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W A V E L E T -BA S E D  S C A L A B L E  V I D E O  C O D I N G:  
AL G O R I T H M S  A N D  C O M P L E X I T Y  MO D E L S  

Abstract 

HE JPEG-2000 standard demonstrated that state-of-the-art coding performance can be obtained in still-
image compression with a coding architecture that enables a rich set of features for the compressed 

bitstream, such as a precise rate-control mechanism and multiple qualities and resolutions of the same picture 
based on selective decoding of portions of the compressed bitstream. This is a natural consequence of the use of 
a scalable image compression algorithm based on the wavelet decomposition and embedded coding.  

In this dissertation we investigate the extension of wavelet-based scalable coding to video signals. This problem 
appears to be of particular importance today, when ubiquitous video communication and video streaming takes 
place through unreliable (IP-based) wired and wireless media, and among terminals with different display and 
implementation capabilities. In the first part of our work, we examine algorithmic aspects of wavelet-based 
scalable video coding systems. In particular, novel algorithms are proposed for wavelet-domain (in-band) open-
loop and closed-loop motion-compensated prediction. Our choice of deviating from the conventional temporal 
prediction in the spatial-domain representation (i.e. motion estimation and compensation using the original 
video signal) is motivated by the fact that, in this way, the multiresolution features of the discrete wavelet 
transform (DWT) can be exploited in order to provide an improved hierarchical representation of the video 
content across resolutions. One significant problem of our approach relates to the shift-variance of the DWT 
that hinders the performance of motion-compensated prediction in the wavelet domain. In fact, until recently, 
this has prevented the related research community from investigating in-band video coding. In this thesis, based 
on prior work, we attack the problem of shift-variance in a systematic way by proposing a new transform, 
termed the Complete-to-Overcomplete Discrete Wavelet Transform (CODWT), which effectively provides a 
shift-invariant (overcomplete) representation from the DWT, useful for in-band motion estimation. Several 
symmetry properties are proven for the CODWT and fast calculation algorithms are proposed that suit the 
application framework of in-band video coding.  

Although motion estimation is utilizing the overcomplete DWT representation of the reference frame, motion 
compensation is always performed in the critically-sampled DWT. Hence the subsequently produced error-
frames remain critically-sampled. This enables the possibility for existing state-of-the-art embedded wavelet 
coders to be employed for the coding of the error frames. Our extensive experimental evaluation reveals that the 
proposed systems provide comparable quality to the equivalent systems operating in the spatial domain, while at 
the same time a substantially-improved multiresolution decoding capability is achieved. In order to improve the 
prediction efficiency of the proposed video coding architectures, an advanced motion estimation algorithm is 
proposed that incorporates multihypothesis variable block-size prediction. Moreover, in the case of open-loop 
motion-compensated temporal filtering, we couple the proposed advanced prediction schemes in the wavelet-
domain with in-band motion-compensated update schemes, thereby proposing a novel system that performs 
advanced in-band motion-compensated temporal filtering. This architecture is fully-scalable in quality, resolution 
and frame-rate and, at the same time, compares favourably with the state-of-the-art in video coding.  

The second part of this dissertation is devoted to complexity-modeling aspects of wavelet-based scalable video 
coding. Two models for predicting the complexity of video coding algorithms under realistic conditions are 
proposed. The two proposals target different aspects of complexity; in particular, the first presents a model for 
the cache-behaviour of the two-dimensional DWT, which targets implementation platforms where the memory 
bottlenecks are expected to dominate the execution of data-dominated signal processing tools such as the DWT. 
The analysis in that section is based on analyzing the algorithmic flow and expressing the expected cache misses 
in analytical formulations. The second topic proposes a novel framework for complexity modeling of motion-
compensated video decoders, which is based on a generic decomposition of the arithmetic (and potentially the 
memory) profile of these systems into a set of basis functions, without specific regard to the details of the 
algorithms involved. In each case, the models are experimentally validated by using real-life video coding tools 
and systems. 
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I.  
Chapter I 

INTRODUCTION 

1.1 The Need for Lossy Video Compression 
HE digital revolution that we experience today has brought significant changes to the multimedia 
consumer market. Digital still-picture and video cameras permit the creation of image and video 

content directly in a digital format that allows for easy manipulation, transferring, copying and 
modification. This has given rise to significant research activity in the digital signal processing 
community, which evolves around many areas, such as content manipulation and protection, content-
based search algorithms in multimedia data and, last but not least, image, video and audio 
compression. In fact, multimedia compression appears to be one of the most important stages in 
digital content handling and manipulation. This is due to the fact that, although the processing power 
of typical platforms has increased exponentially (as predicted by Moore’s law), the capabilities of 
storage and transmission mediums (i.e. computer networks) appear to increase at a much slower pace. 
In this situation, the role of compression is to reduce the bandwidth of multimedia content so that 
efficient storage or transmission is permitted on a variety of devices and media. Thus, multimedia 
compression effectively bridges the gap between content production and content consumption. 

With today’s abundance of image and video content transferred over the Internet and other media, 
one may wonder whether practical compression algorithms can perform well in this role. In the 
particular area of video compression, the problem appears to be significantly harder than in image and 
audio coding; advances in image capturing technology and the processing capacity of today’s digital 
platforms have allowed for video data generation and playback at high quality, resolution and frame-
rate. For example, in the case of the Digital Cinema scenario [1], a typical setup could involve video 
frames consisting of ten million pixels, with 16-bit precision per pixel and replay rates of 
approximately fifty frames per second. For a two-hour movie, this would entail a volume of (roughly) 

135.8 10⋅  bits (or 58 Terra-bits) to be compressed. In terms of bandwidth, this corresponds to 8 
Gbit/sec. Consequently, video compression algorithms have to reduce the storage requirement and 
transmission bandwidth by many orders of magnitude in order to match the capabilities of today’s 

T 
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typical storage and transmission mediums. Based on similar evidence, one can speculate that the 
increase of the volume of image and video data produced or consumed by the average user is 
increasing exponentially over time and will continue to do so in the near future [1].  

Image and video compression seem to be able to cope with this effect due to the use of lossy 
compression techniques. The main idea is that, for each image or video frame, one can exploit known 
properties of human vision with the use of signal transforms, in order to produce a hierarchical or 
layered representation of the input content in space and time [1] [2] [3] [4]. In this representation, the 
significant visual information tends to be clustered in a small percentage of transform coefficients, 
while the remaining coefficients tend to constitute a sparse representation. Such transform 
representations can be efficiently quantized and coded with a variety of techniques; moreover, 
depending on the available bandwidth, a percentage of the transform-coefficient information is 
ignored. It is important to note that, in the case of video, the sparseness in the transform domain 
representation is significantly increased with the use of motion estimation and compensation 
techniques that exploit temporal similarities among neighbouring frames [2]. In many cases, 
depending on the performance of the utilized motion estimation model, as well as the transform and 
coding techniques, a visually near-lossless representation of the input video can be obtained after 
decoding. For example, modern state-of-the-art video coders can achieve compression ratios of more 
than 100:1 with little loss of visual quality. This comes as a result of more than thirty years of research.  

Starting from the 1960’s, digital image and video coding research utilized spatial DPCM coding. 
Transform coding techniques were investigated in the 1970’s. A significant breakthrough was achieved 
in 1974, when Ahmed et al. [5] proposed the now-famous block-based Discrete Cosine Transform 
(DCT). In the same decade, researchers begun to experiment with motion-compensated prediction. 
This technology matured significantly over a number of years. Around 1985, the advances in 
processor speed permitted the first practical codecs utilizing block-based motion-compensated 
prediction with the DCT (MC-DCT) to operate in real time [2].  The success of these systems was 
tremendous, to the extent that all subsequent MPEG1 and ITU-T (VCEG)2 video coding standards 
were based on MC-DCT [6] [7]. Recent extensions to the basic MC-DCT technology achieved even 
more compression gains over pure frame-by-frame (intra) DCT coding for the same visual quality, at 
the expense of complexity. This is illustrated graphically in Figure I-1. As seen from the figure, there is 
an asymmetric evolution in codec complexity, where each new generation of encoders typically 
doubles the implementation complexity versus the previous state-of-the-art, while decoders appear to 
become more complex in a roughly linear fashion. As indicated in Figure I-1, more complex motion 
and scene modeling techniques tend to bring increased gains in compression, but this also increases 
the codec complexity, as well as the gap between encoder and decoder complexity. As a result, despite 
Moore’s law holding up for a number of years, it appears that today’s video compression systems are 
reaching a point, where further increase in video quality for a given bitrate will come at the cost of a 
significant increase in complexity that may prohibit real-time encoding. Consequently, instead of 

                                                 
1 MPEG: Moving Picture Experts Group. It corresponds to working group 11 of subcommittee JTC1/SC29 of 
the International Organization for Standardization (ISO).   
2 ITU-T: International Telecommunication Union – Telecommunication Standarization Sector. VCEG: Video-
Compression Experts Group. 
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focusing purely on compression, the research interest of the video coding community appears to be 
shifting towards efficient content distribution. This is discussed in detail in the following section. 

 

 

Figure I-1. Complexity of various video coding strategies versus coding gain [2]. 

 

1.2 Diversity in Digital Video Transmission – The 
Requirements for Scalable Video Coding 

Apart from the continuous increases in the volume of video data to be handled, a significant challenge 
today involves the distribution of video content to a variety of consumers. Digital video 
communication during the 1980’s and the first half of the 1990’s was restricted to company executives 
using expensive, reliable channels with a high transmission bandwidth and Quality-of-Service (QoS) 
functionalities. However, the explosion of the World-Wide-Web (WWW) after 1995 changed the 
philosophy of the industrialized world into “connect anytime, anywhere”. For example, today millions 
of people use video-streaming services at home, such as Apple’s QuickTime™, Microsoft’s 
MediaPlayer™ and Real-Network’s RealPlayer™, in order to view movies, news, music videos, and 
other events via the WWW. Internet-based streaming has already manifested considerable commercial 
development of content distribution networks, such as the Akamai network [8]. These distribution 
networks use edge servers3 on various locations across the globe that share multiple copies of the 
video content; users connected to the Internet access the video data via the closest edge server [8]. A 
newer phenomenon concerns video streaming via peer-to-peer networks [9] [10], which has the 
potential of diminishing broadcasting costs by creating distributed broadcasting networks, where a 
number of content consumers can also be used as broadcasters.  

Finally, it is important to mention that significant breakthroughs in image-capturing technology 
increased the pervasiveness of image and video cameras into mobile computing devices, such as 

                                                 
3 Multimedia-content servers at the network “edge”, i.e. at the user-end of the Internet Backbone. 
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PDAs and cellphones. As a result, today even portable communication devices are beginning to act 
both as producers and consumers of digital video in computer networks.  

In the vast majority of cases, video transmission occurs via unreliable networks, which use packet-
based protocols that were originally designed for data communication (e.g. file-exchange). One typical 
example is the TCP/IP protocol used for the WWW, which does not support any QoS functionalities 
for robust and timely delivery of multimedia content. The integration of wireless services in the 
workplace and home environments adds further uncertainty concerning the distribution of video 
content to the end user, since wireless networks exhibit large bandwidth variations and packet losses, 
which depend on a number of uncontrollable factors. For the typical case of video streaming, today’s 
situation is summarized in the illustration of Figure I-2., where various devices and networks are 
displayed along with their representative communication bandwidth. 
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Figure I-2. A representative scenario for video streaming over the Internet, where several clients are connected 
via heterogeneous wireless network protocols.  

 

In order to address the source-coding problems arising from the variability of transmission media for 
video communications, MPEG decided to perform an investigation of the application areas and the 
possible video-coding technologies that could potentially handle the communication requirements. 
This investigation started in 2002 [11] and is still on-going [12] [13]. Based on these efforts, there has 
been significant progress in identifying specific application areas, as well as source coding 
requirements [14].  

Concerning the technological part, it was widely accepted that scalable coding appears to be the most 
viable technical solution to problems of video transmission over heterogeneous networks and user-
terminals with diverse capabilities [4] [14]. Scalable video coding refers to a compression framework 
where content representations with different quality, resolution, and frame-rate can be extracted from 
parts of one compressed bitstream without the use of transcoding [4]. Previous research on the field 
[15] [16] [17] [18] [19] [20] [21] [22] demonstrated that a variety of coding techniques can be modified 
to produce a scalable bitstream with a varying degree of success.  
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A significant part of the success of a particular scalable coding algorithm relates to its compression 
efficiency. Consequently, one of the main requirements set for any scalable video coding algorithm is 
that it should perform as well as state-of-the-art non-scalable video coding in terms of visual quality 
[14], when both are compared for the vast majority of possible resolutions, quality levels and replay 
frame-rates.  

A second major requirement concerns the end-to-end delay for compression and decompression. For 
applications involving video broadcasting and streaming, the end-to-end delay is not a very stringent 
requirement since, in the majority of today’s cases, the content is compressed off-line. In general, it is 
considered that the overall streaming and decoding delay can be in the order of a few seconds [14]. 
Nevertheless, for other applications, such as conversational services and video monitoring systems, 
the delay requirements can be much more severe; in many cases, reliable operational systems should 
be bounded by an end-to-end delay in the order of 100 msecs [14]. 

In terms of the actual content scalability requirements, there is a series of issues identified by MPEG 
[14], which relate to the number of spatial, temporal and quality layers that a scalable bitstream should 
support, and last but not least, the associated complexity for encoding and decoding. These are 
elaborated further in the following subsections. It is important to note that the MPEG exploration 
activity has identified a number of secondary requests by industry concerning error-resiliency, object 
scalability, etc. [14]; since we do not address them in the proposals of this dissertation, they will not be 
discussed in more detail here.  

1.2.1 Requirements for Spatial Scalability 

Scalable video coding technology should support at least four spatial resolution levels [14], which 
could range (dyadically) from 1152 1408×  to 144 176×  pixels. This example includes the commonly 
used QCIF and CIF formats at the low-end of the scalability regime. The ability to provide multiple 
resolutions from one bitstream is important in a variety of applications. For example, multi-channel 
content production and distribution may involve the usage of different video resolutions [14], from 
studio-profile down to PDA resolution. In this way, different clients can be served by a single scalable 
bitstream. Another important application of resolution scalability is in the area of video surveillance 
and industrial monitoring systems, where the usage of this functionality is two-fold:  

• In a typical scenario, multiple views from different locations are received at each monitoring 
station. Based on spatial scalability, each view can be enlarged on-the-fly, if necessary [14]. 
This limits the overall communication bandwidth between the camera network and the 
monitoring stations, since higher-resolution content is transmitted only following an alarm or 
a request from the user. 

• Support for video storage with erosion functionality [14]. In surveillance and industrial 
monitoring systems, the importance of the recorded data, and thus the required resolution of 
the recorded video sequences, decreases over time. For example [14], the full resolution video 
needs only to be stored for three days, and sequences older than that are only required in a 
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medium resolution. If the sequences are older than one week, only a minimal resolution may 
be required for medium-to-long-term archiving. 

Finally, a broad category of systems requiring resolution scalability consists of communication 
architectures utilizing the MPEG-21 Digital Item Adaptation (DIA) framework [23], where 
heterogeneous communication infrastructures are being utilizing for video streaming to a variety of 
end devices, as seen in Figure I-3. In this case, adaptation of the video resolution will be essential for 
satisfying the video decoder resolution and the channel bandwidth.  

 

           
 

 
 
 

 
 

 
  

 

Media Server 
 

Business Users 
 

Home Users 
 

Business Users 
 

Meta-Database 
 

 
 

Proxy Server 
 

Router 
 

 
 

WAN 
 

LAN 
 

LAN 
 

LAN 
 

LAN 
 

Last Mile 

 

Figure I-3. A pictorial description involving adaptation to heterogeneous devices and network infrastructures 
with MPEG-21 DIA [14]. 

 

1.2.2  Requirements for Bitrate (Quality) Scalability 

The representation of video into multiple qualities through scalable coding permits the video 
transmission to occur in a fine-granular set of bitrates. Hence, in practice, quality scalability is 
synonymous to bitrate scalability. According to MPEG requirements [14], practical quality-scalable 
coding schemes should provide a large variety of bitrates, that correspond to transmission rates 
provided by a variety of today’s networks. A reasonable practical example of the bitrate ranges can be 
seen in the example of Figure I-2. It should be mentioned that for certain video archiving applications, 
such as the Digital Cinema industry, military surveillance and space exploration, or some medical 
applications, the possibility for lossless coding should be supported [14].  

Obviously, the main application domains of quality scalability involve the broad area of video 
transmission over unreliable networks, where large bandwidth fluctuations can be efficiently handled 
by on-the-fly adapting the quality of the transmitted video. Another significant application is in 
content distribution, where in order to charge a different fee for higher quality content (requiring 
more bandwidth/storage), different quality levels should be provided by one bitstream [14].  
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1.2.3  Requirements for Frame-rate (Temporal) Scalability 

Adapting the transmission and replay frame-rate consists of an efficient way for changing the video 
quality perceived by human observers. In addition, different frame-rates correspond to different 
complexity profiles for decoding the same video sequence. As a result, it is established that scalable 
video coding should support at least four levels of temporal scalability, which (in the majority of cases) 
can vary the decoding frame-rate dyadically [14]. Moreover, in order to satisfy a broad range of video 
applications, decoding of moving pictures with frame rates up to 60 Hz should be supported [14]. 

The main application domains demanding temporal scalability evolve around multi-channel content 
production and distribution, where the same bitstream will be viewed on a variety of devices 
supporting different temporal resolutions. For example, 7.5 Hz, 15 Hz, 30 Hz and 60 Hz should be 
supported in order to accommodate a broad range of clients, ranging from studio-level devices down 
to video-on-demand on a cellphone with limited processing capabilities. In addition, in this scenario, 
temporal scalability may be used to simulate fast forward/backward capabilities found in analog video 
playback devices, such as VCRs. 

Finally, temporal scalability is very useful in the application areas that involve resolution scalability, 
such as surveillance and monitoring applications, where cameras are usually monitoring static areas 
and high frame-rate video is required only after an alarm is activated.  

1.2.4  Requirements for Complexity Scalability 

It is generally considered important that decoding complexity scales proportionally to the decoded 
temporal and spatial resolution [14]. Nevertheless, an equally important aspect of complexity 
scalability involves the establishment of a hierarchy of the video compression tools in terms of their 
average complexity profile. In this way, depending on the available resources at the decoding platform, 
on-the-fly adaptation of the compressed bitstream can occur so that real-time decoding is guaranteed, 
by selecting the sub-stream that leads to low-complexity decoding. To this end, since complexity is 
always relative to the algorithmic features as well as the implementation platform, in order to achieve 
reliable results, applicable complexity models should be used. In the context of multimedia algorithms, 
complexity modeling can be broadly defined as the procedure through which one obtains relative 
performance metrics for different algorithms (or different instantiations of one algorithm) with 
respect to: (a) the algorithm realization in terms of software or hardware; (b) the implementation 
platform.  

Important applications of complexity scalability exist in the area of wireless video streaming to mobile 
computing devices such as cellphones and PDAs. In addition, depending on the target application, it 
may be required that encoding meets certain complexity bounds. This can be important in scenarios 
where the encoding devices are distributed over the network, as in the case of surveillance and 
monitoring applications for example.  
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1.3 Dissertation Outline 
This dissertation is organized as follows. Chapter II presents a brief introduction to wavelet 
transforms, focusing on the multiresolution concept and the discrete wavelet transform. In addition, 
lifting-based discrete wavelet transforms are also presented. Since the proposed scalable video coding 
systems were based on wavelet decompositions along the spatial and temporal axes, this chapter 
serves as the basic background on transforms.  

Chapter III focuses on fundamentals of scalable image and video coding. The basic tools of scalable 
image coding architectures are analyzed and an extension to video coding is presented. This section 
covers previous research and justifies our focus on one category of scalable video coding systems 
utilizing motion-compensated temporal filtering (MCTF) based on wavelet transforms. 

Chapter IV presents our proposals for scalable video coding based on wavelet-domain motion 
estimation and compensation techniques. The proposed systems and architectures are built 
incrementally, based on predictive coding systems and MCTF-based coding architectures. In 
particular, this chapter introduces in-band motion compensated prediction within closed-loop and 
open-loop video coding systems. In addition, for open-loop systems, in-band motion-compensated 
temporal filtering is proposed by coupling in-band motion compensated prediction with in-band 
motion compensated update. The proposed systems are shown to have significant advantages from 
the functionality point of view. In addition, several experiments demonstrate that the proposed 
solutions present significant improvement in resolution scalability with little or no loss in coding 
efficiency. 

Chapter V presents the theoretical foundation of complete-to-overcomplete discrete wavelet 
transforms used in the wavelet-domain video coding architectures of Chapter IV. Apart from the 
introduced mathematical formulation for the transform, significant symmetry properties are proven 
that lead to efficient architectures for the calculation of the single-rate and multi-rate parts of the 
transform.  

Chapter VI discusses two complexity modeling topics for scalable video coding explored in the 
context of this dissertation. The first topic involves theoretical modeling of the relative performance 
of various proposals for the discrete wavelet transform realization in programmable processors. The 
focus is on the memory bottlenecks for the transform execution in widely-used cache-based 
processors. The second topic presents a complexity modeling framework for motion-compensated 
video decoders. Our approach is based on a generic decomposition of the arithmetic (and potentially 
the memory) profile of these systems into a set of basis functions, without specific regards to the 
details of the algorithms involved. For each case, experimental results with real coding systems 
realized in programmable processors substantiate the accuracy of the proposed models. 

Finally, Chapter VII draws some general concluding remarks and outlines future research possibilities. 
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II.  
Chapter II 

WAVELET TRANSFORM 

HEN we deal with a given physical object, we encounter many of its different faces or 
representations. Whether for computer vision applications or for models in nuclear physics, 

every scientific field requires an appropriate representation of the measurements of the physical 
objects, which can be handled in a more natural and easy manner than the measurements themselves. 
In the area of signal processing, a way to obtain a specific representation is to decompose (transform) 
a signal x  into elementary building blocks if  of some importance, as: i ii

x c f= ∑ , where if  are 
simple waveforms (functions) and ic  are corresponding weighting factors (coefficients) of the 
decomposition. In addition, one may want that the waveforms have a specific physical meaning, i.e. 
they can correspond to the function of an (ideal) oscillator at a certain frequency of oscillation 
(Fourier basis) or the texture and edges of an image (families of multiresolution time-frequency bases). 
In the general case of continuous or discrete signals, what would be the desired properties of such a 
representation? After decades of research, it is generally acknowledged [1] [2] [3] [4] that the following 
properties are desired for practical decompositions of signals: 

• A good rendition (reconstruction) of the original signal should be provided with as few as 
possible of the building blocks if  (waveforms or functions). 

• Time-frequency (or space-frequency) decompositions are preferred over pure frequency-
domain based or pure time-domain analysis, since in most applications we are interested in 
information from both domains. 

• A fast algorithm should exist in order to perform the decomposition, since otherwise a 
particular decomposition/representation might be only of theoretical importance. 

• Multiresolution decompositions are preferred since various features of the signals of interest, 
such as edges and shapes in images, appear at various resolutions.  

The order of importance of the above properties varies depending on the particular domain or 
application scenario.  

W 
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2.1 Short-time Fourier Transform and Wavelet 
Transforms – Tilings in the Time-Frequency Plane 

One of the classic tools to achieve different representations of a signal is the Fourier theory, for which 
a whole set of tools exists in literature: from purely continuous time, such as the Fourier integral, to 
the Discrete Fourier Transform (DFT) and the Fourier series expansion; moreover, the Fast Fourier 
Transform (FFT) provides a fast calculation for the transform decomposition. If we are given a pure 
frequency signal j te ω , the Fourier-based methods will isolate a peak at the frequency w . However, for 
the simple case of a signal built by k  pure oscillations of different frequencies occurring at adjacent 
intervals 0 1 1, , k ki i i i−

         …  in time, we obtain k  peaks in the transform domain but the specific 
time localization is lost. This immediately points out the need for a time-frequency representation of a 
signal which could give us local information in time and in frequency. 

In the Fourier case, the most obvious way to overcome this obstacle is to localize the sinusoids in the 
transform representation by windowing, that is, the basis functions now become ( ) j tw t e ωτ− , where 

( )w t  is a “window” function with compact support allowing for time localization. This is traditionally 
called the windowed Fourier transform, or the short-time Fourier transform (STFT) and was 
originally introduced by Gabor [5]. By using the concept of the time-frequency plane, it is easy to 
show that the STFT separates this plane into adjacent square tiles. This is illustrated in the bottom 
part of Figure II-1(a) [6], where the shaded squares in the figure correspond to waveforms which are 
localized in the same time interval and in three adjacent frequency ranges, as shown in the top part of 
the figure. 
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Figure II-1. Basis functions and corresponding tilings of the time-frequency plane [6]: (a) Short-time Fourier 
transform; (b) wavelet transform. 
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In the wavelet transform case, a different solution is offered: the precision of the frequency 
localization is logarithmic, i.e. proportional to the frequency range. Consequently, time localization 
becomes finer at the highest frequencies. This is illustrated in the bottom part of Figure II-1(b) and 
the corresponding wavelets are shown in the top part of the figure. It is important to notice though 
that one cannot obtain arbitrary localization in time and in frequency due to the uncertainly 
(Heisenberg) principle [4]. Nevertheless, wavelet theory based on multiresolution analysis and its 
generalizations offer a natural way to achieve an arbitrary tiling of the time-frequency plane that suits 
several applications in signal processing [6].  

2.2 Continuous Wavelet Transform 
A way to obtain a logarithmic time-frequency tiling such as the one illustrated in Figure II-1(b) is to 
define a family of functions [7] [8] [9]: 

 ( ) ( )1
, ,          0,tt τ

α τ ααψ ψ α τ−= > ∈ \  (2.1) 

where ψ  is a fixed function (“mother wavelet”) that is well localized in time and frequency, τ  defines 
the translation of this function in time and α  is the scale parameter selected so that the functions 

( ), tα τψ  have a constant (non infinite) norm, i.e.: 

 ( ) ( )2 2
, ,t t dt Qα τ α τψ ψ

+∞

−∞

= =∫  (2.2) 

By adapting the τ  and α  parameters under the constraint of (2.2), one can construct wavelets such as 
the ones shown in the top part of Figure II-1(b). Moreover, the localization of the mother wavelet can 
be ensured by bounding the mother wavelet function in time and frequency with [3]: 

 ( ) ( )1 1( ) 1 ,  ( ) 1t c t cε εψ ω ω− − − −≤ + Ψ ≤ +  (2.3) 

for some , 0c ε > , where ( )ωΨ  is the Fourier transform of ψ  given by ( ) ( ) j tt e dtωω ψ
+∞ −
−∞

Ψ = ∫ . 

The Continuous Wavelet Transform (CWT) of an input signal ( )f t  can now be defined as [7] [4]: 

 ( ) ( ),
1( , ) ,f

tCWT f f t dtα τ
τα τ ψ ψ

α α

+∞

−∞

−= = ⋅∫  (2.4) 

where g  denotes the complex conjugate of function g  and ,f g  denotes the inner product of 
signals or functions f , g . One notices that the CWT defined by (2.4) measures the similarity between 
the input signal ( )f t and a member of the family of functions of equation (2.1). The existence of an 
inverse transform for the CWT depends on the choice of ψ . In particular, if ψ  satisfies the 
admissibility condition, expressed by [7]: 

 
( ) 2

C dψ
ω ω
ω

+∞

−∞

Ψ= < ∞∫  (2.5) 
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then ( )f t  can be reconstructed by the inverse continuous wavelet transform (ICWT) [7] [8] [9]: 

 ( ) ( ) ( ),2
0

1 ,f
df t CWT t d

C α τ
ψ

α α τ ψ τ
α

+∞ +∞

−∞

= ⋅∫ ∫  (2.6) 

A straightforward interpretation of this expression is that any signal ( )f t  can be written as a 
superposition of shifted and dilated wavelets. 

In today’s applications, we are interested to work with discrete signals and consequently with discrete 
transforms, implementing orthonormal expansions. Daubechies [8] investigated the frames of the 
STFT and CWT, and proved that numerically stable reconstructions with milder constraints than in 
the STFT case are feasible for the CWT. The discretization of the scale and time-shift parameters is 
chosen as [8]: 

 0 0 0 0 0 and , , , 1, 0m mn m nα α τ τ α α τ= = ∈ > >Z  (2.7) 

The discretized family of wavelets is given by: ( ) ( )2
, 0 0 0

m m
m n t t nψ α ψ α τ− −= − . It can be easily 

verified that the discretization presented in (2.7) satisfies the constraint of (2.2). Different values of m  
correspond to wavelets of different widths. Narrow, high-frequency wavelets are translated by smaller 
steps in order to “cover” the whole time axis, while wider, low-frequency wavelets are translated by 
larger steps. This contradicts with the sampling grid obtained for the STFT (which is uniform), 
corresponding to a constant time-frequency resolution analysis. 

The simplicity and the elegance of the wavelet transform led to the discovery of wavelets that form 
orthonormal bases for square-integrable spaces by numerous researchers, e.g. see the work 
overviewed in [9] [8]. A formalization of such constructions by Mallat [1] created a framework for 
wavelet expansions called multiresolution analysis which is presented in more detail in the following. 

2.3 Multiresolution Analysis 
Based on the restrictions imposed on the sampling parameters 0α  and 0τ  by (2.7) as well as on the 
choice of the mother wavelet ψ , it is possible to control the redundancy in the reconstruction 
formula of equation (2.6), which is mathematically expressed by the double integration. In this way, 
based on a simplified version of (2.6) one can expand any function ( )f t  in a wavelet basis. Indeed, for 
a given basis { }n ng ∈` , the existence of two constants 0C c≥ > , such that: 

 
2

2 2[ ] [ ] ( ) [ ]n
n n n
c a n a n g t dt C a n

+∞

−∞

≤ ≤∑ ∑ ∑∫  (2.8) 

independent of the choice of coefficients [ ]a n , has important consequences on the practical 
applications of an expansion of a function in { }n ng ∈` . In particular, (2.8) ensures the 2( )L \  stability 
of the basis { }n ng ∈`  [3]. It is important to notice that (2.8) is immediately satisfied in the case of an 
orthonormal basis, in which case we have 1c C= = . It was proven [8] that such bases can be obtained 
for the particular choice of 0 2α =  and 0 1τ = , i.e.: 
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 ( ) ( )2
, 2 2 ,          ,m m
m n t t n m nψ ψ− −= − ∈ Z  (2.9) 

and an appropriate mother wavelet functions. The simplest example of such a function is the Haar 
wavelet, where ψ  is a piecewise constant function given by: 

 ( )

 otherwise   

1,  [0, 0.5)  

1,  [0.5,1)     

0,

t

t tψ

 ∈= − ∈

 (2.10) 

However, the family of wavelet basis functions obtained by the mother wavelet given in (2.10) suffers 
from a major disadvantage for many applications: due to the discontinuities of ( )tψ , the Haar family 
of wavelets cannot provide a good approximation for smooth functions. Hence, a major research 
objective during the early development of wavelet theory has been to provide systems that have the 
same multiscale structure of the Haar basis, but with the mother wavelet ( )tψ  being a more regular 
(smooth) function.  

A strategy that achieves this goal and seems to be relevant for practical applications was proposed by 
Mallat [1]. In his seminal paper [1], he defined as multiresolution analysis a sequence of approximation 
subspaces (resolutions) { } 2( )m m L∈ ⊂V \Z  that satisfy the following requirements (note that we 
follow the convention of [9], where coarser subspaces (resolutions) are obtained by increasing m ): 

• The mV  are generated by a scaling function 2( )Lϕ ∈ \  in the sense that, for eachm , the family 
of functions ( ) ( )2

, 22 m
m t n

m n tϕ ϕ− −= , n ∈ Z , spans the space mV  and satisfies the stability 
condition given in (2.8) with 1c C= = . This means that the translations and dilations of ϕ  
form an orthonormal basis in mV . 

• The subspaces are embedded, i.e. m∀ ∈ Z , 1m m+ ⊂V V . 

• Orthogonal projectors 
m

PV  onto mV  satisfy lim 0
mm P f→+∞ =V  and lim

mm P f f→−∞ =V  
for all 2( )f L∈ \ . 

From these requirements it follows that if ( ) mf t ∈ V  then 12( )t mf +∈ V  and subspace mV  is invariant 
under translations of 2m . The introduction of the scaling function ϕ  is critical because, the 
continuous approximation of ( )f t  at subspace (resolution) mV  can be computed as the orthogonal 
projection of the signal on this orthonormal basis: 

 ( )2
, ,( ) ,   ( ) ,

m m n m n
n

f t L P f t f ϕ ϕ
+∞

=−∞
∀ ∈ = ∑V\  (2.11) 

The inner products of the form: 

 ,[ ] ,m m na n f ϕ=  (2.12) 

constitute the discrete approximation of ( )f t  at the resolution that corresponds to subspace mV . 
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In addition, from the embeddedness requirement, ϕ  can be established in an iterative manner using a 
fast algorithm, called the pyramidal algorithm. This was first proposed by Burt and Adelson [10] in the 
context of image coding. This algorithm has been modified in a form that performs the iterative 
calculation of the wavelet transform by Mallat [1]. In particular, if we define the discrete filter h  
whose impulse response is given by: 

 1
22, [ ] ( ), ( )tn h n t nϕ ϕ∀ ∈ = −Z  (2.13) 

then the discrete approximation of a function ( )f t  at scale m  given by (2.12), can be computed 
iteratively by convolving 1[ ]ma n−  with [ ]h n−  followed by downsampling by two (i.e. keeping every 
other sample of the output): 

 1 1[ ] [ 2 ] [ ] [ 2 ]m m m
k

a n h k n a k a h n
∞

− −
=−∞

= − ⋅ = ∗ −∑  (2.14) 

Notice that (2.12) and (2.14) produce the same result, but the last equation does so iteratively by 
producing first the coefficients of the projection of the input function to all finer subspaces 
(resolutions1) 1 2 2 1, , , ,m m− −V V V V… . 

Let mW  be the orthogonal complement of mV  in 1m−V , satisfying 1m m m−⊕ =W V V . The 
difference of information between the discrete approximation at subspace 1m−V  and the 
approximation at the coarser resolution that corresponds to subspace mV  is determined by identifying 
an orthonormal basis in mW  and by projecting the signal f  onto this basis. Mallat demonstrated that 
such orthonormal basis can be constructed by scaling and translating a function ψ , which is called 
orthogonal wavelet. The Fourier transform of the wavelet ( )tψ  is given by: 

 ( ) ( 2) ( 2)Gω ω ωΨ = Φ  (2.15) 

where ( )ωΦ  is the Fourier transform of ( )tϕ , and: 

 ( ) ( ),   with  ( ) [ ]j jn

n
G e H H h n eω ωω ω π ω

∞
− −

=−∞
= + = ∑  (2.16) 

With these definitions, it can be shown that the family of functions ( ) ( )2
, 22 m

m t n
m n tψ ψ− −=  forms an 

orthonormal basis in mW . Projecting ( )f t  onto this basis yields: 

 ( )2
, ,( ) ,   ( ) ,

m m n m n
n

f t L P f t f ψ ψ
+∞

=−∞
∀ ∈ = ∑W\  (2.17) 

The discrete detail of ( )f t  at the resolution that corresponds to subspace mW  is then defined by the set 
of the inner products in relation (2.17): 

 ,[ ] ,m m nd n f ψ=  (2.18) 
                                                 
1 One can assume a discretization 0[ ]a n  of the input function ( )f t  that equals the Nyquist sampling rate for 
( )f t . This can be the original input to the pyramid algorithm (discrete samples at subspace 0V ). 
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It can be shown that the discrete filter given by 1
22[ ] ( ), ( )tg n t nψ ψ= −  has the transfer function 

( )G ω  defined by (2.16). The discrete detail [ ]md n  can be computed via the pyramidal algorithm by 
convolving 1[ ]ma n−  with [ ]g n−  followed by a downsampling by 2: 

 1 1[ ] [ 2 ] [ ] [ 2 ]m m m
k

d n g k n a k a g n
∞

− −
=−∞

= − ⋅ = ∗ −∑  (2.19) 

The h  and g  filters are low-pass and band-pass filters respectively, with their impulse responses 
satisfying: ( )1[ ] 1 [1 ]ng n h n−= − − . 

The pyramidal algorithm formalised by (2.14) and (2.19) decomposes the discrete approximation 
1[ ]ma n−  of a function ( )f t  into the approximation at a coarser resolution, [ ]ma n , and the detail signal 

[ ]md n . Repeating in cascade this algorithm for 1 m M≤ ≤  yields the Discrete (dyadic) Wavelet 
Transform (DWT) on M  levels of the original discrete signal 0[ ]a n : 

 ( )1 1[ ], [ ], [ ], , [ ]M M Ma n d n d n d n− …  (2.20) 

The block diagram of the wavelet analysis (or wavelet decomposition) process for one-dimensional 
signals is illustrated in left part of Figure II-2. In the inverse process (right part of Figure II-2), the 
discrete approximation 1[ ]ma n−  at the higher resolution is reconstructed from [ ]ma n  and the detail 
signal [ ]md n  as: 

 1[ ] [ 2 ] [ ] [ 2 ] [ ]m m m
k k

a n h n k a k g n k d k
+∞ +∞

−
=−∞ =−∞

= − ⋅ + − ⋅∑ ∑  (2.21) 

Thus, the Inverse Discrete Wavelet Transform (IDWT) determines 1[ ]ma n−  by upsampling the signals 
[ ]ma n , [ ]md n  through insertion of zeros, followed by the application of the synthesis filters ,h g . The 

original signal is iteratively reconstructed from its wavelet representation as shown in Figure II-2.b. 

 

2

2

1[ ]ma n− [ ]h n−

[ ]g n− [ ]md n

[ ]ma n [ ]h n

[ ]g n

+ 1[ ]ma n−2

2

2

2

1[ ]ma n− [ ]h n−

[ ]g n− [ ]md n

[ ]ma n [ ]h n

[ ]g n

+ 1[ ]ma n−2

2  

Figure II-2. Discrete wavelet transform: the discrete approximation 1[ ]ma n−  is decomposed into the 
approximation at the coarser resolution [ ]ma n  and the detail signal [ ]md n . The inverse process reconstructs 

1[ ]ma n−  from the coarse-resolution approximation and detail signals.  

 

In the two-dimensional case, a multiresolution decomposition on M  levels of a (discretized) image 
[ , ]f i j  results into a set of 3 1M +  subbands defining the DWT representation on M  levels of f : 

 ( ){ }1[ , ],  [ , ], [ , ], [ , ]M m m m m Maa i j ad i j da i j dd i j ≤ ≤  (2.22) 
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The two-dimensional wavelet analysis consists of successively applying the one-dimensional DWT, 
using a row-column approach. We first convolve the rows of 1[ , ]maa i j−  with a one-dimensional filter, 
retain every other sample, convolve the columns of the resulting signals with another one-dimensional 
filter and retain every other sample; for details, we refer to [9]. 

The formalism presented above shows that orthonormal wavelet expansions of discrete-time signals can 
be implemented using perfect reconstruction filter banks [1]. This is a very important theoretical 
finding that makes the link between the two different domains: signal expansions and filter-bank 
theory and design. As shown previously, in the case of orthonormal wavelet expansions, the analysis 
filters [ ]h n− , [ ]g n−  are simply the time-reversed versions of the synthesis filters [ ], [ ]h n g n , and satisfy 
the perfect reconstruction condition, given by: 

 
2 2

2 2

( ) ( ) 2

( ) ( ) 2

H H

G G

ω ω π

ω ω π

+ + =

+ + =
 (2.23) 

The typical problem associated with orthonormal expansions is that there are no orthonormal linear-
phase FIR filters satisfying the perfect reconstruction condition, apart of the trivial Haar basis. One 
can preserve linear phase (corresponding to symmetry for the wavelet) by relaxing the orthonormality 
constraint, and using biorthogonal bases [3] [6]. In case of biorthogonal expansions, we define the dual 
bases { },m nϕ�  and { },m nϕ  (that correspond to subspaces imV  and mV ) as the two sets of functions 
that satisfy the biorthogonality constraint with respect to integer shifts k , l , given by: 

 [ ], ,,m n l m n k k lϕ ϕ δ− − = −� . (2.24) 

Then, for a signal ( )2( )f t L∈ \ , we can obtain the decomposition of ( )f t  onto subspace imV  using 
basis functions { },m nϕ�  and then synthesize ( )f t  with the set of basis functions { },m nϕ : 

 

i i

i

, , ,

,,

,

, [ ]

,

[ ]

m n m n m n
n n

m nm n
n

m n
n

f a n

f

a n

ϕ ϕ ϕ

ϕ ϕ

ϕ

+∞ +∞

=−∞ =−∞
+∞

=−∞
+∞

=−∞

= ⋅

=

= ⋅

∑ ∑

∑

∑

�

 (2.25) 

where: 

 i, ,[ ] , , [ ] ,m n m na n f a n fϕ ϕ= =�  (2.26) 

are the transform coefficients obtained by projecting ( )f t  onto { },m nϕ  and { },m nϕ� , respectively. 

In a similar way, one can define the set of biorthogonal wavelet functions i{ },m nψ , { },m nψ  and their 
corresponding subspaces jmW , mW . In this case, subspaces imV  and jmW , as well as mV  and mW , 
are not orthogonal complements to i 1m−V  and 1m−V , respectively. Instead, this design preserves 
orthogonality in the analysis and synthesis duets of scaling functions and wavelets (thereby permitting 
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perfect reconstruction) and allows for increased freedom in the design of the basis functions. The 
perfect reconstruction condition satisfied by filter banks implementing biorthogonal expansions has 
been discovered by Vetterli [6], and is given by: 

 
( )

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) 0

H H G G

H H G G

ω ω ω ω

ω π ω ω π ω

∗ ∗

∗ ∗

 + = + + + =

� �

� �  (2.27) 

where ( ), ( )H Gω ω� �  and ( ), ( )H Gω ω  are the Fourier transforms of the analysis and synthesis filter pairs 
respectively. The construction of orthonormal and biorthogonal wavelet bases has been heavily 
explored over the last decade, leading to a variety of wavelet classes useful in signal compression 
applications.  

2.4 The Lifting Scheme 
As seen the in previous section, through the multiresolution concept, the discrete wavelet transform 
was initially proposed as a (critically-sampled) time-frequency representation. The frequency-domain 
properties of the wavelet filters play a crucial role in the design of the DWT. For example, the number 
of vanishing moments of the analysis and synthesis wavelets (which expresses the degree of 
smoothness of the wavelet mother function) is equal to the number of zeros of ( )H ω  at ω π= . 
Hence most of the early research on wavelet filter-bank designs was based on directly optimizing 
different tradeoffs in the Fourier domain. Sweldens [11] was the first to show an alternative discrete 
wavelet transform construction based on a series of signal prediction and update steps. Due to the 
fact that the coefficients of the transform are gradually build by a series of modifications (liftings), the 
algorithm was called lifting scheme.  

2.4.1  Polyphase Representation of the Discrete Wavelet 
Transform 

In order to study the idea behind the lifting scheme in more detail, we can define the perfect 
reconstruction conditions of the previous subsection in the Z  domain. The two analysis filters are 
denoted as ( )H z  (low-pass) and ( )G z  (high-pass), while the corresponding synthesis low-pass and 
high-pass filters are denoted as i( )H z  and i( )G z . The perfect reconstruction conditions for this scheme 
are given in the Z -domain by: 

 
i i

i i

1 1

1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

H z H z G z G z

H z H z G z G z

− −

− −

+ =

− + − =
 (2.28) 

where for any FIR filter ( )F z , ( ) k
k

k
F z f z−=∑  is a Laurent polynomial that denotes the Z  domain 

representation of this filter. 

Early research on filter-bank design revealed that, instead of the conventional filtering-and-
downsampling structure for the transform implementation (Figure II-2), an equivalent (but faster) way 
to realize the transform is with the use of the polyphase matrix of the analysis and synthesis filter-
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bank [12]. This is illustrated in Figure II-3, where the Z -domain representation of the approximation 
(low-frequency) signal is denoted by 1

0( )A z , while the detail (high-frequency) signal is denoted by 
1
0( )D z . As shown in the analysis stage of the figure, filtering with ( )H z , ( )G z  is replaced by filtering 

with the analysis polyphase matrix 0( )E z . It is important to notice that downsampling is performed 
prior to the actual filtering, thereby avoiding all the unnecessary computations that would be discarded 
by the downsampling in the original design of Figure II-2. The synthesis stage of Figure II-3 (with 
synthesis polyphase matrix 0( )R z ) appears completely symmetrical to the analysis part and the signal 
reconstruction is performed by upsampling and addition of the corresponding results.  

 

1
0( )D z

1
0( )A z2

2
E0( )z

2

2
R0( )z +

1z− z
( )X z ( )X z

1
0( )D z

1
0( )A z2

2
E0( )z

2

2
R0( )z +

1z− z
( )X z ( )X z

 

Figure II-3. Analysis and synthesis of a signal ( )X z  with the use of the polyphase matrix.  

 

The analysis polyphase matrix for the case of Figure II-3 is defined as: 

 
0 1

0
0 1

( ) ( )
( )

( ) ( )

H z H z
z

G z G z

 
 =  
  

E  (2.29) 

where {0,1}( )F z  denote the Type-I polyphase components of filter ( )F z , given by [12]: 

 
( )
( )

1 1
2 2

1 1 1
2 2 2

1
0 2

1
1 2

( ) ( ) ( )

( ) ( ) ( )

F z F z F z

F z z F z F z

= + −

= − −
. (2.30) 

Notice that (2.30) separates the even and odd taps of ( )F z  into filters 0( )F z  and 1( )F z  respectively. 
This corresponds to a separation of the even and odd sampling grid, followed by downsampling. This 
process can be written for a signal ( )X z  based on the Type-I polyphase decomposition as [12]: 

 
( )
( )

1 1
2 2

1 1 1
2 2 2

1
0 2

1
1 2

( ) ( ) ( )

( ) ( ) ( )

X z X z X z

X z z X z X z−

= + −

= − −
. (2.31) 

The difference between 1( )F z  and 1( )X z  is motivated by the convolution operation. Notice that 
(2.31)  performs the signal separation and downsampling illustrated in the left part of Figure II-3.  

The wavelet decomposition can be written as: 

 
1
0 0

01
10

( ) ( )
( )

( )( )

A z X z
z
X zD z

      =        
E . (2.32) 

Moreover, based on Cramer’s rule, the corresponding synthesis polyphase matrix is given by: 
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1 1

0
0 0 0

( ) ( )1( )
det ( ) ( ) ( )

G z H z
z

z G z H z

 − 
 =  −  

R
E

 (2.33) 

and the wavelet reconstruction is performed by: 

 
1

0 0
0 1

1 0

( ) ( )
( )

( ) ( )

X z A z
z

X z D z

      =         
R  (2.34) 

followed by the merging of the polyphase components: 

 2 2
0 1( ) ( ) ( )X z X z zX z= +  (2.35) 

Finally, under this formulation, an elegant expression the perfect reconstruction condition is [13]:  

 0det ( ) ,    ,kz a z a k−= ⋅ ∈ ∈E \ Z  (2.36) 

2.4.2  Factorizations of 0( )zE  – Lifting Scheme in the Z  domain 

Daubechies and Sweldens [14] demonstrated that any biorthogonal analysis or synthesis filter-bank 
can be factorized in a succession of liftings (updates) and dual-liftings (predictions) applied to the 
polyphase decomposition (lazy wavelet [14]) of (2.31), up to shifting and multiplicative constants. This 
theorem can be demonstrated following a constructive proof based on the Euclidean algorithm for 
polynomial division [14].  

