method in comparison to the conventional, checksum-
based, core failure mitigation approach based on (2). We focus
on the case of GEMM as a reference for analytic comparisons.
However, the equivalent results can be derived for the CONV
operations following the same approach.

Proposition 4. In the absence of failures during L concurrent
N ×N -by-N ×N matrix products, and assuming that a 64-bit
operation is equivalent to two 32-bit operations, the number
of arithmetic operations required by the proposed approach
is:

2NF + 5F − 8L − 1
2NL + 2NF − 2F

× 100% (23)

less than the conventional checksum-based roll-forward
method of Section II.

Proof: See Appendix.
For example, for N = 576, L = 6 and F = ⌊L

3
⌋ = 2, Proposi-

tion 4 shows that our approach is 24.59% more efficient than
the conventional checksum-based approach.

Proposition 5. When F core failures occur during L concur-
rent N×N -by-N×N matrix products, the number of arithmetic
operations required by the proposed approach is up to:

2NF + 4F − 7L − 1
2NF + 2NL − 3F +L

× 100% (24)

less than the conventional checksum-based roll-forward
method of Section II.

Proof: See Appendix.
For example, for N = 576, L = 6 and F = ⌊L

3
⌋ = 2,

Proposition 5 shows that numerical packing is 24.62% more
efficient than the checksum-based method. We note, however,
that this is the worst case scenario for the checksum-based
method as some of the failed cores could be cores computing
a checksum result, thus requiring no recovery.

In terms of resilience to multiple non-consecutive failures,
similar to the checksum approach of Jou and Abraham [59],
the proposed approach would either need additional processing
cores, i.e., as proposed by Luk, Rexford, et al. [54], [60], or a
generalized version of the proposed packing mechanism would
need to be devised. We may pursue support for this feature in
future work.

Table I
GIGA-OPERATIONS PER OUTPUT [AND PERCENTILE OVERHEAD IN

COMPARISON TO THE FAILURE-INTOLERANT (CONVENTIONAL) GEMM
COMPUTATION] FOR N ×N -BY-N ×N GEMM PRODUCTS WHEN

MITIGATING F = 4 FAILURES IN AN L = 16 CORE COMPUTING PLATFORM.

Method Number of operations per output (×109)
N = 1152 N = 4608 N = 9216

Failure-intol. 3.06 195.67 1565.43
Proposed 3.07 (0.33%) 195.82(0.08%) 1566.05(0.04%)

Checksum 4.06 (32.68%) 260.92 (33.35%) 2087.35 (33.34%)

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 7

Table I presents examples of the arithmetic complexity per
output derived from the calculations of Proposition 4 when
L = 16 cores are available for data computation. We focus
on the fail-free case as a baseline for comparisons, since,
under the occurrence of failures, our approach will outperform
the checksum-based method with an even higher margin. The
results of Table I show that, although the proposed approach
requires a limited number of arithmetic operations for packing
and unpacking, the production of L matrices using L cores
makes its operations’ count comparable to the conventional,
failure-intolerant, GEMM. On the other hand, the checksum-
based method produces only L−F matrices via the L utilized
cores, thereby leading to substantially-increased operations-
per-output in comparison to both the failure-intolerant GEMM
and the proposed approach. On average, Table I shows that nu-
merical packing incurs about 0.15% additional computations
per output for packing and unpacking in comparison to the
failure-intolerant computation, while the checksum approach
requires 33.12% more computations to produce the same
number of outputs. The practical overhead incurred by the
proposed and the checksum-based approach is investigated via
the experiments of the following section.

V. EXPERIMENTAL RESULTS ON A SHARED-MEMORY

18-CORE AWS EC2 INSTANCE

We benchmark our proposal for core failure mitigation using
a compute-optimized c4.8xlarge instance of AWS EC2
(Intel Xeon E5-2666v3 2.9GHz cores, on-demand instance
type, Windows Server 2012, Intel C++ 15.0 Compiler, Intel
MKL for GEMM operations, 36 EC2 virtual cores correspond-
ing to 18 physical cores with shared memory). Each individual
throughput or execution-time result in our experiments corre-
sponds to the average of 1000 runs with randomly selected
inputs from the utilized datasets.

A. Execution Time Comparison for Failure Mitigation in Par-
allel GEMM Computations

Given that the optimal performance of the Intel MKL
GEMM library is obtained when parallel computations are
done in physical cores [61], [62], we set the system affinity to
18 physical cores rather than the 36 EC2 virtual cores. This
configuration can accommodate a shared-memory computing
cluster comprising four quadcore processors and we can
present results for data recovery when all computations in any
group of (up to) four consecutive cores are lost (termed as
one quadcore failure). All packing, unpacking and checksum
generation make use of the parallel computing capability of the
computing environment via the OpenMP framework, as well
as the increased optimization level offered by AVX2 SIMD
instructions.

Table II presents the average execution time for all methods
when L = 16 for the computation of (0 ≤ l < 16):

Rl=Al,(N×N)BN×N . (25)

By comparing Table I and Table II, it is evident that the
performance ranking of the methods follows the theoretical

Table II
AVERAGE EXECUTION TIME RESULTS (IN MILLISECONDS) AND

PERCENTILE OVERHEAD IN COMPARISON TO THE FAILURE-INTOLERANT

(CONVENTIONAL) GEMM COMPUTATION WHEN MITIGATING ONE

QUADCORE FAILURE IN L = 16 GEMM COMPUTATIONS.