In principle, since the factorization algorithm is based on polynomial division, there are many possible 
solutions that allow the realization of a given filter-bank with the lifting scheme. In general, one can 
mathematically express these factorizations as: 

 
1

1 00 1 ( )
( )

0 1 0 1 ( ) 1

iM

i
i

K U z
z

K P z=

           =         −        
∏E  (2.37) 

where filters ( )iP z  and ( )iU z  indicate prediction (dual-lifting) and update (lifting) operators, 
respectively, and K , 1 K  are scaling factors that ensure that the transform is (approximately) 
orthonormal. It is important to notice that, although for each 1 i M≤ ≤  of (2.37) the prediction step 
appears to precede the update step, one can equivalently perform lifting factorizations with the 
alternative series of steps [14]. The schematic representation corresponding to equation (2.37) is 
illustrated in Figure II-4.  

As explained in [14], the lifting scheme combines many advantages, such as low implementation 
complexity by reducing the required number of multiplications and additions, integer-to-integer 
transforms as proposed independently by Calderbank et al [15] and Dewitte and Cornelis [16], and 
complete reversibility even if non-linear or adaptive filters are used in the prediction and update steps. 
In each case, the transform can be inverted by following the schematic of Figure II-4 from right to 
left and inverting the scaling factors, the direction of the data flow and the signs at the summation 
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points. Finally, the reconstructed signal is formed by upsampling followed by merging of the 
polyphase components, which is mathematically expressed in equation (2.35).  

 

2

21z−

( )X z 1( )P z

+

1( )U z

+ 1
0( )A z

1
0( )D z

+

–

+ +
K

1
K

2( )P z

+

2( )U z

+

+

–

+ +
…

…

( )MP z

+

( )MU z

+

+

–

+ +
2

21z−

( )X z 1( )P z

+

1( )U z

+ 1
0( )A z

1
0( )D z

+

–

+ +
K

1
K

2( )P z

+

2( )U z

+

+

–

+ +
…

…

( )MP z

+

( )MU z

+

+

–

+ +

Figure II-4. Schematic representation of the wavelet decomposition based on the lifting-scheme.  

 

The adaptivity permitted by the wavelet decomposition based on the lifting scheme has led to many 
interesting applications. For example, based on the lifting scheme, adaptive wavelet decompositions 
with or without bookkeeping [17] [18] and adaptive bandelet decompositions [19] have been proposed 
for image coding. In addition, video coding with motion compensated temporal filtering (MCTF) 
based on the lifting scheme has recently shown very promising results [20, 21] [22]. In this 
dissertation, the lifting scheme has been used both for the implementation of the spatial 
decomposition during video compression, as well as for the implementation of MCTF-based scalable 
video coding.  
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III.  
Chapter III 

SCALABLE IMAGE AND VIDEO 
CODING FUNDAMENTALS 

HE JPEG-2000 standardization effort [1] demonstrated that state-of-the-art coding performance 
can be obtained in still-image compression with a coding architecture that enables a rich set of 

features for the compressed bitstream. In particular, unlike the previous JPEG standard, JPEG-2000 
provides a precise rate-control mechanism based on embedded coding of wavelet coefficients. 
Moreover, multiple qualities and multiple resolutions of the same picture are possible within JPEG-
2000, based on selected portions of the compressed bitstream [2]. This is a natural consequence from 
the use of a scalable image compression algorithm based on the wavelet decomposition and 
embedded coding.  

In the area of video compression, similar functionalities have long been pursued, mainly via the use of 
extensions of the basic MPEG coding structure [3]. In terms of scalable video coding standards, this 
resulted in the fine-granularity scalable video coding extension of MPEG-4 video (MPEG-4 FGS) [4]. 
However, MPEG-4 FGS left much to be desired. In particular, the compression efficiency of FGS 
was not as good as the equivalent non-scalable (baseline) coder. In addition, the use of the 
conventional closed-loop video coding structure of MPEG-alike coders hindered the scalability 
functionalities.  

As a result, recent research efforts on scalable video coding were targeted on extension of open-loop 
coding systems, such as JPEG-2000, to video coding. Although an extension of the basic technology 
of JPEG-2000 to three dimensions is feasible by extending its transform and coding modules to three 
dimensions [5] [6], this does not guarantee an efficient video coding system since motion-
compensation tools are not included. On the other hand, it is important to notice that the design of 
motion-compensated three-dimensional wavelet decompositions has been a long withstanding 
problem [7] [8-10]. However, recent results indicate that there can be a simple solution [11] [12] based 
on lifting factorizations. Consequently, it was decided within MPEG that the exploration process of 

T 
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this activity should be largely supported by the video standardization community. As a result, an ad-
hoc group was setup within the MPEG video group to monitor and document interframe wavelet 
technology [13]. In turn, this resulted in a flurry of research activity on the topic, which lead to a call 
for proposals for the development of a new scalable video coding standard within MPEG [14]. 

In this chapter, we present an overview of the fundamental tools behind scalable image and video 
coding. The first section (3.1) is dedicated to the description of scalable image coding. Sections 3.2 – 
3.4 present the basic tools that can be used for the extension of scalable image coding architectures to 
motion-compensated video coding via the use of an open-loop temporal decomposition structure. 
The overview of this structure is the topic of Section 3.5. In addition, the overview of the basic video 
coding systems is completed with the survey of the conventional (closed-loop) temporal prediction 
structure of the current MPEG systems. In each case, in order to facilitate the link of the presented 
methods and architectures with real-world compression schemes, indicative state-of-the-art systems 
are reviewed. 

3.1 Wavelet-based Scalable Image Coding 
The basic framework for a wavelet-based scalable image coding system is illustrated in Figure III-1. 
The encoder (top row) consists of the transform module W , which can be any critically-sampled 
discrete wavelet transform, the coder modules (Q , C , EC ) that produce an entropy-coded stream of 
symbols (compressed bitstream), and the Opt  module that instantiates a set of (optimized) truncation 
points within the compressed bitstream.  

Prior to the decoding process (bottom row of Figure III-1), a bitstream extractor B  performs the 
actual truncation of the compressed bitstream (based on the truncation points provided by the Opt  
module) in order to create a sub-bitstream that matches the channel bandwidth and the constraints set 
by the user in terms of quality or resolution of the decoded output image. This process only involves 
data handling operations and does not require any transcoding operations. In fact, B  and Opt  can 
interact similar to a client-server application: all potential quality and resolution levels of the decoded 
image are mapped to bitstream truncation points by the Opt  module by utilizing hint information [15] 
[16] produced by the encoder. The user inputs the desired bitrate and resolution level at the B  
module, which in turn can request the appropriate bitstream truncation points and perform the actual 
truncation of the compressed bitstream. Within the conventional image compression framework, the 
hint information utilized in the Opt  module is encapsulated in rate-distortion points [17]. However, 
extensions of this framework that involve complexity metrics can also be envisaged [15]. There are 
cases where Opt  and B  can be merged in one process at the encoder side,  e.g. Tier-II  in JPEG-2000 
compression [17]. However, other practical systems have also performed the process in two distinct 
modules, e.g. scalable video codecs [18] [19].  

Once the appropriate bitstream is available, the process of reconstruction of the decoded image 
occurs in a symmetric manner to the encoder: first the decoder modules decompress the extracted 
bitstream and perform inverse quantization (ED , D  and 1Q−  modules); then the inverse DWT ( 1W −  
module) reconstructs the output in the spatial (pixel) domain. Obviously, the process can be pipelined 
for efficient implementation [20]. 
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Figure III-1. Scalable image compression architecture based on the discrete wavelet transform. The symbol ≈  
indicates the (potential) existence of a transmission channel. 

 

In typical image coding applications, the transform W  consists of the critically-sampled dyadic 
discrete wavelet transform. The dyadic decomposition (or sometimes called the Mallat decomposition 
[21]) separates low and high-frequency components in the row and column direction, and iterates the 
process only in the low-frequency subband. In this way, as explained in Chapter II, a multiresolution 
decomposition of the input image is obtained. It is important to point out that experimental results in 
wavelet-based coding [17] reveal that scalable coding utilizing this decomposition obtains, on average, 
the best compression performance for natural images.  

3.1.1  Embedded Quantization in Wavelet-based Image Coding 

The purpose of the quantizer Q  in the system of Figure III-1 is to map (usually in a lossy manner) the 
wavelet coefficients into a set of indices (quantization cells). The coefficients are then represented by 
the parameters of this mapping operation [22]. The inverse quantization 1Q−  uses these parameters 
and, based on the inverse mapping operation, reconstructs the wavelet coefficients at the decoder 
side. Note that, although the inverse mapping of 1Q−  is the mathematical inverse of the (forward) 
mapping of Q , the reconstructed wavelet coefficients are (usually) not identical to the wavelet 
coefficients of the encoder because:  

(a) the quantization mapping operation usually incurs loss; 

(b) the reconstructed parameters of the mapping at the decoder side may not exactly coincide 
with the mapping parameters at the encoder side; this may happen due to transmission errors 
or incomplete receipt of the compressed bitstream. 

Although many quantization schemes have been developed in the past, e.g. [22] [23] [17], for the 
quantization of the wavelet coefficients at a wide range of bitrates, the uniform quantizer was found 
to be nearly-optimal in the mean-square error sense. Moreover, it is common to use a double cell size 
around zero (deadzone), since this improves performance at low bitrates [17]. Nevertheless, the 
uniform quantizer cannot be used for embedded coding, since in embedded coding (by definition) the 
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partition cells of the higher-rate quantizers must be embedded in the partition cells of all the lower-
rate quantizers [24].  

An important category of embedded scalar quantizers is the family of embedded deadzone scalar 
quantizers. For this family, each input wavelet coefficient X  is quantized to: 

 ( )
( ) if 0

2 2 2 2
0 otherwise

p p p p
p p

X Xsign X
i Q X

ξ ξ   ⋅ + + >   ∆ ∆ = = 

 (3.1) 

where:  a  denotes the integer part of a ; 1ξ <  determines the width of the deadzone; 0∆ >  is the 
basic quantization step size (basic partition cell size) of the quantizer family; p +∈ Z  indicates the 
quantizer level (granularity), with higher values of p  indicating coarser quantizers. In general, p  is 
upper bounded by a value N , selected to cover the dynamic range of the input signal. The 
reconstructed value is given by the inverse operation: 

 ( )
( ) ( )1

0 0

2 0
2

p
p p pi p

p p pp

i
y Q i

sign i i iξ δ
−

== =  ⋅ − + ∆ ≠
 (3.2) 

where 0 1δ≤ <  specifies the placement of the reconstructed value p
iy  within the corresponding 

uncertainty interval (partition cell), defined as 
p

p
iC , and i  is the partition cell index, which is bounded 

by a predefined value for each quantizer level (i.e. 0 1pi M≤ ≤ − , for each p ). Based on equation 
(3.1), it is rather straightforward to show that the quantizer 0Q  has embedded within it all the uniform 
deadzone quantizers with step sizes 2 ,p p +∆ ∈ Z . Moreover, it can be shown that, under the 
appropriate settings, the quantizer index obtained by dropping the p  least-significant bits (LSBs) of 0i  
is the same as that which would be obtained if the quantization was performed using a step size of 
2 ,p p +∆ ∈ Z  rather than ∆ . This means that if the p  LSBs of 0i  are not available, one can still 
dequantize at a lower level of quality using the inverse quantization formula given in (3.2). 

The most common option for embedded scalar quantization is the Successive Approximation 
Quantization (SAQ) [24]. SAQ is a particular instance of the generalized family of embedded 
deadzone scalar quantizers defined above. For SAQ, 1 0 2N NM M M−= = = =…  and 0ξ = , 
which determines a deadzone width twice as wide as the other partition cells, and 1 2δ = , which 
implies that the output levels p

iy  are in the middle of the corresponding uncertainty intervals 
p

p
iC .  

An example of the partition cells and quantizer indices obtained for SAQ for 2N =  is given in 
Figure III-2, in which binary notation is used with s  denoting the sign bit. SAQ can be implemented 
via thresholding, by applying a monotonically decreasing set of thresholds of the form [24]: 

 1 2pp− =T T  (3.3) 

with 1N p≥ ≥ . The starting threshold NT  is of the form maxN wα=T , where maxw  is the highest 
coefficient magnitude in the input wavelet decomposition, and α  is a constant that is taken as 

1 2α ≥ . 
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Figure III-2. Embedded deadzone scalar quantizer for 2N = , 0ξ =  and 1 2δ = . 

 

By using SAQ, the significance of the wavelet coefficients with respect to any given threshold pT  is 
indicated in a corresponding binary map, denoted by pW , called the significance map. Denote by 
( )w k  the wavelet coefficient with coordinates ( )1 2, ,..., nκ κ κ=k  in the n -dimensional wavelet 

decomposition of a given input. The significance operator ( )pσ ⋅  maps any value ( )w k  in the wavelet 
decomposition to a corresponding binary value ( )pw k  in pW , according to the following rule: 

 ( ) ( )( )
( )

( )

0,

1,
pp p

p

if w
w w

if w
σ

<= =  ≥

k
k k

k

T

T
 (3.4) 

In general, embedded coding of the input wavelet decomposition translates into coding the 
significance maps pW , for every p  with 0N p≥ ≥ .  

The SAQ has been adopted in a wide range of wavelet-based coding algorithms. The common choice 
for this particular type of scalar quantizer is motivated by the fact that, although sub-optimal in the 
rate-distortion sense, the link between SAQ and bitplane coding makes it attractive for embedded 
coding.  

Concerning the actual coding process (C  and EC  modules of Figure III-1), all state-of-the-art 
wavelet-based coding techniques exploit the inter-band or intra-band statistical dependencies between 
the transform coefficients. Each category (inter or intra-band) is utilizing a different data structure in 
the coding process: usually wavelet trees (originally called zerotrees of wavelet coefficients [24]) are 
employed in the inter-band coding algorithms, whereas quadtrees or zero-blocks are used for intra-
band coding. Since there is a very large amount of related research on these topics and many 
algorithms are derived based on empirical or statistical evidence, in the following we are limiting our 
description to a representative state-of-the-art scheme for each of the two categories found in the 
related literature.  

3.1.2  Instantiation of an Inter-band Coder: Set Partitioning In 
Hierarchical Trees (SPIHT) Coding 

The presentation of this subsection is a synopsis of [25]. Basically, SPIHT coding is an improved 
version of the original zerotree-based wavelet coding algorithm of [24]. The coding process can occur 
independently within areas of certain resolution levels, areas within wavelet subbands or even within 
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individual wavelet trees [26]. However, in full-resolution decoding, the best results are always obtained 
if the entire (multilevel) DWT is used, which is the way the original algorithm was proposed [25].  

In SPIHT coding, the algorithm starts by scanning the low-frequency wavelet coefficients and 
proceeds gradually to higher-frequency coefficients. Essentially, the algorithm employs a dynamically-
determined scanning pattern to encode the significance maps produced by SAQ. For further 
compression efficiency, the symbols indicating the scanning pattern for each significance map 
(bitplane) are context-based entropy coded [25] by using contexts constructed from previously-
scanned positions in the significance map.  

The novelty of the SPIHT algorithm in comparison to previous work (e.g. [24]) is in the scheme that 
produces the dynamic scanning pattern. This scheme emerges as an efficient instantiation of the 
family of algorithms based on the zerotree hypothesis [24]. The underlying model assumes that 
insignificant coefficients in the wavelet domain (with respect to a given SAQ threshold) tend to be 
clustered in wavelet trees, termed zerotrees [24]. An example is given in Figure III-3, where a wavelet 
tree is shown within the two-level DWT. The root of the tree consists of the three wavelet 
coefficients indicated on the upper left part (subband 2LL ). Notice that the coefficient in the LL -
band that is marked with a star is not the root of any wavelet tree in the SPIHT algorithm. Some 
parent-children dependencies are marked within the wavelet-tree example of Figure III-3. As seen 
there, the relation of parent ( , )i j  and children ( , )O i j  is extended in another level to the indirect 
descendants of the parent coefficient, denoted by ( , )L i j . In total, the direct and indirect descendants 
of each parent coefficient ( , )i j  are the descendants of this coefficient and are denoted by ( , )D i j . The 
reference to a coefficient value is denoted by ( , )c i j .  

 

LL2 

HL2 HH2

LH2

LH1

HH1LH1

O(i,j)

(i,j)

L(i,j) 

 D(i,j)

+ 

 
Figure III-3. Dyadic discrete wavelet decomposition and an example of a wavelet tree (zerotree) used in the 
SPIHT algorithm (based on [25]).  
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The pseudocode of the SPIHT algorithm is basing its efficiency on the gradual segmentation into 
isolated coefficients and coefficient descendants (direct or indirect), thereby creating subtrees in the 
wavelet domain that have roots in these descendants. The transform scan is performed breadth-first. 
Three dynamic linked lists are created; while the SAQ threshold is dyadically decreased, an increasing 
number of coefficients become significant with respect to the applied threshold. This is marked in the 
three lists and, based on their contents, the coefficient scanning takes place. In detail, these lists are: 

• List of insignificant pixels (LIP): Contains pointers to the coefficients that are insignificant 
with respect to the current SAQ threshold.  

• List of significant pixels (LSP): Contains pointers to the coefficients that have already been 
found significant with respect to the current or past SAQ thresholds.  

• List of insignificant subtrees (LIS): Contains pointers to all the subtrees that have been 
created by the algorithm until the current point of execution. All coefficients indexed by this 
list are insignificant with respect to the current threshold and hence all their subtrees are also 
considered insignificant. In addition, these subtrees can be of two types; type A or type B. 
Type-A subtrees of a root ( , )i j  is the set ( , )D i j  (direct and indirect descendants); type-B 
subtrees is the set ( , )L i j  (indirect descendants). 

For each SAQ threshold, the three lists are serially scanned in two passes. The pseudocode of SPIHT 
is given in Figure III-4. The coefficient significance with respect to threshold 2n  is checked with 
operator ()nσ ⋅ , which corresponds to (3.4) with 2nnT = . 

 
Initialization: Output 2 ( , ) ,log (max { })i j i jn c∀ =   ; set the LSP as an empty list; add the coordinates ( , )i j  of 

each wavelet coefficient to the LIP, and only those with descendants also to the LIS, as type-A entries 

Sorting Pass: 

For each entry ( , )i j  in the LIP do: 

Output ( , )n i jσ ; If ( , ) 1n i jσ =  then move ( , )i j  to the LSP and output the sign of ( , )c i j  

For each entry ( , )i j  in the LIS do: 

If the entry is of type A, then 

Output ( ( , ))n i jσ D ; If ( ( , )) 1n i jσ =D  then 

For each ( , ) ( , )k l O i j∈  do: 

Output ( , )n k lσ ; If ( , ) 1n k lσ =  then add ( , )k l  to the LSP and output the sign of ( , )c k l  

If ( , ) 0n k lσ =  then add ( , )k l  to the end of the LIP 

If ( , ) 0L i j ≠  then move ( , )i j  to the end of the LIS as an entry of type B, and go to the next step; 

else, remove entry ( , )i j  from the LIS and terminate the current Sorting Pass 

If the entry is of type B then 

Output ( ( , ))n L i jσ ; If ( ( , )) 1n L i jσ =  then  

Add each ( , ) ( , )k l O i j∈  to the end of the LIS as an entry of type A; remove ( , )i j  from the LIS 

Refinement Pass: For each entry ( , )i j  in the LSP, except those included in the last sorting pass (i.e. with the 

samen ), output the n -th most significant bit of ( , )c i j  

Quantization-step update: Decrement n  by 1 and go to the Sorting Pass 

Figure III-4. SPIHT pseudocode (from [25]). 
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3.1.3  Instantiation of an Intra-band Coder: QuadTree-Limited  
(QT-L) Coding  

Various algorithms employing Quadtree (QT) decompositions have been reported in literature, 
targeting both the spatial and the transform domain. Briefly, the QT decomposition divides an image 
into two-dimensional homogeneous (in the image property of interest) blocks of variable size. 
Typically, the division operation is guided by a hypothesis test, in which a decision is made whether or 
not a block is homogeneous in the property of interest: if the test is positive then no division is 
necessary, else the block is divided into four adjacent blocks. The division operation is repeated 
recursively, until no further division is needed or the smallest possible block size is attained. 

In contrast to quadtree decomposition applied in the spatial domain, some algorithms use the 
quadtree decomposition in the wavelet domain [27] [28] [29] [23]. The underlying models exploited in 
these codecs coupled with more advanced context-based entropy coding techniques have been used in 
the design of the QuadTree-Limited (QT-L) coding algorithm, initially introduced in [23] and 
published in [6]. The QT-L codec provides competitive compression performance against the state-
of-the-art Embedded Block Coding with Optimized Truncation (EBCOT) algorithm [30] used in the 
JPEG-2000 standard. As such, it has been adopted for the coding of the quantized wavelet 
coefficients in the algorithms proposed in this dissertation. A detailed description of this algorithm is 
given in the following. Our presentation is based on [23]. 

In the QT-L algorithm, SAQ is applied so as to determine the significance of the wavelet coefficients 
with respect to a monotonically decreasing series of thresholds. As explained before, by using SAQ, 
the significance of the pixels in the wavelet decomposition ( )( )W w= kk  with respect to any given 
threshold 2 pT  is indicated in a corresponding binary map pW , called the significance map. 
Additionally, let us define a quadrant ( )0,Q νk  as a ν ν×  matrix containing some wavelet 
coefficients ( )w k , where 2 ,r rν = ∈ ` , and the vector k  of coordinates is bounded by 

0 0 ν≤ < +k k k . The significance with respect to the threshold 2 pT  of the coefficients from 
( )0,Q νk  is determined via a significance operator ()pσ ⋅ , which maps any value ( )w k  to a 

corresponding binary value ( )pw k  in pW : 

 ( ) ( ) ( ) ( )( )
( )

( )
0

0, if 2
, ,

1, if 2

p

p

T
p p

T

w
w Q w w

w
ν σ

 <∀ ∈ = =  ≥

k
k k k k

k
. (3.5) 

The binary matrix that corresponds to ( )0,Q νk , and which indicates the significance of the 
coefficients with respect to the applied threshold 2 pT , is denoted as ( )0,p

bQ νk . Define a partition 
rule P  that divides the matrix ( )0,p

bQ νk  into adjacent minors, where ( )20,1∈α : 

 ( ) ( )( ) ( ) ( ) ( )0 0 0: , , if , with 1
2 2

p p p p p
b b bP Q Q w Q wν νν ν= + ∃ ∈ =k k k k kα . (3.6) 

Basically, the QT-L algorithm builds quadtree decompositions corresponding to each significance map 
pW ; the partitioning rule P  is applied recurrently on quadrants selecting sets of binary elements in 

the significance map and, correspondingly, sets of coefficients of the wavelet transform matrix.  
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Encoding the significance maps (i.e. the positions of the significant coefficients) is equivalent with the 
encoding of the corresponding quadtrees. A fixed, data-independent procedure is used to scan the 
quadtrees. An important difference with respect to its SQP predecessor [27] is that in the QT-L 
algorithm the partitioning process is limited, so that the quadtrees are not built up to the pixel level. 
Once the area 2ν  of the current node ( ),p

bQ νk  in the quadtree is lower than a predefined minimal 
quadrant area, the splitting process is stopped and the entropy coding of the coefficients within the 
quadrant ( ),Q νk  is activated. Thus, in this case, the leaf nodes in the quadtree will consist of 
quadrants delimiting blocks of wavelet coefficients, and not single values, as was the case of the 
original SQP algorithm [27]. An example of a 4 4×  binary matrix ( )0 0

0 1, , 4p
bQ k k  and the 

corresponding quadtree structure is illustrated in Figure III-5; notice that in this simple example, the 
quadtree has been built up to pixel level. 

The QT-L algorithm performs a significance pass maxpS  to encode the highest bit-plane maxp p= . 
Subsequently, the algorithm performs three coding passes to encode all the lower bit-planes p , 
0 maxp p≤ < , namely, a Non-Significance pass ( pN ), a Significance pass ( pS ) and a Refinement 
Pass ( pR ). During the significance pass pS , the coordinates k  of the coefficients ( )w k  found as 
non-significant ( )( ) 0p wσ =k  and located in the immediate neighbourhood of significant 
coefficients are appended to a list called the list of non-significant coefficients (LNC). Also, the 
coefficients identified as significant ( )( ) 1p wσ =k  in the pN , pS  coding passes are appended to a 
list called the refinement list (RL). During the next coding steps , 0k k p≤ < , the significance of the 
coefficients recorded in the LNC is coded first. 

The explanation as to why the construction of the quadtrees has been limited up to a certain quad-tree 
level is as follows: It is beneficial from the lossy coding point of view to include in the LNC all the 
non-significant coefficients that are among the 23 1−  neighbours of a significant coefficient.  
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Figure III-5. Quadtree structure corresponding to ( )0 0
0 1, , 4p

bQ k k . (a) An example of a 4x4 binary matrix 
( )0 0

0 1, , 4p
bQ k k ; (b) The partition rule P  is applied recurrently only on the binary matrices containing the non-

zero element (thick lines indicate the successive partitioning in minors). 
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According to the clustering property of the wavelet transform, for every bit-plane p , 1p ≥ , there is a 
high probability for each of these non-significant coefficients to become significant with respect to the 
lower SAQ thresholds 2 kT , 0 k p≤ < . If the quadtree was to be built up to pixel level, some of the 
non-significant coefficients that are potentially significant at lower thresholds would be neglected 
when building up the LNC. The limited quadtree-partitioning process eliminates this drawback. By 
using a Morton scanning path [31], the QT-L algorithm scans all the coefficients in the leaf nodes of 
the quadtree, and appends to the LNC the coordinates of those coefficients that are non-significant. 

Each coding step k , max0 k p≤ < , starts with the significance of the coefficients in the LNC. 
Therafter, the encoder performs the next two coding passes, namely the non-significance and the 
refinement passes. The pseudo-code describing the non-significance pass pN  is given in Figure III-6. 
In a similar manner, the pseudo-code of the significance pass pS  is given in Figure III-7, while the 
pseudo-code of the refinement pass pR  is given in Figure III-8. Note that in these figures, the “SGN” 
and “NSG” are the acronyms for the significant and non-significant symbols respectively, and 

_Limited Area  indicates the bound below which no quadtree partitioning is performed.  

An important difference with respect to its SQP predecessor [27] is that the QT-L coder adopts a 
more elaborated context-conditioning phase and context-based entropy coding of the symbols 
generated in the three coding passes. Since simple memoryless models are usually not efficient 
enough, context-based arithmetic encoding should be used to improve the coding performance. This 
technique exploits the dependencies between the symbols to be encoded and the neighbouring 
symbols (the context). Four different sets of models ,1 4iS i≤ ≤  are used to encode the symbols 
generated by the coding passes, and the encoder automatically selects the appropriate set at each 
coding stage, as shown in Figure III-6, Figure III-7 and Figure III-8. These  sets include: (1) the 
“Quadrant_Significance” model ( 1S ) used to encode the significance of the nodes in the quadtrees, 
(2) the “Pixel_Significance” ( 2S ) and “Pixel_Sign” ( 3S ) sets used to code the significance and the 
signs respectively of the coefficients in the non-significance and significance passes, and (4) the 
“Pixel_Refinement” set ( 4S ), used to entropy code the refinement information generated in the 
refinement pass.  

 
Procedure QT-Limited Non-Significance Pass() 

  For every cq  in LNC, parsed from head to tail do 

    If 2 pTc ≥q  do 

      Entropy code SGN symbol with the 2S  model 

      Entropy code the sign of cq  with the 3S  model 

      Append the coordinates q to the RL; Remove q  from the LNC 

    Else 

      Entropy code NSG symbol with the 2S  model 

    End 

  End 

End 

Figure III-6. Pseudo-code describing the Non-Significance pass ( pN ) performed by the QT-L coder; note that 

2S  denotes the Pixel_Significance model, respectively 3S  denotes the Pixel_Sign model. 
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The encoder assigns a number iS
modelsN  of context models (or states) i

nC , 0 iS
modelsn N≤ < , for each 

set of models , 2 4iS i≤ ≤ . A different probability model corresponds to each context state i
nC , and 

thus the generated symbols are entropy coded with an adaptive arithmetic coder having the 
appropriate context model derived in the context-conditioning phase. The algorithm assigns each 
coefficient/quadrant to one of the several possible contexts depending on the values of the previously 
quantized coefficients. The basic idea for the context conditioning adopted in the coder is to quantize 
into a context number m  (corresponding to a given context model i

mC ), the number of significant 
neighbourhood coefficients for a given coefficient position. The quantization performed for the sets 

, 2 4iS i< ≤  is described by the following expression: 

 ( )1 , 2 4iS sgn
models

tot

N
m N i

N
 
 = − ⋅ ≤ ≤  

 (3.7) 

where sgnN  is the number of the neighbouring coefficients declared as significant at the previous 
coding steps, totN  is the total number of neighbours, and  x  is the integer part of x . The total 
number of neighbours totN  in (3.7) is set to 8 in two-dimensional coding and to 26 in three-
dimensional coding. Finally, a single model 1S  is used for the adaptive arithmetic entropy coding of 
the significance of the quadrants. 

 
Procedure QT-Limited Significance Pass( ( ),p

bQ νk ) 

  If ( ) 1, , 2 pTc Q cν +∀ ∈ <q qk  do 

    If ( ), , 2 pTc Q cν∃ ∈ ≥q qk  do 

      Entropy code SGN symbol with the 1S  model 

      If Limited_Areanν ≤  do 

        Encode Block( ( ),p
bQ νk ) 

      Else 

        For every child ( ), 2 , 0 2p n
ibQ iν ≤ <k  of ( ),p

bQ νk  do 

          QT-Limited Significance Pass( ( ), 2p
ibQ νk ) 

        End 

      End 

    Else 

      Entropy code NSG symbol with the 1S  model 

    End 

  Else 

    If Limited_Areanν >  do 

      For every child ( ), 2 , 0 2p n
ibQ iν ≤ <k  of ( ),p

bQ νk  do 

        QT-Limited Significance Pass( ( ), 2p
ibQ νk ) 

      End 

    End 

  End 

End 

Figure III-7. Pseudo-code describing the Significance pass ( pS ) performed by the QT-L coder; note that 1S  
denotes the Quadrant_Significance model. 
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Procedure Encode Block( ( ),p
bQ νk ) 

  For every coefficient cq  in ( ),Q νk  do 

    If 2 pTc ≥q  do 

      Entropy code SGN symbol with the 2S  model 

      Entropy code the sign of cq  with the 3S  model 

      Add the coordinates q  to the end of the RL  

    Else  

      Entropy code NSG symbol with the 2S  model 

      Add the coordinates q  to the end of the LNC 

    End 

  End 

End 

Procedure QT-Limited Refinement Pass() 

  For every cq  appended at previous coding stages to RL do 

    Entropy code the bit-plane from cq  corresponding to pT           

    using the 4S  model 

  End 

End 

Figure III-8. Pseudo-code describing the Refinement pass ( pR ) performed by the QT-L coder, respectively the 
Encode_Block procedure called during the Significance pass; note that 2S  denotes the Pixel_Significance 
model, 3S  denotes the Pixel_Sign model, and 4S  denotes the Pixel_Refinement model . 

 

3.1.4  Post-Compression Rate-Distortion Optimization and 
Bitstream Extraction 

As explained in the previous subsections, the bitplane scanning produced by SAQ, combined with the 
embedded coding of the significance maps and (usually) context-based entropy coding of the 
produced stream of symbols, results in compression techniques that are scalable in bitrate. If the 
entire DWT of the input image is used, the bitstream produced by SAQ and zerotree or quadtree-
based coding methods can be truncated at any arbitrary point and the reconstructed image at the 
decoder will have proportional quality to the reconstructed image produced by the equivalent set of 
uniform (double-deadzone) quantizers and coding at that bitrate. Essentially, this feature ensures that 
bitrate-scalability is provided “at little or no cost” to the compression efficiency of the methods 
described in subsections 3.1.2 and 3.1.3. A good conceptual parallelism of embedded coding is the 
binary finite precision of a real number. All real numbers can be represented by a string of binary 
digits (SAQ). For each digit that is added to the right, more precision is added. Nevertheless, this 
“encoding” can cease at any time and provide the “best” representation of the real number achievable 
within the framework of binary digit representation. 

Additional research in the field revealed that the scalability features can be extended to include 
resolution scalability if the maximum size of a coding unit used by the coding module C  is limited to 
the subbands of certain resolution levels. This is especially facilitated by intra-band coding algorithms, 
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which do not exploit dependencies across the scales of the wavelet transform. For example, for QT-L 
coding [23], one can apply the algorithm described in subsection 3.1.3 separately for the subbands of 
each resolution level of the critically-sampled DWT without any additional modifications. For a DWT 
decomposition in k  levels, this will essentially produce k  independently-decodable bitstreams. 
Nevertheless, for full-resolution decoding, one must establish the truncation point for each bitstream 
so that the best-possible quality (in the mean-square error sense) is obtained for the reconstructed 
image out of the entire set of k  bitstreams. In general, this is a problem that manifests itself when the 
wavelet decomposition is split into a number of independent code-blocks, and each code-block is 
independently compressed, as is the case of the EBCOT algorithm [30] used in the JPEG-2000 
standard, or the Embedded Zero-Block Coding algorithm [32]. Similar systems employing 
independent coding of wavelet trees can be found elsewhere [26] [33]. For all these cases, an optimal 
solution to this problem is based on rate-distortion optimized truncation. This is the operation 
performed within the PCRDO (Opt ) module of Figure III-1. For details on this operation, the reader 
is referred to [17] [34, 35]. An example instantiation performing PCRDO in a wavelet-tree (inter-band) 
coding system can be found in [33]. In short, the PCRDO module is utilizing rate-distortion 
information gathered during encoding. The rate can be directly measured by the number of required 
bits after each pass of the encoding algorithm, e.g. Figure III-6 – Figure III-8. Moreover, it can be 
shown that the decrease in the distortion after a pass within each bitplane is linearly-related to the 
number of coefficients that have been found significant or have been refined in this pass. In this way, 
a distortion estimate can be formed in order to indicate the expected mean-square error after the 
termination of a coding pass. These points can be used within a Lagrangian optimization framework 
[34, 35], in order to provide optimal truncation points for a set of resolutions and bitrates. As a result, 
the bitstream extractor B  (Figure III-1) can immediately provide the bitstream segments that 
correspond to the selected resolutions and bitrates at the decoder. Alternatively, in a server-based 
image or video distribution scenario, the rate-distortion points and the entire compressed bitstream 
can be stored at the server site, enabling clients to send requests for specific bitrates and resolutions. 
In this case, the bitstream truncation can occur at the B  module using the PCRDO algorithm (and 
the rate-distortion points), and a specific bitstream matching the requested features can be send to the 
client [18]. We note that the distinction among the two cases is based on whether (1) the entire 
collection of rate-distortion points is kept with the compressed bitstream and the bitstream truncation 
is performed interactively (following client requests), or (2) the optimization is performed a-priori and 
a specific set of truncation points is satisfied, which is expected to cover all realistic scenarios.  

3.2 Block-based Motion Compensated Prediction 
In coding of video sequences, motion compensated prediction (MCP) is a powerful tool for reducing 
the temporal dependency between successive video frames. In its most generic form, MCP creates an 
affine mapping between areas of the current frame and future or past frames which are available to 
both encoder and decoder; they are typically denoted in literature as the reference frames [36]. As 
shown in the schema Figure III-9, given the reference frames and the mapping parameters, MCP 
creates the predicted frame, which approximates the current frame, and the displacement vectors, 
which are the parameters of the mapping operation. The MCP error is retained in the error frame. In 
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typical video coding systems [37], after MCP, the error frame and the displacement vectors are 
communicated to the decoder. 
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displacement vectors
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Figure III-9. Generic structure of motion compensated prediction. 

 

Although accurate motion modelling for realistic video sequences has been the topic of interest of a 
vast number of publications (e.g. [38-41]), no existing scheme can capture the video sequence motion 
characteristics accurately and in a generic manner. Factors that hinder this effort are: occlusion and 
aperture effects; the appearance of new objects; scene illumination changes; changes in camera focus, 
etc. As a result, every solution for MCP solves the problem by alleviating certain, but not all of these 
effects. Moreover, the general rule is that, the more advanced the motion estimation (ME) algorithm 
used for MCP, the more complex it becomes to realize it in a practical video coding system.  

As a result, the ME algorithms used in the vast majority of MCP-based video coding systems are 
block-based motion-estimation algorithms, which in turn lead to block-based motion-compensated 
prediction. 

3.2.1 Block-based Motion Estimation 

Figure III-10 shows an example of the basic block-based motion estimation algorithm. The current 
frame [ , ]tA m n , consisting of M N×  pixels, is split into non-overlapping blocks of size m nB B×  
pixels. Each block is predicted by performing a matching with the blocks indexed within the area of 
m nS S×  pixels around the block position. The matching criterion used in practice is the sum of 

absolute differences (SAD) [37], since it provides accurate matches without the need for multiplication 
operations. For the particular example of Figure III-10, this optimization problem can be stated as: 

 ( )
1 1

1( , ) 0 0
( , ) : arg min [ , ] [ , ]

m n

m n

B B

m n t t m nd d i j
d d A m i n j A m i d n j d

− −
∗ ∗

−
= =

+ + − + − + −∑ ∑ C  (3.8) 

with 2 2
m mS S

md− ≤ <  and 2 2
n nS S

nd− ≤ < , and ( )a a=C  for SAD matching, or 2( )a a=C  for the 
sum of square differences (SSD). In all practical block-based algorithms, the desired solution ( , )m nd d∗ ∗  
is constant over pixels [ , ]tA m i n j+ + , i.e. all the pixels of block at position ( , )m n  of the current 
frame are all associated with one solution ( , )m nd d∗ ∗ . 
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The classical way of solving the example of (3.8) is the full-search (a.k.a. brute-force) algorithm [37]. 
In general, after the performance of ME, every pixel [ , ]tA m n  of the current frame is associated with a 
pixel 1[ , ]t m nA m d n d∗ ∗

− − −  of the reference frame via its displacement vector ( , )m nd d∗ ∗  (also referred as 
motion vector). 

 

mB

nB

( , )m n
mS

current framereference frame 1tA− tA

M

N

( , )m n
( , )m nm d n d∗ ∗− −

nS

mB

nB

mB

nB

( , )m n
mS

current framereference frame 1tA− tA

M

N

( , )m n
( , )m nm d n d∗ ∗− −

nS

mB

nB

 
Figure III-10. An example of block-based motion estimation.  

 

The block-matching algorithm presented before is designed for pixel-level translational motion 
between consecutive video frames. However, since the digitized video frames represent only a two-
dimensional sampling of the real scene content captured by the camera, it has been long known that 
interpolation techniques can help increase the precision of block-based motion estimation. In reality, 
experimental and theoretical analysis [42] showed that, for MCP with block size 16 16×  pixels, 
broadcast TV signals require interpolation with up to quarter-pixel accuracy; videophone signals 
typically require half-pixel accuracy. Based on Figure III-10, a hypothetical example of motion 
estimation with half-pixel interpolation is presented in Figure III-11. In this example, we assume that 

2m nB B= =  and 10m nS S= = ; only a part of the search area is shown in the figure. The integer 
pixel positions and the three interpolated (fractional) pixel positions form the grid of half-pixel 
positions; the different types of grid positions are indicated with different symbols. As shown in this 
example, the best matches in the full-pixel and half-pixel grid are found in neighbouring positions in 
the search area. Out of these two best matches, the one that corresponds to the smallest SAD can be 
chosen for MCP of the specified block. In general, for a certain sub-pixel accuracy, practical block-
based motion estimation algorithms tend to perform hierarchical search located around the best 
match found over the coarser interpolation precision [37], following the assumption of homogeneous 
motion. For example, in the case of Figure III-11, a practical ME scheme starts by establishing the 
best match at the full-pixel position by performing full-search within the m nS S×  neighbouring 
pixels. This process provides the displacement vector ( 1, 4)− . Subsequently, an area of m nS S′ ′×  half-
pixel positions around the position of the best match is searched and the displacement vector 
( 2, 3.5)−  that corresponds to the smallest SAD is found. The process can continue iteratively by 
creating the quarter-pixel grid and searching in an area of quarter-pixel positions around the position 
of the best match. This process is a subclass of hierarchical or multiresolution ME algorithms [37] 
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which perform ME on a coarse grid (downsampled current and reference video frames) and iteratively 
refine the sampling grid to establish the position that minimizes the search criterion. 
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Figure III-11. Half-pixel interpolation for motion estimation. The current block size is 2 2×  pixels and it is 
located at position ( , )m n . A part of the search area is depicted, with different symbols indicating the 
horizontally, vertically and diagonally interpolated positions. The position of the best match in the full-pixel and 
the half-pixel grid is marked with the grey squares. The displacement vectors for each case are also indicated. 

 

In general, hierarchical ME schemes are one category of algorithms for fast ME. The literature on fast 
ME algorithms is vast (e.g. see [38] for an overview paper), since the complexity of encoders based on 
MCP is heavily dependent on the ME stage. We note however that for the case of block-based ME 
(equation (3.8)), only the classical full-search algorithm is guaranteed to obtain the position (within the 
predefined grid precision) that provides the global minimum of the matching criterion. 

3.2.2 Motion Compensated Prediction and Fractional-pixel 
Interpolation 

After the ME stage, each pixel in the current frame [ ],A m n  is associated via its displacement vector 
1 1( 1) ( 1)( , )t t
m nd d− −F F  with a pixel in the reference frame, where ( )τ τ∆F  denotes forward prediction via 

motion estimation that matches the reference frame at time instant τ  with the frame at time instant 
τ τ+ ∆ . As a result, after MCP, the error-frame is given by: 

 1 1( 1) ( 1)1 1
( 1) ( 1)

1( , )[ , ] [ , ] ,t t
m n

t t
t t t m ni iH m n A m n A m d n d− −

− −
−      = − − −     F F

F FI  (3.9) 

where: 1 1 1( ) ( ) ( )t t t
m m mi d d = − 
F F F , 1 1 1( ) ( ) ( )t t t

n n ni d d = − 
F F F  is the fractional-pixel (interpolated) position 

(with  a  indicating the smallest integer that is larger than a ); [ ]( , ) ,k l A m nI  indicates the interpolated 
pixel at fractional distance ( , )k l  from pixel [ ],A m n , where 2 11, {0, , , , }R R

R R Rk l − −= …   and R  indicates 
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the interpolation precision (e.g. 2R =  for half-pixel accurate interpolation). One can equivalently 
modify (3.9) to perform backward MCP by associating each pixel in the current frame [ , ]tA m n  via its 
displacement vector 1 1( 1) ( 1)( , )t t

m nd d+ +B B  with a pixel in reference frame 1tA+ . In this case, backward 
prediction is performed (denoted by ( )τ τ∆B ), i.e. motion estimation that matches the reference frame 
at time instant τ  with the frame at time instant τ τ− ∆ . 

The interpolation operator ( , )k lI  can be designed in many ways. In this dissertation, we follow the 
design of [18]. Under the assumption that the same motion vector is used within the region of support 
of the interpolation filter, separable FIR interpolation filters can be designed by windowing the 
impulse response of the sinc function in the position ( , )k l : 

 sin ( )
( )

( )m k
a

m k a
w w a

m k a
π

π+
+ −=
+ −∑  (3.10) 

and equivalently for n lw + . The window used is the Hamming window [18]. The derived filter 
coefficients for 8R =  are [18]: 

 1
8

0.0072 0.0284 0.0902 0.9742 0.1249 0.0380 0.0105 0.0026mw +
 = − − − −    (3.11) 

 1
4

0.0110 0.0452 0.1437 0.8950 0.2777 0.0812 0.0233 0.0053mw +
 = − − − −    (3.12) 

 3
8

0.0117 0.0505 0.1624 0.7713 0.4465 0.1224 0.0363 0.0081mw +
 = − − − −    (3.13) 

 1
2

0.0105 0.0465 0.1525 0.6165 0.6165 0.1525 0.0465 0.0105mw +
 = − − − −    (3.14) 

and 7 1
88

[ ] [9 ]mmw i w i++ = − , 3 1
4 4
[ ] [9 ]m mw i w i+ += − , 5 3

8 8
[ ] [9 ]m mw i w i+ += −  for 1 8i≤ ≤ . 

Equivalent filters are also applied in the perpendicular direction ( n lw + ). 

To conclude our presentation of MCP, we note that, in terms of practical usage, at the core of all 
current MPEG video coding standards [43], MCP is utilized within the closed-loop video coding 
framework. Hence, as it will be explained in section 3.5, instead of the original reference frame, the 
decoded reference frame is used in these systems. Similarly, in systems based on motion-compensated 
temporal filtering [8] [44] [45] , this MCP is realizing the prediction step of the temporal 
decomposition. 

3.3 Motion Compensated Update 
In this section, we complement the framework of MCP presented before with the reverse operation, 
whose aim is to “update” the reference frame based on the error frame produced by MCP. To 
understand better the concepts involved in this process, we begin with an overview of the classical, 
lifting-based, wavelet decomposition and then discuss its extension that involves motion estimation 
and compensation. 
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As shown by the lifting framework [46] [47], any wavelet decomposition can be factored into a series 
of prediction and update operations. Prediction and update can be seen as dual operators used in the 
construction of perfect-reconstruction band-splitting systems [46]. Prediction uses the reference part 
of the signal to estimate the current part and produces an error signal that corresponds to the current 
part (and the prediction parameters). The update operation takes as input the error signal produced by 
the predictor and modifies the reference signal. Hence a new reference frame is constructed with 
improved prediction properties. Moreover, the update operation normalizes magnitude of the 
reference signal in order to produce an orthonormal decomposition [46] [47].  

For the case of video signals, the DWT decomposition in the temporal domain can be performed by a 
(non-unique) series of prediction and update operations that utilize entire video frames [45]. This 
process can be seen in Figure III-12. An example with one GOP consisting of 6 input video frames is 
presented. Prediction is first applied to the input frames 2 1tA + , {0,1,2}t =  using frames 2tA   as 
references. The result of prediction is the production of error-frames tH . Subsequently, the 
information of the tH  frames is inverted back to the reference frames, thereby creating the updated 
reference frames tL . This process can iterate with the use of the tL  frames as input frames for the 
next temporal decomposition level [45]. The example of Figure III-12 corresponds to the Haar 
temporal decomposition and can be expressed analytically as: 

 ( )1
2 1 22[ , ] [ , ] [ , ]t t tH m n A m n A m n+= −  (3.15) 

 2 1[ , ] 2 [ , ] [ , ]t t tL m n A m n H m n+= + . (3.16) 

The incorporation of motion information in temporal wavelet decompositions has been a research 
goal for quite some time [7] [8] [48]. As proposed recently in [45] [11], temporal wavelet 
decompositions with perfect reconstruction can be obtained by performing the lifting scheme in the 
direction of motion in the video sequence, provided that the conventional prediction and update steps 
shown in (3.15), (3.16) are replaced with motion compensated prediction and motion compensated 
update (MCU).   