Method N = 1152 N = 4608 N = 9216
Failure-intol. 3.19 164.13 1255.06

Proposed 4.24 (32.92%) 194.98 (18.8%) 1415.66 (12.8%)
Checksum 4.55 (42.63%) 224.27 (36.64%) 1695.44 (35.09%)

analysis of Section IV-E. While the proposed approach incurs
higher overhead than what is theoretically predicted in Table
I (primarily due to variation in execution time between 64-
bit and 32-bit memory and arithmetic operations), it is still
offering substantial execution-time improvement against the
checksum-based failure mitigation approach, particularly as
the matrix product dimension increases.

Matrix size (M=N=K=Matrix size)
0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

of
 p

ea
k

pe
rf

or
m

an
ce

0

10

20

30

40

50

60

70

80

90

100

Conventional
Proposed with Failure
Checksum with No Failure
Checksum with Failure

10.92%

26.04%

Figure 3. Peak performance achieved by each method in the utilized
distributed computing environment for L = 16.

Fig. 3 presents the experimental peak performance5

achieved by each approach including all pre- and post-
processing. We note that the peak performance achieved by
all methods is slightly reduced because of the overheads of
multicore systems with shared memory, i.e., it is well known
that all practical GEMM realizations will attain less than
90% of peak performance in such a multicore cluster [20],
[61], [62]. Furthermore, since the proposed approach and the

5Each of the utilized Intel Xeon E5-2666v3 cores achieves V = 92.8
GFlop/s (operating at 2.9 GHz with 32 floating-point operations per cycle
under AVX2 instructions). The peak performance achieved by each method

is calculated by U(2N3−N2)
tV L

× 100%, where U is the number of matrices
of output results (i.e., U = L for the conventional and proposed methods and
U = L − F for the checksum-based approach) and t is the total execution
time (in seconds) for each case.

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 8

checksum-based method require additional operations for fail-
ure mitigation, reduced peak performance is expected in com-
parison to the failure-intolerant (conventional) approach. Our
results show that the conventional (failure-intolerant) GEMM
achieves 64.50% to 85.31% of peak performance, while the
proposed method for core failure mitigation achieves 43.25%
to 74.47% of peak performance. On the other hand, checksum-
based core failure mitigation achieves only 45.27% to 62.18%
of peak performance. Overall, our theoretical analysis and
experimental results demonstrate that our proposal offers the
same reliability to core failures as conventional checksum-
based methods, albeit with peak performance that becomes
comparable to the conventional failure-intolerant approach as
the inner sum-of-product dimension grows.

B. Execution Time Comparison for Failure Mitigation in Par-
allel Cross-correlation Computations

We now benchmark our approach and the checksum-based
approach for core failure recovery in the multicore execution
of the CONV-based music retrieval algorithm of Ellis et. al.
[63]. The algorithm identifies cover songs within a music
database by extracting beat and tempo data from the query
song track and performing cross correlation of the beat and
tempo feature vectors with the beat and tempo vectors of
each of the songs in the database [63], [64]. The dominant
computation within this process comprises two-dimensional
cross-correlation between a matrix of audio beat and tempo
data and a database of such matrices. Using this algorithm, we
perform a music retrieval experiment with the music database
comprising beat-tempo data from the Million-song dataset
subset available at Columbia University’s LabROSA repository
[65] and the “1517-Artists” dataset of Seyerlehner et. al. [66].

The algorithm tracks beats of each of the input music tracks
and generates a twelve-dimensional “chroma” representation
specifying the pitches of the twelve distinct semitones in
the western octave [63]. We used 100 beats to describe
every music track. Thus, each music tack is composed of
a 12 × 100 matrix representing its beat-chroma features. We
then modified the Matlab code of Ellis et. al. [63] for parallel
execution of the music similarity measurement. Specifically,
the Matlab spmd function was used to set up the paral-
lel computing environment. Given that Matlab uses only
the physical cores of the computing unit for parallel pro-
cessing (see feature(’numCores’)command in Matlab),
we distribute the music database amongst 16 cores for the
conventional computation and proposed algorithm, while the
checksum-based method uses 12 cores for data storage and
the other 4 cores for checksum data. All preprocessing for
beat and feature extraction from the audio clips is performed
offline, i.e., prior to the actual retrieval task, and it is not
carried out by the cloud-computing server of our experiment,
which is only used for the actual retrieval task.

Table III shows the average execution time (in milliseconds)
for the search and retrieval of a music track within various
database sizes. The results demonstrate that the performance

of the proposed algorithm converges to that of the conven-
tional, failure-intolerant, implementation as the database size
increases. On the other hand, the checksum-based method is
found to incur considerable (and largely consistent) execution
time overhead (33%–41%) across all database sizes.

VI. IMAGE RETRIEVAL BASED ON TERMINATABLE AWS
EC2 SPOT INSTANCES

To illustrate the efficacy of our proposal in instance failure
mitigation when carrying out integer sum-of-product com-
putations with terminatable instances, we performed several
medium-scale image retrieval experiments using the state-
of-the-art vector of locally aggregated descriptors (VLAD)
method of Jegou et. al. [67] deployed on a cluster of AWS
EC2 spot instances.

A. Application Description

The preprocessing done by the VLAD algorithm produces a
compact “signature” for each database image and query image
based on [67] [68]: (i) the local aggregation of visual features
into clusters using K-means clustering; (ii) compaction of the
aggregated feature vectors into a vector of integers based on
normalization, projection and quantization. In order to perform
a retrieval task, we compute the inner product between the
compacted feature vector of a query image and the compacted
feature vector of each of the images in the database. The im-
ages corresponding to the top-T highest inner-product values
are subsequently returned as the T best matches for the given
query.