The example of Figure III-12 can be modified to include motion compensation if the prediction and 
update are performed via MCP and MCU. In particular, MCU can be performed via the system of 
Figure III-13 [19]. First the temporary frame tZ  is created by inverting the error frame samples of the 
tH  frames using the inverted motion-vector fields. The resulting frame is normalized and added to 

the reference frame to form the updated frame tL . Since the motion vectors can originate from any 
block within the search area of the reference frame, this error-frame inversion using the inverse 
motion vectors will create pixels in frame tL  that are connected, multiconnected and unconnected to 
pixels in the corresponding error frame [45] [11] [8]. The state of connection of each pixel in frame tL  
depends on whether there was one, many, or no vectors that originated from this pixel position in the 
original reference frame. To avoid strong motion-related artifacts in the output tL  frame and the 
irregular increase of the image-sample magnitudes in multi-connected areas, a normalization process 
divides the magnitude of the update samples for each pixel with the number of connections. Finally, 
before the update coefficients are added to the reference frame, they are scaled according to the lifting 
equation for the update step, taking into account the type of the specific connection (e.g. Haar or 5/3 



CHAPTER III. SCALABLE IMAGE AND VIDEO CODING FUNDAMENTALS 

  

43

filter-pair [47]). Additional scaling can be incorporated for the areas where the update samples have 
large magnitudes, or, alternatively, the update step can be adaptively disabled in areas where bad 
connections are encountered due to motion-prediction failure, as proposed in [18] [49, 50]. These 
approaches typically require additional signalling information to be transmitted to the decoder.  
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Figure III-12. Temporal wavelet decomposition via the application of predict and update steps. 
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Figure III-13. The application of MCU in the motion-compensated temporal decomposition illustrated in Figure 
III-12. 

 

In our realization of the update step, we choose to invert the information in the error frames to the 
immediately-lower integer-pixel position in the reference frame. In order to explain the motion-vector 
inversion process, we illustrate a simple (one-dimensional) example of a connected block in the 
reference frame in Figure III-14: during the prediction step, the block at position m  in the current 
frame tA  is predicted by the block at position 2.5m −  in the interpolated reference frame 1tA −I . 
After the creation of the error frame tH , the update step inverts the error-frame information to the 
block at position 3m −  in the reference frame 1tA −  (previous integer-pixel position). In this way, the 
updated block at position 3m −  of frame tL  is created. Nevertheless, as mentioned before, in order 
to perform the appropriate weighting by the number of connections, in our actual implementation, we 
perform the error-frame inversion in the temporary frame tZ  and then normalize and add the result 
to the reference frame 1tA − , as shown in the schematic Figure III-13.  
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Figure III-14. The application of motion-compensated update step after the corresponding prediction step. A 
simple one-dimensional example with two consecutive frames is presented, where the block-size for MCP is 

2mB = , the displacement vector is 2.5md = , and 2R = .  

 

In total, for each pixel ( , )m n , the motion compensated temporal wavelet decomposition described 
before, also called motion compensated temporal filtering, can be written in the case of Haar temporal 
filtering as: 

  [ , ] 0uc m n = , [ , ] 0tZ m n =  (3.17) 

 ( )1 1(2 ) (2 )1 1
(2 ) (2 )1

2 1 2( , )2[ , ] [ , ] [ , ]t t
m m

t t
t t t m ni iH m n A m n A m d n d+    = − − −   F F

F FI  (3.18) 
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t t tc m nL m n A m n Z m n= +  (3.21) 
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where [ , ]uc m n  is the update connection map, max{ , }a b  returns the largest of a , b , and a b←  
indicates an assignment operation, i.e. the value of variable or expression b  is assigned to variable or 
array element a . In particular, [ , ]uc m n  is an M N×  array that retains the number of connections to 
each pixel ( ),m n  of frame tZ . Notice that, due to the fact that several areas in the current frame may 
be predicted by the same area in the reference frame, [ , ]uc m n  can take any non-negative value. The 
equations (3.17)–(3.21) are applied separately to the entire frame, i.e. for all ( ),m n  with 1 m M≤ ≤ , 
1 n N≤ ≤ , in the order expressed above. In particular, (3.17) performs the initialization of the 
connection map. Equation (3.18) performs MCP using forward prediction from frame 2tA . Motion 
inversion is performed by (3.20), which also updates the connection map. Finally, (3.21) performs 
MCU and weights each pixel in the update frame [ , ]tL m n  by the number of connections. Notice that, 
if 2 [ , ]tA m n  is unconnected, the proposed temporal filtering of (3.17)–(3.21) is simplified to the 1/2 
filter, i.e. the motion-compensated Haar temporal filtering without the update step, since in this case 

[ , ] 0tZ m n = .  

This scheme can be extended to bidirectional MCP and MCU; this case corresponds to the motion 
compensated 5/3 temporal decomposition: 
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  [ , ] 0uc m n = , [ , ] 0tZ m n =  (3.23) 
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 1
2 min{max{ [ , ],1},2} max{ [ , ],1}[ , ] 2 [ , ] [ , ]

u u
t t tc m n c m nL m n A m n Z m n⋅= +  (3.29) 

where [ , ]pc m n  is the prediction connection map, which counts the number of connections during the 
prediction step, and min{ , }a b  returns the smallest of a , b . The MCP and MCU steps described 
above follow the same principles as the motion compensated Haar temporal decomposition. For 
simplicity in the notation, we include both reference frames in the MCP of (3.24); in a practical 
implementation, similar to (3.22), equation (3.24) is adapted according to the existence of motion 
vectors ( )1 1(2 ) (2 ),t t

m nd dF F  and ( )1 1(2 2) (2 2),t t
m nd d+ +B B . Similarly to the case of the motion compensated Haar 

temporal transform, equations (3.22)–(3.29) are applied separately to the entire frames in the order 
expressed above. Notice that, following the dependencies of the conventional 5/3 lifting 
decomposition, frames 1tH − , tH  and the forward and backward prediction parameters (motion 
vectors) derived from frame 2tA  (which corresponds to tL ) are used during the update step. The 
temporal filtering of (3.22) – (3.29) is adapted according to the prediction and update connection 
maps [ , ]pc m n  and [ , ]uc m n . This is a useful feature since, in the general case of advanced prediction 
models, an adaptive motion compensated temporal decomposition is performed, where certain blocks 
are uni-directionally predicted and others use bidirectional prediction. This in turn, leads to the cases 
of MCTF with temporal filter-pairs 1/2, 2/2, 1/3 and 5/3. For each case, the correct scaling of 

[ , ]tL m n  in (3.29) is ensured by the operation of the denominator of the multiplier of [ , ]tZ m n , which 
takes the values 1,1, 4,6, 8,…  for [ , ] {0,1,2, 3, 4, }uc m n = … , respectively. In every case, the inverse 
transform can be performed by inverting the order of the equations and solving for frames 2 [ , ]tA m n  
and 2 1[ , ]tA m n+ . For example, for the motion compensated Haar temporal filtering of (3.17)–(3.21), 
the inverse is expressed as: 

  [ , ] 0uc m n = , [ , ] 0tZ m n =  (3.30) 
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t t tc m nA m n L m n Z m n= −  (3.33) 

 1 1(2 ) (2 )1 1
(2 ) (2 )

2 1 2( , )[ , ] 2 [ , ] [ , ]t t
m n

t t
t t t m ni iA m n H m n A m d n d+    = + − −   F F

F FI . (3.34) 

One can express in a similar manner the inverse MCTF for the temporal filter described by (3.22)–
(3.29).  
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3.4 Advanced Motion Compensated Prediction and 
Update 

The simple MCP and MCU schemes presented before, although easily-realizable in the majority of 
today’s platforms, have certain disadvantages. By limiting the algorithm to a fixed block size, no 
adaptation to the space-varying scene content is permitted. In addition, by limiting the search range to 
only one or two (past or future) reference frames, occlusion or aperture effects are not treated 
efficiently. Finally, the independent optimization of the prediction for each block may cause pixel 
discontinuities in the block borders, leading to blocking artifacts [51]. 

Extensions of the basic MCP scheme that attempt to alleviate the above problems include a family of 
temporal prediction schemes generally denoted as multihypothesis motion-compensated prediction 
(MH-MCP) [52] or motion-compensated prediction with superimposed signals [53]. This framework 
consists of a class of algorithms that generalize overlapped-block motion-compensated prediction 
(OB-MCP) [51] and multi-frame motion-compensated prediction (MF-MCP) [54]. An indicative 
example of MH-MCP is shown in Figure III-15. In this illustrative case, non-overlapping blocks of 
various sizes are predicted from one future and one past reference frame. Each prediction is a 
superposition of blocks from the reference frames. In the general case of MH-MCP using T  
reference frames that are situated at time instants init end{ , , 1, 1, , }q t t t t t t= − − + +… … , the MH-
MCP error-frame is given by: 
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 (3.35) 

where [ , ]qw m n  are the space-varying multihypothesis weight factors of reference frame qA  [52]; 
( ) ( )( , )t q t qq q

m nd d− −F F  and ( ) ( )( , )q t q tq q
m nd d− −B B  represent the forward and backward displacement vectors that 

corresponds to pixel [ , ]qA m n , respectively. Notice that, for simplicity in the notation, the 
interpolation operation is not included in (3.35), i.e. we assume that for every ( , )m n : 

( ) ( ) ( ) ( )( , ) ( , )t q t q t q t qq q q q
m n m nd d d d− − − −   =       
F F F F . In addition, although in MH-MCP it is possible that a 

number of vectors for a given block are associated with the same reference frame (as shown in the 
example of Figure III-15), in this dissertation we always represent MH-MCP analytically with one 
vector per reference frame, as seen in (3.35). However, in our related experiments, all the possible 
combinations of MH-MCP are permitted. 

For block-based MH-MCP, [ , ]qw m n  is constant over a certain group of pixels ( , )m n  corresponding 
to a block of the q -th reference frame. A video encoder employing MH-MCP based on (3.35) has to 
estimate the optimal [ , ]qw m n  and ( ) ( )( , )t q t qq q

m nd d− −F F  or ( ) ( )( , )q t q tq q
m nd d− −B B  (with the corresponding 

block-segmentation) of the T  reference frames in order to minimize the variance of [ , ]tH m n . This is 
performed by multihypothesis motion estimation (MH-ME) schemes. In practice, all the proposed 
algorithms limit complexity by presetting certain acceptable block sizes and small values for T . For 
example, in the H.264 standard [55], allowable block sizes are limited to , {4, 8,16}m nB B =  (with all 
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the possible combinations permitted) while the maximum practical setting used in MPEG exploration 
experiments is 5T =  [56].  

 

tA 1tA +1tA −

current
frame

reference
frame

reference
frame

tA 1tA +1tA −

current
frame

reference
frame

reference
frame  

Figure III-15. An example of multihypothesis motion-compensated prediction.  

 

A practical algorithm for MH-ME is proposed in Chapter 4. This algorithm also combines the MH-
MCP with multihypothesis motion compensated update (MH-MCU), by adaptively performing the 
update step following the prediction and update connection mapping, as shown in subsection 3.3. In 
general, in order to retain an orthonormal temporal decomposition, one must perform MH-MCP and 
MH-MCU via a series of lifting steps that normalize the magnitude of each pixel of the low-frequency 
frame [ , ]tL m n  according to the update connection map [ , ]uc m n  [45]. As a result, for advanced MCTF 
we can assume that a total of Λ  pairs of MH-MCP and MH-MCU steps take place. Similar to 
conventional lifting [47], the first lifting step is the trivial polyphase separation, albeit in the temporal 
direction, i.e.: 

 0
2[ , ] [ , ]t tL m n A m n=  (3.36) 

  0
2 1[ , ] [ , ]t tH m n A m n+= . (3.37) 

For each subsequent pair of MH-MCP and MH-MCU steps λ , with 1 λ≤ ≤ Λ , the following 
procedure is performed.  

Firstly, the MH-MCP that corresponds to step λ  utilizes frames 1
qH λ−  with lifting coefficients qα  and 

frame 1
tAλ− ; the set of permissible values for q  depends on the specific lifting dependencies; without 

loss of generality, we assume that q  is bounded by init( )pt λ  and end( )pt λ  around time instant t  (and 
does not include t )1. For this case, MH-MCP can be expressed as: 

                                                 

1 In general, if some frames at time instants ( )u λ (within the time instants init( )pt λ  and end( )pt λ ) are not used, then ( ) 0ua λ = . 
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Note that the parameters init( )pt λ , end( )pt λ , and init end1 1( ) ( ), , , , ,
p pt t t tλ λα α α α−− +… … , are directly taken from 

the lifting factorization of the chosen filter-bank [47], while [ , ]qw m n  and ( ) ( )( , )t q t qq q
m nd d− −F F  or 

( ) ( )( , )q t q tq q
m nd d− −B B  are produced by the utilized multihypothesis motion estimation algorithm. Moreover, 

similarly as before, interpolation is not considered in order to simplify the formulations. 

For the corresponding MH-MCU, similarly as before, first the update connection map and the frame 
containing the motion inversion information ( tZ ) are initialized by: 

  [ , ] 0uc m n = , [ , ] 0tZ m n =  (3.39) 

Subsequently, MH-MCU utilizes frames qH λ  with lifting coefficients qβ  and frame 1
tLλ− . Similarly as 

before, the set of permissible values for q  depends on the specific lifting dependencies; without loss 
of generality, we assume that q  is bounded by init( )ut λ  and end( )ut λ  around time instant t  (and does not 
include t ). For this case, MH-MCU can be performed by a series of steps that invert the motion 
information generated during MH-MCP of stage λ . Specifically, first the inversion of the forward 
prediction is performed, where for each init{ ( ), , 1}uq t t tλ= − −…  we have: 

 
[ ]( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ , ] [ , ] [ , ] ,

[ , ] [ , ] 1

t q t q t q t q

t q t q t q t q

q q q q
t m n t m n q q q

q q q q
u m n u m n

Z m d n d Z m d n d w m n H m n

c m d n d c m d n d

λβ− − − −

− − − −

− − ← − − + ⋅ ⋅

− − ← − − +

F F F F

F F F F
 (3.40) 

 1 1
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u

t t tc m n t
L m n L m n Z m nλ λ

λ
− = +  F . (3.41) 

Then, after another initialization performed by equation (3.39), the inversion of the backward 
prediction is performed, where for each end{ 1, , ( )}uq t t t λ= + +…  we have: 
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 1
max{ [ , ], ( )}

[ , ] [ , ] [ , ]
u

t t tc m n t
L m n L m n Z m nλ λ

λ
 ← +  B . (3.43) 

Similarly as before, the parameters init( )ut λ , end( )ut λ  and init end1 1( ) ( ), , , , ,
u ut t t tλ λβ β β β−− +… … , are directly taken 

from the lifting factorization of the chosen filter-bank [47]. Moreover, the scaling factors ( )t λF , 
( )t λB  used in (3.41), (3.43) are derived from the scaling factors specified in the original lifting 

factorization [47]. Nevertheless, in this way the ( )t λF , ( )t λB  factors are not necessarily optimal for 
adaptive motion-compensated lifting decompositions such as the ones presented before. The reader is 
referred to [57] [58] for additional information on this topic.  
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3.5 Temporal Prediction Structures for Video Coding 
In this section, we review the conventional closed-loop video coding structure as well as the new 
open-loop video coding schemes that perform a temporal decomposition using motion compensated 
temporal filtering. Both have been used in this dissertation to provide working video coding systems 
with scalability properties. 

All the currently-standardized video coding schemes are based on a structure in which the two-
dimensional spatial transform and quantization is applied to the error frame coming from closed-loop 
temporal prediction. A simple structure describing such architectures is shown in Figure III-16(a). The 
operation of temporal prediction P  typically involves block-based motion-compensated prediction. 
The decoder receives the motion vector information and the compressed error-frame tC  and 
performs the identical loop using this information in order to replicate MCP within the P  operator. 
Hence, in the decoding process (seen in the dashed area in Figure III-16(a)), the reconstructed frame 
at time instant t  can be written as: 

 i i i1 1 1 1
1 0 0,  t t S S t S SA A C A C− − − −

−= + =P T Q T Q . (3.44) 

The recursive operation given by (3.44) creates the well-known drift effect between the encoder and 
decoder if the information used is different between the two sides, i.e. if t S S tC H≠ Q T  at any time 
instant t  in the decoder. This is not uncommon in practical systems, since transmission errors or loss 
of compressed data due to limited channel capacity can be a dominant scenario in wireless or IP-based 
networks, where a number of clients compete for the available network resources. In general, the 
capability to seamlessly adapt the compression bitrate without transcoding, i.e. SNR scalability, is a 
very useful feature for such network environments. Solutions for SNR scalability based on the coding 
structure of Figure III-16(a) basically try to remove the prediction drift by artificially reducing at the 
encoder side the bitrate of the compressed information tC  to a base layer for which the network can 
guarantee the correct transmission [3]. An example of such a codec is the MPEG-4 FGS [4].  

This however reduces the prediction efficiency [3], thereby leading to degraded coding efficiency for 
SNR scalability. To overcome this drawback, techniques that include a certain amount of 
enhancement layer information into the prediction loop have been proposed. For example, leaky 
prediction [59] gracefully decays the enhancement information introduced in the prediction loop in 
order to limit the error propagation and accumulation. Scalable coding schemes employing this 
technique achieve notable coding gains over the standard MPEG-4 FGS [4] and a good trade-off 
between low drift errors and high coding efficiency [59] [60]. Progressive Fine Granularity Scalable 
(PFGS) coding [61] yields also significant improvements over MPEG-4 FGS by introducing two 
prediction loops with different quality references. A generic PFGS coding framework employing 
multiple prediction loops with different quality references and careful drift control leads to 
considerable coding gains over MPEG-4 FGS, as reported in [62] [63].  

To address this issue, several proposals suggested an open-loop system, depicted in Figure III-16(b), 
which incorporates recursive temporal filtering. This can be perceived as a temporal wavelet transform 
with motion compensation [8], i.e. motion-compensated temporal filtering.  
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Figure III-16. (a): The hybrid video compression scheme. (b): Motion-compensated temporal filtering. 
Notations: Aτ represents the input video frame at time instant 0, ,2 ,2 1t t tτ = + ; itA  is the reconstructed 
frame; tH is the error frame, whereas tL  is the updated frame; tC denotes the transformed and quantized error 
frame obtained by using the spatial operators ST  and SQ , respectively; P denotes temporal prediction, while 
U  denotes the temporal update. 

 

As described in the previous sections, this scheme begins with a separation of the input into even and 
odd temporal frames (temporal split). Then the temporal predictor performs MCP to match the 
information of frame 2 1tA +  with the information present in frame 2tA . Subsequently, the MCU 
operator U  inverts the information of the prediction error back to frame 2tA , thereby producing, for 
each pair of input frames, an error frame tH  and an updated frame tL . The MCU operator performs 
either motion compensation using the inverse vector set produced by the predictor [11] (as described 
previously in this chapter), or generates a new vector set by backward motion estimation [12]. The 
process iterates on the tL  frames, which are now at half temporal-sampling rate (following the 
multilevel operation of the conventional lifting), thereby forming a hierarchy of temporal levels for the 
input video. The decoder performs the mirror operation: the scheme of Figure III-16(b) operates 
from right to left, the signs of the P , U  operators are inverted and a temporal merging occurs at the 
end to join the reconstructed frames. As a result, having performed the reconstruction of the tL , 
denoted by itL , at the decoder we have: 

 i i i i1 1 1 1
2 2 1 2,  t t t tS S t S S tA L C A A C− − − −

+= − = +UT Q P T Q  (3.45) 

where i i2 2 1,  t tA A +  denote the reconstructed frames at time instants 2t , 2 1t +  . As seen from (3.45), 
even if t S S tC H≠ Q T  in the decoder, the error affects locally the reconstructed frames i i2 2 1,  t tA A +  
and does not propagate linearly in time over the reconstructed video. Error-propagation may occur 
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only across the temporal levels through the reconstructed itL  frames. However, after the generation 
of the temporal decomposition, embedded coding may be applied in each GOP by prioritizing the 
information of the higher temporal levels based on a dyadic-scaling framework, i.e. following the same 
principle of prioritization of information used in wavelet-based SNR-scalable image coding [24]. 
Hence, the effect of error propagation in the temporal pyramid is limited and seamless video-quality 
adaptation can be obtained in SNR scalability [44] [45]. In fact, experimental results obtained with the 
SNR-scalable MCTF video coders proposed in this dissertation, as well as the results obtained with 
other state-of-the-art algorithms [18] [10], suggest that this coding architecture can be comparable in 
rate-distortion sense to an equivalent non-scalable coder that uses the closed-loop structure.  

This chapter is concluded with the presentation of two indicative coding systems that represent the 
current state-of-the-art in the closed-loop and open-loop temporal prediction structures, namely the 
Advanced Video Coder (AVC), also called as the H.264 coder, which was jointly standardized by 
MPEG and ITU-T [55], and the motion-compensated embedded zero-block coder (MC-EZBC) of 
[18]. While the AVC is a non-scalable coding scheme which is optimized for a certain set of 
quantization parameters, the MC-EZBC has the capability of scalability in bitrate, resolution and SNR.  

3.5.1 Closed-loop temporal prediction – the Advanced Video 
Coder 

The ISO MPEG-4 Advanced Video Coder (AVC) standard, or (equivalently) the ITU-T VCEG 
H.264 standard, is a recently completed video compression standard developed by the Joint Video 
Team (JVT) group, which brought together video-compression experts from the MPEG-4 video 
group and VCEG. Within a certain visual quality range for the compressed video, the new standard 
promises much higher compression than that achievable with earlier MPEG or ITU-T standards. 
Although it does not provide a scalable bitstream, the algorithm used in MPEG-4 AVC supports 
flexibilities in coding as well as organization of coded data that can increase resilience to errors or 
losses. The increase in coding efficiency comes at the expense of an increase in complexity with 
respect to earlier standards. Our presentation of the basic features of AVC [55] is based on the several 
comprehensive tutorials found in literature [64] [65] [66]. Several special issues in journals are also 
dedicated to this standard, e.g. see [67]. 

Similar to earlier MPEG and VCEG standards, the coding structure of AVC is based on closed-loop 
temporal prediction using motion estimation and compensation. The coding of video is performed 
frame-by-frame. Within each frame, the image data is partitioned in non-overlapping square areas 
(macroblocks – MBs) of 16 16×  pixels in the luminance channel and 8 8×  pixels in the chrominance 
channels. A pictorial representation of the compression/decompression architecture for a macroblock 
is given in Figure III-17 [65]. Currently, only 4:2:0 chroma format and 8-bit sample precision for 
luminance and chrominance pixel values is supported in the standard, but extensions to other source 
formats will probably be provided in the future. The macroblocks of each frame are organized in 
larger structures called slices, which can be areas of one frame, or an entire frame. The slices can be of 
type I, P and B, indicating, respectively, intra-coding, predictive coding and coding based on the B-
frame concept that is found in earlier MPEG standards. However, although the naming conventions 
in AVC follow the traditional naming organization of hybrid video coders, the slice types include a 
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rich set of coding features; for example, P slices can also include intra-coded MBs and, although MCP 
performed in a P slice is unidirectional, frames from the past or the future can be used as references. 
Moreover, unlike in previous standards, B slices can use (simultaneously) prediction from future and 
past reference frames and, optionally, can also serve as reference slices.   

 

 
Figure III-17. Basic coding structure of AVC for a macroblock. From [65]. 

 

The coding tools of AVC are organized in profiles and levels. This is a structure inherited from 
previous standards and its aim is to help developers of the standard select an appropriate subset of 
tools (and parameters) that suit their application needs. Three profiles are defined: Baseline, Main and 
Extended. The main profile is generally considered to be the basic profile for the majority of 
applications since it provides the highest coding efficiency. Hence, its tools will be briefly outlined 
here. In terms of temporal prediction, this profile includes all slice types, i.e. I, P and B. Moreover, the 
temporal prediction is performed with variable block sizes ranging (dyadically) from 16 16×  pixels 
down to 4 4×  pixels; rectangular block sizes are permitted. Multiple reference frames can be used for 
MCP, selected from the past or the future. The prediction can be performed with varying weights in 
order to accommodate scene changes, fading, etc. Intra coding is also available within this profile; its 
features are a great improvement over previous standards, as it essentially performs directional spatial 
prediction by extrapolating the edges of previously-decoded parts of the current picture.  

In terms of global prediction tools available to all profiles, AVC includes a deblocking mechanism, 
which is an adaptive technique for smoothing the predicted frames after MCP. This is essentially 
performed by applying an adaptive lowpass filter across the MCP block borders. The filter is placed 
within the MCP loop, as seen in Figure III-17. It is essentially an improved descendant of the 
deblocking mechanism found in the annex of H.263+ and its purpose is to improve both subjective 
and objective quality in areas where the motion model fails to provide an efficient prediction.  
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Finally, for the actual frame compression, a block-based DCT-alike transform is used, which is 
(primarily) a 4 4×  matrix. The small transform block size is justified by the advanced prediction tools 
that decorrelate the input video well. Moreover, a hierarchical block transform is also specified where 
the transform block size can be extended to 16 16×  pixels for the luminance channel and 8 8×  for 
the chrominance channels. The transform coefficients are obtained with an approximation of the 
DCT, which was found to be as efficient as the fixed-point DCT used in prior standards. The AVC 
transform is using 16-bit precision, thereby enabling the use of 16-bit fixed-point arithmetic precision 
for the entire video coding system, and exact-match inverse transform. The last feature solves 
mismatches found in prior MPEG standards between different implementations of encoders and 
decoders. The actual coding of the transform coefficients is based on context-adaptive binary 
arithmetic coding (CABAC), which is a context-based arithmetic coding technique employing a large 
number of context-modes in order to enable the generation of small-alphabet symbol streams to the 
arithmetic coder. A simpler method for entropy coding based on context-adaptive variable-length 
coding (CAVLC) is also supported in order to enable implementations with a higher degree of 
parallelism. These coding engines are used for the coding of the motion-vector data as well. 

3.5.2  Open-loop temporal prediction –  Bidirectional MC-EZBC 
with Lifting Implementation 

The recent research advances in open-loop temporal prediction led to a number of video coding 
schemes for scalable video coding with a temporal decomposition structure based on the wavelet 
transform. This is currently an on-going research direction with a large number of contributions from 
various groups. The interested reader can refer to special issues found in journals (e.g. [10]). Of 
relative interest are also the outcome of the recent call for proposals of MPEG [68], and overview 
papers [9].  

In this subsection, we focus on a particular instantiation of a related scalable video coding system 
published recently [18]. It was termed MC-EZBC [18], which stands for “Motion-compensated 
embedded zero-block coding”. Our choice of this system is motivated by the fact that its authors 
provided a related software implementation to the MPEG community during the early stages of the 
MPEG exploration activity on scalable video coding [13], thereby allowing for an open examination of 
their technology by video experts. Moreover, MC-EZBC incorporates all the basic tools found in 
state-of-the-art open-loop video coding systems. For example, the prediction is bi-directional (using 
one past and one future frame); variable block sizes are used for block-based MCP, which range 
(dyadically) from 64 64×  pixels down to 4 4×  pixels. In addition, recent instantiations of the 
algorithm also include selective intra-prediction following the AVC principles [69].  

The basic coding structure of MC-EZBC is illustrated in Figure III-18. The decoder operates in the 
same way, following the procedure from right to left and performing inverse MCTF to reconstruct the 
output video frames. The open-loop coding mechanism is performed in a number of steps. First the 
input is read in groups of frames; typically 16 frames are processed together. The MCTF process of 
Figure III-18 is then applied to the input frames. Based on the motion field, if, during the temporal 
update step, the percentage of unconnected pixels of every two consecutive frames is smaller than a 
threshold, one-stage temporal decomposition using the motion-compensated Haar filtering is applied. 
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Otherwise, MCTF stops at the current temporal level. This procedure is recursively performed on the 
generated low temporal subband, until there is only one low temporal subband frame left. If the 
percentage of unconnected pixels never exceeds the threshold during this process, a motion-
compensated temporal decomposition of the input group of frames in four levels is generated. Thus, 
the number of temporal decomposition levels is controlled by the percentage of unconnected pixels in 
the temporal pyramid. This process is followed by a four-level spatial transform applied to each frame 
in the temporal pyramid. Typically, the 9/7 filter-bank is used for this purpose. The compression of 
the produced frames is performed with the EZBC algorithm [32], which is a block-based embedded 
intra-subband coding algorithm utilizing context-based adaptive arithmetic coding. All spatio-temporal 
subbands are coded separately, in order to enable temporal and resolution scalability. The motion-
vector information is encoded with a lossless DPCM and adaptive arithmetic coding scheme. Finally, 
the packetizer seen in Figure III-18, represents the post-compression optimization and bitstream 
extraction process; based on the accumulated rate-distortion information, a PCRDO scheme selects 
the appropriate number of bitplanes for each subband of each frame in order to satisfy a target bitrate 
for the compressed sequence. Then the appropriate sub-bitstreams are extracted and packed into a 
new stream to be used for decoding. In the actual implementation of the codec, the PCRDO process 
is a separate module at the encoder that produces admissible rate-distortion points, which are packed 
with the entire compressed bitstream. Subsequently, any target bitrate is satisfied by creating a new file 
using the bitstream extractor, whose size is controlled based on the process outlined in subsection 
3.1.4. That is, PCRDO and bitstream extraction are performed by two distinct modules in this codec.  

 

 
Figure III-18. Basic structure of MC-EZBC. From [70]. 
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Equation Section 4 

IV.  
Chapter IV 

IN-BAND ARCHITECTURES 

LTHOUGH there have been many proposals for wavelet-based motion-compensated video 
coding, it appears that the majority of research in the field has focused on applying the discrete 

wavelet transform within the classical closed-loop video-coding structure as a substitute to the discrete 
cosine transform [1] [2]. This has the potential of enabling bitrate scalability within closed-loop video 
compression with the use of embedded coding of wavelet coefficients [3]. However, many believed 
that it does not constitute a particularly-strong advantage for the video-compression industry to adopt 
wavelet-based systems, since bitrate scalability with similar performance can be achieved with 
embedded coding of DCT coefficients as well [4] [5].  

Newer efforts have focused on applying wavelet decompositions in the temporal direction [6] [7] [8], 
as presented in the previous chapter. This stimulated a larger interest in the research and industrial 
community due to the fact that an open-loop coding architecture is provided, which can efficiently 
handle a broad range of bitrate scalability with seemingly no loss over the equivalent closed-loop 
system. Nonetheless, apart from the modifications in the temporal prediction structure, the spatial 
wavelet decomposition is still applied to the residue frames produced by MCP in the spatial domain. 
In this way, if resolution scalability is not a desired functionality, the use of wavelet transforms in the 
spatial decomposition can be completely avoided if an embedded DCT-based compression algorithm 
is used [4]. Consequently, from a functionality point-of-view, we reach the conclusion that the 
significant advantage offered by the DWT versus other spatial transforms comes from its 
multiresolution nature, which provides dyadically-reduced representations of the input video with 
critical sampling. This hints the potential that, similar to the image coding case [1], the DWT can be 
the unique solution for resolution scalability in video coding, without incurring a penalty to the full-
resolution compression performance. We note here that, as shown in the seminal paper of Mallat [9],  
the DWT provides the optimal multiresolution basis among all representations with critical sampling. 

On the other hand, the performance of MCP in the spatial domain (full resolution) can create 
problems for resolution scalability in video coding systems, as demonstrated by numerous 
contributions [10, 11] [12] [13] [14, 15] [16]. This can be mainly attributed to the fact that, in 

A 
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conventional systems performing MCP in the spatial domain, the motion vectors are downsampled 
for low-resolution decoding, thereby causing a mismatch between the motion compensation 
performed at the encoder and decoder side [10]. This can be alleviated if motion compensation is 
performed in a multiresolution manner [17, 18], i.e. directly in the subbands of the critically-sampled 
DWT decomposition (in-band). However, due to downsampling operations involved in the critically-
sampled DWT, this process tends to undermine coding efficiency [19]. As a result, it has not been 
extensively investigated in the relevant literature. 

In this chapter, we propose several video coding systems and architectures for this alternative in-band 
approach. From the system perspective, these coding approaches perform the temporal prediction 
(and potentially temporal update) after the wavelet-based spatial decomposition. This leads to a class of 
video coding systems that utilize in-band motion-compensated prediction and in-band motion-
compensated update steps. By emphasizing the order of operations, one calls the open-loop schemes 
that perform a wavelet-based temporal decomposition prior to the spatial DWT as “t+2D” systems. 
Consequently, the in-band schemes proposed in this chapter are “2D+t” systems [20].  It is shown in 
the various sections of this chapter that the “2D+t” systems can indeed provide better resolution 
scalability and, contrary to the popular belief, we demonstrate that the loss in coding efficiency can be 
minimized with the use of complete-to-overcomplete discrete wavelet transforms for the performance 
of in-band prediction and update. Several aspects of the proposed coding algorithms are analyzed in 
detail and extensive experimental evaluations are carried out in order to assess their compression 
performance.  

4.1 In-band Block-based Motion-compensated 
Prediction 

In this section we define block-based motion-compensated prediction in the wavelet domain (in-
band). A major bottleneck for in-band MCP approaches, which has been reported multiple times in 
the literature (e.g. [21] [22]), is that the classical dyadic wavelet decomposition (also named the 
critically-sampled DWT representation) is only periodically shift-invariant [23], with a period that 
corresponds to the subsampling factor of the specific decomposition level. Hence, accurate motion 
estimation is not feasible by using only the critically-sampled representation. 

Extensive research efforts have been spent in the recent years to overcome the shift-variance problem 
of the critically-sampled DWT. In the area of video compression, the basic idea is to construct from 
the critically-sampled decomposition of the reference frame its overcomplete DWT representation for 
every resolution level, which is shift invariant. This representation can be used to estimate the motion 
in the video frames in a subband-by-subband, level-by-level or multi-resolution fashion [22] [24, 25] 
[12, 26]. The key-benefit of this approach is that motion compensation is still performed in the 
critically-sampled DWT representation of the current frame. Hence, the produced error-frames 
remain critically-sampled [21] [22] [27] [28] [26] [24] and there is no overhead for the error-frame 
coding. Moreover, this ensures that conventional wavelet-based image coding techniques such as 
zerotree-based or quadtree-based schemes [29] [30] are directly applicable for error-frame coding.    
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In this section, we start with a simple example that justifies the use of the overcomplete discrete 
wavelet rransform (ODWT) for in-band MCP. Subsequently, the definition of 2-D block-based in-
band motion-compensated prediction (IB-MCP) is given.  

4.1.1 A Simple One-dimensional Example of Wavelet-domain 
Motion Compensated Prediction 

Based on a simple example, we illustrate how in-band MCP can achieve equivalent performance as the 
spatial-domain MCP by making use of the ODWT. For simplicity in the notation we restrict ourselves 
to 1-D signals.  

Assume the case of the 1-D signal [ ]X t  shown in Figure IV-1. All FIR signals and filters can be 
considered in the Z -domain as Laurent polynomials and the letter z  is typically reserved for this 
purpose. The Z -domain representation of this signal is1: 

  2 1 2( ) ... ...X z a z b z c d z e z− −= + ⋅ + ⋅ + + ⋅ + ⋅ +  (4.1) 
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e
d

c

b
a

… …

 
Figure IV-1. An 1-D signal in the time domain.  

 

Based on the definition of the conventional (Type-I) polyphase transform [31], we can write the DWT 
of [ ]X t  as: 

  
( )
( )

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1
0 2

1
0 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

A z H z X z H z X z

D z G z X z G z X z

= + − −

= + − −
 (4.2) 

where ( )U z , { , }U H G= , are the analysis low- and high-pass DWT filters, respectively, and 0( )S z , 
{ , }S A D= , are the low- and high-frequency DWT subbands of level one, respectively. Subscript 0  

indicates that the even-numbered samples were kept after the downsampling operation. Although in 
wavelet-based image coding this typically suffices as a signal representation, we can define in the same 
manner the DWT that retains the odd-numbered samples after downsampling: 

  
( )
( )

1 1 1 1 1
2 2 2 2 2

1 1 1 1 1
2 2 2 2 2

1
1 2

1
1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

A z z H z X z H z X z

D z z G z X z G z X z

−

−

= − − −

= − − −
 (4.3) 

                                                 
1 Note that we always consider finite-length signals, e.g. rows of images, as Laurent polynomials are always of 
finite degree in Z . 
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where subscript 1  indicates that the odd-numbered samples were kept after the downsampling 
operation. The difference in the DWT of equation (4.2) with the DWT of (4.3) stems from the 
definitions of the even and odd Type-I polyphase components of signal ( )X z  [31]. We note here that 
the signals ( ),  {0,1}iS z i =  consist the single-level ODWT of the input signal ( )X z  [23].  

Now consider that [ ]X t  corresponds to a portion of a line in an input video frame. Moreover, 
consider a shift of [ ]X t , i.e. a translation of [ ]X t  (frame 1) to [ ]X t k+  (frame 2), k ∈ Z . This 
corresponds to an ideal translational motion, where we consider that in the certain area covered by 

[ ]X t , motion between frame 1 and 2 was perfectly captured as a translation of the luminance values of 
[ ]X t  by k  pixels. We note that, although this is an ideal scenario, which is usually only approximated 

in real video sequences, the considered block-based models are optimal only for the limited case of 
such types of motions [32].  

We denote the shifted signal as [ ] [ ]kX t X t k= + , or, equivalently, ( ) ( )k
kX z z X z−= . Motion 

compensation in the current (shifted) signal based on the reference signal is trivially written in this 
case as ( )spatial ( ), ( )kX z k z X z−=�MC  and the error signal is: 

  ( )spatial spatial( ) ( ) ( ), 0kE z X z X z k= − =MC  (4.4) 

In order to investigate how to perform in-band motion compensation in this case, we first need to 
express the DWT of the shifted signal. We note that the DWT of the reference signal [ ]X t  is given by 
equation (4.2). If the transform representation is shift invariant, in-band motion compensation should 
yield a zero error-signal for each subband. 

By replacing ( )X z  with ( )kX z  in (4.2), the DWT of [ ]kX t  is given by: 

  ( )1 1 1 1
2 2 2 2 21

,0 2( ) ( ) ( ) ( 1) ( ) ( )
k k

kS z z U z X z U z X z−= + − − −  (4.5) 

Similar to the spatial-domain case, the trivial way to perform motion compensation in the low- and 
high-frequency subbands is ( ) 2in-band 0 0( ), ( )

k
S z k z S z−=MC . If the translation was by an even number 

of pixels, i.e. 2k l= , l ∈ Z , then the error signal for each subband is written as: 

  ( )in-band 2 ,0 in-band 0{ } ( ) ( ) ( ),2 0lE S z S z S z l= − =MC  (4.6) 

However, if the translation was by an odd number of pixels, i.e. 2 1k l= + , l ∈ Z , then: 

 ( )
1 1
2 2in-band 2 1,0 in-band 0{ } ( ) ( ) ( ),2 1 2 ( ) ( ) 0lE S z S z S z l U z X z+= − + = − − ≠MC  (4.7) 

This means that, for translational motion, in-band motion compensation with the critically-sampled 
DWT of the current and reference signal is corresponding to the motion compensation in the spatial 
domain only if the translation is even, i.e. if it is a multiple of the downsampling factor. If the 
translation is by an odd number of pixels, no in-band vector in the critically-sampled DWT of the 
reference signal can provide zero motion compensation error. However, it is straightforward to verify 
that if we replace ( )X z  with ( )kX z  in (4.3) and use the DWT samples produced by the 
“complementary” filtering-and-downsampling of (4.3), then we have: 
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  2in-band( ( ), ) ( )
k i

i iS z k z S z
−−=MC  (4.8) 

with 2 ,  ,  {0,1}k l i l i= + ∈ =Z  and: 

  ( )in-band ,0 in-band{ } ( ) ( ) ( ), 0k iE S z S z S z k= − =MC  (4.9) 

This simple example shows that, for translational motion, motion-compensated prediction in the 
wavelet domain remains optimal, i.e. equivalent to the spatial-domain MCP, if the complementary 
wavelet coefficients are used for the odd-numbered signal translations [32]. This example can be 
extended to a higher number of decomposition levels where, again, the utilized polyphase component 
directly depends on the spatial shift [27] [28, 33]. Moreover, since in coding systems we have the 
DWT of ( )X z , i.e. the subbands 0( )S z , in order to create 1( )S z , we need to perform an inverse 
transform to reconstruct ( )X z , followed by the DWT shown in (4.3) [27]. Further developments have 
occurred recently in this topic [25] [33] [34] [35]. In addition, a generalized approach for this process 
[36] was recently termed as the complete-to-overcomplete discrete wavelet transform (CODWT). We 
refer to [36] and to the description of Chapter V for a comprehensive treatment of the topic and for a 
fast transform to generate the missing phase components of the ODWT of each decomposition level, 
starting from the critically-sampled decomposition.  

Concerning the application of motion compensation with linear interpolation, we note that, if the 
DWT samples of both polyphase components are joined into one representation (yielding the so-
called “à-trous” wavelet transform), then linear interpolation can occur in the wavelet domain directly, 
since the spatial DWT without downsampling and the spatial interpolation operation are both linear 
shift-invariant operations, hence their order of application can be interchanged [24].  

In conclusion, for translational motion (where the commonly-used block-based spatial-domain MCP 
is optimal) [32], block-based in-band MCP remains optimal if the ODWT representation of the 
reference frame is used to perform motion estimation, and motion compensation occurs in the 
critically-sampled representation of the current frame. In this case, the equivalent model of the spatial-
domain MCP system is produced. Any other techniques that may be devised to perform IB-MCP can 
approximate the performance of SD-MCP only in certain circumstances and hence they will not 
guarantee the equivalence between spatial and in-band motion compensated prediction for 
translational motion. In fact, with the use of the ODWT, in-band prediction is equivalent to a spatial-
domain overlapped block-based motion compensation system, with the overlap area depending upon 
the support of the low- and high-pass reconstruction filters [11]. In the spatial domain, for non-
uniform motions where neighbouring block-boundaries are misaligned, this produces a smoothed 
version of the non-overlapping block-based SD-MCP approach.  

4.1.2  Extension in Two-dimensions  

Similar to the conventional spatial-domain motion compensated prediction (SD-MCP) presented in 
Chapter III, in-band motion compensated prediction (IB-MCP) can significantly reduce the temporal 
dependency between successive video frames. Although less explored than SD-MCP, several IB-MCP 
schemes (e.g. mesh-based IB-MCP [37] or IB-MCP based on backward motion estimation [21]) can 
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be found in the recent literature. Nevertheless, for the capabilities of today’s implementation 
platforms, block-based models seem to offer the best trade-offs in terms of system complexity versus 
prediction efficiency. Moreover, as it will be shown later in this chapter, block-based models provide 
many possibilities for practical rate-distortion optimization algorithms, which can dramatically increase 
the performance of a practical video coding system. 

As stated in the previous subsection, one can establish the equivalence between IB-MCP and SD-
MCP. In order to illustrate this in more detail, in this section we follow similar notation as in Chapter 
III. Figure IV-2 presents an example of MCP in the spatial domain, as introduced in the previous 
chapter. The current video frame tA  is separated in non-overlapping blocks of m nB B×   pixels. For 
each block, a search is performed in the reference frame 1tA −  to minimize a matching criterion 
between the blocks in the search area ( m nS S×  pixels) and the current block. The subsequently-
produced motion vector ( , )m nd d∗ ∗ , with 2 2

m mS S
md ∗− ≤ <  and 2 2

n nS S
nd ∗− ≤ < , and the error frame tH  

are compressed and transmitted to the decoder. 

 

mB

nB

( , )m n
mS

current framereference frame 1tA− tA

M

N

( , )m n
( , )m nm d n d∗ ∗− −

nS

mB

nB
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nB

( , )m n
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current framereference frame 1tA− tA
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N

( , )m n
( , )m nm d n d∗ ∗− −

nS

mB

nB

Figure IV-2. An example of spatial-domain block-based motion estimation.  
 

Following the example of the previous subsection, Figure IV-3 presents an example of IB-MCP in the 
one-level DWT decomposition. The notations introduced in the figure follow the symbolism of 
Figure IV-2. Each subband U  of the one-level 2-D DWT of the current frame is split into non-
overlapping blocks of 2 2

m nB B×   wavelet coefficients. Each of these blocks is predicted by performing 
a matching with the blocks that lie in the area of 2 2

m nS S×  coefficients of the ODWT 
, ,

1 1
1( , )U m U n U tp p A −S T  

around the in-band block position ( , )m n  in the reference frame, with , ,, {0,1}U m U np p = . The 
matching criterion ()⋅C  used in practice corresponds to the sum of absolute differences, i.e. 

( )a a=C . For the example of Figure IV-3, this problem can be stated as: 

 
( ){ }

( )

(

)

, ,

, ,

, ,

2 1 2 1
1

, , , , ( , ) 0 0
,

1 1
1 , ,( , )

: ( , ), , arg min [ , ]

                                  [ , ]
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d d
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U p p d d A m i n j

A m i d n j d

− −
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= =

−

∀ = + +
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∑ ∑ C T

S T

 (4.10) 
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where, for every subband U  we have: ,4 4
m mS S

U md− ≤ <  and ,4 4
n nS S

U nd− ≤ < . Notice that, for each 
subband U , the solution ( ){ }, , , ,( , ), ,U m U n U m U np p d d∗ ∗ ∗ ∗  consists of the in-band displacement vector (or 
in-band motion vector) ( ), ,,U m U nd d∗ ∗  and the ODWT phase component ( ), ,,U m U np p∗ ∗ . Similar as in the 
spatial-domain case, the desired solution is constant over the wavelet coefficients 1 [ , ]U tA m i n j+ +T  
of the current frame tA . This means that the coefficients of each non-overlapping block at position 
( , )m n  of each subband U  of the DWT of tA  are all associated with one solution: 

( ){ }, , , ,( , ), ,U m U n U m U np p d d∗ ∗ ∗ ∗ .  
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Figure IV-3. An example of block-based in-band motion-compensated prediction. Notations: 

{ , , , }U LL LH HL HH=  denotes the 2-D DWT subbands (L , H  stand for low- and high-pass filtering on 
rows and columns, respectively); l

UAT  is the subband U  (of decomposition level l ) of the DWT of frame A ; 

( , )i j

l l
Up p AS T  is the ODWT-phase ( , )i jp p  of the wavelet subband l

UAT ; , ,( , )U m U nd d∗ ∗  represent the in-band 
motion vector of subband U  that corresponds to in-band position ( , )m n . 
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Similar to SD-MCP, the classical way of solving the example of (4.10) is the (brute force) full-search 
motion estimation algorithm. Other techniques based on hierarchical search can also be envisaged [22] 
in order to reduce the search complexity. Since the four blocks in the four subbands amount to a total 
of m nB B×  wavelet coefficients and the total search area is also amounting to m nS S×  wavelet 
coefficients, the total amount of SAD calculations performed for each block in order to solve (4.10) is 
equivalent to the number of SAD calculations of the spatial-domain motion estimation. However, one 
significant difference between the two examples of Figure IV-2 and Figure IV-3 is that, for the 
wavelet-domain area that corresponds to m nB B×  pixels, four motion vectors are estimated instead 
of one; this provides the in-band case with the additional feature of frequency selectivity for MCP, i.e. 
different spatial frequencies can be predicted in a different way from the ODWT of the reference 
frame. This may increase the prediction efficiency, at the cost of providing more motion-vector data 
to be transmitted to the decoder [22].  