Given that multiple query images (a.k.a. image “bunch”)
are matched through the stored database at any given moment
(e.g., because of many concurrent users, or due to the use
of video that results in multiple feature vectors per query),
the matching operations are carried out via GEMM products
between the feature vectors of query image bunches and the
database images. Following the GEMM, only inner-product
values above a predetermined threshold are retained and a
sorting algorithm is used in order to find the top-T matches
[69]. This post-processing stage has negligible computational
cost, thereby leaving the GEMM as the compute-intensive
operation being carried out in the cloud computing cluster
(the preprocessing stage for the VLAD signature extraction is
performed offline for the database and on a local core for the
query images).

In our experiments, we use the VLAD descriptors derived
from the INRIA Holidays dataset of [67], [70] comprising
1,491 holiday images, together with subsets selected from
an additional 110,700 so-called “distractor” images from the
INRIA website [71]. Prior to our test, each database image
was preprocessed to derive the 8,192-length VLAD signature
vector of integers.

B. System Description: StarCluster Comprising AWS EC2
Instances

We examine the cost implication of running the VLAD im-
age retrieval algorithm using a five-instance AWS EC2 cluster

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 9

Table III
EXECUTION TIME (IN MILLISECONDS) AND PERCENTILE DIFFERENCE IN COMPARISON TO THE CONVENTIONAL FAILURE -INTOLERANT PROCESSING FOR

RECOVERY AFTER A QUADCORE PROCESSOR FAILURE IN A MUSIC RETRIEVAL SYSTEM .

Method Conventional Proposed Checksum
Database size Failure-intolerant Failure-tolerant Failure-tolerant

4992 382.26 530.44 (38.8%) 529.68 (38.6%)
7488 490.85 629.41 (28.2%) 692.30 (41.0%)
9984 579.62 726.19 (25.3%) 812.98 (40.3%)
12480 729.13 829.82 (13.8%) 968.92 (32.9%)
17472 926.58 1046.79 (13.0%) 1308.99 (41.3%)

based on MIT’s open source StarCluster toolkit [50] with the
MPICH2 plugin. Each instance is a quadcore m3.xlarge
instance type running Ubuntu 12.04.2. In order to ensure
cluster stability, StarCluster imposes that the master instance is
setup as an on-demand instance type, while slave instances can
either be spot or on-demand instance types. Unlike the case
of the shared-memory cluster of Section V where the image
database is in commonly-accessible memory, in this case
the image database is equally spread over the four available
slave instances, with the exception of the checksum-based
approach, where the database is equally spread across three
slave instances, with the fourth instance reserved for storing
and computing with checksum data.

Firstly, the slave instances of the failure-intolerant imple-
mentation are set to run on on-demand instance types with
the set price of $0.266 per hour for the m3.xlarge instance
type [72], thereby ensuring no service interruption albeit at a
high instance cost. On the other hand, given that the proposed
method and the checksum-based implementation of the image
retrieval experiment can tolerate instance failures, they run on
AWS EC2 spot instances with spot bidding price set the same
as for the on-demand instances ($0.266 per hour). We monitor
the actual expenditure for spot instances by monitoring the
evolution of the spot price via the AWS command line
interface (CLI). Although AWS EC2 spot instances are known
to be about 60% cheaper than the corresponding on-demand
instances, the spot price occasionally spikes above a user’s spot
bidding price (i.e., above $0.266 in our case), which results in
the termination of the spot instances [73].

Fig. 4 shows the spot price history6 corresponding to the
week of our experiment. We superimpose on the figure a
predetermined “safety threshold” of $0.100: when spot prices
surpass this threshold, a spot price spike is impending and
our system is designed to react (as elaborated in the next
subsection) before the spot price reaches our $0.266 bid. For
the seven-day spot instance history of Fig. 4, the minimum,
maximum and average spot prices were found to be $0.034,
$0.500 and $0.058 per hour, respectively.

6We pulled the exact spot prices by running the command: aws
ec2 describe-spot-price-history --instance-types
m3.xlarge --start-time 2015-12-13T07:08:09
--end-time 2015-12-20T07:08:09 --availability-zone
us-east-1e --product-description "Linux/UNIX (Amazon
VPC)" on the AWS CLI [74].

Figure 4. AWS EC2 m3.xlarge spot instance type pricing history for
06/Dec/2015–13/Dec/2015 [availability-zone: us-east-1e, product-description:
Linux/UNIX (AWS VPC)].

C. Experiment Description and Results

Following this setup and the spot history of Fig. 4, every
time the spot price rose to the safety threshold, three slave
instances were migrated to on-demand instances (one at a
time7) and the fourth instance was simply terminated. Thus, we
run three slave instances at the on-demand price for one hour
(since billing is carried out in hourly installments). If after one
hour the spot price had dropped below the safety threshold, all
four slave instances were brought back to spot instances and
the on-demand instances were terminated. In this way, within
the week reported in Fig. 4, there were 236 timestamps when
the spot prices exceeded the safety threshold of $0.100, and
they corresponded to 18 hours of on-demand instance usage
(i.e., on average, 2 hours 34 minutes per day). Therefore, the
total cost of running the failure-tolerant algorithms for the
seven-day period (168 hours) is given by:

18 × 3 × $0.266 + (168 − 18) × 4 × $0.052 = $45.564

where $0.052 corresponds to the mean of spot prices below
the safety threshold for the seven-day period.

On the other hand, the failure-intolerant algorithm run
at a flat rate of $0.266-per-instance-per-hour, amounting to
168 × 4 × $0.266 = $178.752 for the seven-day time period.
Table IV shows the cost savings for the VLAD image retrieval
experiment per million images processed, under different
database sizes.

7we only need three slave instances in the proposed approach since the
results of all four can be derived from three instances if we know no failures
are bound to occur (which is the case when switching from spot to on-demand)

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 10

Table IV
COST PER MILLION IMAGE QUERIES (ALL IN US DOLLAR CENTS) AND PERCENTILE DIFFERENCE IN COMPARISON TO THE CONVENTIONAL

FAILURE-INTOLERANT PROCESSING FOR RECOVERY AFTER A QUADCORE INSTANCE FAILURE IN VLAD-BASED IMAGE RETRIEVAL.

Method
Conventional Proposed Checksum

Failure-intolerant Failure-tolerant Failure-tolerant
Database size (×0.01$) (×0.01$) (×0.01$)

4992 0.29 0.09 (-68.88%) 0.11 (-61.25%)
11520 0.30 0.09 (-69.15%) 0.11 (-62.22%)
17472 0.37 0.10 (-71.78%) 0.13 (-64.10%)
82944 0.41 0.11 (-72.57%) 0.14 (-65.95%)
112128 0.59 0.16 (-73.66%) 0.19 (-68.64%)

The results of Table IV show that, as expected, with
increased database size: (i) the cost of all approaches per
million image queries is increasing; (ii) the cost reduction
percentage of both approaches exhibits is also increasing.
Overall, numerical packing allows for 16%–24% reduction of
cost in comparison to the checksum-based method and offers,
on average, 71.21% cost reduction (i.e., almost 3.5 times less
cost) in comparison to the failure-intolerant realization.

VII. CONCLUSIONS

We propose a novel method for core failure mitigation in
sum-of-product computations performed in multicore cloud
computing platforms, with particular emphasis on integer
matrix products and integer convolution/cross-correlation. Our
approach inserts redundancy within the numerical representa-
tion of the inputs themselves by exploiting the concept of nu-
merical packing. Therefore, our method does not perform any
redundant GEMM/CONV computations (akin to checksums)
in order to mitigate core failures. We show theoretically and
experimentally that this results in significantly-lower overhead
in comparison to the equivalent checksum-based core failure
mitigation method. Importantly, our approach achieves peak
performance results that approach the conventional failure-
intolerant computation as the matrix or signal dimensions
increase, since the overhead of the required pre- and post-
processing diminishes to zero. A deployment of the proposed
approach over Amazon Web Services Elastic Compute Cloud
(AWS EC2) spot instances that provide for cost savings (but
require the mitigation of instance terminations) shows that
the proposed method incurs nearly 3.5 times less cost than
failure-intolerant processing. Future work could explore the
use of higher number of concurrent packings for the mitigation
of higher number of core failures (at the cost of decreased
dynamic range), as well as the efficacy of the proposed
approach on other multimedia applications based on integer
sum-of-product computations.

APPENDIX

A. Proof of Proposition 1

Proof: It suffices to show that, given a set of F = ⌊L
3
⌋ con-

secutive core failures with the corresponding failed GEMMs
denoted by: f ∈ [0, L − 1], ∀f ′ ∈ {f, . . . , (f + F − 1) mod L} ∶
R̂f ′ , the proposed algorithm can recover all L GEMM outputs.
In addition, for simplicity of exposition, we assume that L is

a multiple of 3, with other cases requiring trivial extensions
in the proof.

Following the packing algorithm of (7) and (9) and assum-
ing the worst case of all F core failures, i.e. F = L

3
, we re-

cover the set R̃f ′ , R̃(f ′+F)mod L and R̃(f ′+2F)mod L using only
packed outputs, R̂(f ′+F)mod L and R̂(f ′+2F)mod L expressed
by:

R̂(f ′+F)mod L = ((R̃(f ′+F)mod L,top)≪ 2k)

+ ((R̃(f ′+F)mod L,bot)≪ k) (26)

+ ((R̃(f ′+2F)mod L,top)≪ k)

+ R̃(f ′+2F)mod L,bot,

R̂(f ′+2F)mod L = ((R̃(f ′+2F)mod L,top)≪ 2k)

+ ((R̃(f ′+2F)mod L,bot)≪ k) (27)

+ ((R̃f ′,top)≪ k) + R̃f ′,bot.

First, the output shifted by 2k (equivalent to the “top” subset
of columns of R̃(f ′+F)mod L), is extracted from the packed
GEMM of (26). The obtained result is then removed from
(26) in order to obtain the outputs scaled by k and 1 (to be
used in subsequent steps) by:

R̃(f ′+F)mod L,top = R̂(f ′+F)mod L ≫ 2k (28)

T0 = R̂(f ′+F)mod L − (R̃(f ′+F)mod L,top ≪ 2k) (29)

T1 = T0 ≫ k. (30)

Because of the complement-two arithmetic used in integer
representations in commodity hardware, all negative elements
(i, j) of T1 will be found to be larger or equal to 2k−1

(maximum positive value within a packed output element)
and R̃(f ′+F)mod L,top [i, j] (contained in the most-significant
bits of R̂(f ′+F)mod L [i, j]) will be found to be one less than
their correct value. To compensate for these effects of the
complement-two arithmetic, we first define the intermediate
matrix E0 to store the signed values of T1 therein, and adjust
the values of R̃(f ′+F)mod L,top as follows:
∀i, j ∶ if T1[i, j] ≥ 2k−1 , then set E0 [i, j] = T1 [i, j] − 2k

(convert to negative number); else set E0 [i, j] = T1 [i, j] (no
change);

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 11

∀i, j ∶ if E0 [i, j] < 0, then set R̃(f ′+F)mod L,top [i, j] ←
(R̃(f ′+F)mod L,top [i, j] + 1).