An extension of the example of Figure IV-3 to more spatial decomposition levels for the DWT is 
straightforward. Since the downsampling of the transform reduces the resolution of each subband, 
one can opt for the use of dyadically-reduced block sizes in order to cover the same area in the spatial-
domain, following the wavelet tree concept [27] presented in Chapter III. Alternatively, fixed-size 
blocks can be used for each resolution level [10]. Each case corresponds to a different motion-vector 
overhead, if motion estimation occurs separately in each subband and each resolution. In the general 
case of a wavelet decomposition in k -levels, for resolution level l , 1 l k≤ ≤ , we have: 
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 (4.11) 

where the notations are an extension of the notations used previously with the superscript l  
indicating the resolution level and the positions ( , )m n  at each level depending on the partitioning of 
each subband into non-overlapping blocks of l l

m nB B×  wavelet coefficients. For every subband U  of 
level l , we have: ,2 2

l l
m mS S

U md− ≤ <  and ,2 2
l l
n nS S

U nd− ≤ <  and ,0 2l l
U mp≤ < , ,0 2l l

U np≤ < . If we 
want the search to be limited within an area in the wavelet domain that corresponds to the search area 
of the SD-MCP example of Figure IV-2, we set 

2
m
l
Sl

mS =  and 
2
n
l
Sl

nS = .  

The generic motion estimation problem stated in (4.11) is also referred to as the multiresolution band-
by-band wavelet-domain motion estimation [22] [26] [38]. Obviously, the motion estimation problem 
of (4.11) represents the broad class of motion estimation algorithms which are possible in the wavelet 
domain. Out of this broad class, several subclasses of wavelet-domain (in-band) motion estimation 
algorithms can be defined, which may be more interesting for practical video coding systems. For 
example, if we impose the constraint that one in-band displacement vector and one ODWT phase 
component is generated for all the subbands of a certain resolution of (4.11), which we denote by 

( ){ }, , , ,
lbl, lbl, lbl, lbl,( , ), ,l l l l
m n m np p d d∗ ∗ ∗ ∗ , i.e.:  
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 (4.12) 

then (4.11) is simplified to the so-called level-by-level wavelet-domain motion estimation [39] [10]. As 
we shall see in the following parts of this chapter, this ME algorithm is useful when scalability in 
resolution is of particular interest, since different motion vectors are generated for each spatial 
decomposition level.  

Another subclass of IB-ME algorithms for the k -level DWT decomposition can be defined based on 
(4.11) if we set the following constraints: 

• the non-overlapping blocks of each resolution l  of the current frame have dyadically-
decreased sizes, i.e.: 

  
wt,

wt,

2
:

2

l l
m m

l l
n n

B B
l
B B

−

−

 = ⋅∀  = ⋅
. (4.13) 

 where wt,mB  and wt,nB  are the sizes of the corresponding area in the spatial domain. 

• for each resolution level l , all blocks at the corresponding positions within each subband U  
of that level are considered together, as in the case of level-by-level wavelet-domain ME; 

• the in-band displacement vector and the ODWT phase component for the first resolution 
level are given as for the case of the level-by-level wavelet-domain motion estimation: 

  

1, 1,
wt, lbl,

1, 1,
wt, lbl,

1, 1,
wt, lbl,

1, 1,
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m m
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p p

d d

d d

∗ ∗

∗ ∗

∗ ∗

∗ ∗

 = = = =

. (4.14) 

• the in-band displacement vector and the ODWT phase component generated for each 
subsequent resolution level l  satisfy the following relation: 
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 = ⋅ + = ⋅ +    ∀ >  =          =      

. (4.15) 

where  a  is the integer part of a  and (mod )= a
ba b a b  −    is the modulo operation, ,a b ∈ Z . 



CHAPTER IV. IN-BAND ARCHITECTURES 

  

70 

The constraints of (4.13) – (4.15) lead to the so-called wavelet-tree (or wavelet-block) in-band motion 
estimation [22]. If we set wt,m mB B=  and wt,n nB B= , this algorithm results in the same overhead 
for the uncoded motion-vector information as in the spatial-domain case (Figure IV-2). This is due to 
the fact that, in this case, one wavelet tree corresponds to the area of an image block of m nB B×  
pixels, and one in-band motion vector is generated for each wavelet tree (equation (4.14)), which 
contains indices within an area of coefficients in the overcomplete wavelet domain that corresponds 
to m nS S×  discrete positions. 

Since interpolation of the reference frames in the spatial-domain motion-estimation algorithm is a 
practical tool to improve the efficiency of block-based algorithms in capturing the underlying scene 
motion, it is desirable to obtain an equivalent interpolation algorithm for the in-band motion-
estimation algorithms. This can be achieved based on the observation that interpolation to sub-pixel 
accuracy can be performed directly in the ODWT of the reference frame(s), if their ODWT-domain 
phase components are interleaved to create the undecimated discrete wavelet transform (UDWT). 
This essentially stems from the fact that linear interpolation and the DWT without decimation are 
both linear shift-invariant operators and their order of application to the input signal can be 
interchanged [24] [40]. One such example is given for the low-frequency subband of the DWT in 
Figure IV-4. The single-level overcomplete representation of the LL  subband depicted in the upper-
left part of the figure is converted to its equivalent in the UDWT domain by interleaving the ODWT-
phase components horizontally and vertically. The interleaving process for all the subbands of the 
ODWT is elaborated in the following subsection. Interpolation to the equivalent of half-pixel 
accuracy occurs in the UDWT domain by using the interpolation filters presented in Chapter III. 
Finally, the interpolated UDWT is converted to the interpolated ODWT. This process generates 
fractional ODWT phase components [12], which are depicted in the lower-right part of Figure IV-4. 
Note that the interpolation process is performed in the same manner for the high-frequency subbands 
of the ODWT. Higher decomposition levels and higher interpolation accuracy can be obtained 
following the same principles. 

Similar to the fractional-pixel ME algorithms described in Chapter III, practical algorithms for 
fractional-phase in-band ME begin by searching for the best match of each in-band block of the 
current frame with a block in the integer-phase representation of the ODWT of the reference frame. 
Subsequently, in the neighbourhood of the best match found by the integer-phase ODWT-domain 
search algorithm, a new search is performed within the subbands with fractional ODWT phase [12]. 
The position of the best match is determined by the in-band displacement vector and the integer (or 
fractional) ODWT-phase component. As a result, in contradiction to spatial-domain ME, in the case 
of IB-ME the in-band displacement vector coordinates ( ), ,,U m U nd d∗ ∗  are always integers. Nevertheless, 
the ODWT phase component values ( ), ,,U m U np p∗ ∗  can be decimal numbers, indicating fractional 
phases in the interpolated ODWT.  

Finally, similar to the spatial-domain case, although the complexity of block-based IB-ME is reduced 
by the use of fast algorithms [41], only the (brute force) full-search algorithm is guaranteed to obtain 
the position (within the predefined grid precision) that provides the global minimum for (4.11). 
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Figure IV-4. Interpolation in the ODWT domain. An example of in-band interpolation to half ODWT-phase 
accuracy within the LL  subband of the single-level ODWT of a video frame is given. 

 

4.1.3 Overcomplete-to-Undecimated Discrete Wavelet Transform 
and the Correspondence of Phase Components in the ODWT 
Domain 

The transformation from the ODWT to the UDWT, performed by the phase-interleaving process 
demonstrated in Figure IV-4, follows the following pattern.  

The ODWT-phase components of a wavelet coefficient at position ( , )m n  in the LL  subband of 
resolution level l , can be expanded in binary form as:  

  ( )1 1
, , 0 0

( , ) 2 , 2l ll l i j
LL m LL n i ji j
p p b b− −

= =
= ∑ ∑  (4.16) 

where , : , {0,1}i ji j b b∀ =  are the binary digits from the binary representation of the horizontal and 
vertical phase components. The corresponding position in the undecimated LL  subband of level l  is 
given by: 
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  1 11 1
,UDWT ,UDWT 0 0

( , ) ( 2 2 , 2 2 )l ll l l l i l l j
LL LL i ji j
m n m b n b− −− − − −

= =
= ⋅ + ⋅ +∑ ∑ . (4.17) 

The last equation performs the interleaving of the ODWT phase components based on a bit-reversal 
scheme for the phase indices. This stems from the multilevel filtering-and-downsampling process of 
the (two-band) ODWT [23], with the assumption that the low-pass filter is linear phase [23] [42]. A 
pictorial explanation of the conversion process formulated in (4.17) is given in Figure IV-5 for the 
case of two decomposition levels.  

 

00 10 01 11

0 1

0 1 0 1

1l =

2l =

00 10 01 11

0 1

0 1 0 1

1l =

2l =

 
Figure IV-5. The interval corresponding to the input signal (top row) is decomposed in two sections 
corresponding to the even and odd ODWT-phase components at the first level ( 1l =  – middle of the figure). 
In addition, each ODWT-phase component is decomposed in the same manner for 2l = . The binary 
representation at the bottom of the figure represents the corresponding position in the undecimated DWT of 
the input signal, which can be found by reversing the “path” of the ODWT phases taken at each level.  

 

It is easy to show that the inverse transformation (UDWT to ODWT) for the LL  subband is given by 
the same bit-reversal process. If interpolation is applied in the undecimated representation of the LL  
subband (as shown in the example of Figure IV-4), then we additionally define 2logRl l R= + , 
where R  indicates the interpolation precision (e.g. 2R =  for half ODWT-phase accurate 
interpolation in the wavelet domain). In addition, in this case the indices in the undecimated LL  
subband of level l  given by (4.17) (which corresponded to the integer grid) are now multiplied by R . 
The part of the UDWT position that is relevant to the phase indices is then isolated and represented it 
in binary form as: 

   ( )1 1r r
,UDWT ,UDWT 0 0

( (mod2 ), (mod2 )) 2 , 2R RR R
l ll l i j

LL LL i ji j
m n b b− −

= =
= ∑ ∑ . (4.18) 

where 2log :i R∀ ≥
2

r
logi i Rb b −=  and 2log :j R∀ ≥

2
r

logj j Rb b −= , while 2, logi j R∀ ≤  the r r,i jb b  
represent the binary digits of the interpolated positions in the UDWT. 

The coefficient position within the corresponding LL  subband of the ODWT domain is given by: 
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  ( ),UDWT ,UDWT( , ) ,
2 2R R

LL LL
l l

m n
m n    =       

 (4.19) 

while the interpolated (fractional) ODWT phase components are: 

  ( )1 1r 1 r 1
, , 0 0

1 1
( , ) 2 , 2R RR R R R

l ll l l i l j
i jLL m LL n i j

p p b b
R R

− −− − − −
= =

= ∑ ∑ . (4.20) 

For the high-frequency subbands of each level l , a similar transformation is performed in order to 
obtain the UDWT from the ODWT. However, one significant difference is that, before the 
interleaving of the ODWT phases, the even-numbered (or zero) phases are exchanged (flipped) with 
the odd-numbered ones. For example, for the HH  subband, which is produced by high-pass filtering-
and-downsampling in the horizontal and vertical direction, we have: 

, ,,f
,

,

1, if 2 ,

1,  otherwise               

l l
HH m HH ml

HH m l
HH m

p p a a
p

p

+ + = ∈=  −

Z
, 

, ,,f
,

,

1,  if 2 ,  

1,  otherwise                

l l
HH n HH nl

HH n l
HH n

p p a a
p

p

+ + = ∈=  −

Z
 (4.21) 

Subsequently, the process is performed as shown in (4.16), (4.17) by replacing , ,( , )l l
LL m LL np p  with 

,f ,f
, ,( , )l l

HH m HH np p . Similarly, for the inverse, the identical process is followed (equations (4.18) – (4.20)) 
and the final ODWT phases of the HH  subband are created by the inverse flipping process.  

For the remaining DWT subbands (LH  and HL ), the conversion process is following a combination 
of the rules described before for high and low-frequency subbands, depending on whether the filter 
applied in the horizontal or vertical direction was a low-pass or a high-pass one. 

The difference in the conversion of the low and high-frequency subbands is stemming from the 
definition of the conventional filter-banks used in image coding. [43] [44]. One peculiarity of the 
original filter-bank designs, and this is true for all the commonly-used wavelet filter-banks in 
compression applications [43], is that the low-frequency and high-frequency coefficients produced 
with the critically-sampled DWT correspond to different positions in the UDWT domain. For 
example, for the one-dimensional single-level (critically-sampled) decomposition with the original 9/7 
filter-bank presented in [44] (and also for the filter-banks in [43] [45]), the coefficients that correspond 
to the even positions of the UDWT are produced for the low-frequency subband, and the coefficients 
corresponding to odd positions are produced for the high-frequency subband. This production of 
alternating positions for the different frequency bands is due to the filter delays of the original filter-
bank: the original filter delays are designed such that the produced decomposition can be stored in-
place [43] by alternating the low and high-frequency coefficients of the transform in even and odd-
numbered memory positions. Equivalently, if one produces the coefficients that are missing from the 
critically-sampled decomposition, one receives the odd and even-numbered coefficients for the low 
and high-frequency part of the UDWT, respectively. This difference, if extended to multiple 
decomposition levels, creates the necessity for the flipping process of equation (4.21).  

In general, the transformation from the ODWT to the UDWT domain is important when it comes to 
practical implementations. In particular, the UDWT domain positions provide an immediate 
correspondence to the spatial-domain positions, while the indices in the ODWT domain do not, since 
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the ODWT phase components are shuffled and each ODWT subband with a certain phase 
component is critically-sampled [42]. As a result, similar to the process of Figure IV-4 that was 
proposed for in-band interpolation, whenever particular embodiments of IB-ME or IB-MCP require a 
grouping of all the coefficients with the same ODWT phase component and in-band displacement 
vector, as seen for example in the level-by-level IB-ME constraints of (4.12), in reality we group the 
coefficients corresponding to the same location in the UDWT. For example, this means that, in order 
to satisfy the constraint of (4.12) we group the ODWT coefficients for which: 

 
,UDWT ,UDWT ,UDWT ,UDWT ,UDWT ,UDWT

,UDWT ,UDWT

( , ) ( , ) ( , )

( , )

l l l l l l
LL LL LH LH HL HL

l l
HH HH

m n m n m n

m n

= =

=
. (4.22) 

Similarly, whenever arithmetic operations are performed to the ODWT phase components or the in-
band displacement vectors, e.g. as seen in equation (4.15), we always implement the particular 
operations in the UDWT domain and then convert back to the ODWT-domain. However, although 
utilized in the actual implementations of the algorithms proposed in this chapter, the ODWT-to-
UDWT conversion is not explicitly indicated in the analytical formulations in order to simplify 
notations; nevertheless, it is important to notice that we always imply its usage whenever cross-
subband ODWT phase components or in-band displacement vectors are linked together, or 
arithmetic operations are performed on this data. 

4.1.4 In-band Motion Compensated Prediction based on the 
ODWT of the Reference Frame 

After the IB-ME stage described by (4.11), each coefficient of the DWT of the current frame, 
[ , ]l

U tA m nT  with 1 l k≤ ≤ , is associated via its in-band displacement vector 1 1( 1) ( 1)
, ,( , )
l lt t

U m U nd d− −F F  and 
ODWT-phase 1 1( 1) ( 1)

, ,( , )
l lt t

U m U np p− −F F  with a coefficient in the interpolated ODWT of the reference frame. 
Superscript ( )l

τ τ∆F  denotes forward in-band prediction via in-band motion estimation that matches 
the in-band representation of level l  of the reference frame at time instant τ  with the current frame 
at time instant τ τ+ ∆ . As a result, after IB-MCP, the wavelet-domain error frame is given by: 

 1 1
( 1) ( 1) ( 1) ( 1)1 1 1 1, , , ,

( 1) ( 1)
1 , ,, , ,

[ , ] [ , ]

[ , ]
l l

l l l lt t t t
U m U n U m U n

l l
U t U t

t tl l
U t U m U ni i U p p

H m n A m n

A m d n d− − − −

− −
  −                     

=

− − −F F F F

F F

T T

I S T . (4.23) 

where: 1 1 1( 1) ( 1) ( 1)
, , ,
l l lt t t

U m U m U mi p p− − −
−  =   

F F F , 1 1 1( 1) ( 1) ( 1)
, , ,
l l lt t t

U n U n U ni p p− − −
−  =   

F F F  are the interpolated (fractional) 
ODWT-phase positions; ( , ) ( , ) [ , ]l

x y i j Am nI S  is the interpolated ODWT coefficient at fractional 
ODWT-phase position ( , )x y  from the ODWT coefficient ( , ) [ , ]l

i j Am nS  (derived as explained in 
Figure IV-4), where 2 11, {0, , , , }R R

R R Rx y − −= …  and R  indicates the interpolation precision (e.g. 
2R =  for half ODWT-phase accurate interpolation in the wavelet domain). As mentioned in 

Chapter III, the interpolation operation ( , )x yI  can be designed in many ways. For the experiments 
reported in this dissertation, the same interpolation filters are used for the spatial-domain and in-band 
video coding experiments. In this way, although not necessarily optimal in each case, interpolation is 
not affecting the outcome of comparative experiments between spatial-domain and in-band 
algorithms. 



CHAPTER IV. IN-BAND ARCHITECTURES 

  

75

4.1.5 Advanced In-band Motion Compensated Prediction 

Similarly to Chapter III, one can define advanced block-based MCP schemes in the wavelet domain, 
i.e. in-band multihypothesis motion compensated prediction (IBMH-MCP). These algorithms can 
provide enhanced adaptivity to the scene characteristics by changing the prediction parameters 
according to the content present in a series of reference frames; in addition, this process can have a 
different instantiation for each spatial resolution [39]. In the general case of IBMH-MCP that uses T  
reference frames situated in time at positions init end{ , , 1, 1, , }q t t t t t t= − − + +… … , the wavelet-
domain  error-frame of resolution level l  resulting from IBMH-MCP is given by: 

- -
( ) ( )- -init , ,

( ) ( )- -
, ,

-1
( ) ( )

, , ,
, ,-

,
, ,

[ , ] [ , ] [ , ] [ , ]

[ , ]

l l
t q t q

l lq qt q t q
U m U n

l lq qq t q t
U m U n

t
q ql l l l l

U t U t U q U q U m U n
U p pq t t

l l l
U q U q

U p p

H m n A m n w m n A m d n d

w m n A

  =    

      

   = −  − −     

−

∑ F F

B B

F FT T S T

S T
end

- -
+

( ) ( )
, ,

+1
[ , ]

l l
q t q t

t t
q q

U m U n
q t

m d n d
=

    − −     
∑ B B

 (4.24) 

where , [ , ]l
U qw m n  are the space-varying multihypothesis weight factors of subband U  of 

decomposition level l  of the DWT of reference frame q , and ( ) ( ){ }- - - -( ) ( ) ( ) ( )
, , , ,, , ,
l l l l
t q t q t q t qq q q q
U m U n U m U np p d dF F F F , 

( ) ( ){ }- - - -( ) ( ) ( ) ( )
, , , ,, , ,
l l l l
q t q t q t q tq q q q
U m U n U m U np p d dB B B B  represent the forward and backward displacement vectors 

(respectively) that correspond to wavelet coefficient [ , ]l
U qA m nT . Note that the interpolation operation 

has been omitted in (4.24), for simplicity in the notation. Moreover, for simplicity in our description, 
the analytical formulation of IBMH-MCP seen in (4.24) does not include the case where more than 
one motion vectors originate from the same reference frame. Nevertheless, our experiments with 
IBMH-MCP included this case as well in order to incorporate the most generic instantiation of 
multihypothesis prediction.  

For block-based IBMH-MCP, , [ , ]l
U qw m n  is constant over a certain group of wavelet coefficients 

( , )m n  corresponding to a wavelet-domain block of decomposition level l  in subband U  of the q -th 
reference frame. Overall, equation (4.24) presents a generalization of the spatial-domain MH-MCP 
presented in Chapter III, since different prediction modes can be created for different wavelet 
subbands and different resolution levels. Currently, except of the algorithms presented in this 
dissertation, there is no other work in the literature able to provide a practical in-band MH-ME 
algorithm for the generalized problem of block-based IBMH-MCP represented by (4.24). As it will be 
shown later in this chapter, our proposed solution provides a working system by restricting the 
number of allowable block sizes and the values of initt  and endt . Moreover, although possible in 
theory, our solution is not performing joint optimization for different multihypothesis mode selection 
across the various subbands and resolution levels. Instead, it is restricted to one mode for all the 
subbands of a certain resolution level, and the optimization process is performed separately for each 
resolution. Nevertheless, as an outcome of our work, a working IBMH-MCP system is provided, 
which can demonstrate similar coding-efficiency improvement due to optimized in-band MH-ME as 
in the case of spatial-domain MH-ME. 
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4.2 Scalable Video Coding with In-band Prediction 
within the Closed-loop Structure 

This section presents a modified closed-loop temporal prediction structure that operates in-band. This 
topic has already been targeted in a number of publications [21] [27] [24] [26] [46] [41]. Our work in 
this area focused on providing a structure that is based on the use of the ODWT for efficient IB-MCP 
and the use of a scalable coder for the intra- and error-frames, which enables resolution and bitrate 
scalability within the in-band closed-loop structure. 

The basic design of an in-band closed-loop video codec is presented in Figure IV-6. In comparison to 
the conventional closed-loop video coding structure shown in Chapter III, the design of Figure IV-6 
has the following differences: 

• The spatial DWT decomposition l
UT  is moved out of the prediction loop since the entire 

process is performed in-band. 

• A module that constructs the ODWT from the DWT of the reference frame ( l
US ) is included 

in the prediction loop, i.e. a complete-to-overcomplete discrete wavelet transform [36]. 

In principle, the design of Figure IV-6 is repeated for each decomposition level l , 1 l k≤ ≤ . 
Moreover, for each resolution level, the design of the decoder for that resolution can be seen in the 
dotted rectangle. In order to display the reconstructed frames at resolution level l , the subbands 

jl
U tAT  together with the subbands of the coarser resolution levels ( 1, ,l k+ … ) are used in the IDWT 

that provides the output video. 

 

tCtA ++

-
QU

1QU
−

+ +

+Frame
DelayP

( ) ( )0 ,T Tl l
U U tA H

( )T l
U tA

T l
U

S l
U

tCtA ++

-
QU

1QU
−

+ +

+Frame
DelayP

( ) ( )0 ,T Tl l
U U tA H

( )T l
U tA

T l
U

S l
U

 
Figure IV-6. The in-band closed-loop video compression scheme for each resolution level l , 1 l k≤ ≤ . 
Notations: Aτ consists the input video frame at time instant 0,tτ = ; itA  is the reconstructed frame; 
tH consists the error frame; tC  denotes the transformed and quantized error frame DWT subbands of level l  

using the DWT l
UT  and the subband quantization l

UQ ; P denotes IB-MCP using the level- l  ODWT subbands 
produced by the complete-to-overcomplete DWT module l

US . 
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An important aspect of the CODWT module ( l
US ) concerns the manner through which the ODWT 

is created for each resolution level l . In the scheme depicted in Figure IV-6, and for the remaining 
video coding architectures of this chapter, the l

US  module appears to receive its input from a frame 
buffer (frame delay), which contains the critically-sampled subbands of resolution level l . This 
indicates that the ODWT is created from the DWT of level l . This construction is termed as “single-
rate CODWT” in this dissertation, since, as shown in Chapter V and elsewhere [36] [47], a single-rate 
calculation scheme can be used for this CODWT computation. Nevertheless, it is important to note 
that the general formulation of the CODWT of each resolution l  [36] demonstrates that, given the 
complete DWT decomposition of l -levels, the CODWT of each resolution uses all subbands of all 
resolutions 1, ,l…  of the DWT. To differentiate from the previous case, this construction is termed as 
“multi-rate CODWT”. Further details on the differences between the two cases and the architectures 
used for their computation are given in Chapter V.  

An instantiation of a codec based on the design of Figure IV-6 can be seen in Figure IV-7; the upper 
part of the figure presents the encoder design. The coding process resembles the classical closed-loop 
coding structure [48]; thus, when coding in the intra-frame mode, the current frame is wavelet 
decomposed by the DWT module first; subsequently, each resolution is compressed with the SBC 
module (intra-frame) by a block-based intra-band coder, and context-based entropy coded by the EC 
module. Each resolution of this intra-frame is decompressed at a base-quality layer (SBD module) and 
the reconstructed DWT decomposition is used by the complete-to-overcomplete DWT (CODWT) 
module. This module operates in a subband-by-subband manner and constructs the subbands of the 
overcomplete transform of each level from the critically-sampled decomposition of that level. As 
explained before, the overcomplete transform contains all the information that is missing from the 
critically-sampled pyramid due to the subsampling operations performed at every level. For the 
complete-to-overcomplete DWT, the conventional low-band shift method can be used [27], or more 
advanced techniques that provide fast-calculation algorithms with identical algorithmic performance 
can be employed [36] [39]; these topics are elaborated in Chapter V.  

In the inter-frame coding mode, motion compensation is performed in the critically-sampled DWT 
and the predicted frame is subsequently subtracted from the current frame (resolution-by-resolution), 
as shown in Figure IV-7. The result (error frame) of each resolution is encoded in the same manner as 
explained for the intra-frames. Subsequently, each decomposition level of the compressed error frame 
is decompressed by the SBD module to the base-quality layer and is added to the previously predicted 
frame of that resolution. The result is used as the new reference frame and is sent to the CODWT 
module. In this way, successive MCP within the closed-loop is realized. This scheme is readily 
generalized to include any combination of backward and forward prediction that is typically used in 
coding standards. 

The decoder operates in a similar manner as noticed from the lower part of Figure IV-7. This shows 
that with the proposed video codec architecture, we decode transform-domain intra-frames and error-
frames.  
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Figure IV-7. The proposed architecture of an in-band closed-loop wavelet video codec. A localized complete-to-
overcomplete DWT is presented, where CODWT(n) refers to the construction of the n-th subband of the 
ODWT of each resolution level.  

 

Due to the separate application of the ME/MC procedure at every resolution level, the decoding can 
stop after a specific resolution level has been received, thus accommodating a variety of decoded 
resolutions for the video clients. In addition, the decoding can stop at any desired quality level 
(corresponding to a rate larger than the base-layer bitrate), since the coding of the error-frames 
produced for every resolution level is embedded; as a result, a variety of transmission-bandwidths or 
picture-quality levels can be supported on the fly. Finally, by selecting specific frames to be used as 
references for the ME/MC procedures, the decoder can skip any of the remaining coded frames and 
achieve any desired frame-rate for the decoded video reproduction without drifting from the encoder. 

4.3 Low-redundancy Overcomplete Discrete Wavelet 
Transforms for In-band Motion Compensated 
Prediction 

As shown in the previous section, the main difference of the presented in-band predictive video 
coding architecture versus conventional predictive video coding lays in the use of the ODWT for IB-
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ME and IB-MCP. In this section we are concerned with the optimality of the ODWT for this 
purpose.  

Our initial motivation on using a system that is based on conventional critically-sampled biorthogonal 
discrete wavelet transforms such as the 9/7 filter-bank is the good coding efficiency obtained via the 
use of such transforms in still image coding [3]. Moreover, as shown before, the use of complete-to-
overcomplete transforms enables the produced error-frames to be critically-sampled and an equivalent 
MCP system to the conventional SD-MCP is created in the wavelet domain. However, although the 
conventional ODWT is a shift-invariant transform that provides zero MCP error for the cases where 
the spatial-domain MCP error is zero, it may be possible to utilize low-redundancy, near shift-
invariant, transforms with competitive prediction accuracy for IB-MCP and yet a reduced calculation 
overhead. Recently there has been an abundance of research on near shift-invariant transforms [49] 
[50] [51] [52] [53] with limited redundancy. In some cases, it is demonstrated that near shift-invariance 
can be attained with a redundancy of four in comparison to the two-dimensional multi-level critically-
sampled DWT. This may have important implementation advantages since, independent of the 
number of decomposition levels (k ), such low-redundancy transforms will produce a total of 
( ) ( )2 2M N×  wavelet coefficients for an M N×  image during the ME stage, while the conventional 
ODWT will produce a total of ( ) ( )2 2k M k N⋅ × ⋅  coefficients. Consequently, for 1k > , the filtering 
operations for the production of the reference-frame overcomplete representation as well as the SAD 
operations required for the multilevel IB-ME can be substantially-reduced with a low-redundancy 
transform. Moreover, the reduced number of ODWT-phases in the low-redundancy transforms 
indicates that one can also potentially reduce the required overhead for the wavelet-domain motion-
vector information. 

In order to evaluate a video coding system utilizing such a low-redundancy transform, we 
incorporated in the proposed closed-loop video coding system of Section 4.2 one of the most 
representative members found in the literature, i.e. the Q-shift dual-tree complex wavelet transform 
(DTCWT) [50]. The following subsection introduces the concepts behind the design of the DTCWT; 
Subsection 0 presents the proposed video coding system with IB-MCP using the DTCWT. The 
summary of the work presented in this section has been published in [54]. 

4.3.1 The Dual-Tree Complex Wavelet Transform 

Research work on the design of critically-sampled discrete wavelet transforms revealed that one 
cannot provide FIR filters with perfect reconstruction properties and good frequency characteristics 
which are (near) shift-invariant [50]. After abandoning this goal, Kingsbury [50] was among the first to 
observe that approximate shift-invariance could be obtained by doubling the sampling rate at each 
level of the DWT decomposition. For one-dimensional signals, this corresponds to the use of two 
critically-sampled DWT pyramids. In two dimensions, four pyramids correspond to this observation. 
It was shown that the wavelet coefficients of each pyramid can be interpreted as the real and 
imaginary part of a wavelet decomposition with a complex-valued filter-bank [50] [52]. Hence, the 
transform was initially termed as the dual-tree complex wavelet transform [50]. However, as noted in 
[50], this separation into real and imaginary components is arbitrary, since all filter-banks used in the 
DTCWT consist of real-valued FIR filters. 
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A practical observation of Kingsbury’s work [50], which is of crucial importance, is that a complex-
valued filter-bank creates orthogonality in the phase of the wavelet coefficients of the two pyramids. 
This corresponds to the ODWT-phase components of the samples of both pyramids being equally-
spaced among the phase-components of the (fully-redundant) ODWT. This is illustrated in the 
pictorial example of Figure IV-8. There, at each decomposition level, the conventional ODWT 
samples are equally-spaced (circles). Since the sampling-rate of each subband ,l l

i iA D  (with 1 3l≤ ≤ ) 
is reduced by 2l  in comparison to the sampling rate of the input signal X , the number of ODWT-
phases i  is increased dyadically, i.e. 0 2 1li≤ ≤ −  for each decomposition level l . On the other 
hand, in the two-pyramid case of the DTCWT (x-marks), although the sampling rate of each subband 
is also reduced by 2l , there are only two phase components. As shown by Figure IV-8, these phases 
are also equally-spaced at each decomposition level by producing wavelet coefficients that correspond 
to half ODWT-phase intervals for 1l > . Notice that, for 1l = , both transforms produce ODWT-
phase components at the same locations. Moreover, in this case, both transforms have the same 
redundancy. 
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 Figure IV-8.  An example of equal sampling space between the in-band ODWT-phases of: (a) the conventional 
ODWT (circles), where integer ODWT-phase components are produced; (b) the dual-tree CWT (x-marks), 
where half ODWT-phase components are produced. The dual tree has limited redundancy (only by a factor of 2 
for all levels versus the conventional DWT). For illustration purposes, the half-phase intervals of each level are 
indicated by the vertical lines. 
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In [50], a practical design is given for FIR filters that produce the ODWT-phase components that 
correspond to the sampling intervals of the DTCWT as shown in Figure IV-8. As demonstrated by 
this pictorial example, for 1l = , one can opt for the use of any ODWT based on conventional filter-
banks. In fact, the 9/7 filter-bank is recommended as a good practical example for the filters of 1l =  
[50], due to its good performance in coding applications. For decomposition levels higher than one, a 
new family of filters-banks was derived in [50], which produces half ODWT-phase components as 
indicated by Figure IV-8. For levels higher than one, the design procedure produced even-length 
filters-pairs which are not strictly linear phase. Instead, since the target is to construct half ODWT-
phase components, they correspond to an orthogonal basis and are designed to have a group delay of 
approximately 1

4  sample (since the sampling rate is halved at the output of the filter-bank due to 
downsampling by two). As a result, this transform was additionally termed as Q-shift DTCWT [50], to 
separate it from other, similar, approaches. The resulting wavelet and scaling functions of the Q-shift 
DTCWT can be seen in Figure IV-9.  

From the filter-bank family designed for the Q-shift DTCWT, we used the “Q-shift-06” filter-bank 
[50], which is an interesting case since it has good shift-invariance properties with only 6 non-zero 
taps, given in Table IV-I. The DTCWT decomposition structure is shown in Figure IV-10. We use the 
notations of [50] for consistency, were subscript 0 and 1 indicate low-pass and high-pass filters, 
respectively, and subscripts a  and b  distinguish the filters of each decomposition of the DTCWT. As 
mentioned before, for the filters of level one, the 9/7 filter-bank is used. Moreover, for levels two and 
higher, the filters are: 1 1

00 ( ) ( )a LH z z H z− −= , 01 ( ) ( )a LH z H z= − , 00 ( ) ( )b LH z H z= , 
1 1

01 ( ) ( )b LH z z H z− −= − . The reconstruction filters are just the time reverses (i.e. trees a  and b  are 
swapped. 

 

 
(a)                                          (b) 

Figure IV-9 (Taken from [50]). Wavelet and scaling function components for 16 shifts of the step function (top), 
for: (a) Q-shift DTCWT; (b) the critically-sampled DWT. The good shift invariance of the DTCWT is 
demonstrated by the fact that all the corresponding wavelets (and scaling functions) are similar in shape for the 
various translations of the input step function. 
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Figure IV-10. The dual tree complex wavelet transform. 

 
Order in Z   ( )LH z  

4 0.03516383657149  
3 0  
2 -0.08832942445107  
1 0.23389032060724  
0 0.76027236906613  
-1 0.58751829772356  
-2 0  
-3 -0.11430183714425  

Table IV-I. Filter taps used for the orthogonal filter-bank of the Q-shift DTCWT [50]. 

 

4.3.2 Closed-loop Video Coding with the Single-to-Dual Tree 
Discrete Wavelet Transform 

There have been early attempts of utilizing the dual-tree complex wavelet transform for non-scalable 
video coding with some degree of success [55]. However, our work differentiates significantly from 
[55] because the DTCWT is utilized within the framework of Figure IV-7. As a result, in accordance 
to the design of Figure IV-7, the single-to-dual tree complex wavelet transform (SDTCWT) is 
performed in the CODWT module [54] and the produced error frames remain critically sampled.  

The main difficulty in the SDTCWT process lays in the border-extension policy in order to have 
perfect reconstruction. In the original DTCWT implementation of [50], the dual tree is constructed 
starting from the input signal X . As a result, the border extension of every tree is performed using 
coefficients from the alternate one, as seen in Figure IV-11. This results in a smooth extension and 
prefect reconstruction is guaranteed. This extension however is not feasible if both trees are not 
available, and this is the case during the inverse transform performed in the SDTCWT process. For 
the first decomposition level, the problem can be easily solved by using classical point-symmetric 
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mirroring in the borders. However, the situation is more complicated for levels beyond one; there, 
typically, perfect reconstruction is guaranteed only for periodic extensions [56], since the filters of 
each single-tree wavelet transform correspond to an orthogonal filter-bank. Nevertheless, it is well 
known that this type of extension creates border distortions from the signal wrapping, which become 
intensified when the decomposition levels increase [57]. This effect is catastrophic if motion 
estimation is sought in the transform domain, as is the case in our application. 

 A potential solution for smooth border extension for orthogonal filter-banks is proposed in [57]. This 
approach requires the use of spline extrapolation techniques to perform the border extension. 
However, such a computationally-expensive process undermines the complexity-reduction benefit of 
the DTCWT.  As a result, we proposed a new and simpler border extension technique in [54]. Our 
solution is based on the simple observation that, since the samples of tree b  are not considered 
available during the decomposition and reconstruction of tree a , a border extension with symmetric 
mirroring can be used for the decomposition, and a computationally-inexpensive convergence 
technique can be used for the reconstruction. This is described below in more detail. 

At any decomposition level l  of tree a , with 1 l k< ≤  the convergence technique starts by 
performing the inverse transform to the low and high-frequency subbands of level l , using half-point 
symmetric mirroring. After the application of the synthesis filters of pyramid a , i.e. filters i00aH , i01aH  
(consisting of DTT  taps), only DTT  coefficients of the low-frequency subband borders of level 1l −  
are reconstructed incorrectly. After this step, the following steps are applied iteratively: 

• Apply a decomposition with filters 00bH , 01bH  to the DTT  low-frequency coefficients of level 
1l −  of tree a . Half-point symmetric mirroring is used and two sets of 2

DTT  coefficients are 
produced. Notice that we use the analysis filters of tree b  (alternate tree) for this step. 

• Perform an inverse transform for level l  of tree a  using the time-inversed sequences of the 
previously-produced coefficients as the half-point symmetric extension for the borders and 
produce a new set of DTT  low-frequency coefficients of level 1l − . 

 

signal left 
border 

 
Figure IV-11. Border extension for the dual tree using mirroring with samples from the “opposite” tree [54]. 
This example corresponds to either the low or the high-frequency subband. The subband samples of the two 
trees are named ‘a’ and ‘b’ or ‘A’ and ‘B’ for the forward and inverse transforms respectively. The filters ‘ Ha ’, 
‘ Hb ’ and ‘ iHa ’, ‘ iHb ’ correspond to the low- (or high-) pass filters of trees a  and b  for the forward and 
inverse transforms, respectively. 

               

Output 

level l        
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Intuitively, this algorithm is based on the following rationale: for the single-tree subbands of level l , 
first the inverse transform is performed and the low-frequency subband of level 1l −  is reconstructed 
correctly, except of the border coefficients; subsequently, a decomposition with the analysis filters of 
the alternate tree is performed for these border coefficients in order to “correct” them; then the 
reconstruction is performed with the synthesis filters of the current tree by using the “corrected” 
coefficients as border extension; this process iterates so as for the border “correction” to gradually 
decrease the border reconstruction error of the low-frequency subband of level 1l −  to zero. In 
practice, this simple technique was found to effectively reduce the total reconstruction error to values 
lower than 1010−  in less than 13 iterations using floating-point accuracy. Each iteration is only 
applying the analysis filters of tree b  for DTT  times on average (since the inverse transform of tree a  
is in fact using the filters of the forward transform of tree b  for levels 2l > ). As a result, the 
computational overhead is limited to ( )212 DTT  multiplications, which is considered adequate. In 
addition, the symmetric mirroring policy used in the forward transform leads to a smooth extension 
that does not produce the border effects of the periodic extensions.  

After solving the border-extension issues, the single-to-dual tree complex wavelet transform starts 
from a de-quantized, critically-sampled, decomposition (of k -levels) and reconstructs the input frame. 
To address resolution scalability, the reconstruction is parametrical to utilize high frequency 
coefficients from any number of decomposition levels. From the reconstructed frame, the DTCWT is 
constructed and the polyphase components of the produced subbands are kept in separate structures.  

To quantify the shift-invariance properties of the DTCWT in our system, we simulated the SDTCWT 
in Matlab. The produced transform representation is (approximately) “shiftable” if the energy of all 
the phase components of a given subband (which consists of both trees) remains (approximately) 
constant when the input is shifted [49]. This property has been tested in the one-dimensional case 
using shifts of an impulse input, as demonstrated in Figure IV-12. In this case, different border-
extension policies do not affect the result. To check the effect of the proposed border treatment, the 
experiments of Figure IV-13 show the energy fluctuations in the transform subbands of a random 
input signal, when the entire signal is translated by an integer number of pixels.  
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Figure IV-12. Normalized power for the subbands of level three for different shifts of an impulse. The 
following wavelet representations are considered: the 1-D DTCWT (9/7 filter-bank and the two orthogonal 
filter-banks based on the LH  filter of Table IV-I); the critically-sampled DWT (9/7 filter-bank), the ODWT 
using only two phases, and the all-phase ODWT (9/7 filter-bank). 
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Figure IV-13. Normalized power in function of shifts of a random signal. The proposed border-extension 
technique yields similar power fluctuations with the border-extension proposed by Kingsbury [50], which uses 
additional samples from the alternate pyramid. The “classical” method uses the conventional periodic extension. 
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In the typical example of power fluctuations under different shifts of a one-dimensional impulse 
input, shown in Figure IV-12, the reduction of the power fluctuations seen in the case of DTCWT is 
an experimental verification of the near shift-invariance property. In addition, the two-phase ODWT 
(that possesses the same redundancy as the DTCWT) presents a higher fluctuation of the normalized 
subband power. Furthermore, for shifts of random input signals, the same fluctuation was noted on 
average for the dual-tree generated by the implementation of [50] and by our SDTCWT employing a 
different border extension. Figure IV-13 demonstrates that the proposed boundary-treatment 
technique, not only avoid edge artifacts caused by periodic extension, but also provides less power-
fluctuations, which are found to be similar to the power fluctuations of the boundary-treatment 
approach used in [50].  

4.4 Open-loop In-band Motion Compensated 
Prediction 

Our investigation on the suitability of the conventional ODWT for in-band MCP led to the usage of 
low-redundancy overcomplete wavelet decompositions for in-band MCP (i.e. the two-phase ODWT 
and the DTCWT). These were proposed as alternative solutions for ODWT-based in-band video 
coding. In a similar manner, one significant aspect of scalable video coding in general, concerns the 
suitability of the closed-loop (DPCM) coding structure in the temporal domain for MCP-based video 
coding [58]. In fact, it has been recently proposed that, in terms of coding efficiency, an equivalent 
open-loop MCP structure can be as efficient as the closed-loop MCP for video coding [59]. This 
section extends these findings by proposing an in-band MCP video coding method within an open-
loop temporal prediction structure. In particular, Subsection 4.4.1 presents the general structure of our 
system while Subsection 4.4.2 presents an example of the capabilities enabled by open-loop IB-MCP. 
Moreover, Subsection 4.4.3 presents on an algorithm to control the inherent distortion fluctuations of 
spatial-domain and in-band open-loop MCP. 

4.4.1 Scalable Video Coding with Open-loop In-band Motion 
Compensated Prediction 

The modification of the conventional closed-loop spatial-domain MCP structure to an open-loop 
architecture was originally proposed in several forms in [6, 60] [7] [8] [59] [61] [62] [63]. In essence, the 
unconstrained motion compensated temporal filtering (UMCTF) architecture [59] [63] represents a 
superset of all the efficient open-loop MCP architectures found in the literature because:  

• the temporal decomposition is based on the lifting framework [43], hence it is 
computationally-efficient;  

• perfect reconstruction is provided under arbitrary motion models [62]. For example, all the 
advanced prediction modes, such as arbitrary sub-pixel accuracy, multiple-reference MCP 
and multihypothesis MCP, proposed for closed-loop video coding can be accommodated. 
Moreover, in principle, UMCTF extends these modes with the update step of the temporal 
decomposition, thereby potentially leading to further increase in coding efficiency [64]. 
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In practice, for a simple instantiation of UMCTF, the temporal update step can be omitted, thereby 
leading to an open-loop MCP-only video coding framework [63]. Such an instantiation can be seen in 
Figure IV-14, where an example of 8 input frames is shown. For each row {1,2, 3}t =  (temporal 
decomposition level), each original frame 1

2 1
t
kL −
+  (or 0

2 1kA +  for 1t = ), with 0 2 8tk −≤ < ⋅  for the 
particular example, is predicted by its previous frame 1

2
t
kL −  (or 0

2kA  for 1t = ) using block-based ME 
[63]. After the MCP process, it is replaced, as seen in Figure IV-14, by the produced error frame t

kH . 
The low-frequency frames of each level ( t

kL ) are produced by simply copying the reference frame, i.e. 
1

2
t t
k kL L −=  (or 1 0

2k kL A=  for 1t = ). This example presents an instantiation of open-loop MCP with 
unidirectional motion estimation and compensation using one reference frame [63].  

The corresponding MCP architecture is seen in the top part of Figure IV-15. Similar to conventional 
MCTF, the temporal split separates the frames in even and odd sets, and the odd frames are predicted 
from the even frames using MCP. However, no update step is performed; hence the frames of the 
next temporal level correspond to the even frames of the previous level, as shown by the example of 
Figure IV-14.  

In a similar fashion, open-loop in-band MCP, originally proposed in [10] [11], performs the temporal 
prediction in the wavelet domain, as seen in the bottom part of Figure IV-15. The spatial DWT is first 
applied to all input frames thereby generating subbands l

UAτT , with 1 l k≤ ≤ , 
{ , , , }U LL LH HL HH=  and {2 ,2 1}t tτ = + . All the input frames of each resolution level l  are 

subsequently split into even and odd sets and in-band MCP is performed with the use of the ODWT 
2

l l
U U tAS T . 
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Figure IV-14. An example of open-loop IB-MCP with unidirectional motion estimation.  

 



CHAPTER IV. IN-BAND ARCHITECTURES 

  

88 

2 2 1,t tA A +
Temporal
Split P

++

-
k
UT UQ

tH

tC
2 1tA +

2tA
2tA

Temporal
Split

P

++

- UQ

l
UT

l
US

l
U tHT

2 2 1,t tA A +

2 1
l
U tA +T

2
l
U tAT

l
UC

2
l
U tAT

2 2 1,t tA A +
Temporal
Split P

++

-
k
UT UQ

tH

tC
2 1tA +

2tA
2tA

Temporal
Split

P

++

- UQ

l
UT

l
US

l
U tHT

2 2 1,t tA A +

2 1
l
U tA +T

2
l
U tAT

l
UC

2
l
U tAT

 
Figure IV-15. Open loop video coding structures. Top: Spatial-domain MCP. Bottom: In-band MCP for each 
resolution level l , 1 l k≤ ≤ . 

 

In total, for each wavelet coefficient 2 1[ , ]l
U tA m n+T , open-loop in-band MCP can be performed as: 

 1 1
(2 ) (2 ) (2 ) (2 )1 1 1 1, , , ,

2 1

(2 ) (2 )
2 , ,, , ,

[ , ] [ , ]

[ , ]
l l

l l l lt t t t
U m U n U m U n

l l
U t U t

t tl l
U t U m U ni i U p p

H m n A m n

A m d n d

+

                       

=

− − −F F F F

F F

T T

I S T . (4.25) 

where the same notations are used as in (4.23).  

As illustrated by the practical instantiations of UMCTF given in [59] [63], open-loop MCP has two 
significant advantages over closed-loop MCP presented before.  

The first advantage evolves around the enhanced bitrate scalability properties. It was shown 
experimentally (e.g. [59] [63]) that scalable video coding with open-loop MCP produces an embedded 
bitstream out of which subsets can be extracted to match a certain bitrate. The experimental rate-
distortion performance of open-loop MCP appears to be comparable to optimized non-scalable 
closed-loop video coding [59]. In addition, although video coders based on closed-loop MCP can 
produce an embedded bitstream, due to the closed-loop temporal prediction, the bitrate adjustment is 
limited to rates that are higher than the bitrate that corresponds to the baselayer prediction. Moreover, 
while closed-loop prediction typically uses the baselayer information for MCP to avoid drifting from 
the encoder [65] [66], open-loop MCP-based schemes successively-improve the reference frames with 
increases in bitrate. As a result, for bitrate-scalable video coding, better prediction efficiency is 
expected from open-loop video coding architectures [58]. 
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The second advantage of open-loop MCP stems from the different prediction structure of UMCTF 
versus the conventional closed-loop MCP. Due to the use of a temporal transform, a multiresolution 
decomposition is performed in the temporal direction. As a result, by skipping a certain number of 
temporal levels, one can obtain a decoded sequence with successively-reduced frame-rates. The 
original UMCTF proposal [63] demonstrates that, in principle, a large combination of decoded frame-
rates can be obtained by selectively-decoding information from one compressed bitstream. Although 
temporal scalability is also present in conventional closed-loop prediction, e.g. with the use of B-
frames in MPEG coding [67], such techniques offer limited choices for temporal scalability versus 
open-loop MCP [58]. 