Next, a similar check is performed to extract the signed
representation of R̃(f ′+2F)mod L,bot and the values of E0 are
adjusted, i.e.:

T0 ← [T0 − (T1 ≪ k)] , (31)

∀i, j ∶ if T0 [i, j] ≥ 2k−1, then set R̃(f ′+2F)mod L,bot [i, j] =
R̃(f ′+2F)mod L,bot [i, j] − 2k; else set R̃(f ′+2F)mod L,bot [i, j] =
T0 [i, j] ;
∀i, j ∶ if R̃(f ′+2F)mod L,bot [i, j] < 0, then set E0 [i, j] ←

(E0 [i, j] + 1).
Similarly, R̂(f ′+2F)mod L undergoes the same processing

as R̂(f ′+F)mod L in order to extract R̃(f ′+2F)mod L,top, the
intermediate matrix E1 = R̃(f ′+2F)mod L,bot + R̃f ′ mod L,top and
R̃f ′ mod L,bot. Finally, we perform the following operations to
complete the extraction of all results:

R̃(f ′+F)mod L,bot = E0 − R̃(f ′+2F)mod L,top (32)

R̃f ′ mod L,top = E1 − R̃(f ′+2F)mod L,bot. (33)

We have thus shown that all lost R̃f ′ GEMM outputs,
together with the outputs R̃(f ′+F)mod L and R̃(f ′+2F)mod L,
have been recovered.

B. Proof of Proposition 2

Proof: The proof follows the steps of the proof of
Proposition 1, with the change of matrices to vectors and is
omitted for brevity of description. Once all vectors r̃l,top and
r̃l,bot have been recovered (0 ≤ l < L), given that the “top”
vectors comprise output signal samples with indices within
[0,N + K

2
−1,] while the “bot” vectors comprise signals with

indices within [K
2

,N +K−1], the concatenation operations of
(22) are required to obtain the final outputs.

C. Proof of Proposition 3

Proof: Using a 64-bit integer representation for the pro-
posed packing and processing, (6) allows for up to ±219 output
dynamic range without any approximation. This means that 12
bits of dynamic range are sacrificed in comparison to the 32-bit
integer representation, i.e., 37.5% of the bitwidth is sacrificed.

D. Proof of Proposition 4

Proof: In the proposed approach, the packing of the
L input matrices A0, . . . ,AL−1 and the B matrix requires
1
2
N2 (2L + 1) addition operations [see (5) and (9) and ig-

noring all arithmetic shift operations] and the packed matrix
products require L

2
(2N3 −N2) operations. In terms of recov-

ery, it can be shown via the analysis of Section IV-C that
7
2
N2 (L − F) operations are required to extract all outputs

from the L − F matrices. Given that the proposed method
requires double the bitwidth of the conventional failure-
intolerant GEMM for its computation, the cycles count of these
computations will also be doubled. Therefore, by doubling the

sum of all arithmetic operations, the arithmetic operations of
the proposed approach are:

Cx{proposed} = N2 (2NL + 8L − 7F + 1) . (34)

For the mitigation of a single core failure or a group of
F consecutive failures using the unweighted checksum-based
method, N2 (L − F) additions are required for the check-
sum generation. Subsequently, L + F GEMMs are computed,
which correspond to (2N3 −N2) (L + F) operations. Post-
processing is not required for the checksum-based method
when no failures are encountered or when the failed cores
are solely the cores holding the checksum matrices. In such
cases, the arithmetic operations performed by the checksum-
based method are:

Cx{no checksum failures} = N2(2NF − 2F + 2NL) (35)

Combining (34) and (35) to calculate the percentile reduction
in the arithmetic operations stemming from the proposed
approach, we reach (23).

E. Proof of Proposition 5

Proof: The proposed approach requires the operations
given by (34) regardless of whether core failures occurred
or not. However, under the occurrence of a group of F
consecutive core failures, the checksum-based method must
solve a system of linear equations to recover the lost data.
Assuming the failed cores correspond to the cores computing
the actual data outputs and not the checksum outputs, it
can be shown that N2 (L − F) operations are required for
data recovery. Therefore, the overall number of arithmetic
operations of the checksum-based roll-forward method when
F core failures are encountered is:

Cx{F checksum failures} = N2 (2NF − 3F + 2NL +L)
(36)

Combining (34) and (36) to calculate the percentile reduction
in the arithmetic operations stemming from the proposed
approach, we reach (24).

REFERENCES

[1] D. Fiala et al., “Detection and correction of silent data corruption
for large-scale high-performance computing,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 78.

[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proc. 10th Europ. Conf. on Comp. Syst. (Eurosys). ACM, 2015, p. 18.

[3] Y. Gong, A. C. Zhou, and B. He, “Monetary cost optimizations for HPC
applications on Amazon clouds: Checkpoints and replicated execution,”
Supercomputing conference, SC’14 (Poster), 2014.

[4] C. S. Chan, B. Pan, K. Gross, K. Vaidyanathan, and T. Š. Rosing,
“Correcting vibration-induced performance degradation in enterprise
servers,” ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 3, pp.
83–88, 2014.

[5] I. Andreopoulos et al., “A hybrid image compression algorithm based on
fractal coding and wavelet transform,” in Proc. IEEE Int. Symp. Circuits
and Systems, 2000 (ISCAS 2000)., vol. 3. IEEE, 2000, pp. 37–40.

[6] Y. Andreopoulos et al., “A local wavelet transform implementation
versus an optimal row-column algorithm for the 2d multilevel decompo-
sition,” in Proc. IEEE Int. Conf. Image Processing, 2001, ICIP, vol. 3,
2001, pp. 330–333.

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 12

[7] ——, “A new method for complete-to-overcomplete discrete wavelet
transforms,” in Int. Conf. Dig. Signal Process., 2002, (DSP 2002)., vol. 2.
IEEE, 2002, pp. 501–504.

[8] ——, “High-level cache modeling for 2-d discrete wavelet transform
implementations,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 34, no. 3, pp. 209–226, 2003.

[9] Y. Andreopoulos and M. Van der Schaar, “Adaptive linear prediction for
resource estimation of video decoding,” IEEE Trans. on Circ. and Syst.
for Video Technol., vol. 17, no. 6, pp. 751–764, 2007.

[10] W. Zhu et al., “Multimedia cloud computing,” IEEE Signal Processing
Magazine, vol. 28, no. 3, pp. 59–69, May 2011.

[11] Y. Wen, X. Zhu, J. Rodrigues, and C. W. Chen, “Cloud mobile media:
Reflections and outlook,” IEEE Trans. on Multimedia, vol. 16, no. 4,
pp. 885–902, June 2014.

[12] M. Nicolaidis et al., “Design for test and reliability in ultimate CMOS,”
in IEEE Design, Automat. & Test in Europe Conf. & Expo. (DATE),
2012. IEEE, 2012, pp. 677–682.

[13] B. Carterette et al., “Million query track 2009 overview,” in Proc.
TREC’09, vol. 9, 2009.

[14] Y.-G. Jiang, Q. Dai, T. Mei, Y. Rui, and S.-F. Chang, “Super fast event
recognition in internet videos,” IEEE Trans. on Multimedia, vol. 17,
no. 8, pp. 1174–1186, Aug 2015.

[15] L. Page et al., “The PageRank citation ranking: bringing order to the
web.” 1999.

[16] J. Yang et al., “Two-dimensional PCA: a new approach to appearance-
based face representation and recognition,” IEEE Trans. on Patt. Anal.
and Machine Intell., vol. 26, no. 1, pp. 131–137, 2004.

[17] Z. Zhong, J. Zhu, and S. Hoi, “Fast object retrieval using direct spatial
matching,” IEEE Trans. on Multimedia, vol. 17, no. 8, pp. 1391–1397,
Aug 2015.

[18] A. Munteanu et al., “Control of the distortion variation in video coding
systems based on motion compensated temporal filtering,” in Proc. IEEE
Int. Conf. Image Process., ICIP 2003, vol. 2. IEEE, 2003, pp. II–61.

[19] N. Kontorinis et al., “Statistical framework for video decoding complex-
ity modeling and prediction,” IEEE Trans. on Circ. and Syst. for Video
Technol., vol. 19, no. 7, 2009.

[20] M. Intel, “Intel math kernel library,” 2007.
[21] K. Goto and R. A. Van De Geijn, “Anatomy of high-performance matrix

multiplication,” ACM Trans. Math. Soft, vol. 34, no. 3, p. 12, 2008.
[22] J. Sloan et al., “Algorithmic approaches to low overhead fault detection

for sparse linear algebra,” in Proc. 42nd Annual IEEE/IFIP Int. Conf.
on Depend. Syst. and Netw. (DSN), 2012, 2012, pp. 1–12.

[23] C. F. Van Loan, “The ubiquitous kronecker product,” Journal of com-
putational and applied mathematics, vol. 123, no. 1, pp. 85–100, 2000.

[24] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incre-
mental tensor analysis: Theory and applications,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 2, no. 3, p. 11, 2008.

[25] Y. Andreopoulos and I. Patras, “Incremental refinement of image salient-
point detection,” IEEE Transactions on Image Processing, vol. 17, no. 9,
pp. 1685–1699, 2008.

[26] Y. Andreopoulos, “Error tolerant multimedia stream processing: There’s
plenty of room at the top (of the system stack),” IEEE Transactions on
Multimedia, vol. 15, no. 2, pp. 291–303, 2013.

[27] D. Anastasia and Y. Andreopoulos, “Linear image processing operations
with operational tight packing,” IEEE Sig. Process. Let., vol. 17, no. 4,
pp. 375–378, 2010.

[28] A. Kadyrov and M. Petrou, “The" invaders’ algorithm: Range of values
modulation for accelerated correlation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1882–1886, 2006.

[29] E. Stewart, “Intel integrated performance primitives: How to optimize
software applications using Intel IPP,” 2004.

[30] I. P. Egwutuoha et al., “A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing
systems,” The Journal of Supercomputing, vol. 65, no. 3, pp. 1302–
1326, 2013.

[31] M. Treaster, “A survey of fault-tolerance and fault-recovery techniques
in parallel systems,” ACM Computing Research Repository (CoRR, vol.
501002, pp. 1–11, 2005.

[32] C. Wang et al., “A job pause service under LAM/MPI+ BLCR for trans-
parent fault tolerance,” in IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2007. IEEE, 2007, pp. 1–10.

[33] G. Bronevetsky et al., “Automated application-level checkpointing of
mpi programs,” ACM Sigplan Notices, vol. 38, no. 10, pp. 84–94, 2003.