As seen from Figure IV-15, open-loop in-band MCP follows the same temporal prediction structure 
albeit in the wavelet domain. As a result, the two advantages presented before are also valid for open-
loop IB-MCP versus the conventional closed-loop IB-MCP. However, in comparison to spatial-
domain open-loop MCP, in-band MCP inherits also the increased flexibility of in-band architectures 
across different spatial resolutions. To illustrate this, Figure IV-16 presents a generic video coding 
architecture that involves open-loop in-band MCP. As shown pictorially, each resolution can be 
temporally predicted with a different structure and the subsequently-produced motion vectors and 
texture information can be compressed using an embedded coder. This generic spatio-temporal 
decomposition allows for different temporal prediction structures for each spatial resolution level. 
Moreover, different motion estimation accuracies and different coding methods can be employed for 
low- and high-resolution representation of the input video content. These may be desired features for 
several applications. As an example, Subsection 4.4.2 presents a practical system that is based on the 
architecture of Figure IV-15 and can be backward compatible to MPEG video coders for the half-
resolution video, due to the use of closed-loop MCP coding for the low-frequency subbands of the 
DWT. 
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Figure IV-16. A generic architecture for multi-resolution in-band MCTF. After the spatial decomposition, the 
produced subbands are organized into groups of frames (GOFs) and are temporally decorrelated with a 
different temporal decomposition structure. 
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4.4.2 Test Case: Open-loop In-band Motion-compensated 
Prediction with Standard-compliant Base-layer 

In this subsection we exploit the features of open-loop IB-MCP to investigate the possibility of 
backward compatibility of open-loop coding systems with existing closed-loop (MPEG) video coding 
systems.  

The basic modification imposed in the open-loop IB-MCP consists of replacing the MCP-based 
wavelet video coding of the low-frequency bands with a standard-compliant motion-compensated 
DCT (MC-DCT) predictive scheme [68]. In this manner we obtain a base layer for low-resolution that 
is compliant to standardized MPEG-video while retaining the treatment of the residual low-frequency 
signal and the high-frequency bands within the MCTF-based wavelet coding. Our test-bed 
experimental evaluation [68] shows that, while spatial and temporal scalability are easily obtained in 
this manner without additional cost in comparison to the non-scalable equivalent, we observe a loss 
for bitrate scalability, similar to what is found in the relevant literature [69]. To overcome this 
disadvantage, we also present in this subsection a new multi-layer temporal prediction structure for 
the base-layer coding. This structure, although not fully standard-compliant, offers efficient bitrate 
scalability for the proposed scheme [68]. 

The architecture of a coder employing a standard-compliant base-layer for the low-frequency bands 
and MCTF coding for the high-frequency bands can be derived as a particular instantiation of the 
generic architecture of Figure IV-16. This is demonstrated in detail in Figure IV-17. 
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Figure IV-17. The modified open-loop IB-MCP encoding architecture with standard-compliant base-layer. 

 

The low-frequency subband is scaled down and quantized to fit the dynamic range of the standard-
compliant MC-DCT coder. After the compression process with the MC-DCT codec, the decoded 
pictures are scaled-up and subtracted from the original low-frequency subband content, producing the 
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residual low-frequency signal. This signal is coded by the subband coding technique used for the high-
frequency subbands. In many cases, the decoded pictures can be generated without performing the 
actual decoding operation since the MC-DCT system buffers the coded references during the motion 
estimation routine. In total, the output bitstream consists of the standard-compliant (non-scalable) 
MC-DCT base-layer, and the scalable bitstream of the MCTF-based coding plus the scalable coding of 
the residual information of the low-frequency band. The latter can be used as an enhancement layer 
both for the low and high-resolution decoding. For the enhancement layer compression, any 
embedded coding scheme can be used. In our experiments, wavelet-based embedded coding has been 
used [70] [71]. However, other coding methods, such as matching pursuit coding, could also have 
been employed. 

Despite the fact that the architecture of Figure IV-17 uses the conventional MC-DCT in the base-
layer, improvements to the bitrate-scalability functionality can be envisaged. As shown in previous 
studies [72], for fine-grain scalability, the loss in coding performance comes from the fact that the 
high bitrate decoder is forced to use the low-quality references in the MCP loop of the base layer in 
order to avoid drift effects from successive prediction. However, this can be improved if an MCP 
prediction scheme based on a temporal decomposition is chosen for the base layer as well. In Figure 
IV-18 we illustrate such an architecture for the encoder. The figure demonstrates the encoding of a 
GOP with 8 frames. In fact, this figure demonstrates the design of an open-loop MCP-based encoder 
that uses DCT-based compression: the DCT of frame 0

0A  is quantized and entropy coded (I-frame 
coding –top of Figure IV-18), frame 0

4A  is predicted from frame 0
0A  and the residue is quantized and 

coded (middle of Figure IV-18), and so on. This coding architecture can be used in the coding scheme 
of Figure IV-17 as the replacement of the MPEG-compliant codec module. Decoding of the 
compressed error frames is also needed in this case, for the production of the residual information of 
the base-layer coding. As seen in Figure IV-17, this residual information is compressed using the 
subband coder. 

For the production of the decoded base-layer video, the decoder architecture follows exactly the 
symmetric operation. As a result, the necessary modification on the standardized MPEG-decoder 
structure is the different processing order for the decoded frames, which is derived by following the 
processing order of Figure IV-18 in a bottom-up manner; this is shown in Figure IV-19, using MPEG 
notations (I-, P- and B-frames), where the superscript indicates the decoding temporal level (layer) and 
subscript r  indicates residual error-frame information. As shown in the figure, the decoded residual 
information is added back to the decoded frames and the result is subsequently used as a reference. 
Figure IV-19 indicates that this leads to a multi-layer decoding architecture that essentially uses P and 
B frames within each GOP. Due to the different layers, the prediction follows a non-sequential 
pattern in time. In practice, a series of standard MC-DCT decoders can be used to decode the frames 
of each temporal layer separately (I-P3, P2-P2, and B1-B1-B1-B1) and then cross link the decoded 
output of the current temporal level with each lower temporal-layer reference. 
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Figure IV-18. The modified multi-layer base-layer encoding. 
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Figure IV-19. The modified decoder-side prediction structure, using MPEG video coding notations (I-, P- and 
B- frames). 
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4.4.3 Distortion Control for Open-loop Spatial-domain and In-
band Motion Compensated Prediction 

One problem that arises in open-loop MCP systems, such as the one of the previous subsection, is 
that significant variation in the quality level of the decoded video frames is observed. For illustration 
purposes, such an example is given in Figure IV-20, where it is shown that experimental PSNR values 
within each GOP (produced by a coder using open-loop MCP) can vary as much as 5 dB. These 
variations in the distortion can lead to bad visual quality and annoying flickering effects, especially at 
low bitrates. In this subsection, we investigate a control mechanism for limiting the PSNR fluctuations 
in decoding schemes based on open-loop spatial-domain and in-band MCP [73] [74]. We note that, 
although the compressed error-frames of each GOP are decompressed at (approximately) the same 
quality level in the experimental example of Figure IV-20, the lack of temporal motion-compensated 
update for the different temporal decomposition levels leads to periodically varying distortion [59]. 
Although the inclusion of temporal MCU may alleviate this effect, this may be undesirable due to 
backward compatibility issues (e.g. systems of Subsection 4.4.2) or due to the increase in the codec 
delay coming from the combination of MCP with MCU [59]. 

For the generic case of open-loop MCP with multiple references, the distortion in a decoded frame at 
any level in the temporal pyramid can be expressed as a function of the distortions in the reference 
frames at the same level. This allows for controlling the achieved PSNR fluctuations in the temporal 
pyramid in function of the percentage of pixels coming from each reference frame at the given point 
in the temporal structure. We formulate our approach for the case of bidirectional MCP, but the 
applicability of the proposed framework can be extended to the generalized form of UMCTF, if 
additional control parameters are utilized. 
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Figure IV-20. An example of frame-by-frame PSNR for the “Foreman” sequence using open-loop bidirectional 
MCP. 
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Within each GOP of the sequence, we denote the n -th reconstructed frame of temporal level t  as 
t
nA . For simplicity we restrict the description to the performance of motion estimation and 

compensation (ME/MC) in the spatial domain. However, the derivations of this subsection also hold 
for systems that perform in-band ME/MC, as it will be shown later. 

For the systems of Figure IV-15 that follow the temporal decomposition of Figure IV-14 (albeit 
including also bidirectional MCP), the process is reversed at the decoder, i.e. all the vertical arrows in 
Figure IV-14 change direction and the process occurs bottom-up, starting from the last temporal 
level. Thus, at the decoder we have 2 ,  0,.., 1t u

u t
n nA A u t−⋅ = = − , i.e. the reconstructed t

nA  frame at 
level t  remains unchanged for all the temporal levels u  smaller than t , and it eventually consists the 
output frame  at position 2tn ⋅  of the current GOP (if decoded at full frame-rate). If unidirectional or 
bidirectional MCP is used, the reconstruction of each 1

2 1
t
nA
−
+  frame at the decoder can be modelled by 

the system of Figure IV-21. 

In this system, the inputs consist the reconstructed previous and next frame of level t  of the temporal 
pyramid ( t

nA and 1
t
nA +  respectively) and the corresponding decoded error frame t

nH . Additionally, 
the motion vectors are inputs to the system of Figure IV-21 and they are separated to vectors that link 
the previous, the next, or a weighting of the previous and next frames ( ( )tnv A , ( )1

t
nv A +  or 

( )1,
t t
n nv A A + ) respectively. The output is the reconstruction of the current frame of the temporal 

pyramid at level 1t −  (frame 1
2 1
t
nA
−
+ ). 
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t
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t
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Figure IV-21. The system that performs the reconstruction of the frame 1

2 1
t
nA
−
+  in the temporal pyramid. 

 

By analyzing the block-based operation of the system of Figure IV-21, for any block i  of the 
reconstructed frame t

nA  it holds that: 

  1
2 1 1( ) ( )( ) ( ) ( ) ( )

p m

t t t t
n n n ni p v i m v i iA w A w A H
−
+ += + +  (4.26) 

where i  represents the index of the current block, ( )pv i , ( )mv i  are the motion vectors associated with 
this block (from the previous and next frame, respectively) and pw , mw  are weights that change 
according to the MCP mode of the current block. Specifically: 
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• 1pw =  and 0mw =  for the MCP process that links the current frame with the previous one 
(frame t

nA ), 

• 0pw =  and 1mw =  for the MCP process that links the current frame with the next one 
(frame 1

t
nA + ), 

• 0.5p mw w= =  for the MCP process that links the current frame with both the previous 
and next one. 

Naturally, for the case where 1pw = , we have ( ) 0mv i =  and, vice versa, for 1mw =  we have 
( ) 0pv i = . An additional case exists with 0p mw w= = , in which the block is intra coded. For 

simplicity we omit this case from the presentation. However, it can be included in the overall 
description if the utilized motion estimation scheme is using selective intra coding.  

For each block i , we estimate the mean square error of the output of the system of Figure IV-21 as:  

  { } 1
12 1

211 2 2
2 12 1[ , ] [ , ] { } {( ) }t t tt

n n nn

tt
nn i p m iA A HA

x y
A x y A x y e w e w e e−

++

−−
++ − = = + +∑∑E E E  (4.27) 

where ( , )x y  are the coordinates of each pixel belonging to block i , Xe  is the random variable 
defining the reconstruction error of frame X , and { }iiE  denotes the expectation operator calculated 
for each block i . 

Under the assumption that no correlation exists between the decoding error of each block i  of 
1,  ,  t t t

n n nA A H+ , i.e. 
1 1

{ } { } { } 0t t t t t t
n n n n n ni i iA A A H A He e e e e e

+ +
⋅ = ⋅ = ⋅ =E E E , equation (4.27) becomes: 

  1
12 1

2 2 2 2 2 2{ } { } { } { }t t tt
n n nn

i p i m i iA A HAe w e w e e−
++

= ⋅ + ⋅ +E E E E  (4.28) 

We can introduce a control parameter a  in the MCTF scheme by expressing the error of each block 
of the output shown in equation (4.27) as: 

  { }1
12 1

2 2 2{ } ( 1) max { } , { }t tt
n nn

i i iA AAe a e e−
++

= + ⋅E E E  (4.29) 

Higher values for a  indicate a larger increase in the expected distortion of the frame 1
2 1
t
nA −
+  and hence 

a larger PSNR fluctuation in the decoded output is expected. For 0a → , the PSNR behaviour is 
expected to be quasi-constant. 

In open-loop wavelet-based compression schemes utilizing embedded coding, the utilized codec can 
estimate the mean-square error at the end of each integer or fractional bitplane pass through each 
frame [3] (e.g. when compressing the error frames t

nH  of any temporal level t ). Moreover, this mean-
square error can also be associated with the achieved rate in the embedded code. Hence, in order to 
link the derived result of (4.28) with the embedded coding process, our target is to establish a value 
for the mean square error of every frame t

nH  so that we expect the increase in the error of each 
reconstructed frame of temporal level 1t −  to be bounded by (4.29). As a result, to make one value 
for the total decoding error of frame t

nH , we assume that pp , mp  are the percentages of pixels in the 
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frame 1
2 1
t
nA −
+  that are linked with the previous and next frames ( 1,t t

n nA A + ) respectively, during the ME 
process. It follows that (1 )p mp p− −  gives the percentage of pixels that were bidirectionally 
predicted from both the previous and next frames, under the assumption that no intra coding is used.  

In total, by replacing equation (4.29) in (4.28) for each block i  and solving for 2{ }t
n
iHeE , we reach the 

following formulations for the desired error of frame t
nH : 

Case 1: If 1
2 1

2 2{ } ( 1) { }tt
nn AAe a e−

+
= + ⋅E E : 

 

 
1

2 2 2{ } (0.25 0.75 0.75) { } (0.25 0.75 0.25) { }t t t
n n n

n p p nH A Ae p p a e p p e
+

= − + + ⋅ + − − ⋅E E E .(4.30) 

Case 2: If 1
12 1

2 2{ } ( 1) { }tt
nn AAe a e−
++

= + ⋅E E :
 

 
1

2 2 2{ } (0.25 0.75 0.25) { } (0.25 0.75 0.75) { }t t t
n n n

n p p nH A Ae p p e p p a e
+

= − − ⋅ + − + − ⋅E E E .(4.31) 

Using expressions (4.30), (4.31), one can establish a control-mechanism for the distortion variation, as 
outlined in the algorithm of Figure IV-22, in which point 2.5 in the description is not considered. If 
point 2.5 is included, the algorithm translates into a rate-control mechanism where the expected 
distortion at all the temporal levels satisfies (4.29). The proposed control scheme is applicable on the 
bitstream extractor of the embedded bit-stream, as long as an embedded wavelet-based compression 
scheme is used during the encoding, and a set of truncation points (R-D points) for each frame is 
generated during encoding. Additionally, for each frame, the percentage of blocks predicted from the 
previous and next frames has to be retained as well. 
 
 

1. During encoding: 
1.1. Establish q  rate-distortion points for each frame in the MCTF of the GOP. For each frame, keep 

also the percentage of the frame that was predicted from the previous and the next reference 
frame in the current temporal level ( ,p mp p ) respectively. 

2. During the parsing stage: 
2.1. For each GOP, establish the maximum number of temporal levels maxt . Establish the value of a . 
2.2. For frame max

0
tA  (the remaining A-frame of the MCTF of the GOP), read the set of q  distortion 

points max
0

2
1,..,[ ( )]t u qAD e =  and associated rates max

1,..,0[ ( )]t
u qR A = , which were produced during 

embedded coding of the frame. 
2.3. For each of the q  distortion values max

0

2
1,..,[ ( )]t u qAD e = , and for all max max, 1,..,1t t t= − , apply 

equations (4.30), (4.31) to establish the corresponding set of expected distortion points 2[ { }]t
n
uHeE  

for the t
nH  frames in the GOP, with max0 2t tn −≤ < . 

2.4. For each of the q  points 2[ { }]t
n
uHeE , 1,..,u q= , identify for every frame t

nH , max0 2t tn −≤ < , 
the bitstream truncation point u�  for which the distortion 2[ ( )]t

n
uHD e �  is the closest to theoretical 

distortion 2[ { }]t
n
uHeE  calculated at the previous step. Keep this bitstream truncation point and also 

the associated rate [ ( )]tn uR H � . 
2.5. If rate-control is desired, scan the produced set of q  distortion-rate points of frame max

0
tA  and 

iterate through steps 2.2–2.4, in order to match the average rate constraint. 
Figure IV-22. Algorithm for (a) controlling the distortion variation (without considering 2.5), and (b) a rate-
control scheme (considering 2.5). 
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Although the previous scheme was presented for the case of bidirectional MCP several expansions are 
possible. Below, we list a few ideas: 

• Modify the proposed scheme for the case of in-band motion estimation and compensation, 
i.e. the bidirectional, k -level, IB-MCP scheme. 

• Incorporate more reference frames in the proposed distortion-control framework. 

• Incorporate the use of update lifting-steps during the temporal decomposition. 

Concerning the first point, one can follow the same rationale as before in order to reach the 
conclusion of equations (4.30), (4.31): if a separate in-band MCP occurs per resolution level, then the 
procedure can be simply formalized separately for each spatial resolution level. In this case, one ends 
up with the set of equations (4.30), (4.31) with the expectation of the reconstruction-error calculated 
per resolution level, and also with the percentages of the blocks compensated from the previous and 
next frames ( ,p mp p ) respectively, generated per resolution level.  

Concerning the second point, longer filters can be incorporated in the proposed scheme by using 
more reference frames. In this case additional weights apart from ,p mw w  will be incorporated in the 
scheme (e.g. equations (4.30), (4.31)). 

Finally, for the third point, the application of the update step modifies the reference frames during the 
MC process. Since several schemes are still under investigation for the efficient application of the 
update step (see for example [75]), this topic was not investigated. The application of the update step 
in the temporal decomposition approximates an orthonormal temporal decomposition; consequently 
the distortion fluctuations are limited. This is also practically demonstrated in the experimental section 
of this chapter. As a result, the tradeoffs of controlling the distortion via the proposed scheme in the 
case where the update lifting step is used in the temporal decomposition are less important.  

4.5 In-band Motion Compensated Temporal Filtering 
Open-loop motion compensated prediction can be extended to motion compensated temporal 
filtering with the inclusion of motion compensated update in the temporal lifting decomposition, as 
shown in Chapter III. In this section we present a framework for in-band motion compensated 
temporal filtering (IBMCTF) [12], which can be seen as an extension of the conventional spatial-
domain motion compensated temporal filtering (SDMCTF). In the related literature, SDMCTF that 
uses wavelet-based coding techniques for the compression of the produced H  and L  frames, is also 
called as a “ t +2D” transform, to emphasize the order of the application of the DWT [76] [13] [20]. 
Equivalently, IBMCTF corresponds to a “2D+ t ” decomposition structure.  

As explained before, one particular aspect of the proposed in-band video coding systems is that, due 
to the spatial aliasing introduced by 2-D DWT, a complete-to-overcomplete discrete wavelet 
transform is performed. In this way aliasing-free reference frames are used during open-loop in-band 
motion compensated prediction and in-band motion compensated update (IB-MCU). This incurs an 
additional penalty in complexity versus the equivalent SDMCTF system. However, as it will be shown 
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in the experimental results of this chapter, IBMCTF enables improved spatial scalability versus 
SDMCTF. Moreover, based on a fast transform proposed in Chapter V, the computational and delay 
overhead introduced by the CODWT can be reduced.  

4.5.1 In-band Motion Compensated Update 

The application of IB-MCU is based on extending the concept of MCTF in the wavelet domain [12]. 
Figure IV-23 displays an instantiation of this framework. The IB-MCP step shown in Figure IV-23 is 
identical to that of the bottom part of Figure IV-15 and is expressed analytically by (4.25), with the 
right side of the equation multiplied by 1

2 . For each decomposition level l , IB-MCU is performed by 
inverting the motion information for each subband and updating the reference subband of level l . If 
a non-zero ODWT phase 1 1(2 ) (2 )

, ,( , )
l lt t

U m U np pF F  was used during IB-MCP, then a non-zero ODWT phase is 
taken from the error frame subbands l

U tHT . This is performed by the second l
US  operator of Figure 

IV-23, which precedes the IB-MCU operator U .  

 

Temporal
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Figure IV-23. In-band motion compensated temporal filtering for each resolution level l , 1 l k≤ ≤ . 

 

In particular, two aspects have to be treated when inverting the wavelet domain motion information 
generated by (4.25): inversion of an in-band motion vector 1 1(2 ) (2 )

, ,( , )
l lt t

U m U nd dF F  with non-zero integer 
ODWT phase component 1 1(2 ) (2 )

, ,( , )
l lt t

U m U np p   
      
F F , and, additionally, inversion of motion vectors pointing 

to the interpolated wavelet coefficients at a non-zero fractional ODWT phase 1 1(2 ) (2 )
, ,( , )
l lt t

U m U ni iF F  of the 
reference frame. For both cases, a strategy following the technique used to obtain arbitrary sub-pixel 
accuracy in spatial-domain MCTF is proposed [12]. A pictorial example showing the one-dimensional 
case of a single-level in-band prediction and update is given in Figure IV-24. As shown there, we opt 
to invert the in-band motion vector to the immediately-lower UDWT position in the reference frame. 
Notice that, as described in subsection 4.1.3, we always assume that arithmetic operations applied in 
ODWT phases and in-band displacement vectors are always performed in the UDWT domain, i.e. 
after the ODWT-to-UDWT transformation, and the result is converted back to the ODWT domain. 
Hence, we always assume that the motion inversion occurs in the UDWT domain. For the example of 
Figure IV-24 where a single-level ODWT is performed, the UDWT representation of the LL  
subband has an immediate correspondence to the ODWT domain since even ODWT-phases 
correspond to even UDWT positions and odd ODWT-phases correspond to odd UDWT positions. 
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Figure IV-24. The application of in-band motion-compensated update step after the corresponding in-band 
prediction step. A simple one-dimensional example with two consecutive frames (LL  subbands) is presented, 
where the in-band block-size for MCP is 1 2mB = , the in-band displacement vector is 1

, 3LL md = , the ODWT-
phase component is 1

, 0.5LL mp = , and 2R = . 

 

In total, the in-band MCU can be formulated as follows. It is first defined that: 

  
1

1

(2 )
,res

, (2 )
,

0,           if 0

1 ,  otherwise  

l

l

t
U m

U m t
U m

i
i

i

 ==  −

F

F
, (4.32) 

  
1 1

1

(2 ) (2 )
, ,

, (2 )
,

,      if 0

1,  otherwise   

l l

l

t t
U m U m

U m t
U m

p i
p

p

   =   ′ =    −    

F F

F
 (4.33) 

  
,res

,
,

0,              if 0

2 ,   otherwise 

U m
U m l

U m

p
p

p

′ ==  ′−
 (4.34) 

  
,res

,

0,  if 0

1,   otherwise 
U m

U m

p
d

′ == 
. (4.35) 
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In addition, we define res
,U ni , res

,U np , res
,U nd  in the same successive manner. Then, for each wavelet 

coefficient ( , )m n  of subband U  of temporal level l , the IB-MCU process, can be written as [12]: 

  [ , ] 0l
Uc m n = , [ , ] 0l

U tZ m n =T  (4.36) 

 [ ]

1 1 1 1

res res res res
, , , ,

1 1 1 1

(2 ) (2 ) (2 ) (2 )
, , , ,

res res
( , ) , ,,( , )

(2 ) (2 ) (2 ) (2 )
, , , ,

[ , ] [ , ]

,

[ , ] [ , ] 1

l l l l

U m U n U m U n

l l l l

t t t tl l
U t U tU m U n U m U n

l l
i i U t U m U nU p p

t t t tl l
U UU m U n U m U n

Z m d n d Z m d n d

H m d n d

c m d n d c m d n d

− − ← − −

+ − −

− − ← − − +

F F F F

F F F F

T T

I S T  (4.37) 

 [ ]1
2 max{ [ , ],1}

[ , ] 2 [ , ] ,l
U

l l l
U t U t U tc m n
L m n A m n Z m n= +T T T  (4.38) 

where [ , ]l
Uc m n  is the connection map of subband U  of level l , and a b←  indicates an assignment 

operation, i.e. the value of variable or expression b  is assigned to variable or array element a . Each of 
(4.36) – (4.38) is performed separately for all the subbands of each decomposition level. Similar to 
spatial-domain MCTF, the successive definitions of (4.32)–(4.35) perform phase inversion of the in-
band motion vector of the interpolated ODWT of the error frame: first the fractional (interpolated) 
ODWT-phase component 1 1(2 ) (2 )

, ,( , )
l lt t

U m U ni iF F  is inverted to res res
, ,( , )U m U ni i  and then the integer part of the 

ODWT-phase component 1 1(2 ) (2 )
, ,( , )
l lt t

U m U np p   
      
F F  is inverted to res res

, ,( , )U m U np p . Finally, the in-band motion 
vector is modified by res res

, ,( , )U m U nd d .  

Notice that, for the case where 2 [ , ]l
U tA m nT  is unconnected, the proposed in-band temporal filtering of 

(4.36) – (4.38) is simplified to the 1/2 filter, i.e. the temporal Haar without the update step, since 
[ ], 0l

U tZ m n =T . 

4.5.2 Advanced In-band Motion Compensated Prediction and 
Update 

As for the case of spatial-domain MCP and MCU, one can define in-band MCP and MCU 
incorporating variable block-size, multi-frame, multihypothesis ME techniques. Such an example can 
be realized with long temporal filters. 

In general, in order to retain an orthonormal temporal decomposition, one must perform in-band 
MH-MCP and in-band MH-MCU via a series of lifting steps that normalize the magnitude of each 
wavelet coefficient of subband U  and level l  of the temporal-average (or temporal low-frequency) 
frame [ , ]l

U tL m nT , according to the update connection map [ , ]l
Uc m n . This follows the normalization 

process performed in long temporal filters during the conventional SDMCTF [62]. As a result, for 
advanced MCTF within each subband U  of each resolution level l , we can assume that a total of l

UΛ  
pairs of MH-MCP and MH-MCU steps take place. Notice that, in principle, the separate application 
of temporal filtering across the subbands and resolutions of the spatial decomposition of the input 
frames allows for different temporal filters to be applied in different spatial frequencies and spatial-
resolutions. The proposed formulation of this subsection enables this by specifically expressing the 
temporal lifting steps performed in the subbands of each decomposition level of the spatial transform. 
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Similar to conventional lifting [43], the first temporal lifting step for all subbands of all resolutions is 
the trivial polyphase separation, albeit in the temporal direction, i.e.: 

 0
2[ , ] [ , ]l l

U t tL m n A m n= UT T  (4.39) 

  0
2 1[ , ] [ , ]l l

U t U tH m n A m n+=T T  (4.40) 

For each subband of each resolution level, each subsequent pair of MH-MCP and MH-MCU steps 
l
Uλ , with 1 l l

U Uλ≤ ≤ Λ , is performed according to the following procedure.  

Firstly, the MH-MCP that corresponds to step l
Uλ  utilizes subbands 1l

U qH λ−T  with temporal lifting 
coefficients ,

l
U qα  and subbands 1l

U tAλ−T ; the set of permissible values for q  depends on the specific 
lifting dependencies of the specific subband U  and spatial decomposition level l ; without loss of 
generality, we assume that q  is bounded by init( )lp Ut λ  and end( )lp Ut λ  around the time instant t  (and does 
not include t ). For this case, MH-MCP for each coefficient ( , )m n  of each subband U  of each 
resolution level k  can be expressed as: 
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, , , ,
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l lq qt q t ql U m U np U

l qq t
U m U
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q ql l l l l l

U U U q U q U qt t U m U n
p pq t t

l l
U q U q

p p
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p U l ll q t q tU
l qq t
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t t
q ql l

U q U m U n
q t

H m d n d
λ

λ
+

  = +    

        
∑ B

B BT

 (4.41) 

Note that, for each subband U  of each spatial decomposition level l , the parameters init( )lp Ut λ , 
end( )lp Ut λ , and init end, 1 ,1, ( ) , ( ), , , , ,l l

p pU U

l l l l
U UU t t U t tλ λα α α α−− +… … , are directly taken from the lifting factorization of 

the chosen filter-bank [43], while , [ , ]l
U qw m n  and - -( ) ( )

, ,( , )
l l
t q t qq q
U m U nd dF F  or ( ) ( )

,( , )
l l
q t q tq q

nU md d− −B B  are produced by 
the utilized in-band multihypothesis motion estimation algorithm. For simplicity in notations, we did 
not include the interpolation operation in (4.41). 

For the corresponding MH-MCU, for each subband U  of each decomposition level l , the update 
connection map, l

Uc , and the frame containing the motion inversion information, l
U tZT , are first 

initialized as: 

  [ , ] 0l
Uc m n = , [ , ] 0l

U tZ m n =T  (4.42) 

Subsequently, MH-MCU utilizes frames l
Ul

U qH λT  with lifting coefficients ,
l
U qβ  and frame 1l

Ul
U tL

λ −T . 
Similarly as before, the set of permissible values for q  depends on the specific lifting dependencies for 
the temporal filtering of the specific subband and spatial decomposition level; without loss of 
generality, we assume that q  is bounded by init( )lu Ut λ  and end( )lu Ut λ  around time instant t  (and does not 
include t ). For this case, MH-MCU can be performed by a series of steps that invert the motion 
information generated during MH-MCP of stage l

Uλ . Specifically, first the inversion of the forward 
prediction is performed, where for each init{ ( ), , 1}l

u Uq t t tλ= − −…  we have: 
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max{ [ , ], ( )}
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Subsequently, after another initialization performed by (4.42), the inversion of the backward 
prediction is performed, where for each end{ 1, , ( )}l

u Uq t t t λ= + +…  we have: 
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The parameters init( )lu Ut λ , end( )lu Ut λ , and init end, 1 ,1, ( ) , ( ), , , , ,l l
u uU U

l l l l
U UU t t U t tλ λβ β β β−− +… … , are directly taken from 

the lifting factorization of the chosen filter-bank [43]. In addition, ( )lUt λF  and ( )lUt λB  are derived 
from the scaling factor of the lifting formulation of the wavelet decomposition. 

4.6 An Advanced Motion Estimation Algorithm for 
MCTF 

In this section we present an advanced motion estimation algorithm and its instantiation for MCTF. 
In particular, our proposal consists of a new algorithm for optimized multihypothesis motion 
estimation for MCP and MCU using block-based ME/MC [12]. The motion estimation algorithm 
operates following a macroblock concept, i.e. the current frame (or wavelet subbands of each 
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resolution level for IBMCTF) is partitioned into non-overlapping blocks of B B×  pixels (or 
2 2l l
B B×  

wavelet coefficients for each subband of resolution l ). Then the algorithm establishes predictions for 
the macroblocks based on a set of reference frames and produces a set of motion-vectors and the 
predicted error frame (or error subbands of each resolution). After the performance of the prediction 
step for a sufficient number of frames, the corresponding update step inverts the error-frame 
information to the reference frames using the inverse motion vector set and creates the temporally 
lowpass-filtered frames to be used for the subsequent temporal levels. 

A pruning algorithm for variable block-size ME has already been proposed in the context of MCTF 
[61]. Our approach differs from [61] in the use of multihypothesis, the use of multiple reference 
frames, which correspond to longer temporal filters, and the more exhaustive approach for the 
macroblock prediction-mode selection. 
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Figure IV-25. (a) Examples of variable block size multihypothesis prediction of frame 2 1tA +  using frames 2tA , 

2 2tA +  as references. The arrows indicate the prediction direction. (b) The corresponding example of the update 
step: The information of the produced error frame from the multihypothesis prediction is used to update the 
two reference frames. To complete the creation of the tL  frame, the previous update step with error-frame 

1tH −  is necessary, leading to a temporal dependency of five frames. 

 

Multihypothesis prediction has been originally proposed in the context of closed-loop video coding in 
order to improve prediction efficiency [64, 77, 78]. Figure IV-25(a) illustrates that the basic concept 
can be seen as a generalization of bidirectional prediction: each block may be predicted using a 
unidirectional or bidirectional prediction with one or two reference blocks. To utilize such a technique 
in MCTF-based coding, we couple the prediction step with the corresponding update step as shown 
in Figure IV-25(b): the current error frame is used to update the reference frames and create a set of 
L -frames.  

The example of Figure IV-25 corresponds in general to temporal filtering using the motion-
compensated 5/3 filter-bank. However, as demonstrated in Chapter III, due to the adaptive properties 
of the optimized multihypothesis MCP and MCU, the temporal filtering is locally adapted to: motion-
compensated 1/3 filter-bank (5/3 with no update step), motion-compensated bidirectional 2/2 (Haar) 
filter-bank and the motion-compensated, bidirectional, 1/2 filter-bank (Haar with no update step). In 
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general, the optimized multihypothesis MCTF proposed in this section can be seen as a 
rate/distortion optimized adaptive motion-compensated temporal lifting decomposition with 
bookkeeping: the algorithm performs a best-basis selection process in the direction of motion and 
indicates the decisions to the decoder using the motion-vector information. Although our experiments 
are restricted to the biorthogonal motion compensated filter-banks with maximally one predict-and-
update step, generalizations to smoother wavelet families that capture better the long-term temporal 
correlations can be envisaged, as demonstrated by the formulation of subsection 4.5.2. 

4.6.1 Prediction Step 

Although the proposed ME is based on the algorithm of [77], its novelty lays in the joint optimization 
process for the multihypothesis prediction with variable block sizes and in its ability to generate a rate-
constrained motion-vector data set for a multiple set of rates, without multiple application of the 
complex multihypothesis estimation step. The latter is possible by performing the operation of 
optimized prediction for each macroblock in three different phases, as shown in Figure IV-26. 

• Macroblock split. Starting from a macroblock of B B×  pixels (or 
2 2l l
B B×  coefficients in the case 

of IBMCTF at resolution level l ), a splitting process generates a number of non-overlapping 
subblocks. In the presented experiments we follow a quadtree splitting approach to P  
partition levels, where each level sp  contains 2 2s sp p×  subblocks, 0 sp P≤ < . For each 
level sp , a number of subblocks have been pruned-out due to the selection of their parent 
block during pruning. As a result, for each level, the following steps are only performed to the 
subblocks that have been selected during the pruning step of the previous level. 

• Multihypothesis ME. For the current subblock, a local splitting to its four quadrants is 
performed. A number of hypotheses M  is established for the subblock and its four 
quadrants, with 2M =  in our experiments. The case of 0M =  can correspond to the use 
of intra-prediction modes based on the causal neighbourhood around the current subblock 
(or subblock quadrant). For the current subblock (or subblock quadrant) and each hypothesis 

1,..,m M= , we apply the multihypothesis estimation algorithm of [77] without a rate 
constraint. This means that, for 1m > , the algorithm initiates all motion vectors and then 
iterates by estimating one vector at a time so that the prediction error of the current subblock 
is minimized. When no vector was modified during the last iteration, the algorithm 
terminates. As a result, for each hypothesis m , the combination of motion vectors that 
minimizes the produced error-frame distortion in the certain subblock (or subblock quadrant) 
of the macroblock is chosen. In our experiments, we use the sum of absolute differences as 
the distortion measure. The motion vector data for each hypothesis and the corresponding 
distortion are kept in a structure for use in the following steps.  

• Pruning process: The pruning process performed for the current subblock is given in Figure 
IV-27. Three distinct passes occur: The first pass, RD_Estimation(i), identifies the rate and 
distortion of each possible combination in  (partitioning point) of hypotheses of the current 
subblock or its quadrants. The second pass, RD_Prune, scans the list of acceptable points 
N  to establish a monotonically decreasing slope value jS  for each point jn , jn ∈ N , 
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similar to the post-compression rate-distortion optimization procedure of JPEG2000 [3]. 
Finally, the third pass minimizes the Lagrangian cost function ( ) ( )j jR n D nλ+ ⋅  by 
establishing the partitioning point ( )

min

1argmin
j

j j
n

n S λ−

∈
= −

N
, i.e. the partitioning point with 

a slope value closest to 1λ− . The splitting and hypothesis number for each subblock (or for 
the subblock’s quadrants) is used for motion compensation, if no additional partition levels 
are to be performed. Otherwise, an additional level of macroblock split occurs and the 
multihypothesis ME and pruning occur for the subblocks that have been selected in the 
previous levels, and their quadrants.  
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Figure IV-26. Proposed motion estimation for MH-MCP. 
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For the current subblock at ( ),s sr c of partition level ,  0s sp p P≤ <  in the macroblock: 

  If 0sp =  then Set , deleted= ∅ = ∅N N    // Initialize to zero: no MB partition exists yet. 

  Else deleted=N N     // Restore partition points excluded before. 

  For every p : {0,1}p ←    // For all the different combinations of hypotheses in  

   For every i : ( )
22{0,1, , 1 -1}
p

i M← +…   // the subblock ( 0p = ) and its quadrants ( 1p = ). 

    Begin_Estimation(i): 

    Set 0R ← , Set 0D ←  

    For every quadrant of the subblock at ( ),r cb b : [ ], 0,2 1 ,p
r c rb b b∈ − ∈ N  

     Set ( ) ( )( )2, 1  mod  1( ) p
r cb b

r ch b b i M M+ ← + +    // mod: modulo operator 

     Set ( )( )Estimate , , ,R r c r cR R b b h b b← +  

     Set ( )( )Estimate , , ,D r c r cD D b b h b b← +  // precalculated from the ME step 

    Set remR R R← + , remD D D← +   // rate,distortion of remaining parts of MB 

    Create ( ) ( )[ ]
,

, , , , , ,{ }
r c

i r c s s sb b
n R D h b b r c p= ∪  

    For every ,j jn n ∈ N  

     If ( ) ( ) ( ) ( ) and j i j in R n R n D n D< ≤  then Goto End_Estimation(i) 

    Add in  to N  

    End_Estimation(i) 

  // prune the list of valid R-D points to make a monotonically-decreasing slope 

  Begin_RD_Prune: 

  Set 0l = , Set ( ) 0ln R = , Set ( )ln D = ∞    // Set the initial point 

  For every ,j jn n ∈ N  

   Set ( ) ( )j j lR n R n R∆ ← − , Set ( ) ( )j l jD n D n D∆ ← − , Set j
j

j

D
S

R
∆

←
∆

 

   If 0l ≠  and j lS S>  then Move ln  from N  to deletedN , Goto Begin_RD_Prune 

   else Set l j=  

  End_RD_Prune 

  Begin_Estimation_Truncation: 

  Input λ        // input of the control parameter 

  For every ,j jn n ∈ N  

   If 1 1
1j jS Sλ λ− −
+− < −  then Set jn  as the stop point 

  Apply_partition ( )jn     // apply the vectors and partition data of jn  

  End_Estimation_Truncation 
 

Figure IV-27. Pseudocode of the pruning algorithm for multihypothesis variable block-size prediction for each 
macroblock. We use the following notations: N is a list of partitioning points in the macroblock, it contains 
items in the form ( ) ( )[ ]

,
, , , , , ,{ }

r c
i r c s s sb b
n R D h b b r c p= ∪  where ,R D  is the rate, distortion respectively, 

( )
,

,
r c

r cb b
h b b∪ is the union of the quadrants of the subblock ( ),r cb b  each having a hypothesis ( ),r ch b b  and 

( ), ,s s sr c p  indicate the subblock coordinates in the macroblock; deletedN contains points that have been 
removed fromN ; ( )EstimateR i  estimates the rate for coding the motion vector data of the subblock 
( ),r cb b  using the first order entropy, ( )EstimateD i estimates the prediction error of the 
subblock( ),r cb b ; remR , remD  contain the rate, distortion of the remaining area of the macroblock (besides area 
covered by the current subblock); λ is the Lagrangian control parameter. 
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4.6.2 Update Step 

The application of the update step for the creation of the tL  frame (Figure IV-25) occurs in two 
consecutive phases, and it follows the design presented analytically in Chapter III: first the update 
information is created by inverting the error frame samples of the 1,t tH H−  frames using the inverted 
motion-vector fields. To avoid strong motion-related artifacts in the output tL  frame and the irregular 
increase of the image-sample magnitudes in multi-connected areas, a normalization process divides 
the magnitude of the update samples for each pixel with the number of connections. Finally, before 
the update coefficients are added to the reference frame, they are scaled according to the lifting 
equation for the update step, taking into account the type of the specific connection (Haar or 5/3 
filter-bank]). For the case of IB-MCU, analytical formulations for this process are given in subsection 
4.5.1 and 4.5.2. Although there have been proposals in the literature with motion estimation 
algorithms for MCU [8], practical designs have shown that these approaches do not significantly 
improve the compression performance of the coding system, while the overhead required for the 
additional motion-vector information is significantly increased [75]. Hence, these approaches are not 
investigated in this dissertation. 

4.7 Experimental Evaluations 
This section presents experimental evaluations of the in-band video coding algorithms of this chapter 
versus their corresponding video coding algorithms in the spatial domain, as well as versus DCT-
based closed-loop video coders. Various experimental evaluations of the different algorithms and 
tools were performed in a variety of publications, see for example [10-12, 26, 46, 47, 54, 68, 73, 74, 76, 
79]. This chapter summarizes these results and presents them in a more organized and uniform 
manner. All the algorithms tested in this section were implemented in “C++” and tested in an Intel 
Pentium-IV platform, with the exception of the closed-loop video coders, where the invocation of the 
“C++” codec modules (ME/MC, etc.) during encoding and decoding was done via a Matlab script. 

For all the basic video coding algorithms, the experimental evaluation was performed on set of five 
CIF test video sequences that represent a large variety of video content. The range of bitrates chosen 
for our tests corresponds to a broad range of practical bitrates for coding of CIF content, namely the 
region of 200 – 2000 kbps. Finally, wherever possible, all the algorithms were used with the same set 
of settings, which allows for a more thorough evaluation of the results. The following subsection 
analyzes the overall settings used for our comparisons, while the subsequent subsection (4.7.2) 
presents the experimental evaluation of the proposed coders using these settings. The two particular 
tools proposed within the open-loop prediction structure, namely the MPEG-compliant base-layer 
architecture for open-loop IB-MCP (Subsection 4.4.2) and the distortion-control algorithm of 
Subsection 4.4.3, are experimentally evaluated in Subsections 4.7.4.1 and 4.7.4.2, respectively. 
Subsection 4.7.5 evaluates the advanced motion estimation algorithm presented in Section 4.6, under a 
variety of settings. Finally, for the best settings of the coders that utilize the proposed motion 
estimation, a comparison against the state-of-the-art in non-scalable coding is carried out in 
Subsection 4.7.7. 
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4.7.1  Common Experimental Settings 

4.7.1.1 Temporal Prediction Structure 

For the coding experiments of the following subsections, all the video-coding schemes under 
comparison utilized a GOP structure with 16 frames. This is a standard scenario in video coding tests 
[80]; for sequences with replay rate equal to 30 Hz (30 frames-per-second), this scenario provides 
random access of the compressed bitstream at (approximately) half-second intervals. This is useful for 
providing fast browsing and “rewind” functionalities.  

Concerning the prediction structure, all the coding schemes that utilize the closed-loop architecture 
performed successive prediction using one I-frame and 15 P-frames; all frames were predicted from 
their (dequantized) previous frame. The open-loop architectures utilized 4 temporal decomposition 
levels; at each temporal level, unidirectional prediction from the previous frame was utilized. As a 
result, the utilized temporal decomposition corresponds to one I-frame and 15 unidirectionally 
predicted frames. This setting ensures that any potential differences in performance do not stem from 
the utilized MCP algorithm, but rather from the different frame-scanning pattern of each prediction 
structure (i.e. open loop vs. closed-loop) and, potentially, from the use of different settings for the 
spatial transform and the frame encoding (e.g. spatial-domain vs. in-band schemes – DWT-based vs. 
DCT-based coding). 

4.7.1.2 Utilized Test Material 

In our experiments we used five representative CIF sequences (with replay rate equal to 30 Hz). They 
have been chosen to represent a variety of content. Specifically, two of the chosen sequences 
(“Coastguard” and “Mobile”) contain camera panning with a variety of textures and object motions in 
the scene. Two other sequences (“Silent” and “Foreman”) present talking persons with and without 
random camera motion and complicated scene textures. Finally, the sequence “Stefan” is a sports 
video from a tennis game. All sequences have been downloaded from ftp://ftp.tnt.uni-hannover.de, 
which is currently the standard MPEG FTP site with video test material. These sequences have been 
used extensively during the experimental evaluation of the recent MPEG exploration on scalable 
video coding technology [80]. Each sequence originally consists of 300 frames. However, for the 
purposes of our tests, all sequences have been extended by 4 frames, by repeating the last frame. This 
stems from the fact that we opted to process an integer number of GOPs.  

4.7.1.3 Motion Compensated Prediction Parameters 

For all our tests, the codecs under comparison used block-based motion estimation with the full-
search (exhaustive) algorithm in order to determine the optimal motion parameters for each block. 
For the search process, the accuracy of the implemented codecs was set to quarter-pixel; for this 
purpose, the interpolators presented in Chapter 3 were used. The utilized block size was set to 
16 16×  pixels for SD-MCP, as this is the standard macroblock size used in MPEG codecs. The 
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search range was set to 16±  pixels around the current block position. We note that, although full-
search motion estimation was performed for the full-pixel positions within the search range, the 
fractional-pixel position of the best match was identified by refining the search around the position of 
the best-match found in the full-pixel grid.  

Concerning the in-band codecs, for IB-MCP performed in the single-level spatial DWT 
decomposition, an in-band block is considered to consist of all four blocks of 8 8×  wavelet 
coefficients at the corresponding locations of all four wavelet subbands. For IB-MCP performed in a 
two-level spatial DWT decomposition, an in-band block at each resolution level was considered to 
consist of all blocks of (32 2 ) (32 2 )l l− −⋅ × ⋅  wavelet coefficients of all DWT subbands of level l , 
1 l k≤ ≤ . We note that this scenario corresponds to the level-by-level in-band motion estimation 
algorithm, presented by equations (4.11) and (4.12), with dyadically-reduced block sizes for each 
resolution level. For all cases, the search range was set to (16 2 )l−± ⋅  in-band positions around the 
current in-band block position. For each level of IB-MCP, motion estimation (with the full search 
algorithm) was used to determine the optimal in-band motion parameters for each block. During 
motion estimation, all the phases of the ODWT were used and fractional phases corresponding to the 
equivalent of quarter-pixel accuracy were created in the UDWT domain, by using the interpolators 
presented in Chapter 3. Similarly as in the spatial-domain motion estimation, the fractional-phase 
position of the best match was identified by refining the search around the position of the best match 
found in the integer-phase ODWT grid.  

The previously-described settings for the in-band codecs present only one out of many possible 
configurations for in-band block sizes and search ranges. In general, we opted for the specific setting 
due to the fact that, on average, it appeared to produce similar overhead for the motion-vector 
information with the spatial-domain case. This is due to the fact that the chosen block sizes and 
search ranges for the in-band case resemble our selections for the spatial-domain schemes.  