[34] S. Di, E. Berrocal, and F. Cappello, “An efficient silent data corruption
detection method with error-feedback control and even sampling for
HPC applications,” in Proc. 15th IEEE/ACM Int. Conf. on Clust., Cloud
and Grid Comp. (CCGrid’15), 2015.

[35] I. Philp, “Software failures and the road to a petaflop machine,” in
HPCRI: 1st Workshop on High Performance Computing Reliability
Issues, in Proceedings of the 11th International Symposium on High
Performance Computer Architecture (HPCA-11), 2005.

[36] J. T. Daly et al., “Application MTTFE vs. platform MTBF: A fresh
perspective on system reliability and application throughput for com-
putations at scale,” in 8th IEEE International Symposium on Cluster
Computing and the Grid, 2008. CCGRID’08. IEEE, 2008, pp. 795–
800.

[37] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, pp. 1628–1641, 2008.

[38] C. Engelmann et al., “The case for modular redundancy in large-scale
high performance computing systems,” in Proc. IASTED Internat. Conf.,
vol. 641, 2009, p. 046.

[39] J.-Y. Jou and J. Abraham, “Fault-tolerant matrix arithmetic and signal
processing on highly concurrent computing structures,” in Proc. of the
IEEE, vol. 74, no. 5. IEEE, May 1986, pp. 732,741.

[40] Z. Chen, “Optimal real number codes for fault tolerant matrix op-
erations,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM, 2009, p. 29.

[41] S. Sundaram and C. N. Hadjicostis, “Fault-tolerant convolution via
chinese remainder codes constructed from non-coprime moduli,” IEEE
Transactions on Signal Processing, vol. 56, no. 9, pp. 4244–4254, 2008.

[42] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. on Computers, vol. 100, no. 6, pp. 518–
528, 1984.

[43] P. Du et al., “Algorithm-based fault tolerance for dense matrix factor-
izations,” ACM SIGPLAN Notices, vol. 47, no. 8, pp. 225–234, 2012.

[44] P. E. Beckmann and B. R. Musicus, “Fast fault-tolerant digital convo-
lution using a polynomial residue number system,” IEEE Transactions
on Signal Processing, vol. 41, no. 7, pp. 2300–2313, 1993.

[45] Z. Chen, “Algorithm-based recovery for iterative methods without check-
pointing,” in Proceedings of the 20th International Symposium on High
Performance Distributed Computing. ACM, 2011, pp. 73–84.

[46] N. Firasta et al., “Intel AVX: New frontiers in performance improve-
ments and energy efficiency,” Intel White paper, 2008.

[47] I. Anarado et al., “Highly-reliable integer matrix multiplication via
numerical packing,” in Proc. 19th IEEE Internat. On-Line Testing
Sympos. (IOLTS’13), 2013.

[48] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-
Grbovic, K. London, and J. J. Dongarra, “Extending the MPI specifica-
tion for process fault tolerance on high performance computing systems,”
in Proceedings of the International Supercomputer Conference (ICS),
2004.

[49] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al.,
“Open mpi: Goals, concept, and design of a next generation mpi
implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer, 2004, pp. 97–104.

[50] MIT, “Starcluster,” http://star.mit.edu/cluster/.
[51] H. Tabia and H. Laga, “Covariance-based descriptors for efficient 3d

shape matching, retrieval, and classification,” IEEE Trans. on Multime-
dia, vol. 17, no. 9, pp. 1591–1603, Sept 2015.

[52] D. Anastasia and Y. Andreopoulos, “Throughput-distortion computation
of generic matrix multiplication: Toward a computation channel for
digital signal processing systems,” IEEE Trans. on Signal Processing,
vol. 60, no. 4, pp. 2024–2037, 2012.

[53] V. K. Stefanidis and K. G. Margaritis, “Algorithm based fault tolerance:
Review and experimental study,” in Proc. Int. Conf. of Numer. Anal. and
Appl. Math. IEEE, 2004.

[54] F. T. Luk, “Algorithm-based fault tolerance for parallel matrix equation
solvers,” SPIE Real-Time Signal processing VIII, vol. 564, pp. 631–635,
1985.

[55] M. A. Anam and Y. Andreopoulos, “Throughput scaling of convolu-
tion for error-tolerant multimedia applications,” IEEE Transactions on
Multimedia, vol. 14, no. 3, pp. 797–804, 2012.

[56] D. Anastasia and Y. Andreopoulos, “Software designs of image process-
ing tasks with incremental refinement of computation,” IEEE Trans. on
Image Processing, vol. 19, no. 8, pp. 2099–2114, 2010.

[57] S. Ohshima, K. Kise, T. Katagiri, and T. Yuba, “Parallel processing
of matrix multiplication in a cpu and gpu heterogeneous environment,”
in High Performance Computing for Computational Science-VECPAR
2006. Springer, 2007, pp. 305–318.

[58] Intel, “Intel intrinsics guide,” http://software.intel.com/sites/landingpage/
IntrinsicsGuide/.

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://star.mit.edu/cluster/

IEEE TRANSACTIONS ON MULTIMEDIA, SUBMITTED 13

[59] J.-Y. Jou and J. A. Abraham, “Fault-tolerant matrix operations on
multiple processor systems using weighted checksums,” in Proc. 28th
Annual Tech. Symp. International Society for Optics and Photonics,
1984, pp. 94–101.