4.7.1.4 Spatial Transform – Error-frame Compression 

For all the proposed codecs in this dissertation, the 9/7 spatial transform was used [44] (with floating-
point precision), as it consists one of the best-performing wavelet filter-banks in the literature and is 
also adopted in the JPEG-2000 standard [45]. Moreover, independent experiments [81] demonstrated 
that 16-bit integer-arithmetic implementations of this filter-bank achieve similar coding performance 
to the floating-point implementation, hence, from the complexity point of view, it represents a 
competitive solution to efficient DCT-based schemes. For all the CIF sequences, 4 spatial 
decomposition levels were performed. For the in-band coding schemes, this means that 4 k−  
additional spatial decomposition levels were performed to the residue of the LL  subbands of the k -
level IB-MCP.  

Concerning the compression aspects of the proposed schemes, the produced wavelet coefficients 
were quantized with successive approximation quantization [29] and then coded with the QuadTree 
Limited coder [70] [71], which uses quadtree coding of the significance maps and context-based 
arithmetic coding. This algorithm was presented in Chapter III.  
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4.7.1.5 Rate Control – Scalability Features 

For all the proposed coding schemes involving the closed-loop architecture, no rate-allocation was 
designed. Instead, similar to the test-model implementations of H.263+ [82] and H.264 [83], the 
distortion of the compressed video is controlled via the quantization factor for the I- and P- frames. 
In particular, for the QT-L coder, the coding always stopped at a certain pass of a certain bitplane; the 
choice of both the pass-number and bitplane-number is controlled by the user through a parameter 
file. By setting these parameters to the same value for all the frames prior to compression, small 
PSNR variation is achieved throughout large portions of each sequence.  

In general, for all the closed-loop coders compared in this dissertation, the experimental rate-
distortion points were always produced by varying the quantization parameters of each codec and 
measuring the produced compressed file-size and the achieved MSE in all the colour channels of the 
decoded video. As a result, all the closed-loop coders of this chapter are not scalable in bitrate. 
Moreover, the use of a GOP structure with only I- and P-frames does not provide the possibility for 
frame-rate scalability. As a result, although we have proposed fully-scalable extensions of these coding 
frameworks (e.g. see [26, 46]), we do not elaborate on their results in this dissertation. This is due to 
the fact that bitrate and frame-rate scalability is performed in a much more efficient manner within the 
open-loop architectures. For example, independent experiments [26] [15] demonstrated that bitrate 
scalability within the in-band closed-loop coding framework always incurs a coding penalty, similar to 
what is observed in conventional bitrate-scalable closed-loop video coding (e.g. the MPEG-4 FGS 
[65]). This motivated us to compare against the closed-loop coding algorithms in this chapter using a 
simple, non-scalable framework. Our choice provides the possibility of an elaborate experimental 
evaluation of the different schemes under the same conditions, i.e. without the influence of rate-
control algorithms or coding-efficiency loss incurred by bitrate and frame-rate scalability.  

In contradiction to the closed-loop predictive coding, open loop architectures exhibit seamless bitrate 
scalability due to the fact that rate-allocation is performed post compression. Simple and efficient 
algorithms exist in the literature that can match each bitrate accurately [75]. Usually, such algorithms 
consider the compressed bitstream of the entire sequence during the rate allocation. However, this can 
be localized to independent rate allocation for each GOP, if so desired. Our choice of using the entire 
sequence corresponds to the (commonly-used) noise-free case where the entire sequence is 
compressed once and stored in a video server. From this compressed bitstream, different bitrates need 
to be extracted and losslessly-transmitted at a later time to a variety of terminals (video clients), each 
having a certain connection bandwidth, display resolution and replay frame-rate.  

The bitstream extraction is performed by an extractor that follows the principles of the bitrate-scaling 
method used in [75]. In practice, this method is equivalent to the post-compression rate-distortion 
optimization (PCRDO) of JPEG-2000 [3], applied for 3-D data sets, i.e. the entire video sequence. As 
demonstrated in [75] [3], the extraction method used in the open-loop codecs of this dissertation can 
match each bitrate with a mismatch that is smaller than 0.5% for each desired bitrate. Similar to the 
common setting used in the literature [75], the rate needed to represent the rate-distortion points used 
for the PCRDO was not taken into account in the total bitrate measurement of each experimental R-
D point. We note though that, if transmitted to the terminal, these points will consume additional 
bandwidth. Nevertheless, their exclusion from the total bitrate of each experimental point makes the 
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comparison between open- and closed-loop architectures more accurate. Moreover, these points may 
affect the bitrate in a significant manner only in the low-rate regime. Finally, their use is mandatory 
only in the case when one needs to perform bitrate-scaling operations in order to transmit sequences 
of lower quality, resolution or frame-rate to other terminals. 

4.7.1.6 Motion Vector Coding 

Concerning the motion parameters of each proposed coding scheme, the motion vectors of each 
frame (and resolution in the case of in-band MCP) are compressed using adaptive arithmetic coding; 
no spatial or temporal motion-vector correlations were exploited. The motion-vector bitrate was taken 
into account during the rate-allocation. Although scalable coding of motion vectors enhances the 
performance for the low-bitrate regime [84] [85], we did not incorporate such coding schemes in our 
comparisons or any other advanced context-based motion-vector coding techniques [86]. Their 
impact on the overall coding performance is, typically, noticeable for the low-rate regime. 

4.7.2  Spatial-domain versus In-band Motion Compensated 
Prediction 

In the first set of comparisons, Figure IV-28 – Figure IV-32 present the obtained results with the 
codecs having the following features: 

• Closed-loop spatial-domain motion compensated prediction (“Closed-loop SD-MCP”), 
following the settings of the previous subsection. 

• Closed-loop in-band motion compensated prediction with one level of in-band ME/MC 
(“Closed-loop IB-MCP, 1 level”); the settings of this codec follow the ones defined in 
Subsection 4.7.1, with 1k = . 

• An H.263+ implementation [82]; the settings described in the previous subsection have been 
used. As a result, all the optional features of the codec such as deblocking, use of B-frames, 
etc., have not been used.  

All the bitrates reported in Figure IV-28 – Figure IV-32 were measured from the compressed file-
sizes. For each original frame [ , ]Am n  and each reconstructed frame i[ , ]Am n  consisting of M N⋅  
pixels represented in 8-bit precision, we use the classical peak-signal-to-noise ratio (PSNR) metric: 

 
i

2

10 1 1 21
0 0

25510 log
( [ , ] [ , ])M N

M N m n

PSNR
Am n Am n− −

⋅ = =

=
−∑ ∑

 (4.51) 

In addition, for each sequence, the mean PSNR used in our comparisons is defined by [87] [12]:  

 4 _ _ __
6

PSNR Y PSNR U PSNR VMean PSNR ⋅ + +=  (4.52) 

where _PSNR Y , _PSNR U , _PSNR V  represent the average PSNR (in dB) for each of the Y, U, 
V color channels of all the frames in the sequence, respectively. This is a commonly-used metric for 
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objective video quality measurements that incorporate the contributions of all color channels in the 
overall distortion. Our extensive experimentation revealed that, in most cases, the bitrate for the 
chrominance channels occupies roughly 30% of the overall bitrate for the texture information; hence 
we find the weighting used in (4.52) to be appropriate. As such, the mean PSNR metric is used in the 
majority of the results of this chapter to report the performance of the different schemes under 
comparison. 
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Figure IV-28. Comparison of closed-loop SD-MCP and IB-MCP architectures for the “Coastguard” sequence. 
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Figure IV-29. Comparison of closed-loop SD-MCP and IB-MCP architectures for the “Foreman” sequence. 
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Figure IV-30. Comparison of closed-loop SD-MCP and IB-MCP architectures for the “Mobile” sequence. 
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Figure IV-31. Comparison of closed-loop SD-MCP and IB-MCP architectures for the “Silent” sequence. 
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Figure IV-32. Comparison of closed-loop SD-MCP and IB-MCP architectures for the “Stefan” sequence. 
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The results of Figure IV-28 – Figure IV-32 show that the SD-MCP and IB-MCP closed-loop wavelet-
based video compression schemes achieve comparable objective performance to the DCT-based 
H.263+, under the same encoding settings. In particular, it was found that they outperform H.263+ 
for all the test sequences, with the exception of the “Silent” sequence. The average margin of 
improvement offered by the wavelet solutions varies from 0.3 dB to more than 2.0 dB (“Mobile” 
sequence). On the other hand, in the “Silent” sequence, a loss of 1.0 dB (on average) is observed.  

Among the two wavelet-based coding schemes, the results show that in all cases the two codecs 
appear to produce comparable results; one exception to this rule is observed in the “Mobile” 
sequence, where the SD-MCP based codec appears to outperform the IB-MCP based codec by 0.3 – 
0.5 dB over the entire range of bitrates.  

An example of a frame-by-frame comparison of the three schemes can be seen in Figure IV-33. All 
codecs appear to produce similar PSNR fluctuations across different frames for the quantization 
settings that correspond to approximately the same bitrate. This is a natural consequence of the 
quantizer-based rate-control that is present in all schemes under comparison. Concerning subjective 
evaluation of the results, it was observed that H.263+ and SD-MCP wavelet-based video coding 
generated similar types of artifacts, which mainly consist of strong blocking effects and blurriness at 
low bitrates. On the contrary, the IB-MCP codec displayed no blocking artifacts; instead ringing 
across the frame edges was observed, and also ringing effects were seen at the areas where the other 
coders displayed blocking artifacts. An example of the different types of visual artifacts can be seen in 
Figure IV-34. 
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Figure IV-33. An example of a frame-by-frame comparison between SD-MCP, H.263+ and IB-MCP, at 
(approximately) the same bitrate.  
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Figure IV-34. An example of the artifacts generated at low bitrates (12-th frame of the “Foreman” sequence); 
from left to right, top to bottom: original frame, H.263+ (205 kbps, PSNR Y: 30.0 dB), SD-MCP (215 kbps, 
PSNR Y: 30.4 dB), IB-MCP, 1 level (216 kbps, PSNR Y: 29.8 dB). 

 

In the second set of comparisons, Figure IV-35 – Figure IV-39 present the obtained results with the 
codecs having the following features:  

• Open-loop spatial-domain motion compensated prediction (“Open-loop SD-MCP”), 
following the settings of Subsection 4.7.1. 

• Open-loop in-band motion compensated prediction with one level of in-band ME/MC 
(“Open-loop IB-MCP, 1 level”); the settings of this codec follow the ones defined in 
Subsection 4.7.1, with 1k = . 

• The H.263+ implementation [82], with the settings used previously (Figure IV-28 – Figure 
IV-32).  

In this case, the results with the H.263+ scheme are repeated in order to serve as an anchor for the 
comparison between closed-loop and open-loop MCP architectures. 
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Figure IV-35. Comparison of open-loop SD-MCP and IB-MCP architectures for the “Coastguard” sequence. 
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Figure IV-36. Comparison of open-loop SD-MCP and IB-MCP architectures for the “Foreman” sequence. 

 



CHAPTER IV. IN-BAND ARCHITECTURES 

  

118 

200 400 600 800 1000 1200 1400 1600 1800 2000
24

25

26

27

28

29

30

31

32

33

34

35

Bitrate (kbps)

M
ea

n 
P

S
N

R
 (d

B
)

Mobile, CIF, 30Hz

Open-loop SD-MCP
H.263+
Open-loop IB-MCP, 1 level

 
Figure IV-37. Comparison of open-loop SD-MCP and IB-MCP architectures for the “Mobile” sequence. 
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Figure IV-38. Comparison of open-loop SD-MCP and IB-MCP architectures for the “Silent” sequence. 
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Figure IV-39. Comparison of open-loop SD-MCP and IB-MCP architectures for the “Stefan” sequence. 

 

The results of Figure IV-35 – Figure IV-39 present significant differences with the previously-
reported results for the closed-loop architectures. First, it is important to emphasize that all the results 
presented for each sequence with the open-loop wavelet-based coders were produced by extracting 
certain portions of one single compressed bitstream. On the contrary, the closed-loop schemes 
require separate compression and decompression for each experimental point of Figure IV-28 – 
Figure IV-32. Nevertheless, our experiments demonstrate that bitrate scalability does not appear to 
cause any PSNR saturation at high bitrates, an effect that is common for bitrate-scalable closed-loop 
video coders [65]. 

From the obtained results of Figure IV-35 – Figure IV-39, it appears that, for sequences with fast 
motion characteristics, the open-loop coding schemes are inferior to closed-loop MCP schemes. This 
becomes evident by comparing the results for the “Stefan” sequence, i.e. Figure IV-32 with Figure 
IV-39. Although the closed-loop wavelet-based schemes are comparable or superior to H.263+ for 
this sequence, the open-loop wavelet-based coders are outperformed by the DCT-based coder by 
approximately 1.5 dB in mean PSNR. We attribute this significant loss in coding efficiency to the fact 
that: (a) a fixed search range was used for all levels of the temporal decomposition structure of the 
spatial-domain and in-band open-loop MCP schemes, regardless of the distance between consecutive 
frames; (b) it appears that the simple block-based motion estimation used for the present experiments 
fails notably when the frame distance between consecutive frame increases, which is the case of the 
highest temporal levels of the open-loop schemes.  
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On the other hand, another notable difference in the results of the open-loop schemes appears in the 
“Mobile” sequence (Figure IV-30 and Figure IV-37). The experiments demonstrate that the open-
loop architectures provide an enormous coding gain versus H.263+, which, for the SD-MCP scheme 
can be more than 4 dB in the medium and high-bitrate regime. This seems to agree with independent 
observations about the efficiency of open-loop architectures for this particular sequence [75]. This test 
sequence is known to contain a high degree of spatial aliasing due to a large number of (uniformly-
moving) heavily-textured areas in every frame. It appears that wavelet-based open-loop MCP schemes 
with fractional-pixel accuracy treat this type of content more efficiently. This is also observed in the 
“Silent” sequence, where the background behind the speaker in the sequence consists of a static, 
heavily-textured, area; the results Figure IV-38 indicate that the open-loop wavelet-based architectures 
outperform the H.263+ coder; in practice, the comparison with their closed-loop equivalents (Figure 
IV-31) reveals that an increase of almost 2 dB is achieved in the mean PSNR at high bitrates.  

Finally, in sequences with medium texture complexity and medium motion activity, namely 
“Coastguard” and “Foreman”, the results appear to be rather comparable between open-loop and 
closed-loop architectures. One exception to this appears in the low-bitrate regime for the “Foreman” 
sequence, where the open-loop wavelet-based schemes perform worse than both the H.263+ and 
their closed-loop equivalents. We would like to reiterate that, apart from the different temporal 
prediction structure, open-loop SD-MCP used exactly the same prediction, spatial transform and 
compression settings as closed-loop SD-MCP; moreover the MCP settings also match the ones used 
for H.263+. Hence, as mentioned earlier, we attribute our observations to the fundamental differences 
between open-loop and closed-loop MCP. 

Concerning the comparison between spatial-domain and in-band MCP within the open-loop 
architecture, the experiments presented in Figure IV-35 – Figure IV-39 demonstrate that comparable 
coding efficiency is provided by both schemes. One significant exception is again observed in the 
“Mobile” sequence, where it appears that the SD-MCP based coder outperforms its in-band 
equivalent by a significant margin, which can reach almost 2.0 dB in mean PSNR for high-bitrates. It 
appears that the natural “de-blocking” mechanism present in IB-MCP (due to the performance of the 
inverse DWT after motion compensation at the decoder) decreases the coding efficiency significantly 
in cases where motion is predicted very accurately and no boundary discontinuities exist among 
neighbouring blocks. Due to the fact that, for this particular sequence, the chosen block-based motion 
estimation works exceptionally-well within the open-loop architecture, it appears that the loss in 
coding efficiency for the IB-MCP versus SD-MCP (which was also observed in the results of Figure 
IV-30) is magnified. 

An example of a frame-by-frame comparison of the three schemes can be seen in Figure IV-40. These 
results demonstrate that the open-loop MCP systems exhibit a significant PSNR fluctuation among 
consecutive frames. Both IB-MCP and SD-MCP produce approximately the same variance in PSNR 
across time; in fact the two curves are almost indistinguishable from the figure. In terms of visual 
quality, the significant fluctuations of the open-loop MCP schemes tend to be observable at low 
bitrates as flickering in the sequence. This appears to be the main drawback in going from a closed-
loop, non-scalable, MCP-based coding scheme to its open-loop, bitrate-scalable, equivalent. 
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Figure IV-40. An example of a frame-by-frame comparison between open-loop SD-MCP, H.263+ and open-
loop IB-MCP, at (approximately) the same bitrate. 

 

4.7.3  Comparisons Between Different In-band Motion 
Compensated Prediction Schemes 

In order to elaborate on the performance of different in-band architectures, we present a comparison 
of several alternatives for IB-MCP. Due to the fact that the same prediction structure is used in all 
cases, namely closed-loop MCP following the settings on 4.7.1, any differences among the alternative 
schemes can safely be attributed to the spatial decomposition structure. For this reason, we do not 
elaborate on the same comparisons under the open-loop MCP schemes.  

Figure IV-41 – Figure IV-45 present the obtained results with the closed-loop in-band MCP scheme 
having the following features:  

• One level of in-band ME/MC (“IB-MCP, 1 level”); the settings of this codec follow the ones 
defined in Subsection 4.7.1, with 1k = . 

• Two levels of in-band ME/MC (“IB-MCP, 2 level, multi-rate CODWT”); the codec settings 
follow the ones defined in Subsection 4.7.1, with 2k = ; moreover, a multi-rate construction 
of the CODWT is performed for decomposition level two, which utilizes the DWT subbands 
of levels one and two; note that the total number of spatial decomposition levels remains 
equal to four, i.e. two additional spatial levels are performed after the two-level IB-MCP. 
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• Two levels of in-band ME/MC (“IB-MCP, 2 level, single-rate CODWT”); all the settings of 
this codec are as defined above with the exception that a single-rate construction of the 
CODWT is performed for decomposition level two, which utilizes only the DWT subbands 
of level two. 

• Two levels of in-band ME/MC (“IB-MCP, 2 level, DTCWT”); all the settings are as before, 
with the exception that the DTCWT framework is used for in-band prediction, as described 
in Section 4.3; note that, the DTCWT for decomposition level two is constructed by utilizing 
only the subbands of level two (equivalent to the single-rate CODWT). 

• Two levels of in-band ME/MC (“IB-MCP, 2 level, dual-phase ODWT”); all the settings are 
as for the “IB-MCP, 2 level, single-rate CODWT”, with the exception that only two integer 
phases (equidistant) are used for decomposition level two; this ensures that this coder has 
similar complexity to the DTCWT-based coder defined above.  

• Two levels of in-band ME/MC (“IB-MCP, 2 level, single-phase, critically-sampled DWT”); 
all the settings are as before, with the exception that only the zero phase is used for each 
decomposition level l , 1 2l≤ ≤ ; this represents the case where the DWT is used for in-
band MCP, instead of the proposed overcomplete-transform based frameworks. 

In this case the results with the “IB-MCP, 1 level” scheme are used as an anchor for the comparison 
with the results presented before in Figure IV-28 – Figure IV-32. 
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Figure IV-41. Comparison of closed-loop in-band prediction schemes for the “Coastguard” sequence. 
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Figure IV-42. Comparison of closed-loop in-band prediction schemes for the “Foreman” sequence. 
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Figure IV-43. Comparison of closed-loop in-band prediction schemes for the “Mobile” sequence. 
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Figure IV-44. Comparison of closed-loop in-band prediction schemes for the “Silent” sequence. 
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Figure IV-45. Comparison of closed-loop in-band prediction schemes for the “Stefan” sequence. 
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The results of Figure IV-41 – Figure IV-45 indicate that, under the experimental settings chosen for 
this section, the best-performing solution in terms of mean PSNR is the ODWT-based scheme with 
one level of in-band MCP. One exception appears to be the “Silent” sequence, where the two-level in-
band MCP system appears to be superior for the majority of bitrates. Additional experiments with 
more in-band MCP levels confirmed that the one-level in-band MCP scheme provides, on average, 
superior objective performance. Nevertheless, for all the practical cases presented here, it appears that 
the loss incurred by the “IB-MCP, 2 level, multi-rate CODWT” scheme versus the reference “IB-
MCP, 1 level” scheme is always bounded by 0.5 dB, over all bitrates. Moreover, in medium and low 
bitrates the loss in mean PSNR becomes negligible for this case, i.e. lower than 0.2 or 0.1 dB. Finally, 
we note that, in most sequences, for the low-bitrate regime, the two-level IB-MCP scheme even 
outperforms the equivalent one-level scheme. We attribute the observed differences in performance 
to the following factors: 

• Our choice of block size for in-band ME/MC always requires less bitrate for the motion 
information in the case of a two-level in-band MCP system, versus the 1-level scheme. 
However, a coarser motion-vector field is produced due to the use of larger block sizes in our 
experimental settings for 2l = , which may deteriorate the system performance in the case of 
complex-motion scenes. 

•  At the decoder, the two-level IB-MCP scheme is performing two levels of inverse transform 
after in-band MC. Consequently a stronger “de-blocking” is performed at the decoder, as 
explained in the beginning of this chapter. Although this may be beneficial for the cases of 
irregular motion where blocking artifacts are observed, it can be disadvantageous for regular 
motion sequences, like “Coastguard” and “Mobile”, where the block-based motion model 
does not create significant artifacts in the error frames.  

Concerning the first point, we note that there are many choices for setting up a multi-level in-band 
ME/MC system. We refer to our work in [11] [79] [26] [46] for some examples and also to 
independent work based on similar schemes presented in [24] [41] [15] [13]. For example, as shown in 
the analysis of [11], if one selects the block size for all levels of the multi-level in-band ME/MC 
system equal to the block-size of the “IB-MCP, 1 level” scheme, then, in the worst case, the bitrate of 
the multi-level system is expected to be twice that of the one-level system. Although this can bring 
some improvement in the experimental results for certain sequences [11], this restricts the multi-level 
in-band MCP schemes to high bitrates (typically above 1 Mbit [11]) due to the increased motion-
vector bitrate. Moreover, visual inspection of the results of [11] in comparison to the present results, 
demonstrated that (on average) the fixed block-size setup used in [11] produced more ringing artifacts. 
This is attributed to the fact that the in-band block boundaries do not coincide in the same location at 
the decoded frames and, overall, significant ringing artifacts can be produced after the multi-level 
inverse DWT at the decoder.  

Concerning the second point, one can circumvent the problem of increased smoothness from the 
IDWT by setting an adaptive system that, for some frames, or even certain areas within frames, the 
coding scheme can switch to using 1k =  (single-level in-band MCP). An interesting variation of the 
proposed systems that proposes solutions in this direction can be found in [13] [81]. Nevertheless, as 
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confirmed by our experiments, the “IB-MCP, 2 level, multi-rate CODWT” scheme already exhibits a 
bounded loss in performance and can even outperform the single-level IB-MCP scheme in some 
cases, e.g. the “Silent” sequence. Hence, for the proposed systems, if one can adaptively switch to this 
scheme, this suffices for good coding performance in the vast majority of cases. Consequently, 
adaptive decomposition schemes do not appear to be necessary in the proposed systems, unless more 
in-band MCP levels are to be considered.  

The experiments of Figure IV-41 – Figure IV-45 demonstrate that the remaining schemes under 
comparison produce inferior results against the two previously-analyzed systems. In particular, the 
“IB-MCP, 2 level, single-rate CODWT” coding scheme appears to underperform the equivalent 
multi-rate CODWT scheme by 0.1 – 0.5 dB (on average, over all bitrates). One exception to this is in 
the “Mobile” sequence, where a significant loss in mean PSNR is observed, close to 1.0 dB. 
Concerning the “IB-MCP, 2 level, DTCWT” and “IB-MCP, 2 level, dual-phase ODWT” systems, the 
results confirm that they perform worse than the “IB-MCP, 2 level, single-rate CODWT”, but not 
considerably so. In detail, the loss in performance appears to be negligible for the “Mobile” and 
“Silent” sequences; for all the remaining sequences, the mean-PSNR loss is bounded by 
(approximately) 0.4 dB. Among the DTCWT-based scheme and the two-phase ODWT-based 
scheme, we conclude that there is no favourite with respect to mean-PSNR performance. In fact, for 
all sequences, the two schemes appear to be comparable. This indicates that, instead of using a 
different transform system, such as the dual-tree complex wavelet transform, one can obtain the same 
objective performance in the proposed video coding schemes by simply using two equidistant phases 
of the ODWT. We note that the two schemes are identical for the first level of IB-MCP since the 
DTCWT consists of the 9/7 filter-bank in this case. Furthermore, the two additional spatial 
decomposition levels performed after the two-level IB-MCP, also utilize the same filters (9/7 filter-
bank).  

The last system under comparison in Figure IV-41 – Figure IV-45 (“IB-MCP, 2 level, single-phase, 
critically-sampled DWT” scheme) appears to perform considerably worse from all the previous 
scenarios. This justifies the proposed frameworks that involve the use of overcomplete wavelet 
transforms for in-band motion estimation and compensation. Nevertheless, this system has the 
minimum complexity out of all schemes under comparison. Consequently, it may be favoured in 
certain cases where very limited computation resources are available.  

All the systems involved in the comparisons of Figure IV-41 – Figure IV-45 present the same 
behaviour in terms of fluctuations in PSNR across time, due to the fact that only the spatial-transform 
system is changed and not the temporal prediction structure. An example of this is given in Figure 
IV-46, where, at (approximately) the same bitrate, almost all PSNR curves coincide2. Finally, in terms 
of visual quality, our overall observations agree with the objective comparisons of all systems. In 
particular, noticeable differences can be observed mainly among the single-phase ODWT system and 
the remaining coders, and, in some cases, among the “IB-MCP, 2 level, multi-rate CODWT” and “IB-
MCP, 2 level, single-rate CODWT” systems.  
                                                 
2 In the results of Figure IV-46, the “IB-MCP, 2 level, single-phase, critically-sampled DWT” scheme is not 
present since, as presented in Figure IV-41 – Figure IV-45, its performance is significantly inferior from all other 
cases.  
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Figure IV-46. An example of a frame-by-frame comparison between various in-band motion-compensated 
prediction systems, at (approximately) the same bitrate.  

 

4.7.4  Experimental Evaluation of Tools for Open-loop 
Architectures 

This section evaluates the performance and usability of the tools proposed in Subsections 4.4.2 and 
4.4.3, i.e. the proposed standard-compatible base-layer architectures for in-band motion compensated 
prediction and the distortion-control algorithm for open-loop spatial-domain and in-band MCP. We 
note that, for the comparisons of this subsection, we focused on representative video sequences and 
summarize the behaviour of each tool; moreover, since all the basic architectures have been 
experimentally compared previously, the present evaluation will not be as expansive as before.  

4.7.4.1 Performance of Open-loop In-band Motion Compensated Prediction 
with Standard-compliant Base-layer 

In our tests, we used an MPEG2/H263-alike closed-loop motion-compensated DCT scheme [88] as 
the base-layer coding scheme for the LL  subbands (half-resolution). For the motion estimation of the 
MC-DCT coder, a block-size of 8x8 was used, and interpolation to half-pixel was performed directly 
given the coefficients of the critically-sampled LL  subbands. A standard rate-control mechanism 
ensured the target bitrate for the non-scalable MC-DCT coder and it was set to 200 kbps. For the 
spatial transform, the 9/7 filter-bank was used with one decomposition level. The open-loop MCP 
used bidirectional ME/MC for the temporal decomposition [73, 74] with half-pixel accurate motion 
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estimation and a block-size of 8 8×  coefficients. Due to the separate performance of ME/MC in the 
high-frequency subbands, for the CIF resolution the base-layer bitrate is increased to 300 kbps. The 
QuadTree-Limited embedded image coder [71] was used for the compression of the intra and error 
frames of the enhancement layer. In this coder, the quality of the decoded output of the enhancement 
layer of each of the two resolutions was controlled by decoding all frames to the same integer or 
fractional bitplane. 

The average PSNR for various bitrates obtained with the architecture of Figure IV-17 (with the 
standard-compliant MC-DCT scheme), is shown by the “Closed-loop MC-DCT base-layer” curves of 
Figure IV-47 for the first 64 frames of the sequences “Coastguard” and “Foreman”. Although this 
scheme is scalable in frame-rate/resolution/SNR and the base-layer coding is a (closed-loop) 
standard-compliant MC-DCT, for bitrates above the base-layer (300 Kbps), it can be seen that this 
architecture is not efficient at CIF resolution in comparison to the non-scalable equivalent MC-DCT 
coder that encodes the CIF input sequence. However, for the QCIF resolution, identical results are 
obtained with the two schemes at the base-layer bitrate of QCIF (200 Kbps), as shown in Table IV-II; 
additionally in a limited range around the low bitrate region of the CIF resolution (300-450 Kbps) the 
scalable scheme performs adequately.  

This loss in SNR scalability is considerably reduced by the architecture of Figure IV-18 (open-loop 
MC-DCT, base-layer at 200 Kbps for the DCT-based compression), as indicated by the “Open-loop 
MC-DCT base-layer” curve of Figure IV-47. In this implementation, since we are not constrained 
with full compatibility to a standard, we use the prediction filters of [36] [33] for the performance of 
the half-pixel spatial interpolation in the base-layer ME/MC. Essentially, in this context, these filters 
produce the missing samples resulting from the downsampling process of the spatial wavelet 
transform. Thus, they can be perceived as the optimum interpolation technique given the fact that in 
the scalable coding system, for the low-frequency subband that originates from the CIF resolution, 
these filters alleviate completely the aliasing effect caused by the filtering and downsampling of the 
spatial transform. We find that part of the good coding performance of the scalable approach can be 
attributed to this effect. 

To conclude, we discuss also the results of the open-loop MC-DCT architecture when decoding at 
QCIF resolution, versus the non-scalable MC-DCT standard architecture that encodes separately the 
uncoded low-frequency subband as an original sequence. These results are seen in Table IV-II. It 
appears that the proposed MC-DCT architecture obtains good PSNR performance in comparison to 
the non-scalable, standard, MC-DCT coding. The gain in performance comes both from the different 
prediction structure and from the improved interpolation process for the reference frames. 
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Figure IV-47. Results with standard-compliant MC-DCT schemes within open-loop IB-MCP for CIF resolution. 
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Foreman, 64 
frames, QCIF, 30 Hz 

Open-loop MC-
DCT base-layer 

MC-DCT non-
scalable 

Closed-loop MC-
DCT base-layer 

Bitrate (kbps) PSNR Y (dB) PSNR Y (dB) PSNR Y (dB) 
200 32.27 31.67 31.66 
280 33.96 33.08 32.43 
540 37.53 36.10 34.22 

Coastguard, 64 
frames, QCIF, 30 Hz 

Open-loop MC-
DCT base-layer 

MC-DCT non-
scalable 

Closed-loop MC-
DCT base-layer 

Bitrate (kbps) PSNR Y (dB) PSNR Y (dB) PSNR Y (dB) 
200 29.93 29.29 29.29 
340 31.42 31.07 30.41 
580 33.83 33.24 32.37 

Table IV-II. Results with standard-compliant MC-DCT schemes within closed-loop IB-MCP for QCIF 
resolution. 

 

4.7.4.2 Performance of the Distortion-control Algorithm for Spatial-domain 
and In-band Motion Compensated Prediction 

In order to evaluate the proposed control scheme, we incorporated the basic steps of the algorithm of 
Figure IV-22 in the spatial-domain and in-band MCP schemes. In our experiments, the Foreman 
sequence was used as a typical example of a video sequence that involves complex motion with fast 
and slow moving regions.  

Concerning the codec settings, the experimental conditions of Subsection 4.7.1 were used, with the 
following differences: (a) only three levels of the spatial transform were performed for each frame; (b) 
in the case of IB-MCP, in-band ME/MC was performed for each spatial level, with fixed block size 
equal to 8 8×  wavelet coefficients (for all subbands of each level); (c) the ME/MC was bidirectional, 
using the previous and next frame of each temporal decomposition level. For the bitstream-parsing 
stage, instead of the rate-control described in Subsection 4.7.1.5, the distortion values produced 
during encoding for the 4

0A  were used and the corresponding distortions for the t
nH  frames, 

1 4t≤ ≤  were constructed, based on equations (4.30), (4.31). After this process, the total bitrate was 
measured by truncating the bitstream of each compressed frames based on the derived (distortion-
controlled) bitstream-truncation points. Hence, the last step of Figure IV-22 that shifts the distortion 
control into a rate control was omitted from this evaluation. 

Although the parameter a  can be specified separately per GOP, we chose two cases, 0.2a =  and 
1.0a =  for the entire sequence. Moreover, as explained in Subsection 4.4.3, the proposed distortion-

control algorithm was applied in the bitstream-parser stage of the SD-MCP and IB-MCP systems; as a 
result, no modification is required for the encoding part and the functionality of bitrate-scalability of 
both schemes is not affected. The resulting mean PSNR for the SD-MCP decoding is shown in Figure 
IV-48. Additionally, Figure IV-49 presents the PSNR variation of the Y channel for the SD-MCP 
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after decoding at a low bitrate. The corresponding results for the IB-MCP system are presented in 
Figure IV-50 and Figure IV-51, respectively. Our experiments demonstrate that the variation in the 
achieved PSNR over the sequence can be controlled, and it appears to be significantly reduced if small 
values for the control parameter a  are used, as theoretically expected. This however comes at the 
expense of loss in the average PSNR, which becomes significant for decoding at high bitrates. It is 
observed however that, at low rates, the loss in the mean PSNR is limited. By combining this result 
with the observation that the PSNR variations are mainly visible in low bitrate decoding, we reach the 
conclusion that the proposed method can be beneficial for controlling the PSNR variation in the 
decoded video at low bitrates. The selective application of the proposed control mechanism for a 
certain bitrate range is possible, since the entire process takes place at the bitstream-extraction stage 
and does not affect encoding or decoding. 
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Figure IV-48. The mean PSNR for two parameter settings in the control-mechanism implemented in the spatial-
domain MCP system. 
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Figure IV-49. The PSNR variation (Y channel) for the SD-MCP system at a low-bitrate setting (approximately 
246 kbps). 
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Figure IV-50. The mean PSNR for two parameter settings in the control-mechanism implemented in the in-
band MCP system. 
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Figure IV-51. The PSNR variation (Y channel) for the IB-MCP system at a low-bitrate setting (approximately 
320 kbps). 

 

4.7.5  Performance of Advanced Motion Estimation for Spatial-
domain and In-band Motion Compensated Temporal Filtering 

For all our experiments in this subsection, we use four temporal decomposition levels. The lifting-
based implementation of the temporal transforms (Haar or 5/3) is described in Section 4.5. For the 
case of the 1/2 and 1/3 filters (i.e. prediction-only without update), the frames of each temporal level 
t  remain the original input frames, scaled by 1( 2)t− .  

The variable block-size multihypothesis motion estimation algorithm of Section 4.6 is used. For the 
case of IBMCTF, block-based motion estimation with a block size of m nB B×  pixels in the spatial 
domain corresponds to k  separate motion estimations (for a total of k  spatial-resolution levels of in-
band motion estimation) with triplets of blocks of 

2 2
m n
l l
B B×  wavelet coefficients in the high-frequency 

subbands of each resolution l , 1 l k≤ < , as described in Section 4.6. The number of hypotheses 
used was set to 1 or 2, and this always corresponds to temporal multihypothesis prediction. If multiple 
in-band motion estimations are performed ( 1k > ), the number of vectors corresponding to each 
spatial location in the IBMCTF codec varies according to the temporal filtering of each resolution. 

We applied the proposed MCTF technique with a different number of features enabled for each 
experiment in order to assess the impact on the coding efficiency of MCTF. The results are given in 
Figure IV-52 – Figure IV-56 for the IBMCTF and SDMCTF. Since no attempt was made to jointly 



CHAPTER IV. IN-BAND ARCHITECTURES 

  

134 

optimize the prediction performance across resolutions, in the experiments of this subsection we set 
1k =  (one level of in-band MCP and MCU); three additional levels of spatial transform are 

performed in the MCTF residuals of the LL  subbands in order to match the SDMCTF codec in the 
number of spatial decomposition levels (four). The objective comparison shows that, in both the 
SDMCTF and IBMCTF architectures, a large PSNR gain comes from the use of multihypothesis and 
longer temporal filters (5/3). Additionally, the use of the update step improves the objective 
performance, especially at high-bitrates. Furthermore, both architectures appear to produce 
comparable results for full-resolution decoding across the entire range of bitrates. 

Concerning implementation complexity of the IBMCTF and SDMCTF encoders, we found that the 
use of all the advanced tools for the motion estimation (macroblocks pruned using 5 partition levels 
and 2 hypotheses) incurs a penalty of a factor of 4-6 times increase in execution time as compared to 
conventional block-based full search motion estimation. This result corresponds to execution-time 
comparisons of our platform-independent “C” implementation running on an Intel Pentium IV 
processor. However, preliminary testing indicates that several optimizations for motion-vector search 
using spiral or diamond search patterns can decrease this complexity factor significantly. In addition, 
the effect of the advanced prediction tools is much less severe for decoding. Our experiments indicate 
that only an increase by a factor of 2 is observed. Finally, the IBMCTF encoder using the proposed 
prediction-filters approach for the CODWT runs (on average) for approximately 150% of the 
SDMCTF encoding time with the same settings; IBMCTF decoding runs, on average, about 3 times 
slower than SDMCTF decoding. 
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Figure IV-52. Comparison of different MCTF schemes for the “Coastguard” sequence in both spatial-domain 
and in-band frameworks. 
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Figure IV-53. Comparison of different MCTF schemes for the “Foreman” sequence in both spatial-domain and 
in-band frameworks. 
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Figure IV-54. Comparison of different MCTF schemes for the “Mobile” sequence in both spatial-domain and 
in-band frameworks. 
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Figure IV-55. Comparison of different MCTF schemes for the “Silent” sequence in both spatial-domain and in-
band frameworks. 
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Figure IV-56. Comparison of different MCTF schemes for the “Stefan” sequence in both spatial-domain and in-
band frameworks. 
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4.7.6  Comparison for Low-resolution Decoding 

We present an evaluation for the quality offered for low-resolution decoding in both spatial-domain 
and in-band architectures. Our focus is on the open-loop architectures, since previous results 
demonstrated that these architectures can be fully-scalable, while producing comparable results with 
the equivalent closed-loop coders when operating in non-scalable mode.  

It is generally difficult to establish an objective metric for evaluation under temporal and resolution 
scalability since, under the MCTF framework, every coder creates its own unique reference sequence 
for low-resolution/low frame-rate video. Nevertheless, the ability of that reference sequence to serve 
as a unique original is questionable. In general, both the spatial decomposition and the motion model 
used during the temporal transform seem to affect the results of low-resolution decoding. In total, we 
opted for a visual evaluation of the decoded results at half resolution (from CIF to QCIF resolution). 
For the temporal transform, the variable-block size algorithm of section 4.6 was used but we set 

1M =  and only one reference frame was used. In this way, we evaluate the results for low-resolution 
decoding with the typical motion-compensated Haar temporal transform. Instead of performing the 
evaluation at certain bitrates, the lack of a common reference for both codecs led us to decode at a 
very high bitrate, which corresponds to the “original” sequence generated by each codec at low 
resolution, and compare the results visually. All potential artifacts observed in this setting are not 
related to coarse quantization, but to the motion mismatch between full and half resolution. 

Typical output frames for the SDMCTF and IBMCTF decoding at QCIF resolution are shown in 
Figure IV-57 – Figure IV-59. The results demonstrate that several artifacts are generated in the 
SDMCTF-based schemes. The presence of artifacts in these cases depends on the existence of MCU: 
stronger artifacts appear in SDMCTF schemes with MCU is used. Notice that this is true even though 
the decoding occurred at 30 Hz, i.e. the original frame-rate. The practical cause of the observed 
artifacts in SDMCTF is the application of the motion compensation at reduced resolution at the 
decoder (by performing vector subsampling), which causes a mismatch between encoder and decoder. 
It appears that this mismatch manifests stronger artifacts when the utilized motion model involves 
MCU. Moreover, it is observed that picture quality tends to be particularly bad in frames with fast and 
irregular motion.  

In the case of IBMCTF, Figure IV-57 – Figure IV-59 present visual results with two example 
instantiations with MCP and MCU for the temporal decomposition and one or two in-band MCTF 
levels in the spatial decomposition. We note that the two-level IBMCTF system used the single-rate 
CODWT, which does not utilize any information from higher-resolution subbands. It is observed that 
the “decoder reference” picture quality at low resolution is always superior from the equivalent 
SDMCTF systems. Moreover, we observed that the presence of MCU in the temporal decomposition 
does not appear to affect the results in a noticeable way. Finally, the decomposition utilizing two in-
band MCTF levels appears to be the best for low-resolution decoding among the two IBMCTF 
alternatives. However, as shown in the results of Figure IV-41 – Figure IV-45, this scheme is expected 
to lead, on average, to a higher loss in coding efficiency for the full-resolution decoding.  

The above conclusions were also verified for various bitrates, ranging from 100 – 1000 kbps for QCIF 
resolution [12], by visual inspection of the decoding results of the schemes under comparison. As a 



CHAPTER IV. IN-BAND ARCHITECTURES 

  

141

general conclusion, concerning spatial scalability with two-resolutions, it appears that, although small 
artifacts may sporadically appear, the single-level IBMCTF scheme provides the best trade-off for 
good resolution-scalability and equivalent objective performance at full-resolution decoding with 
SDMCTF. Nevertheless, for a scalable coder supporting more that two video resolutions, two in-band 
MCTF levels, or higher, may be justified.  

 

Figure IV-57. “Stefan” sequence decoded at a very high bitrate in QCIF (30 Hz). From top to bottom, left to 
right: SDMCTF (with MCU); SDMCTF (without MCU); IBMCTF (with MCU), 1 in-band ME/MC level, 
IBMCTF (with MCU), 2 in-band ME/MC levels. 
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Figure IV-58. “Foreman” sequence decoded at a very high bitrate in QCIF (30 Hz). From top to bottom, left to 
right: SDMCTF (with MCU); SDMCTF (without MCU); IBMCTF (with MCU), 1 in-band ME/MC level, 
IBMCTF (with MCU), 2 in-band ME/MC levels. 
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Figure IV-59. “Silent” sequence decoded at a very high bitrate in QCIF (30 Hz) resolution. From top to bottom, 
left to right: SDMCTF (with MCU); SDMCTF (without MCU); IBMCTF (with MCU), 1 in-band MCTF level, 
IBMCTF (with MCU), 2 in-band MCTF levels. 

 

4.7.7  Comparisons with the State-of-the-art in Non-scalable 
Video Coding 

In order to compare the best instantiation of the open-loop SDMCTF and IBMCTF video coding 
schemes against the state-of-the-art, following recent MPEG tests [89], we chose seven 4:2:0 test 
sequences with 704 576×  pixels in the luminance channel and a replay frame-rate of 60  Hz. The 
sequences were downloaded from the MPEG test repository ftp://ftp.tnt.uni-hannover.de. Most 
sequences come from originally larger video clips that have been cropped to the specific size for test 
purposes. For all cases, 576 frames were encoded. We opted for this scenario for our tests since it 
involves medium-resolution video content, which is currently possible to display even in TFT screens 
that appear in PDAs and cell-phones. Hence, we believe that this content encapsulates better the 
potential future markets of such technologies than CIF-resolution video. Moreover, due to the 
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scalability properties of the open-loop schemes, one can always generate smaller resolutions of the 
input content post-encoding (e.g. CIF-resolution video at 30 Hz). 

Table IV-III illustrates the coding results obtained with the spatial-domain and in-band MCTF using 
the proposed multihypothesis prediction and update step within the 5/3 temporal decomposition, 
which, as demonstrated before, produce the best results from all the possible experimental settings for 
our codecs. We compare with the current state-of-the-art in non-scalable video coding, i.e. the 
MPEG-4/ITU-T VCEG AVC/H.264 codec. The AVC results were produced with the settings 
described in [80], using the jm4.2 software package of the codec. These settings correspond to the 
codec profile that includes all the advanced features like rate-distortion optimization, the CABAC 
scheme and full-search variable block-size motion estimation that utilizes five reference frames. To 
enable random-access capabilities, an intra frame was imposed every 32 frames; moreover, three B-
frames were used between successively-predicted P-frames. Finally, we note that the search range was 
set to 32±  pixels instead of 64±  mentioned in [80]; this enabled the simulations with this codec to 
run in a reasonable amount of time. All the bitrates presented in Table IV-III were obtained with 
AVC by separate encoding and decoding with quantization settings 24, 27, 30 and 33 and measuring 
the size of the compressed bitstream. Subsequently, the scalable coders under comparison extracted 
and decoded bitstreams that correspond to these bitrates from one compressed bitstream; the 
accuracy that each target bitrate was matched was always within 1%.  

Concerning the proposed scalable codecs, for the SDMCTF and IBMCTF we used 1/8 and 1/4-pixel 
accurate motion estimation with full-search, respectively. This difference in the interpolation precision 
enabled both codecs to run in (roughly) the same amount of execution time, which was comparable to 
the AVC encoding time. We note that, although 1/8-pixel accurate motion estimation would benefit 
the IBMCTF codec, we found that the potential increase in the coding efficiency did not justify the 
additional encoding and decoding complexity. For both SDMCTF and IBMCTF schemes, the search 
range in our experiments corresponded to 16± , 24± , 32± , 40± , 48±  pixels for temporal levels 1 
to 5, respectively. This results in an average search range of approximately 23±  pixels per frame, 
which is about 72% of the average search range of the motion estimation in AVC. Moreover, in all 
cases, only two reference frames were used within the motion estimation of the SDMCTF and 
IBMCTF schemes, instead of the five reference frames used in AVC. In order to provide 
approximately the same motion-vector bitrate for both SDMCTF and IBMCTF schemes, we set 

62.5λ =  (Lagrangian multiplier) for the variable block-size ME pruning in SDMCTF (see Figure 
IV-27) and 31.25λ =  for the IBMCTF-based codec; it was found that these settings produced 
motion vector bitrates that were comparable (within 25% margin) with each other. For both MCTF-
based frameworks, a maximum of 2M =  hypotheses were used and each macroblock was pruned 
with dyadically-reduced block sizes ranging from 128 128×  down to 8 8×  pixels ( 64 64×  to 4 4×  
wavelet coefficients at each subband (with 1k = ) for the IBMCTF scheme). The 9/7 filter-bank was 
used for the spatial decomposition (5 resolution levels). In the temporal direction, according to the 
pruning of the motion information during the predict step, the bidirectional Haar and the 5/3 filter-
banks were used. An implementation with a sliding window was chosen to avoid large PSNR 
fluctuations at the GOP borders. 
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ShuttleStart 
Codec / Bitrates (kbps): 475 753 1335 2387 

SDMCTF/Mean PSNR (dB): 41.32 42.64 43.83 44.46 
IBMCTF/Mean PSNR (dB): 41.78 43.28 44.68 45.52 

MPEG-4 AVC/Mean PSNR (dB): 40.38 41.81 43.25 44.72 
Raven 

Codec / Bitrates (kbps): 1010 1651 3041 5438 

SDMCTF/Mean PSNR (dB): 38.37 39.90 41.52 42.59 
IBMCTF/Mean PSNR (dB): 38.47 40.20 41.99 43.23 

MPEG-4 AVC/Mean PSNR (dB): 38.33 39.86 41.47 43.11 
Soccer 

Codec / Bitrates (kbps): 1909 3001 5250 9246 

SDMCTF/Mean PSNR (dB): 35.76 37.33 38.96 40.79 
IBMCTF/Mean PSNR (dB): 35.71 37.47 39.25 41.22 

MPEG-4 AVC/Mean PSNR (dB): 37.01 38.60 40.30 42.13 
City 

Codec / Bitrates (kbps): 1202 2148 4869 10865 

SDMCTF/Mean PSNR (dB): 36.35 38.10 39.80 41.11 
IBMCTF/Mean PSNR (dB): 36.61 38.41 40.24 41.74 

MPEG-4 AVC/Mean PSNR (dB): 36.17 37.70 39.41 41.37 
Crew 

Codec / Bitrates (kbps): 2121 3451 6245 11215 

SDMCTF/Mean PSNR (dB): 35.83 37.37 38.81 40.10 
IBMCTF/Mean PSNR (dB): 35.72 37.42 38.96 40.44 

MPEG-4 AVC/Mean PSNR (dB): 37.09 38.49 39.99 41.60 
Harbour 

Codec / Bitrates (kbps): 2969 5707 11092 17909 

SDMCTF/Mean PSNR (dB): 37.19 38.84 40.47 41.92 
IBMCTF/Mean PSNR (dB): 37.53 39.30 41.11 42.84 

MPEG-4 AVC/Mean PSNR (dB): 35.75 37.49 39.5 41.33 
Sailormen 

Codec / Bitrates (kbps): 1368 2727 5708 12440 

SDMCTF/Mean PSNR (dB): 35.62 37.75 39.40 40.68 
IBMCTF/Mean PSNR (dB): 35.01 37.08 38.67 40.36 

MPEG-4 AVC/Mean PSNR (dB): 35.31 36.85 38.50 40.53 
Table IV-III. Comparison of SDMCTF and IBMCTF-based schemes in terms of mean PSNR against the state-
of-the-art in non-scalable video coding. Seven standard-definition sequences are used ( 704 576×  pixels, 4:2:0, 
576 frames, replay rate 60 Hz).  
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The results of Table IV-III show that, for the majority of the sequences of the test, multihypothesis 
SDMCTF-based and IBMCTF-based video coding is comparable or superior in terms of mean PSNR 
to the highly-optimized AVC over a large range of bitrates. A significant loss in performance was only 
observed for the “Crew” and “Soccer” sequences. This is mainly attributed to the complex motion 
present in these sequences, which requires the use of advanced intra-prediction modes, only present in 
AVC. We note however that the proposed schemes retain the advantages offered by fully-embedded 
coding, since each sequence was compressed once and all bitrates for the results of Table IV-III were 
extracted from a single compressed bitstream without transcoding.  