[60] J. Rexford and N. Jha, “Algorithm-based fault tolerance for floating-
point operations in massively parallel systems,” in Proc. IEEE Int. Symp.
on Circ. and Syst., vol. 2. IEEE, May 1992, pp. 649,652.

[61] K. A. (Intel), “Recommended settings for calling intel MKL routines
from multi-threaded applications,” https://software.intel.com/en-us/
articles/recommended-settings-for-calling-intel-mkl-routines-from-
multi-threaded-applications, 2011.

[62] C. Y. (Intel), “Intel MKL 10.x threading,” https://software.intel.com/en-
us/articles/intel-math-kernel-library-intel-mkl-intel-mkl-100-threading,
2010.

[63] D. P. Ellis, C. V. Cotton, and M. I. Mandel, “Cross-correlation of beat-
synchronous representations for music similarity,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE, 2008, pp. 57–60.

[64] M. A. Anam, P. Whatmough, and Y. Andreopoulos, “Precision–energy–
throughput scaling of generic matrix multiplication and convolution
kernels via linear projections,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 24, no. 11, pp. 1860–1873, 2014.

[65] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in Proceedings of the 12th International Conference on
Music Information Retrieval (ISMIR 2011), 2011.

[66] K. Seyerlehner, G. Widmer, and T. Pohle, “Fusing block-level features
for music similarity estimation,” in Proc. of the 13th Int. Conference on
Digital Audio Effects (DAFx-10), 2010, pp. 225–232.

[67] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local de-
scriptors into a compact image representation,” in 2010 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010, pp.
3304–3311.

[68] G. Amato, P. Bolettieri, F. Falchi, and C. Gennaro, “Large scale image
retrieval using vector of locally aggregated descriptors,” in Similarity
Search and Applications. Springer, 2013, pp. 245–256.

[69] G. Tolias, Y. Avrithis, and H. Jégou, “To aggregate or not to aggregate:
Selective match kernels for image search,” in 2013 IEEE International
Conference on Computer Vision (ICCV). IEEE, 2013, pp. 1401–1408.

[70] H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 34, no. 9,
pp. 1704–1716, 2012.

[71] J. H. (INRIA), “INRIA holidays dataset,” http://lear.inrialpes.fr/~jegou/
data.php#holidays, 2015.

[72] Amazon, “Amazon EC2 pricing,” https://aws.amazon.com/ec2/pricing/.
[73] ——, “New EC2 spot instance termination notices,”

https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-
notices/.

[74] ——, “Amazon EC2 spot price history,” http://docs.amazonaws.cn/cli/
latest/reference/ec2/describe-spot-price-history.html.

Ijeoma Anarado is currently pursuing the Ph.D.
degree at the Department of Electronic and Electrical
Engineering, University College London, U.K. Her
research interests include the design of system level
algorithms for fault tolerance in data computations
and throughput acceleration in signal processing
tasks. Her PhD is funded by the Federal Government
of Nigeria under the PRESSID Scheme.

Yiannis Andreopoulos (M’00-SM’14) obtained the
Electrical Engineering Diploma and an MSc in Sig-
nal and Image Processing Systems from the Uni-
versity of Patras, Greece, and the PhD in Applied
Sciences from the Vrije Universiteit Brussel, Bel-
gium. He is Reader (Assoc. Professor) in Data and
Signal Processing Systems in the Department of
Electronic and Electrical Engineering of University
College London (U.K.). His research interests are in
wireless sensor networks, error-tolerant computing
and multimedia systems. He received the 2007 Most-

Cited Paper Award from the Elsevier EURASIP Signal Processing: Image
Communication journal and a best paper award from the 2009 IEEE Workshop
on Signal Processing Systems. He was Special Sessions Co-Chair of the
10th International Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS 2009) and Programme Co-Chair of the 18th International
Conference on Multimedia Modeling (MMM 2012) and the 9th International
Conference on Body Area Networks (BODYNETS 2014). He has been an
Associate Editor of the IEEE Transactions on Multimedia, the IEEE Signal
Processing Letters and Image and Vision Computing (Elsevier).

http://docs.amazonaws.cn/cli/latest/reference/ec2/describe-spot-price-history.html
http://docs.amazonaws.cn/cli/latest/reference/ec2/describe-spot-price-history.html
http://lear.inrialpes.fr/~jegou/data.php#nameddest=holidays
http://lear.inrialpes.fr/~jegou/data.php#nameddest=holidays

	I Introduction
	I-A Summary of Prior Work
	I-B Contribution
	I-C Paper Organization
	I-D Notations

	II Checksum-based Methods For Core Failures
	III Brief Review of Packing for Integer Data Computations
	IV Proposed Approach
	IV-A Proposed Packing Method for Failure-tolerant GEMM
	IV-B Packed GEMM Computations
	IV-C Unpacking of the Results
	IV-D Proposed Approach for One-dimensional Convolution
	IV-E Summary of Key Results

	V Experimental Results on a Shared-memory 18-core AWS EC2 Instance
	V-A Execution Time Comparison for Failure Mitigation in Parallel GEMM Computations
	V-B Execution Time Comparison for Failure Mitigation in Parallel Cross-correlation Computations

	VI Image Retrieval Based on Terminatable AWS EC2 Spot Instances
	VI-A Application Description
	VI-B System Description: StarCluster Comprising AWS EC2 Instances
	VI-C Experiment Description and Results

	VII Conclusions
	Appendix
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Proposition 3
	D Proof of Proposition 4
	E Proof of Proposition 5

	References
	Biographies
	Ijeoma Anarado
	Yiannis Andreopoulos