Among the two proposed alternatives, it appears that both systems perform equivalently in mean 
PSNR. Moreover, similar to subsection 4.7.6, the results for low-resolution decoding reveal that the 
IBMCTF-based system provides significantly-improved quality for low resolution. This is 
demonstrated in Figure IV-60 and Figure IV-61, where we display example frames of four of the 
sequences used in Table IV-III, when decoded at a very high bitrate with reduced resolution and 
frame-rate. The results demonstrate that, even with an advanced motion estimation algorithm, such as 
the ones used for the experiments of Table IV-III, resolution scalability is more efficient in IBMCTF-
based systems. 

In terms of visual quality for full-resolution decoding versus AVC, unofficial visual testing revealed 
that the proposed codecs provide comparable or superior visual quality in cases of scenes with 
complex textures (e.g. the “Harbour” and “Raven” sequences). However, AVC [90] appeared to 
provide improved visual quality in the majority of the test sequences by reducing blocking artifacts 
and flickering based on its in-loop deblocking filter and the advanced intra-prediction. In general, it 
can be said that, on average, the visual quality provided with the proposed SDMCTF and IBMCTF 
schemes is comparable to the one provided by AVC for the middle and higher bitrates of the tests of 
Table IV-III, where blocking artifacts and ringing are less present. 
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Figure IV-60. “Soccer” and “Crew” sequences decoded at a very high bitrate in QCIF (15 Hz) and CIF (30 Hz) 
resolutions. Left: SDMCTF; right: IBMCTF. 
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Figure IV-61. “Harbour” and “City” sequences decoded at a very high bitrate in QCIF (15 Hz) and CIF (30 Hz) 
resolutions. Left: SDMCTF; right: IBMCTF. 
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4.8 Discussion and Conclusions 
This chapter introduced in-band motion compensated prediction within closed-loop and open-loop 
video coding systems. In addition, for open-loop systems, in-band motion-compensated temporal 
filtering was proposed by coupling in-band motion compensated prediction with in-band motion 
compensated update. In all cases it was found that, with the use of a complete-to-overcomplete 
transform for the performance of motion estimation and compensation in the wavelet domain, an 
equivalent system with the conventional closed-loop and open-loop frameworks can be provided in-
band. This was shown to have several advantages from the functionality point of view, e.g. for base-
layer compatibility (Subsection 4.4.2). In general, different prediction structures for each resolution 
level may satisfy different application requirements (Figure IV-16). Moreover, experimental evidence 
(Subsection 4.7.6, Figure IV-57 – Figure IV-61) confirmed that the in-band performance of MCP (and 
MCU) provides substantially-improved resolution scalability versus that provided by conventional 
systems that perform MCP in the spatial domain. Similar to the way an open-loop system provides 
bitrate scalability at seemingly no cost in compression efficiency versus the equivalent closed-loop 
system, in-band video coding based on the ODWT appears to provide improved resolution scalability 
at little or no cost in compression efficiency for the full resolution. 

Finally, it was shown that the use of advanced motion estimation benefits both spatial-domain and in-
band systems in the same manner. Moreover, objective evaluation for coding a large variety of 
standard-definition video sequences in a wide range of bitrates revealed that fully-scalable wavelet-
based systems using advanced motion-compensated temporal filtering are (on-average) comparable or 
superior to the current state-of-the-art in non-scalable coding, i.e. the MPEG-4 Advanced Video 
Coder.  

In a concluding summary, this chapter makes the following contributions: 

• In-band video coders with closed-loop prediction are proposed in Section 4.2. The proposed 
framework was among the early proposals in the relevant literature that utilize overcomplete 
wavelet transforms for in-band MCP.  

• In Section 4.3, a low-redundancy transform is adapted and used within the in-band video 
coding framework in order to investigate the performance of transforms with limited 
redundancy. The experimental evaluation reveals that the chosen low-redundancy transform 
appears to be comparable with the proposed ODWT-based system when limited to the same 
redundancy (two phases). As a result, it appears that, for the systems of interest, the use of 
low-redundancy transforms does not provide a significant benefit versus the equivalent 
operation within the ODWT-based framework. 

• Section 4.4 proposed an in-band MCP framework within open-loop video coding 
architectures, in order to combine the efficient bitrate scalability of open-loop coding with the 
inherent resolution scalability of the in-band frameworks.  
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• Within this category of systems, two important aspects were investigated: base-layer 
compatibility with a motion-compensated DCT-based system for the low-resolution, and 
control of the distortion fluctuations inherent in open-loop MCP-based video coding.  

• Within the open-loop video coding architecture, in-band motion-compensated temporal 
filtering was proposed in Section 4.5, and a generalized formulation for arbitrary motion-
compensated lifting-based temporal decompositions for in-band MCTF was given.  

• In order to improve the prediction efficiency of the proposed systems, Section 4.6 proposes 
an advanced motion estimation algorithm based on multi-frame multihypothesis prediction 
using variable block sizes. For coding of standard-definition sequences, the best-performing 
instantiation of the algorithm gives very promising results.  
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V.  
Chapter V 

COMPLETE-TO-OVERCOMPLETE 
DISCRETE WAVELET 
TRANSFORMS 

ECENTLY, wavelet-based image and video coding systems that utilize the overcomplete discrete 
wavelet transform have been proposed in the literature [1] [2] [3] [4] [5] [6]. As analyzed in the 

previous chapter, the good coding performance of these techniques stems from wavelet-domain 
operations that require shift-invariance, such as in-band motion estimation and compensation, and in-
band motion compensated temporal filtering. The ODWT is used for this purpose since it is a 
redundant version of the discrete wavelet transform that attains shift-invariance [7] [8]. 

Given the input signal, the classical construction of the ODWT is trivial by using for example the “à-
trous” algorithm [7] [9]. However, as explained in the previous chapter, in wavelet-based coding 
systems the codec always processes the critically-sampled (complete) DWT subbands. Hence, a 
complete-to-overcomplete DWT has to take place: first the inverse DWT is performed in order to 
reconstruct the input signal, followed by the ODWT. Furthermore, Chapters III and IV demonstrated 
that, in fully-scalable image and video-coding systems, the critically-sampled DWT subbands are 
processed in a resolution-scalable manner (from coarse to fine resolution). In such environments, it is 
imperative that both ends of the system independently construct the identical ODWT information at 
each resolution level in order to avoid drift effects. Given the resolution levels that are available at 
both the encoder and decoder, a separate loop is used at each level for the CODWT in order to 
construct identical ODWT representations at both sides. This approach has several disadvantages: 

 

R 
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• A direct method for the derivation of the ODWT subbands from the DWT is not provided. 
Instead, the ODWT construction is a cascade of the inverse DWT and the “à-trous” 
calculation. As a result, the reconstruction of the input signal is required. This causes 
significant calculation overhead and delay since the input signal has the highest sampling rate. 

• A multi-rate calculation scheme is used in every case with a cascade of upsampling and 
downsampling operations. As a result, even for high-speed high-parallel implementations, the 
achievable percentage of hardware utilization is low since the filtering of every level has to be 
pipelined with the production of the results of the previous and the next level. 

In this chapter, we present a new theory for the CODWT, formulated for any arbitrary level k  of the 
transform, in which the ODWT of level k  is produced directly from the DWT of k -levels [10] [11] 
[12]. The reconstruction of the input signal is not required and, furthermore, no upsampling is 
performed. Our initial findings reported in [10] [11], as well as relevant work reported recently by Li 
[13] and Van der Auwera et al [14], present similar approaches for performing phase shifting in the 
wavelet domain. This chapter generalizes these ideas to a transform that performs the direct 
construction of an arbitrary phase in the k -level wavelet domain (Proposition 2). In addition, we 
propose a direct solution for the (all-phase) CODWT (Proposition 3) and present an efficient 
calculation scheme for the transform. Apart from the new theoretical aspects arising from the 
proposed transform, we demonstrate the significant practical benefits of the new approach under the 
application scenarios that require resolution scalability. In such cases, the proposed CODWT is 
computed using a single-rate calculation scheme while providing exactly the same results as the 
conventional multi-rate approach. 

5.1 Theoretical Derivations 

5.1.1 Notations and Symbolism 

In this chapter, bold-faced capital and lower letters indicate matrices and vectors respectively, while I  
denotes the identity matrix. Calligraphic notation is reserved for operators (e.g., D  denotes the 
polyphase separation). All signals and filters are considered in the Z -domain as Laurent polynomials 
and the letter z  is reserved for this purpose. All the used indices are integers. For all matrices, vectors, 
signals and filters, the superscripts denote the decomposition level, except for superscript T  that 
denotes transposition. Subscripts are used to enumerate signals or filters in matrices and vectors. 
Additionally, they are used to indicate polyphase components; each case is identified from the context. 

The polyphase separation of a signal or filter ( )X z  is given by: 

( )X zD = [ ]0 1( )  ( ) TX z X z , 

 with the commutative operation given by: 

1 2 2
0 1( ) ( ) ( ) ( )X z X z zX z X z− = + =D D . 
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For the DWT, the Type-I analysis polyphase matrices that produce the even and odd polyphase 
components of the transform are denoted as 0( )zE , 1( )zE  respectively; their definitions are: 

0 1

0
0 1

( ) ( )
( )

( ) ( )

H z H z
z

G z G z

 
 =  
  

E , 1 0

0
( ) ( )

1 0

z
z z

 
 =    

E E , 

where ( )H z , ( )G z  are the low-pass and high-pass analysis DWT filters, respectively. Notice that in 
the last equation the even and odd polyphase components are produced by shifting the analysis filter-
bank with the delay-permutation matrix [15]: 

0

1 0

z 
 
   

. 

One can opt to shift either the input signal, or the analysis filters; both approaches are equivalent in 
the theoretical derivations, but shifting the analysis filters makes the implementation easier.  

The corresponding Type-II synthesis polyphase matrices are: 

[ ] 1( ) ( )i iz z −=R E , { }0,1i = , 

e.g.: 

1 1
0

0 00

  ( ) ( )1( ) ( )     ( )det ( )
G z H z

z G z H zz
 − 
 = −  

R
E

. 

In order to simplify the expressions we always assume (without loss of generality) that the filters ( )H z  
and ( )G z  are properly shifted so that perfect reconstruction is achieved with zero delay and [16]: 

0det ( ) 1z = −E . 

Two numerical examples of such filters, which are used for the results of this chapter, are given in 
Table V-I.  

 
5/3 filter-bank 

Degree in Z  ( )H z  Degree in Z  ( )G z  
1, -3 -0.17677669529664 1,-1 0.70710678118655 
0, -2 0.35355339059327 0 -0.35355339059327 
-1 1.06066017177982   

9/7 filter-bank 

Degree in Z  ( )H z  Degree in Z  ( )G z  
3, -5 0.03782845550726 3, -3 0.06453888262870 
2, -4 -0.02384946501956 2, -2 -0.04068941760916 
1, -3 -0.11062440441844 1, -1 -0.41809227322162 
0, -2 0.37740285561283 0 0.78848561640558 
-1 0.85269867900889   

Table V-I. The 5/3 and 9/7 filter-banks modified so that 0 0 1 0 1det ( ) ( ) ( ) ( ) ( ) 1z H z G z G z H z= − = −E  (filter 
G  is linear phase). 
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Using the Noble identity [15], the single-level filtering-and-downsampling operator can be written as: 

( )[ ]1 ( ) Ti
i z U z=U D D , 

with { }0,1i =  denoting the retained polyphase component and { },=U H G , { },U H G=  
respectively. For l  decomposition levels ( 1l ≥ ), this operator is: 

   
0 1 1

1 1 1
l

l
p b b b −
= …U U H H , 1

0
2

l i
ii

p b
−

=
=∑ , { }0,1ib = . (5.1) 

Definition 1: For a signal ( )X z  and a perfect-reconstruction analysis filter-bank { },U H G=  with 
0det ( ) 1z = −E , we define ( )l

p zw  as the p -phase wavelet subbands of the ODWT of decomposition 
level E l=  ( 1l ≥ ) [17] [8] [13], given by: 

[ ] [ ]( ) ( )  ( )   ( )T Tl l l l l
p p p p pz A z D z X z= =w H G , 0 2lp≤ < , 

with ( )l
pA z , ( )l

pD z  the low and high-frequency subbands, respectively. 

This definition coincides with the ODWT subbands calculated by the cycle-spinning algorithm of 
Coifman and Donoho [18]: the binary representation of p  is actually the binary map of the DWT 
defined in [18]. In total, the l -level ODWT of a signal ( )X z  is given by ( )l

pX zL , for every p , 
0 2lp≤ < , where: 

,

,

l
p

l
p l

p

 
 =  
  

H

G

λ

λ
L  

is a 2 l×  matrix operator and: 

[ ]
0 0 1

1 2
, 2    l l
p b b b p+= "U U U Uλ . 

For example, for 1l =  we have: 

1 ( )p p z= E DL , { }0,1p = . 

The following lemma establishes the l
pL  operator recursively. 

Lemma 1: The l
pL  operator applied on signals [ ] 1 0( ) ( )  ( ) T

lz X z X z−= "x  and ( )lX z , with ( )qX z , 
0 q l≤ ≤ , having a sampling rate of 2 q− , satisfies: 

  ( )1 1
, 2

( )
( ) ( )

( )
l

l l
i l p p i

X z
X z z

z
+
+

 
 + =  
  

x
xHL Lλ , { }0,1i = . (5.2) 

Proof: By expanding the right part of (5.2) using equation (5.1) and the definition of the l
pL  operator, 

we reach the left part as follows: 
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  0

0

1 2 1 1 1
2 2

1
2 ,1 11 2 1

2 2

( ) ( )
( ) ( )

( ) ( )

l
l i i b p i l i i

l l
p i l pl

i ii i b p i

X z X z
X z z

z z

+
+ +

+
+ +

+ +

                = = +                        

"

"
x

x x H

H H H H H

G GG G G
L � λ . (5.3)   

■ 

5.1.2  Problem Description 

In this section, we briefly present two methods for the CODWT under the video coding scenarios of 
Chapter IV. The first method is based on the IDWT followed by the low-band shift (LBS) method [1, 
19]. The LBS can be seen as a specific implementation technique of the “à-trous” algorithm [8] [7], 
where the different ODWT subbands are produced and stored according to the retained polyphase 
components. The second method represents our proposed approach. 

Figure V-1(a) shows an example of the one-dimensional ODWT for three decomposition levels 
starting from an input signal ( )X z . This figure facilitates the description of the LBS method [1]. 
Initially, the input signal ( )X z  is decomposed in two subband sets 1 1

0 0( ), ( )A z D z  & 1 1
1 1( ), ( )A z D z  by 

retaining separately the even and odd polyphase components of the non-decimated decomposition 
respectively, or equivalently, by performing two wavelet decompositions: one to the zero-shifted and 
one to the unit-shifted input signal respectively. Each of the low-frequency subbands 1

0( )A z  and 1
1 ( )A z  

is further analyzed in the same manner, while the high-frequency subbands 1
0( )D z  and 1

1 ( )D z  are the 
outputs of the first decomposition level. This process is repeated successively, yielding the ODWT 
representation from the input signal ( )X z  (see Figure V-1(a)). The subbands 3

0 ( )A z  and 0( )lD z , 
1,2, 3l =  represent the critically-sampled (complete) DWT of three decomposition levels, while the 

subbands 3( ), ( )l
i iA z D z , 1 3,l≤ ≤  1 2li≤ <  represent the calculated ODWT. Hence, for the 

CODWT based on this method, the signal ( )X z  has to be reconstructed by performing the IDWT to 
the subbands 3

0 ( )A z , 0( )lD z  , followed by the LBS. 

Notice that the subbands 3( ), ( )l
i iA z D z  shown in Figure V-1(a) stem from the classical ODWT 

decomposition scheme of [1], which is equivalent to the “à-trous” algorithm [8]. The difference is 
that, at every level, the subbands of Figure V-1(a) must be interleaved in order to produce the non-
decimated ODWT obtained with the algorithm of [8]. As a result, any subband ( )l

iD z  in the ODWT 
of Figure V-1(a) is the i -th polyphase component of the non-decimated ODWT of level l  [8] [7]. 

In the two-dimensional case, the ODWT can be constructed in the same manner as in Figure V-1(a), 
by applying the LBS method on the input-subband rows and on the columns of the results. Hence, to 
facilitate the description, we focus in the following analysis on the one-dimensional case, with the 
extension in two dimensions following the row-column approach.  

In a progressive resolution-refinement (resolution scalable) framework, the additional constraint that 
the subband coding and decoding occurs in a bottom-up manner is imposed: the coarsest-resolution 
subbands of the DWT are processed independently (subbands 3 3

0 0( ), ( )A z D z ) and for every higher-
resolution level l  with 2,1l = , the subband 0( )lD z  is additionally processed. In the case of closed-
loop systems these subbands are decoded at pre-defined base-quality levels. In this way, for each 
target resolution-level 3,2,1l = , the encoder uses the same reference frames as the decoder will be 
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able to create at the client side, and no drift occurs across resolutions [5, 20] [21] [3]. This can be seen 
as an extension of the base-layer concept used in quality-progressive closed-loop video coding [22]; 
although the creation of the reference frames at the base-layer potentially lowers the performance of 
the subset of decoders that progressively process additional quality layers (or resolution levels in our 
case), this guarantees drift-free operation. 
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Figure V-1. (a): The ODWT construction of three levels starting from the input signalX . A number of one-
level discrete wavelet transforms are performed that retain the even or odd samples of the non-decimated 
transform ( 1

iL with 0,1i =  respectively) (b): The level-by-level ODWT construction (example for level three) 
using the conventional multi-rate IDWT and LBS approach that perform a set of inverse and forward 
transforms. (c): The level-by-level ODWT construction for all three levels using the proposed approach. 
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Under such a resolution-scalable coding framework, the CODWT based on the LBS method is readily 
adaptable to perform a level-by-level construction of the ODWT representation (denoted by LL-LBS), 
starting from the subbands of the critically-sampled transform of each decoded level. This process is 
illustrated in Figure V-1(b). Starting from the DWT subbands 3

0( )zw  (coarsest resolution level), three 
single-level inverse wavelet transforms are performed. Subsequently, from the reconstructed signal 
( ( ))X z , all the subbands 3( )i zw , 1 8i≤ <  are constructed by performing the single-level forward 
transforms shown in Figure V-1(b). It is important to notice that, since in this case the subbands 

2 1
0 0( ), ( )D z D z  are not available, the reconstructed signal ( )X z  and the subbands 3( )i zw  are only an 

approximation of ( )X z  and of the original ODWT of level three respectively, shown in Figure V-1(a). 
However, in this resolution-scalable scenario, given the common information available at both the 
encoder and decoder sides, this ODWT representation is the best possible approximation for the 
current resolution level. Finally, if higher-resolution versions of the input data are required, the 
ODWT construction by the LL-LBS is repeated for the finer resolution levels ( 2l =  or 1l = , 
depending on the target resolution).  

Notice that, in coding applications, for every decomposition level l , the low-frequency subbands 
( )l
jA z , 1 2lj≤ <  are part of the calculated ODWT only if level l  is the coarsest-resolution of the 

decomposition (i.e. if 3l =  in the example of Figure V-1(c)). We define this construction that 
generates the signals: 

1

ODWT

2 1

( )

( )

( )l

l

l

l

z

z

z−

 
 
 

=  
 
 
  

#

w

w

w

, 

as the full-overcomplete transform-production mode (FO-mode). In all the other cases (levels 2,1l =  of 
Figure V-1(c)), the critically-sampled DWT consists of the subband 0( )lD z  and hence, in coding 
applications only the high-frequency ODWT subbands 1 2 1( ), , ( )l

l lD z D z−…  need to be calculated; this 
case is defined as the high-frequency overcomplete transform-production mode (HFO-mode). The 
difference between the FO and HFO modes is illustrated in Figure V-1(c). 

Additionally, Figure V-1(c) presents the proposed alternative approach to the LL-LBS method for the 
level-by-level CODWT of level three, two and one. In this approach, the CODWT uses a set of 
prediction filters [11, 12] [14], denoted as ( )i

jF z , 11 3, 0 2ii j +≤ ≤ ≤ < , which are convolved with 
the subbands 0 0( ), ( )i iA z D z  to calculate the ODWT representation of each level. Notice that for levels 
two and one of Figure V-1(c), the ODWT construction occurs in the HFO mode, i.e. only the high-
frequency subbands of the ODWT are calculated. Additionally, the figure illustrates that by using the 
prediction-filters, the overcomplete representation of each level is “predicted”, as shown with the 
dotted lines. As a result, no upsampling is performed and no reconstruction of the spatial-domain 
signal ( )X z  is required. The mathematical derivation of the prediction filters and the proposed 
CODWT are presented next. 
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5.1.3  Complete-to-Overcomplete Representations 

In this section we present a generic framework for the calculation of the ODWT subbands of 
decomposition level k  as a function of the critically-sampled wavelet decomposition (i.e. the 
subbands 0 0( ), ( )k lA z D z , with 1 l k≤ ≤ ). From this formalism, the level-by-level CODWT of level k , 
which is especially interesting for applications requiring progressive-refinement in resolution (e.g. [2], 
[3], [5, 20]), can be found as a special case. Symmetry properties for the prediction filters of every level 
are also proven. Based on these properties, two efficient schemes for the CODWT calculation are 
presented. 

5.1.3.1 Derivation of the ODWT Subbands of Decomposition Level k  from 
the k -level DWT – the Prediction Filters 

We start with by exemplifying the proposed CODWT for levels 1,2E =  (Subsection A). Then, 
Subsection B formulates the CODWT for any arbitrary level E k= .  

A. Calculation of the ODWT Subbands of Levels 1E =  and 2E =  

Definition 2: We define 1
0 ( )zF  and 2( )i zF , { }0,1i = , as the prediction-filter matrices of levels 1E =  

and 2E = , respectively. They are given by:  

 
1 1
0 1 0 0 1 1 1 1 0 0

1
0 1 1

0 0 1 1 1 1 0 02 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

F z F z zH z G z H z G z H z H z zH z H z
z

zG z G z G z G z H z G z zH z G zF z F z

   − −    = =   − −     
F . (5.4) 

  2 1 (1 ) 1 1
0, 0,1 0( ) ( ) ( ) ( )i

i i iz F z z F z z− −
−= +F I F . (5.5) 

where 1
0, ( )iF z  and 1

0,1 ( )iF z−  are the  i  and 1 i−  polyphase components of filter 1
0 ( )F z , respectively. 

Proposition 1: The subbands 1
1( )zw  of the ODWT of level 1E =  are given by:  

  1 1 1
1 0 0( ) ( ) ( )z z z=w F w . (5.6) 

while subbands 2
1( )zw , 2

2( )zw , 2
3( )zw  of the ODWT of level 2E =  are: 

  
( ) { }

2 1 2
1 0 0

2 2 2 1 1 1
2 0 1 0

( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) , 0,1i i i

z z z

z z z F z D z i+

=

= + =

w F w

w F w L
. (5.7) 

Proof: The proof of (5.6) can be derived by performing an inverse transform to subbands 1
0( )zw  

followed by a forward wavelet transform that retains the odd polyphase components of the non-
decimated decomposition, as shown in Figure V-1(a). In total: 

1 1 1 1 1
1 1 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )z z z z z z−= =w E R w F wDD  

with 1
0 ( )zF  the prediction-filter matrix given in (5.4). 
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Applying an inverse wavelet transform to subbands 2
0( )zw  yields: 

( )1 1 2
0 0 0( ) ( ) ( )A z z z−= R wD . 

Then, as shown in Figure V-1 (a), by performing a forward transform that retains the odd polyphase 
components of the non-decimated transform we reach the subbands 2

1( )zw  given in (5.7). 
Additionally, by using a part of equation (5.6), we derive the subband 1

1 ( )A z , as: 

[ ]1 1 1 1
1 0 1 0( ) ( )  ( ) ( )A z F z F z z= w . 

 The final result is reached by performing a forward wavelet transform retaining the even or odd 
polyphase components for 0,1i =  respectively, and using the Noble identity that exchanges the 
filtering and downsampling order [15]. Hence: 

  ( )

( )

2 1
2 1

1 1 1 2 1 1 1
0,0 0,1 0 0 1 0

2 2 1 1 1
0 1 0

( ) ( ) ( )

0
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0

( ) ( ) ( ) ( )

i i

i i

i i

z z A z

z
z F z z F z z z F z D z

z z F z D z

+

−

=

      = + +      
= +

w E

E I R w

F w

D

L

L

 (5.8) 

with 2( )i zF  the prediction-filter matrices given in (5.5).                 ■ 

Proposition 1 hints that in the general case of an arbitrary level ,  1k k > , the calculation of the 
ODWT subbands from the k -level DWT involves: (a) the single-rate filtering of the DWT subbands 
of level k  ( 0( )k zw ), and (b) the cascade application of filtering-and-downsampling operations to the 
high-frequency subbands of higher-resolution levels of the DWT ( 1 1

0 0( ), , ( )kD z D z− … ). This intuitive 
link is mathematically formulated next. 

B. Calculation of the ODWT Subbands of Level E k=  

The generalization of Proposition 1 and the corresponding definitions are given below for an arbitrary 
level k=Ε . 

Definition 3: We define 1( )l
p z+F  as the prediction- filter matrices of level 1E l= + , 1 l k≤ <  with 

1k > , given by:  

 0
0 0

1 1
4 4 1

1 (1 ) 1
(1), (1),1 01 1

4 2 4 3

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

l l
p p

l l b l
p w b w bl l

p p

F z F z
z F z z F z z

F z F z

+ +
+

+ − −
−+ +

+ +

 
 = = + 
  

F I F . (5.9) 

where (1)( )l
wF z  are prediction filters of level E l= , the filter subscripts ( )w n  are defined as: 

 ( ) 4
2n
pw n  =   

, 1 n l≤ ≤ , (5.10) 

and p  given by (5.1). 

Definition 4: We define ( )l
d zF  as the diagonal matrix of prediction filters, given by: 
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( )1 1
(1) 1 (2) 1 ( ) 1( ) diag ( )  ( )  ( )l l l

d w w w lz F z F z F z−
+ + += "F . 

Definition 5: We define 1, ( )k l z−d , 1 l k≤ <  with 1k > , as the vector of high-frequency subbands of 
levels 1, 2, ,k k k l− − −…  of the DWT. It is given by: 

[ ] 1, 1 2
0 0 0( ) ( )  ( )  ( ) Tk l k k k lz D z D z D z− − − −= "d . 

Proposition 2: The subbands of the ODWT of level E k= , ( )k
x zw , with 1 2kx≤ < , are given by: 

  ( )1 1,
0( ) ( ) ( ) ( ) ( )  k l k l l k l

x p p dz z z z z+ −= +w F w F dL . (5.11) 

where x  denotes the ODWT-subband index at level k  (phase x ) and is written as 2 ,lx p= +  while 
l , p  are given as in Definition 3 and  2logl x= . In the particular case of 0l =  corresponding to 

1k =  and 1x = , we set 0p =  and [ ]0
0 0  0 T≡L  (zero operator) as well as ( ) 0B

AF z ≡  for any 
indices 0A <  or 0B ≤ . For this case, equation (5.11) becomes Proposition 1. 

Proof: The proof is inductive. Initially it is noted that equation (5.11) holds for levels 1E =  and 
2E = , since it corresponds to Proposition 1. Subsequently, assume that (5.11) holds for a particular 

E k= . It is now proven that, given the subbands 1
0 ( )k z+w  (DWT subbands of level 1k + ), if (5.11) 

holds for E k= , it holds also for 1E k= + . 

Let us start by performing an inverse DWT in order to calculate the 0
kA  subband in function of 

subbands 1
0 ( )k z+w : 

  ( )1 1
0 0 0( ) ( ) ( )k kA z z z− += R wD . (5.12) 

The derivation of subbands 1
1 ( )k z+w  follows immediately by performing a forward transform with 

1( )zE . Hence we derive (5.11) for the special case of 1x =  with k  replaced by 1k + . For the 
remaining subbands of level 1k + , we can apply equation (5.11) (involving the filters of the 1( )l

p z+F  
matrix), since it is true for level E k= . We can calculate any subband k

xA , 1 2kx< < , as: 

  [ ] ( )1 1 1,
4 4 1 0 ,( ) ( )  ( ) ( ) ( ) ( )k l l k l l k l

x p p p dA z F z F z z z z+ + −
+= +w F dHλ . (5.13) 

As shown in Figure V-1(b) for the example of 2k = , in order to calculate the 1
2 ( )k
x z+w  subbands 

(even-numbered subbands of level 1k + ), we need to perform a single-level forward transform in 
equation (5.13), retaining the even samples (“classical” DWT): 

  
( )

( )[ ]

1 1
2 0 4 0

1 1,
0 4 1 0 ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k l k
x p

l k l l k l
p p d

z z F z A z

z F z D z z z

+ +

+ −
+

=

+ +

w E

E F dH

D

D λ
. (5.14) 

Based on Lemma 1, equation (5.12) and the Noble identity, the last equation can be written as: 
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( )

1 1 1 1 1
2 0 4 ,0 4 ,1 0 0

1 1 , 1
2

0
( ) ( ) ( ) ( ) ( ) ( )

1 0

( ) ( )

k l l k
x p p

l l k l
p d

z
z z F z z F z z z

z z

+ + − + +

+ + +

      = +       
+

w E I R w

F dL

. (5.15) 

After simplifications, equation (5.15) becomes equivalent to (5.11) with l  replaced by 1l l′ = +  and 
hence 2 1l k′≤ < + , while the ODWT subband index 2x  of  (5.15) is bounded by 12 2 2kx +≤ < . 
In addition, the resulting prediction- filter matrix of (5.15) is expressed as in (5.9) with 1

1
2

l i
ii

p c
′−

=
′ =∑  

and 1i ic b −= , 0 0c = . Hence, equation (5.15) corresponds to (5.11) for the even-numbered subbands, 
with k  replaced by 1k + . 

In order to calculate the subbands 1
2 1( )k
x z+
+w  (odd-numbered subbands of level 1k + ), we perform a 

forward DWT retaining the odd samples, reaching, similarly as before, the following: 

  
( )

1 1 1 1 1
2 1 1 4 ,0 4 ,1 0 0

1 1 , 1
2 1

0
( ) ( ) ( ) ( ) ( ) ( )

1 0

( ) ( )

k l l k
x p p

l l k l
p d

z
z z F z z F z z z

z z

+ + − + +
+

+ + +
+

      = +       
+

w E I R w

F dL

. (5.16) 

After simplifications, equation (5.16) becomes (5.11) with l  replaced by 1l l′ = +  and hence 
2 1l k′≤ < + , while the ODWT subband index 2 1x +  of (5.16) is bounded by 13 2 1 2kx +≤ + < . 
In addition, the resulting prediction-filter matrix of (5.16) is expressed as in (5.9) with 1

1
2

l i
ii

p c
′−

=
′ =∑  

and 1i ic b −= , 0 1c = . As a result, (5.16) corresponds to equation (5.11) for the odd-numbered 
subbands, with k  replaced by 1k + . One concludes that Proposition 2 is true for the case of 

1E k= + . This means, by induction, that it is true for every Ε , 1≥Ε .                                          ■ 

For each decomposition level k  of the DWT, Proposition 2 given in equation (5.11) consists of a 
single-rate and a multi-rate calculation part. The first consists of the convolution of the critically-sampled 
subbands of level k  with the prediction filters of the matrix 1( )l

p z+F , 0 l k≤ < , while the second 
consists of the convolutions of the vector of high-frequency DWT subbands of levels 

1, 2,..,k k k l− − −  with the diagonal matrix of prediction filters, followed by the successive filtering-
and-downsampling with the analysis filters. This result is summarized below. 

Proposition 3: The complete-to-overcomplete discrete wavelet transform of any level k  is: 

  ( )

01

12

1 1, 1
ODWT 0

1

( )

( )
( ) ( ) ( ) ( )  

( )

k k k k k
d

kk

z

z
z z z z

z

− − −

−

   
   
   
   
   = +   
   
   
     

##

P

P
w w F d

P

Q

Q

Q

. (5.17) 

with: 
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1

ODWT

2 1

( )

( )

( )k

k

k

k

z

z

z−

 
 
 

=  
 
 
  

#

w

w

w

, 

1
0

1
1

1

1
2 1

( )

( )
( )

( )l

l

l

l

l

z

z
z

z

+

+

+

+
−

 
 
 
 
 =  
 
 
   

#

F

F
P

F

, 

0

1

2 1

0 0

0 0

0l

l

l

l

l
−

 
 
 
 
 =  
 
 
   

"

"

# # % #

"

L

L
Q

L

 

a ( )12 1l k+ × −  array of operators for every 0 l k≤ < , and: 

0 0
0

0

0
 
 = =    

Q L . 

5.1.3.2 Properties of the Derived Formulation 

A straightforward calculation of any given subband pair ( )k
x zw  of Proposition 2 is given schematically 

in Figure V-2. The figure gives also a pseudo-program describing the initialization procedure used to 
select the appropriate filters involved in the calculation of an arbitrary set of ODWT subbands ( )k

x zw  
of (5.11). The calculation of the multi-rate part of (5.11) shown in Figure V-2 is based on the 
following derivation: 

  
( ) ((

( )( )))

0

1

0

2 1

1

1, 1 1 1 2
(1) 1 0 (2) 1 01

1 1 1
( ) 1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
l

b
l l k l l k l k
p d w b w

b

k l
b b w l

z z F z D z F z D z

F z D z
−

− − − −
+ +

−
+

 
 = + + 
  
+ +" "

F dL
H

H
G

H H

 (5.18) 

which comes from the property that the downsampling and summation operations can be 
interchanged. Figure V-2 shows that the proposed approach involves the minimum number of 
downsampling operations and no upsampling is used. 
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with: S F ≡ ( ) ( )F z S z

1

1
lb −

H

+

1
( ) 1w lF +0

k lD −

1
0
k lD − + 2

( 1) 1w lF − + 2

1
lb −

H

. . .. . .. . .
2

0
kD − 1

(2) 1
l
wF
−

+ 1

1
bH

1
0
kD −

(1) 1
l
wF + +

0

1
bH

+

0
kD

0
kA

1
4
l
pF
+

1
4 2
l
pF
+
+

k
xA

0

1
bG

1
4 3
l
pF
+
+

1
4 1
l
pF
+
+

+ k
xD

+. . .

( )1,( ) ( )l l k l
p d z z−F dL

≈

1
ib

US ≡ S ibz U 2with: S F ≡ ( ) ( )F z S z

1

1
lb −

H

+

1
( ) 1w lF +0

k lD −

1
0
k lD − + 2

( 1) 1w lF − + 2

1
lb −

H

. . .. . .. . .
2

0
kD − 1

(2) 1
l
wF
−

+ 1

1
bH

1
0
kD −

(1) 1
l
wF + +

0

1
bH

+

0
kD

0
kA

1
4
l
pF
+

1
4 2
l
pF
+
+

k
xA

0

1
bG

1
4 3
l
pF
+
+

1
4 1
l
pF
+
+

+ k
xD

+. . .

( )1,( ) ( )l l k l
p d z z−F dL

≈

1
ib

US ≡ S ibz U 2
 

(a) 

 
(b) 

Figure V-2. (a) The straightforward calculation of the CODWT based on Proposition 2. (b) The initialization of 
the calculation of k

xA , k
xD . 

 

In the following parts of this section, we present two symmetry properties for the prediction filters of 
each decomposition level as well as an efficient calculation scheme of the single-rate and multi-rate 
parts of Proposition 3. 

Proposition 4: For the prediction-filter matrices 1( )l
p z+F  of any level 1E l= + , 1 l k≤ <  of 

biorthogonal point-symmetric filter-banks, the following properties hold: 
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  1
1

4 4(2 1)( ) ( )k
k k
m mF z zF z−

−
− −= . (5.19) 

  1
1

4 1 4(2 1) 1( ) ( )k
k k
m mF z F z−

−
+ − − += . (5.20) 

  1
2 1

4 2 4(2 1) 2( ) ( )k
k k
m mF z z F z−

−
+ − − += . (5.21) 

  1
1

4 3 4(2 1) 3( ) ( )k
k k
m mF z zF z−

−
+ − − += . (5.22) 

with 20 2km −≤ <  and 1k > . 

Proof. Proposition 4 will be demonstrated by mathematical induction. Starting from the first 
decomposition level, the following relationships are used for the prediction filters: 

 1 1 1 1
0 0( ) ( )F z z F z− −=  (5.23) 

 1 1 1
1 1( ) ( )F z F z− =  (5.24) 

 1 1 2 1
2 2( ) ( )F z z F z− −=  (5.25) 

 1 1 1 1
3 3( ) ( )F z z F z− −=  (5.26) 

 1 1
0 3( ) ( )F z F z= −  (5.27) 

 1 1 1
3 0( ) ( )F z zF z−= −  (5.28) 

The proof of the equations (5.23)–(5.28) follows immediately by: 

• deriving the relations between the polyphase components of the filter-bank based on the 
relationships: 

 1( ) ( )G z G z−= , 1 1( ) ( )zH z z H z− −=  (5.29) 

 which hold for biorthogonal point-symmetric filter-banks [11],  

• using these relations in conjunction with the definition of the prediction filters of equation 
(5.4). 

The symmetries of Proposition 4 that correspond to the case 2k =  are: 

 2 2 1
0 4( ) ( )F z zF z−=  (5.30) 

 2 2 1
1 5( ) ( )F z F z−=  (5.31) 

 2 2 2 1
2 6( ) ( )F z z F z−=  (5.32) 

 2 2 1
3 7( ) ( )F z zF z−=  (5.33) 
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To prove this proposition, we use equation (5.23) with the Type-I polyphase components of filter 
1
0 ( )F z , yielding 1 1 1 1

0,0 0,1( ) ( )F z z F z− −=  and 1 1 1 1
0,1 0,0( ) ( )F z z F z− −= . The proof of (5.30)–(5.33) is 

concluded by replacing filters 2 1
{4,5,6,7}( )F z−  from their definition given by (5.9) with 1l = , and by 

replacing 1 1
0,0( )F z− , 1 1

0,1( )F z−  and 1 1
{0,1,2,3}( )F z−  from the last two equations and (5.23)–(5.26), 

respectively.  

We now assume that Proposition 4 is true for level k  and we derive the symmetry relationships for 
level 1k + . In the Type-I polyphase components of 4

k
mF , with 20 2km −≤ <  we can replace the 

terms 1 1
2 2

4 4( ), ( )k k
m mF z F z−  by using (5.19), yielding: 

 1
1

4 ,0 4(2 1),1( ) ( )k
k k
m mF z zF z−

−
− −= , 1

1
4 ,1 4(2 1),0( ) ( )k
k k
m mF z zF z−

−
− −=  (5.34) 

with 20,1,..,2 1km −= −  and 1k > . 

Let us start by proving the symmetry properties for the filters of the form 1
4
k
mF +  (corresponding to 

equation (5.19)), with 10 2km −≤ < ; these properties are separately derived for m  even and m  odd. 
For the case of m  even, we define 2m j= , with 20 2kj −≤ < . Hence, from (5.9) with l k=  and 
from equation (5.28) we obtain: 

 1 1 1
4 4 ,0 0 4 ,1( ) ( ) ( ) ( )k k k
m j jF z F z F z F z+ −= + . (5.35) 

Since 20 2kj −≤ < , we can substitute (5.34) in the last equation, obtaining: 

 1 1
1 1 1 1 1

4 04(2 1),1 4(2 1),0( ) ( ( ) ( ) ( ))k k
k k k
m j jF z z F z F z F z− −
+ − − −

− − − −= + ⋅ . (5.36) 

From the definition of 1
4 ( )k
mF z+  (equation (5.9) with l k= ) and from the definition of m , (5.36)

becomes: 

 1
1 1 1 1 1 1

4 48(2 1) 4 4(2 1)( ) ( ) ( ) ( )k k
k k k k
m mj mF z zF z F z zF z−
+ + − + + −

− − + − −= ⇔ =  (5.37) 

for 10,2, 4,..,2 2km −= − . 

For the case of m  odd, we define 2 1m j= +  with 20 2kj −≤ < . Thus, from the definition of 
1

4 ( )k
mF z+  (equation (5.9) with l k= ) and from equation (5.28) we obtain: 

 
1 1 1

4 8 4 4 ,1 0 4 ,0

1 1 1
4 4 ,1 3 4 ,0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k k k
m j j j

k k k
m j j

F z F z F z F z F z

F z F z zF z F z

+ +
+

+ −

= = +

⇔ = −
. (5.38) 

Since 20 2kj −≤ < , we can substitute (5.34) in equation (5.38) and we get: 

 1 1
1 1 1 1 1

4 34(2 1),0 4(2 1),1( ) ( ( ) ( ) ( ))k k
k k k
m j jF z z F z zF z F z− −
+ − − −

− − − −= − . (5.39) 

From (5.9) with l k=  and from the definition of m , equation (5.39) becomes: 

 1
1 1 1 1 1 1

4 48(2 1) 4(2 1)( ) ( ) ( ) ( )k k
k k k k
m mj mF z zF z F z zF z−
+ + − + + −

− − − −= ⇔ =  (5.40) 
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for 11, 3,5,..,2 1km −= − . 

Thus, the combination of (5.37) and (5.40) yields (5.19) with the k  replaced by 1k + . 

To prove the symmetry properties for the prediction filters of the form 1
4 1
k
mF +
+ , with 10 2km −≤ < , we 

follow the same rationale as before. Hence, these properties are separately derived for m  even and m  
odd. For the case of m  even, we denote 2m j=  with 20 2kj −≤ < . By using the definition of 1

4 1
k
mF +
+  

(equation (5.9) with l k= ) and from (5.24) we obtain: 

1 1 1 1
4 1 1 4 ,1( ) ( ) ( )k k
m jF z z F z F z+ − −
+ = . 

Since 20 2kj −≤ < , we can substitute (5.34) in the last equation, obtaining:  

1
1 1 1 1

4 1 1 4(2 1),0( ) ( ) ( )k
k k
m jF z F z F z−
+ − −
+ − −= . 

From equation (5.9) with l k=  and from the definition of m  we obtain: 

 1
1 1 1 1 1 1

4 1 4 18(2 1) 5 4(2 1) 1( ) ( ) ( ) ( )k k
k k k k
m mj mF z F z F z F z−
+ + − + + −
+ +− − + − − += ⇔ =  (5.41) 

for 10,2, 4,..,2 2km −= − . 

For the case of m  odd, we denote 2 1m j= +  with 20 2kj −≤ < . Thus, from (5.9) with l k=  and 
from (5.24) we obtain: 

 1 1 1 1 1 1
4 1 8 5 1 4 ,0 4 1 1 4 ,0( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k
m j j m jF z F z F z F z F z F z F z+ + + −
+ + += = ⇔ = . (5.42) 

Since 20 2kj −≤ < , we can substitute (5.34) in (5.42), obtaining:  

1
1 1 1

4 1 1 4(2 1),1( ) ( ) ( )k
k k
m jF z zF z F z−
+ −
+ − −= . 

From equation (5.9) with l k=  and from the definition of m  we obtain: 

 1
1 1 1 1 1 1

4 1 4 18(2 1) 1 4(2 1) 1( ) ( ) ( ) ( )k k
k k k k
m mj mF z F z F z F z−
+ + − + + −
+ +− − + − − += ⇔ = . (5.43) 

for 11, 3,5,..,2 1km −= − . 

Thus, the combination of (5.41) and (5.43) yields (5.20) with k  replaced by 1k + . 

For the prediction filters of the form 1
4 2
k
mF +
+ , with 10 2km −≤ < , we follow exactly the same reasoning 

as for filter 1
4 1
k
mF +
+ , but now their definitions from equation (5.9) (with l k= ) are used in combination 

with (5.25) for the even and odd values of m . Equivalently, for the filters 1
4 3
k
mF +
+ , 10 2km −≤ < , we 

follow similar steps as for the proof given for the filters 1
4
k
mF + ; in this case their definitions from 

equation (5.9) (with l k= ) are used in combination with (5.26) for the even and odd values of m . As 
a result we reach equations (5.21) and (5.22) with k  replaced by 1k + .                                              ■ 
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A practical example of the symmetries of Proposition 4 as well as the derived equations (5.23)–(5.28) 
is given in Table V-II and Table V-III, where the prediction filters for two popular point-symmetric 
biorthogonal filter-banks are presented. 

 
5/3 filter-bank Degree 

in Z  1
0 ( )F z  1

1 ( )F z  1
2 ( )F z  1

3 ( )F z  

2 -0.0625 0.03125 -0.1250 0.0625 
1 0.5625 -0.5 0.25 -0.5625 
0 0.5625 0.9375 -0.125 -0.5625 
-1 -0.0625 -0.5  0.0625 
-2  0.03125   

9/7 filter-bank Degree 
in Z  1

0 ( )F z  1
1 ( )F z  1

2 ( )F z  1
3 ( )F z  

4 -0.00244140625001 0.00143099204607 -0.00416526737096 0.00244140625001 
3 0.02392578125006 -0.00893829770284 0.05562204500420 -0.02392578125006 
2 -0.11962890624961 0.09475201933935 -0.18500077367828 0.11962890624961 
1 0.59814453124955 -0.32145927076690 0.26708799209208 -0.59814453124955 
0 0.59814453124955 0.46842911416863 -0.18500077367828 -0.59814453124955 
-1 -0.11962890624961 -0.32145927076690 0.05562204500420 0.11962890624961 
-2 0.02392578125006 0.09475201933935 -0.00416526737096 -0.02392578125006 
-3 -0.00244140625001 -0.00893829770284  0.00244140625001 
-4  0.00143099204607   

Table V-II. The prediction filters of level one for the 5/3 and the 9/7 filter-banks shown in Table V-I. 
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5/3 filter-bank Degree 
in Z  2

0 ( )F z  2
1 ( )F z  2

2 ( )F z  2
3 ( )F z  

2 -0.03515625 0.017578125 -0.0703125 0.03515625 
1 0.2578125 -0.283203125 0.1484375 -0.3828125 
0 0.843750 0.55859375 -0.0859375 0.28125 
-1 -0.0703125 -0.33984375 0.0078125 0.0703125 
-2 0.00390625 0.048828125  -0.00390625 
-3  -0.001953125   
 2

4 ( )F z  2
5 ( )F z  2

6 ( )F z  2
7 ( )F z  

3 0.00390625 -0.001953125 0.0078125 -0.00390625 
2 -0.0703125 0.048828125 -0.0859375 0.0703125 
1 0.843750 -0.33984375 0.1484375 0.28125 
0 0.2578125 0.55859375 -0.0703125 -0.3828125 
-1 -0.03515625 -0.283203125  0.03515625 
-2  0.017578125   

9/7 filter-bank Degree 
in Z  2

0 ( )F z  2
1 ( )F z  2

2 ( )F z  2
3 ( )F z  

5 -0.00005841255188 0.00003423760266 -0.00009965727597 0.00005841255188 
4 -0.00088787078858 0.00064208431103 -0.00116063101768 0.00088787078858 
3 0.01174092292788 -0.00325056581524 0.02934202037389 -0.01174092292788 
2 -0.06254196166961 0.05005002314451 -0.11091074747671 0.05765914916960 
1 0.26671171188334 -0.19238483073456 0.17732657799233 -0.50596952438255 
0 0.88179588317802 0.31072164151829 -0.14082618249241 0.31449317932109 
-1 -0.12007284164365 -0.24526493865167 0.05464973467748 0.16792440414377 
-2 0.02710342407219 0.09377374163572 -0.00869377426124 -0.02710342407219 
-3 -0.00403046607971 -0.01586242405270 0.00036249037151 0.00403046607971 
-4 0.00023365020752 0.00169389067232 0.00001016910979 -0.00023365020752 
-5 0.00000596046448 -0.00014936599745  -0.00000596046448 
-6  -0.00000349363292   
 2

4 ( )F z  2
5 ( )F z  2

6 ( )F z  2
7 ( )F z  

6 0.00000596046448 -0.00000349363292 0.00001016910979 -0.00000596046448 
5 0.00023365020752 -0.00014936599745 0.00036249037151 -0.00023365020752 
4 -0.00403046607971 0.00169389067232 -0.00869377426124 0.00403046607971 
3 0.02710342407219 -0.01586242405270 0.05464973467748 -0.02710342407219 
2 -0.12007284164365 0.09377374163572 -0.14082618249241 0.16792440414377 
1 0.88179588317802 -0.24526493865167 0.17732657799233 0.31449317932109 
0 0.26671171188334 0.31072164151829 -0.11091074747671 -0.50596952438255 
-1 -0.06254196166961 -0.19238483073456 0.02934202037389 0.05765914916960 
-2 0.01174092292788 0.05005002314451 -0.00116063101768 -0.01174092292788 
-3 -0.00088787078858 -0.00325056581524 -0.00009965727597 0.00088787078858 
-4 -0.00005841255188 0.00064208431103  0.00005841255188 
-5  0.00003423760266   

Table V-III. The prediction filters of level two for the 5/3 and the 9/7 filter-banks. 
 

This section is concluded with an extension of the first part of Proposition 4 (equation (5.19)) for all 
types of perfect-reconstruction filter-banks. 

Proposition 5 (extension of Proposition 4): For the prediction-filter matrices 1( )l
p z+F  of any level 

1E l= + , 1 l k≤ <  of any perfect-reconstruction filter-bank, the following property holds: 

  1
1

4 4(2 1)( ) ( )k
k k
m mF z zF z−

−
− −= . (5.44) 

with 20 2km −≤ <  and 1k > . 
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Proof. To prove (5.44) for any perfect-reconstruction filter-bank, it is enough to show that, under 
conditions for perfect reconstruction that satisfy the general definition of a wavelet filter-bank 
(Definition 1), the proof demonstrated for (5.19) holds.  

In Definition 1 we have assumed zero-delay perfect reconstruction with 0det ( ) 1z = −E , which can 
be satisfied with: 1( ) ( )G z G z−= , 2 1( ) ( )H z z H z− −=  for biorthogonal point-symmetric filter-banks, 

1 1( ) ( )G z z G z− −= − , 1 1( ) ( )H z z H z− −=  for biorthogonal half-point symmetric filter-banks, and 
1 1( ) ( )G z z H z− −= −  for orthogonal filter-banks. Based on these equations, the proof of (5.30) (first 

part of the induction for the proof of (5.44)) is concluded for each case by deriving the symmetry 
relations between the Type-I polyphase components of the analysis filters and using them in 
combination with the definition of 1

0 ( )F z  from (5.4). For the remainder of the proof, one follows the 
steps demonstrated by equations (5.34)–(5.40) since they are all based on the validity of (5.30) and the 
general definition of the prediction filters of (5.9).                                                                               ■ 

Corollary 1: For the prediction-filter matrices 1( )l
p z+F  of any level 1E l= + , 1 l k≤ <  of any perfect-

reconstruction filter-bank, the following property holds: 

 1
1

4 ,0 4(2 1),1( ) ( )k
k k
m mF z zF z−

−
− −= , 1

1
4 ,1 4(2 1),0( ) ( )k
k k
m mF z zF z−

−
− −=  (5.45) 

with 20,1,..,2 1km −= −  and 1k > . 

Based on the validity of Proposition 5, equation (5.45) is the extension of (5.34), for all perfect-
reconstruction filter-banks. This equation is very useful for the derivation of one of the efficient 
calculation algorithms presented in the next section. 

5.2 Architectures and Fast Algorithms 
In this section, we are focusing on the calculation of the full CODWT, given by Proposition 3, and 
any subband pair of the ODWT, given by Proposition 2.  

5.2.1  Fast Algorithm for the Calculation of the CODWT 

Starting with the calculation of the CODWT, although the straightforward design of Figure V-2 
provides the complete transform if it is used for all the subbands of a given resolution level, it fails to 
exploit the symmetry properties demonstrated by Proposition 4 and Proposition 5. As a result, with 
respect to the required arithmetic operations, it is not a good implementation solution.   

It is easy to observe that all the derived symmetry properties of the previous section refer to the 
single-rate part of Proposition 3. As a result, in the following we separate our discussion to the design 
of an architecture for the single-rate and the multi-rate part of Proposition 3. 
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5.2.1.1 Calculation of the Single-rate Part of Proposition 3 

Based on Corollary 1, having the same input signal, the convolutions with filters 4 ,0( )l
mF z , 4 ,1( )l

mF z , 
20,1,..,2 1lm −= − , 1l > , can be reused to produce the convolutions with the filters 14(2 1),1( )l

l
mF z− − − , 

14(2 1),0( )l
l

mF z− − − , respectively. This is achieved by using a lattice structure (LS) such as the one depicted 
in Figure V-3. This is of great practical importance since the utilization of this symmetry in the 
prediction filters of (5.9) leads to the reduction of the necessary arithmetic operations for the 
proposed CODWT. As an example, based on Corollary 1, if we expand the form of the prediction 
filters of (5.9) in the general expression of (5.17) for 3k = , with the setting 2,2

0 ( )z =d 0  (single-rate 
calculation) we reach the following result: 
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.
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 
 
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 (5.46) 

The set of equations (5.46) shows that the single-rate calculation of the proposed CODWT is 
simplified to the convolutions with filters 1

0 ( )zF  and filters 1 2 2
0,0 0,0 4,0( ),  ( ),  ( )F z F z F z  with the use of a 

set of lattice structures of Figure V-3. To demonstrate this in practice, based on equation (5.46), 
Figure V-4(a) shows an architecture for the calculation of the ODWT subbands of level three under 
the single-rate construction for resolution scalability. In the figure, a set of three processor elements 
(PE) is used for the production of subbands 3

iw , 1 8i≤ < . The definition of a PE is given in Figure 
V-4(b); it contains four lattice structures such as the one shown in Figure V-3. In the general case of 
decomposition level k , the architecture of Figure V-4(a) uses 12 1k− −  PEs for the production of the 

ODWT
kw  subbands. 

 

Figure V-3. A lattice structure that implements the two convolutions ( ) ( ) ( )V z F z I z=  and 
1( ) ( ) ( )aW z z F z I z− −=  for a filter F  with L  taps using L  multipliers. 

 

 
LS(F,a)I V

W
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Figure V-4. (a) An architecture for the calculation of the single-rate part of equation (5.17). An example with 
3k =  is given, where the ODWT is computed using subbands 3 3

0 0,  A D  and 3 processing elements (PE). (b) 
The design of a PE. 
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5.2.1.2 Calculation of the Multi-rate Part of Proposition 3 

Concerning the multi-rate part of the ODWT
kw  given in Proposition 3, for each level k , the calculation 

of the single-rate part is augmented by each of the terms ( )1,( ) ( )l l k l
p d z z−F dL , 0 l k≤ < . The explicit 

form of these terms was given in (5.18); it consists of the convolutions 1
4 1 ( ) ( )l i k i
mF z D z− + −
+ , 

20,1,..,2 1lm −= − , 1 i l≤ ≤ , i.e. the elements of ( )l
d zF  and 1, ( )k l z−d  followed by filtering-and-

downsampling with the analysis filter-bank. Figure V-5 presents an efficient architecture for the multi-
rate part of Proposition 3 for 3k = . In the figure, the recursive definition of filters 1

( ) 1( )l i
w iF z− +
+  given 

by (5.9) and the symmetry property of Corollary 1 are used for the reduction of the necessary 
multiplications. Specifically, the lattice structure of Figure V-3 is used for the production of the results 
of the convolutions with filters 2 2

1 5( ),  ( )F z F z . In general, the figure demonstrates that a recursive 
calculation is used: for each subband 0( )lD z , 1 l k≤ < , a new stage is inserted with filter 1

1 ( )F z  and 
12 1l− −  lattice structures (left side of the figure); also, 2 2l −  low-pass filtering-and-downsampling 

operations are applied to subband 1
0 ( )lD z− , 1 l k< < . In addition, 2 2k −  analysis filter-banks are 

used for 1
0 ( )kD z− . 
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Figure V-5. An architecture for the calculation of the multi-rate part of equation (5.17). An example with 

3k =  is given. 
 

5.2.2  Fast Algorithm for the Single-rate Calculation of 
Proposition 2 for Biorthogonal Point-symmetric Filter-banks 

Although the algorithm of the previous subsection provides a fast computation of the CODWT by 
reusing results from other phases based on the architectures of Figure V-4 and Figure V-5, this 
algorithm may be considered to be complex to realize in a system with restricted resources, such as an 
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embedded processor. This is due to the fact that, in order to allow maximum hardware utilization, the 
architecture of single-rate calculation of Figure V-4 demands a large number of filter kernels operating 
in parallel. Moreover, as shown by Figure V-4, for each input pair of samples, a number of phases is 
produced simultaneously, which demands a relatively-large number of registers to store the 
intermediate results of the calculation.  

As demonstrated in [11], if one focuses on biorthogonal point-symmetric filter-banks, the prediction-
filter symmetries of Proposition 4 can be directly used to produce the low- or high-frequency 
subbands of pairs of ODWT phases. Although less intermediate results are reused for such a 
computation scheme, this has the potential of producing a fast algorithm that utilizes only four filter-
kernels in parallel. Since this scenario is targeted towards platforms with limited hardware resources, 
we are not going to discuss the multi-rate part of the CODWT; if it is deemed necessary to be used by 
a specific application, the architecture of Figure V-5 of Subsection 5.2.1.2 can be used for this case as 
well.  

The symmetries of Proposition 4 indicate that for point-symmetric biorthogonal filter-banks, for the 
calculation of the subbands , ,  1 2 ,  1k k k

i iA D i k< < > , we can derive half of the corresponding F -
filters as the time-inverses of the other half of the filters under some shifts. Specifically, the filters are 
time-inversed in groups of four filters that lay in a “mirror” fashion in the group of prediction filters. 
Thus, by looking at the indices of (5.19)–(5.22), the first four F -filters are related with the last four, 
the second four F -filters with the penultimate four, and so on. This is also numerically shown in the 
two examples of Table V-III where we display the prediction filter taps for the biorthogonal point-
symmetric 5/3 and 9/7 filter-banks for 2k = . One can exploit this simple symmetry to reduce the 
number of required multiplications.  

In this case, one can also explore the additional approach of approximating the prediction filters by 
setting to zero all taps that are smaller than a threshold [11]. In this way, the size of the filters of each 
level is reduced, while a good approximation of the final result is obtained. We note that this 
technique cannot be applied in the LBS approach since the lifting coefficients and the taps of the 
biorthogonal filter-banks do not have magnitudes below the chosen thresholds, which were 
experimentally chosen for the prediction-filters method so that adequate precision for very high-
bitrate coding is obtained in the ODWT domain: a PSNR above 50 dB was imposed in every ODWT 
subband constructed with the single-rate prediction-filters method in comparison to the construction 
with the LL-LBS algorithm. This was verified on a set of JPEG-2000 test images. An experimental 
evaluation of this algorithm against the LL-LBS revealed that computational reductions can be 
obtained under thresholding, which in some cases can be significant, i.e. reductions of about 40-50% 
in the number of required multiplications [11]. The reader is referred to [11] for further details on the 
computational reductions with this algorithm.  

5.3 Complexity Analysis and Experimental Evaluation 
We evaluate the computational requirements of the proposed architecture of subsections 5.2.1.1 and 
5.2.1.2 versus the architecture of the conventional approach that uses the IDWT and LBS algorithm 
for the production of the ODWT( )k zw  subbands. In addition to that, by focusing on practical 
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applications [5, 20] [2] [3], we examine the computational complexity and delay for the transform part 
of a system that encodes/decodes using the CODWT in a resolution-scalable framework. The 
computational complexity is formulated based on the number of required multiplications and 
additions. Furthermore, the one-dimensional case of an N -sample signal is analyzed, with the 
extension to two dimensions following immediately. 

5.3.1  Computational Complexity for the calculation of the 
ODWT( )k zw  Subbands 

5.3.1.1 General 

For a one-level wavelet transform of an N -sample signal, the computational complexity can be 
expressed as: 

( ) ( )multiply multiply add add2 2( ) ( ) I Cost I CostN N
C CN NΛ = ϒ = + , 

where ( )C NΛ  and ( )C Nϒ  denote the complexity of a decomposition and reconstruction of N  input 
samples respectively, multiplyCost  and addCost  express the implementation complexity of one 
multiplication and addition respectively, and multiply addI ,  I  are factors that denote the number of 
multiplications and additions for each application of the filter-bank to the input. These factors depend 
on the implementation technique (convolution or lifting [23]). For example, by using the classical 
lifting factorization proposed in [23] for the 9/7 filter-bank, we have multiplyI 4= , addI 8=  instead of 

multiplyI 9=  and addI 14=  that is achieved with convolution1. However, the gain in multiplications 
and additions of the lifting implementation comes only when both the low and high-frequency 
subbands are used for the reconstruction, or conversely when both are produced from a one-level 
decomposition [23]. Hence, for a decomposition where only the low-frequency (average) or the high-
frequency (detail) subband is produced, the computational complexity of the transform of an N -
sample signal under a convolution-based or lifting-based implementation is: 

( ) ( ) ( ),multiply multiply ,add add2 2f Cost f CostN N
A H HNΛ = + , 

( ) ( ) ( ),multiply multiply ,add add2 2f Cost f CostN N
D G GNΛ = + , 

respectively, where the factors ,multiply ,addf ,  fH G  denote the computations (multiplications, additions) 
performed by one application of each analysis filter. In general, if UT  denotes the number of taps of 
analysis filter { },U H G= , 1

,multiply 2f UT
U

+ =    if U  is a symmetric analysis filter and ,multiplyfU UT=  
otherwise. Also, in all cases, ( ),addf 1U UT= − . Similarly, for a reconstruction from the low-frequency 
(average) subband only, the complexity for the production of an N -sample output signal is 
( ) ( )A DN Nϒ = Λ . 

 

                                                 
1 Note that we shall use lifting factorizations without scaling factors in order to minimize the arithmetic complexity. In a 
coding system, the multiplications with these factors can be implicitly performed by embedding the scaling factors in the 
quantization tables applied to each subband at each resolution level. 
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5.3.1.2 Computational Complexity for the Conventional Multi-rate 
Approach for the Production of Subbands ODWT( )k zw  

As explained in Subsection 5.1.2, the conventional multi-rate approach for the production of 
subbands ODWT( )k zw  consists of the inverse DWT followed by the LBS algorithm. For a 
decomposition in k  levels, k  single-level inverse transforms should be performed to reconstruct the 
input signal X . Then, by performing a number of forward transforms that retain the even or odd 
polyphase components of the non-decimated transform, all the ODWT subbands of level k  are 
produced. Thus, the complexity of the construction in the full-overcomplete mode, where both the 
low and high-frequency ODWT subbands of level k  are produced, is: 

 

( )

( ) ( )[ ]
( ) ( )[ ]

1 2

2 1

ODWT 2 2
1

2 2
1 1

multiply ,multiply multiply
1 1

add ,add add

LBS ( ) ( ) ( )
 (2 1) ( ) (2 1) ( ) (2 1) ( )

I 2 2 f 2 2 Cost
 I 2 2 f 2 2 Cost

k k

k k

k N N
C C C

k kN N
A A C

k k
H

k k
H

N
N

N k
N k

− −

− −
−

− −

− −

 = ϒ + ϒ + + ϒ 
 + − Λ + + − Λ + − Λ  

= − + − +
+ − + − +

"
…

w

, (5.47) 

where ( )LBS s  denotes the computational complexity for the production of the vector of signals s  
using the conventional approach based on the IDWT and LBS. 

In the case of the LL-LBS algorithm described in Subsection 5.1.2, the higher-resolution high-
frequency subbands of the critically-sampled DWT are not available, i.e. 1, 1

0 ( )k k z− − =d 0 . Hence, the 
complexity of this case is: 

 

( )

( ) ( )[ ]
( ) ( )[ ]

1 2

2 1

ODWT 2 2
1

2 2
1 1

multiply ,multiply ,multiply multiply
1 1

add ,add ,add add

LLLBS ( ) ( ) ( )
 (2 1) ( ) (2 1) ( ) (2 1) ( )

I f 1 2 f 2 2 Cost
 I f 1 2 f 2 2 Cost

k k
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k N N
C A A

k kN N
A A C

k k
G H

k k
G H

N
N

N k
N k

− −

− −
−

− −

− −

 = ϒ + ϒ + + ϒ 
 + − Λ + + − Λ + − Λ  

= + − + − +
+ + − + − +

"
…

w

, (5.48) 

In the high-frequency overcomplete mode, where only the high-frequency subbands of level k  are 

produced, the computational complexity can be calculated similarly as before; the results are: 

 
( ) ( )( ) ( )[ ]

( )( ) ( )[ ]

1
ODWT multiply ,multiply ,multiply multiply

1
add ,add ,add add

LBS I f 1 2 +f 2 2 Cost

 I f 1 2 f 2 2 Cost

k k k
G H

k k
G H

N k

N k

− −

− −

= + − − +

+ + − + − +

d
, (5.49) 

( ) ( ) ( )[ ]
( ) ( )[ ]

1
ODWT multiply ,multiply ,multiply multiply

1
add ,add ,add add

LLLBS I 2 f 2 3 2 f 2 2 Cost

 I 2 f 2 3 2 f 2 2 Cost

k k k k
G H

k k k
G H

N k

N k

− − −

− − −

= + − ⋅ + − +

+ + − ⋅ + − +

d
,(5.50) 

5.3.1.3 The Proposed Method 

As explained in Subsection 5.2.1.1, Figure V-4(a) demonstrates the calculation of the single-rate part 
of Proposition 3. For each processor element of Figure V-4(a), if the applied filters have 

1
,FT  

2FT  
non-zero coefficients, ( )

1 2
2 F FT T+  multiplications and ( )

1 2
4 4F FT T+ −  additions are performed 

within the PE for each set of 4 inputs; notice that this holds for 1k > , as for 1k =  there are no 
PEs. Using Figure V-4(a), the computational complexity of the single-rate part of the proposed 
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CODWT for the two different constructions, i.e. the FO and the HFO modes mentioned in 
Subsection 5.1.2, is given by: 

( ) ( )
( ) ( ) ( )

2
11

0 3
1 1 1 1
1 2 4 ,0 2 4 4 ,0

2

1 1 1
4 ,0 2 4 4 ,0

2 111

SR ODWT multiply2 22
2 0

3 2 1
1

add2
0 2 0

PF 2 Cost

 1 2 4 2 4 2 1 Cost

l

FF
l lk
i l i

l

l lk i i l i

kTT
k N

F F F F
l i

k
kN

F F F
i l i

T T T T

T T T

−

− −
− −

−

− −
− −

−++

= =

−
−

= = =

    = + + + + +       
 
 + − + + + − + −  

∑ ∑

∑ ∑ ∑

w
,  

  (5.51) 
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d
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  (5.52) 

where ( )SRPF s  is the computational complexity of the single-rate part of equation (5.17) for the 
production of the vector of signals s  and l

iF
T  is the number of non-zero coefficients of filter l

iF . In 
equations (5.51), (5.52), the number of multiplications for the prediction filters of level one is reduced 
by taking advantage of the symmetry property of (5.23), which holds also for filter 1

3 ( )F z  since 
1 1
0 3( ) ( )F z F z= −  from the definition of (5.4). Furthermore, if one restricts the complexity analysis to 

biorthogonal filter-banks, the symmetries of (5.24) and (5.25) can be used to further reduce the 
multiplications of (5.51), (5.52). 

From the description of Subsection 5.2.1.2 and Figure V-5, the computational complexity of the 
multi-rate part of Proposition 3 for the general case of k  decomposition levels can be deduced. 
Below, it is expressed for each case as a sum of the required computational complexity for each 

subband 0( )lD z , 1 l k≤ < : 

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )( ) ( )

1
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1
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  (5.53) 
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where, for each subband 0( )lD z , the multiplication and addition-related complexity of the used lattice 

structures is ( )
1

4 ,0

1 2 1
LS,multiply 1 0
f

i

i
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l
Fi j

l T
−− −

= =
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( )LS,multiplyf 1 0= , ( )LS,addf 1 0= . Also, ( )anf 2 2ll = −  is the number of the used low-pass analysis 
filters. 

Note that, as shown in (5.17), the multi-rate calculation occurs for 1k > . For this case, the total 
complexity of the final result of (5.17) is given by: 

 ( ) ( ) ( ) ( )1
ODWT SR ODWT MR ODWT addPF =PF PF 2 2 Costk k k kN −+ + −w w w , (5.55) 

and, 

 ( ) ( ) ( ) ( )ODWT SR ODWT MR ODWT addPF PF PF Costd d d 1 2k k k kN −= + + −  (5.56) 

for the FO and HFO construction, respectively. The last terms correspond to the complexity of the 
additions between the multi-rate and single-rate part of the transform. As in the case of the single-rate 
calculation, if one restricts the complexity analysis to biorthogonal filter-banks, the relation 

1 1 1
1 1( ) ( )F z F z− =  that holds for this category can be used to further reduce the multiplication 

complexity of (5.53), (5.54). 

For a numerical comparison between the two approaches, by using equation (5.55) for the proposed 
CODWT and equation (5.48) for the conventional IDWT+LBS approach, we identified that both 
methods have comparable arithmetic complexity under a convolution-based implementation. This is 
shown in Table V-IV, where numerical examples of the multiplication and addition requirements are 
presented for the levels 1,2, 3k =  using the proposed and the conventional approaches. Both cases 
have been normalized by the number of input samples (pixels)N . The use of lifting reduces the 
computational requirements for both approaches; however we generally found that lifting 
factorizations tend to benefit less the proposed approach since they are only used in the analysis filters 
of the multi-rate part of the transform. 

 
9/7 filter-bank [24] [16] multiply addI 9, I 14= =  

Construction of 
decomposition level k : 

Proposed 
(Mpp) 

IDWT+ 
LBS (Mpp)

Proposed 
(App) 

IDWT+ 
LBS (App) 

1 8.5 9 15 14 
2 15.25 16 27 25 
3 23.625 22 40.5 34.5 

7/5 filter-bank [25, 26] multiply addI 7, I 10= =  
1 6.5 7 11 10 
2 11.75 12.5 20 18 
3 18.125 17.25 29.5 25 

4/4 filter-bank [23] multiply addI 4, I 6= =  
1 6 4 7 6 
2 11.5 8 14.25 10.5 
3 18.75 12 21.25 14.25 

Mpp: Multiplications per pixel (average), App: Additions per pixel (average) 

Table V-IV. Multiplications and additions for the CODWT of various levels under a convolution-based 
implementation. The total number of operations is normalized with the number of input pixels. 
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On the other hand, as shown in Table V-V, the proposed approach exhibits a practical reduction in 
computation times in comparison to the conventional method for “ANSI-C” implementations 
running on a personal computer with an Intel Pentium IV processor. Both convolution-based and 
lifting-based implementations have been tested. The experiments were carried out for an SD-
resolution video sequence (720x480 pixels, 3 color channels, 100 frames) with the 9/7 filter-bank. The 
row-column implementation was used for both methods. Table V-V demonstrates that the proposed 
approach runs, on average, 35.83% faster in comparison to the conventional approach when both 
employ a lifting-based implementation. Profiling of the execution revealed that, although the 
proposed method performs (on average) more instruction-related operations in the case of lifting-
based implementations, a significantly-better utilization of the cache memory is achieved in 
comparison to the IDWT+LBS approach. This is attributed to the fact that, by using the proposed 
calculation scheme, the proposed CODWT utilizes the same input to produce a number of 
intermediate results; for example, Figure V-4(a) demonstrates that the single-rate part of all the 
subbands of level three is produced by using 3 3 3 3

0 0 1 1( ), ( ), ( ), ( )A z D z A z D z . As a result, the proposed 
CODWT achieves a significantly-higher locality in the processing. This leads to the speedup in 
computation times reported in Table V-V. 

 
Construction of 

decomposition level k : 
Convolution based 

Speedup of proposed vs. LBS
Lifting based 

Speedup of proposed vs. LBS 
1 77.12 % 69.02 % 
2 38.54 % 33.31 % 
3 12.43 % 5.15 % 

Average: 42.70 % 35.83 % 

Table V-V. Percentage of speedup in execution time of the proposed method versus the conventional approach 
(9/7 filter-bank) in a Pentium IV processor. 
 

5.3.2  The Computational Complexity of each Method under the 
Application Framework 

For the CODWT under the application framework of Subsection 5.1.2, a system that supports a total 
of k  decomposition (resolution levels) performs the CODWT in full-overcomplete mode for level k  
and in high-frequency overcomplete mode for levels 1, 2,..,k k l− − , with l  indicating the output 
resolution of a certain (de)coder [5, 20] [2] [3]. The total CODWT complexity for a (de)coder that 
ceases the processing at level  (1 )l l k≤ ≤  is denoted as ( ) ( )SRLLLBS ,  PFk kl l  for the LL-LBS and 
the prediction-filters method respectively. Based on (5.48), (5.50)–(5.52), we have: 
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It is important to notice that the results of this section are applicable also for the two-dimensional 
case of a C R×  input image since both techniques can be applied in a separable manner along the 
rows and columns of the input. Specifically, the two-dimensional implementation of the proposed 
CODWT for any level k  consists of: 

• applying the prediction-filters row-wise to the two-dimensional DWT subbands using the 
calculation scheme of Figure V-4(a) and Figure V-5, thereby producing the ODWT subbands 
with phase(0, )i , 1 2ki≤ <  (two-dimensional phase [3] [2]);  

• the column-wise filtering of the resulting subbands with the same one-dimensional scheme.  

Hence, to produce the 2 2k k×  ODWT subbands of level k , the complexity associated with the row-
wise filtering is ( /2 ) PF( )kR k× . In addition, the complexity of the column-wise filtering is 

PF( )C k× . In the same manner, the separable application of the one-dimensional LBS approach 
indicates that the complexity is ( /2 ) LBS( )kR C k+ × . As a result, the complexity reduction offered 
by the proposed approach is PF( )

LBS( )1- k
k  in both one-dimensional and two-dimensional cases.  

In resolution-scalable coding, the comparison between the lifting-based implementations of the 
proposed CODWT and LL-LBS approaches is given in Table V-VI. The case of a coding system that 
supports a maximum of 4k =  decomposition (resolution) levels and decodes to any output 
resolution-level , 1l l k≤ ≤  is assumed. In this scenario, as explained in Subsection 5.1.2, decoding a 
resolution level l  requires that the CODWT is performed for resolution-levels , 1, ,k k l− … . These 
results show that, in resolution-scalable coding, the proposed CODWT achieves notable complexity 
reductions in comparison to LL-LBS. Furthermore, we find that significant reductions in the 
computation time are experimentally observed. This is shown in Table V-VII, where we assume a 
resolution-scalable scenario with a HDTV video sequence processed in four (dyadically-reduced) 
resolutions, ranging from 1920 1088×  pixels ( 1l = ) to 240 136×  pixels ( 4l = ). The proposed 
CODWT exhibits an average reduction of 78.45% in computation time for lifting implementations. 

Table V-VI presents a numerical comparison between the two approaches using equations (5.57) and 
(5.58) for the LL-LBS and the proposed approach, respectively. Again, the results have been 
normalized by the number of input samples (pixels)N . The case of a coding system that supports a 
maximum of 4k =  decomposition (resolution) levels and (de)codes to any level ,  1 4l l≤ ≤  is used. 
In this scenario, as explained in Subsection 5.1.2, decoding a resolution level l  requires that the 
CODWT is performed for resolution-levels , 1, ,k k l− … . One orthogonal and two biorthogonal 
filter-banks were chosen in order to cover all types of filter-banks that are used in image and video 
coding literature. The achieved reductions of the proposed approach are reported in comparison to 
the LL-LBS using a lifting-based implementation. In every case the proposed approach reduces 
significantly the required computations. Furthermore, we find that, in practice, significant reductions 
in the computation time are experimentally observed. This is shown in Table V-VII, where we assume 
a resolution-scalable scenario with a HDTV video sequence processed in four (dyadically-reduced) 
resolutions, ranging from 1920 1088×  pixels ( 1l = ) to 240 136×  pixels ( 4l = ). The proposed 
CODWT exhibits an average reduction of  78.45% in computation time for lifting implementations. 
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9/7 filter-bank,  ( mult addI 4,  I 8= = ) [24] [16] 

Multiplications Additions CODWT 
stops at 
level l : Proposed 

(Mpp) 
LL-LBS 
(Mpp) 

Reduction
(%) Proposed

(App) 
LL-LBS 
(App) 

Reduction 
(%) 

1 23.81 35.75 33.39 52.75 71.5 26.22 

2 19.81 32.25 38.57 38.25 64.5 40.70 

3 15.81 25.5 37.99 27.5 51 46.08 

4 11.06 15.125 26.86 17.625 30.25 41.74 

7/5 filter-bank, ( mult addI 3,  I 6= = ) [25, 26] 

1 17.8125 25.75 30.83 37.25 51.50 27.67 

2 14.8125 23.25 36.29 26.75 46.5 42.47 

3 11.8125 18.5 36.15 19 37 48.65 

4 8.3125 11.125 25.28 12.125 22.25 45.51 

4/4 filter-bank, ( mult addI 2,  I 5= = ) [23] 

1 13.25 30 55.83 20.75 33.75 38.52 

2 10.25 27 62.04 14.25 29.75 52.10 

3 7.75 21 63.10 9.5 23.25 59.14 

4 5.25 12 56.25 5.625 14 59.82 

Mpp: Multiplications per pixel (average),    App: Additions per pixel (average) 

Table V-VI. Multiplication and addition budget for the CODWT in a resolution-scalable codec with four 
decomposition levels. Three representative filter-banks (of varying complexity) used in lossy image and video 
coding are presented. 

 
CODWT stops at level l : Speedup of proposed vs.  

LL-LBS using convolution
Speedup of proposed vs.  

LL-LBS using lifting 
1 82.33 % 77.78 % 
2 82.58 % 78.20 % 
3 84.95 % 81.08 % 
4 82.00 % 76.75 % 

Average: 82.96 % 78.45 % 

Table V-VII. Example of speedup in computation times for the CODWT under resolution-scalable 
construction; 100 frames of a HDTV color video sequence (1920 1088× pixels) were used with the 9/7 filter-
bank. 
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An interesting observation stemming from Table V-VI is that the computational complexity of both 
techniques scales-up with the number of decoded resolution levels, a result that is highly useful for 
complexity-scalable video coding.  

The significant complexity reductions of Table V-VI and Table V-VII that are achieved with the 
proposed approach in resolution scalable scenarios can be attributed to the following two aspects:  

• A single-rate calculation is used. Hence, the series of inverse and forward wavelet transforms 
required by the conventional multi-rate approach is avoided.  

• The scheme of Subsection 5.2.1.1 reduces the complexity based on the filter symmetries of 
Subsection 5.1.3.2.  

As a result, the proposed approach becomes increasingly more efficient in comparison to the 
conventional approach as the resolution-level l  increases. Interestingly, this tendency is reversed at 
the coarsest resolution level where the computational-reduction percentage offered by the proposed 
approach is usually decreased (Table V-VI and experimental results of Table V-VII). This 
phenomenon occurs since the ODWT of the coarsest resolution is constructed in FO-mode (i.e. both 
the low and high-frequency ODWT subbands are created), while the ODWT of the lower-resolution 
levels are constructed in HFO-mode (i.e. only the high-frequency ODWT subbands are created). 

5.3.3  Calculation Delay of each Method under the Application 
Framework 

Assuming the classical point-symmetric or periodic extension for the signal edges, consider that the 
two methods are implemented in a system where one application of a filter (or filter-bank) on a set of 
input samples requires LBSa  processing cycles for the LL-LBS method and PFa  processing cycles for 
the prediction-filters method. To diminish the side effects of scheduling algorithms for the multiple 
filtering operations, we assume the case of high parallelism, where one filter per required convolution 
is present (similar to the system of [27]). In this way, every filtering application initiates as soon as 
sufficient input is present [27]. Furthermore, to facilitate the description, the delay resulting from the 
storage or retrieval of intermediate results is not taken into account.  

Starting with the LL-LBS method, k  single-level inverse transforms and 
1
(2 1)

k l
l=

−∑  single-level 
forward transforms are performed for the production of the subbands of the ODWT of level k ; see 
the example in Figure V-1(b) for 3k = . After an initiation latency (denoted as init,LL-LBS( )L k ), the first 
coefficients of the reconstructed input signal X  are produced. Then, all filter-kernels of every level 
work in parallel to perform the inverse and forward transforms. This is equivalent to a cascade 
connection of the inverse and forward recursive pyramid algorithm of Vishwanath [27]. 

The total time required for the completion of the calculation of all subbands is determined by the 
delay for the production of the signal with the maximum length, since during this process the highest 
number of consecutive filter applications occurs [27]. The signal with the maximum length produced by 
the LL-LBS is the reconstructed input-signal X . The production of X  requires 2

N  applications of 
filter H�  (synthesis low-pass filter). Additionally, after the production of all samples of X , the 
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completion of the forward transforms at each level requires an additional number of filtering 
operations that will cause an additional number of processing cycles, denoted as comp,LL-LBS( )L k . Hence, 
the total delay of the LL-LBS system for the production of all the subbands of decomposition level k  
for an N -point input signal is: 

 LL LBS init,LL-LBS LBS comp,LL-LBS( , ) ( ) ( )
2
NL k N L k a L k− = + +  (5.59) 

For the prediction-filters method, the application of filters 1 1
0 3, ,F F…  to 0 0,  k kA D  can be initiated in 

parallel for the calculation of subbands 1 1,  k kA D . After this initiation, which in this case requires 
init,PF( )L k  processing cycles, the PEs that produce the rest of the subbands of level k  (if 1k > ) can 

also be applied in parallel by reusing the coefficients of subbands 1 1,  k kA D , as seen in Figure V-4(a). As 
a result, the required delay for the completion of the process is: 

 PF init,PF PF( , ) ( )
2k
NL k N L k a= +  (5.60) 

Equations (5.59), (5.60) show that, in systems that can achieve a high-degree of hardware parallelism, 
the delay of the proposed CODWT for resolution level k  is expected to be proportional to PF2k

N a , 
while the LL-LBS approach achieves a delay proportional to LBS2

N a . Examples of the delay ratios 
between the two approaches under this high-parallelism scenario are given in Table V-VIII. Since it is 
difficult to quantify the actual ratio between the factors PFa  and LBSa  without measurements from a 
realization of the two approaches in a custom-hardware design, we resort to report the delay-
reduction gains offered by the proposed approach under three assumptions: LBS PFca u a= ⋅ , with 

{0.5,  1,  2}cu = , corresponding to a “pessimistic”, “average” and “optimistic” case for the relative 
efficiency in hardware implementation of the proposed method versus the conventional approach.  

For the two-dimensional processing of a C R×  image, as explained before, both methods can be 
implemented via two identical one-dimensional systems used row-wise and column-wise. However, 
instead of processing all the rows and consequently processing the columns, the filtering in each 
direction can be interleaved and the column processing begins after an initiation latency so that 
enough coefficients exist column-wise for the mirroring and for the initiation of the filter-applications 
required for every method. Hence, the comparison of both methods in terms of delay for the two-
dimensional CODWT follows the result of the one-dimensional case. 

 
Level 
k  

LL LBS

PF

( ,512)
( ,512)

L k
L k

−  with 0.5cu =  LL LBS

PF

( ,512)
( ,512)

L k
L k

−  with 1cu =  LL LBS

PF

( ,512)
( ,512)

L k
L k

−  with 2cu =  

1 0.51 1.01 2.03 
2 0.96 1.92 3.84 
3 1.78 3.56 7.11 
4 2.99 5.98 11.96 

Table V-VIII. Examples of the ODWT delay-reduction gains offered by the proposed approach (FO-mode, 9/7 
filter-bank) for various decomposition levels of a 512-sample signal. Three indicative cases for the ratio 

LBS PFcu a a=  are used. 
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5.4 Conclusions 
In this chapter, a new framework for the construction of the overcomplete DWT starting from the 
subbands of the critically-sampled decomposition was presented. The proposed framework has 
inherent advantages in comparison to the conventional approach since it consists of a direct transform 
from the complete to the overcomplete DWT, using the minimum number of downsampling 
operations and no upsampling. For resolution-scalable video coding applications that utilize a level-
by-level construction of the ODWT, it is demonstrated that the proposed CODWT has significant 
implementation advantages over the conventional approach because it offers (a) significant 
computation savings, and (b) a single-rate calculation that can provide a scalable reduction in the 
transform-production delay. These features lead to inherent computational scalability in comparison 
to the conventional approach.  
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VI.  
Chapter VI 

COMPLEXITY MODELING 
ASPECTS FOR WAVELET-BASED 
SCALABLE VIDEO CODING 

OMPLEXITY is often the deciding factor that determines the extent to which a certain algorithm 
can be deployed in a real-world multimedia communication infrastructure. For example, in video 

compression systems, MPEG standards always define a set of profiles and levels; one of the purposes 
of this separation is to divide the algorithmic parameter space into segments that will produce coding 
architectures of varying complexity. Thus, in one of the recent MPEG standards, namely the 
Advanced Video Coder (or ITU-T H.264) [1], several motion-estimation tools are standardized, 
whose usage is recommended only under certain platform implementation capabilities [2]. Similarly, in 
the area of scalable video coding (which is the focus of this dissertation), one of the purposes of 
extracting substreams that represent lower frame-rates and resolutions is to accommodate the 
complexity profile of a certain decoding device in the best possible manner. Finally, it is worth 
mentioning that the maximum-allowable latency in the transmission of compressed video content is 
always determined as a function of the transmission channel parameters and the complexity of the 
algorithm. 

As a result, in this chapter we are concerned with the important topic of establishing complexity 
models for scalable video coding. We note that several related research results on the complexity of 
practical video coders are already published in the literature (e.g. see [2] [3] [4] [5]). Since complexity 
modeling for video coders usually involves a large number of parameters due to the interplay of 
several algorithmic-related factors, we are limiting the analysis of this chapter according to the 
following criteria: 

• we are concerned primarily with wavelet-based scalable coding systems; 

C 
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• the target implementation platforms are always considered to be programmable processors 
rather than custom hardware designs; 

• our analysis is always theoretical and remains platform independent, i.e. specific 
implementation capabilities that can be used in a certain device to speedup the algorithm 
realization are not taken into account. 

The first restriction limits the scope of the presented material into a specific type of scalable video 
coding systems, which are however showing significant promise for future video communication 
systems. On the other hand, the second and third restrictions aim at providing results that can be 
generally applicable to a wide range of systems, by selecting the model parameters to suit the 
implementation platform. In addition, our choice of programmable processors targets mainly special 
purpose Digital Signal Processors (DSPs) currently forming attractive solutions for cost-effective 
designs with a rapid development-cycle. It appears that the flexibility in fine tuning algorithmic 
parameters through software, combined with the ease in upgrading the implementation to newer (and 
faster) processor designs has already shifted a significant share in the multimedia implementation 
market to DSP-based systems [6]. 

The following section defines complexity in a pragmatic manner that fits the framework of this 
dissertation and furthermore introduces the particular modeling topics that will be discussed in the 
remainder of this chapter.  

6.1 Introduction to Complexity Modeling – Novel 
Aspects treated in this Dissertation 

In digital signal compression, one can define complexity as the number of operations performed by a 
generic machine that realizes the coding algorithm. The most generic definition of such a device is a 
Universal Turing Machine (UTM). It was recently shown that by defining complexity in terms of the 
shortest program of a UTM (Kolmogorov complexity), rate-distortion theory can be transformed into 
complexity-distortion theory [7]; moreover, the two theories appear to produce asymptotically the 
same results [7].  

Although this definition can be useful for studying complexity under a pure theoretical framework, 
under the pragmatic constraints set in the previous subsection, complexity can be defined as the 
metric that determines the total number of arithmetic and memory operations for the realization of a 
coding algorithm in a generic computer architecture, such as a basic pipelined RISC machine [8]. In 
this way, similar to several contributions found in the literature [9] [10] [11], one can establish the total 
arithmetic complexity by profiling the software that realizes the algorithm of interest for the total 
number of additions and subtractions, multiplications and, potentially, divisions. In addition, the 
memory complexity can be assessed as the total number of memory accesses performed under the 
execution of the algorithm in a generic RISC machine. Since today’s systems typically use a layered 
memory hierarchy that separates local (on-chip) from non-local (off-chip) memory, it is important that 
some generic assumptions for this hierarchy are taken into account when establishing the memory 
complexity. The scope of these assumptions is always selected to reflect the large majority of today’s 



CHAPTER VI. COMPLEXITY MODELING ASPECTS FOR WAVELET-BASED SCALABLE VIDEO CODING 

  

195

practical architectures. Although it may not be possible to directly predict the practical execution time 
of an algorithm based on these metrics, such an analysis allows the relative comparisons of two 
algorithms in terms of complexity; additionally, under certain conditions, it is possible to map these 
generic complexity metrics into real complexity metrics for a given platform, and obtain a reliable 
metric for the execution time of a given video coder [9] [11] [12].  

The two following sections focus on arithmetic and memory complexity as defined previously, and 
propose models that analyze video coding realizations with respect to their expected performance. In 
particular, Section 6.2 analyzes the memory complexity of the discrete wavelet transform module 
found in the scalable coding algorithms of this dissertation. As mentioned before, generic assumptions 
are made for the memory hierarchy of the target architectures in order for the results to match reality, 
and a widely-used memory structure that separates the memory layers into cache levels is used. A 
cache level is a small intermediate high-speed memory situated in between the functional units of the 
processor and main memory. Since memory-related complexity becomes a bottleneck in a practical 
system realization only under certain limits, constraints are set on the cache memory sizes in the 
analysis of Section 6.2; these constraints reflect the vast majority of implementation architectures 
found in the literature.  

Although Section 6.2 focuses on a specific module, the following section (6.3) presents a holistic 
approach for determining on-the-fly complexity metrics for entire video coding systems, based on 
generic complexity metrics that are established in a methodological manner for any chosen software 
realization of a motion-compensated video coder. In terms of practical applications, the focus is given 
on the decoding complexity and a recently proposed streaming architecture is used to communicate 
hint information for the complexity metrics to each decoder receiving the compressed bitstream. For 
each case, experimental results are presented in order to validate the proposed models and the 
conclusions drawn from the presented results are outlined. 

6.2 High-level Cache Modeling for Two-Dimensional 
Discrete Wavelet Transform Implementations 

JPEG-2000 [13] and MPEG-4 Visual Texture Coding [14] are the two new standards that base part of 
their compression efficiency on discrete wavelet transforms for the coding of images and textures. 
The standardization effort of JPEG-2000 showed that the largest part of the complexity of a wavelet-
based image coding system is associated to the memory organization for the production of the 
transform coefficients [15]. In several cases, a solution that involves tiling of the input signal is chosen 
in order to reduce the complexity when dealing with large amounts of input data. Thus, the term 
“image” in this section refers to the currently-processed tile, with the tile-size ranging typically from 
128 128×  to 1024 1024×  pixels. 

The features that are mainly investigated by researchers are the different image traversal algorithms for 
the band-bursty production of the wavelet coefficients [16] [17] [18] [19] [20, 21] [22] and the efficient 
coupling of such transform-production methods (producers of information) with coding algorithms 
(consumers of information) [17] [21] [15]. The transform-production methods that are the most 
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appropriate for coding applications can be classified in two major categories, based on the coefficient-
production schedule. 

The first category is based on an image traversal that leads to a strictly breadth-first production of 
wavelet coefficients (SBF methods) [23]. This is usually referred as the row-column wavelet transform 
(RCWT) [24] since, for every wavelet-decomposition level, the input data are filtered-and-
downsampled horizontally and vertically in a sequential manner. In this way, the complete set of 
coefficients of the current level is produced before the initiation of the calculations for the next level; 
hence, this category has a strictly breadth-first production schedule. The second category consists of 
image traversals that lead to roughly depth-first production of wavelet coefficients (RDF methods) 
[11]. The two main techniques of this category are the local (or block-based) wavelet transform (LWT) 
[18, 20] and the line-based wavelet transform (LBWT) [16]. They use a block or a line-based traversal 
respectively, to input the image and produce block or line parts of the transform subbands of all 
levels. With minor adaptations, both methods can produce the transform subbands of all levels in a 
streaming manner, thus a dyadically-decreased number of subband lines is produced for all 
decomposition levels.  

A third category that is based on the traversal that leads to a strictly depth-first production of wavelet 
coefficients [19] is not examined here because, as demonstrated by [22], it demands a vastly parallel 
architecture that is usually not achievable in software implementations in programmable processors. 

In the implementation arena, rapid advances in the area of (embedded) instruction-set processors have 
turned these systems into attractive solutions for the realization of real-time multimedia applications. 
This is explainable by the flexibility offered by such architectures, which allows the implementation of 
several coding algorithms on the same hardware, and also by time-to-market reasons. Typically, the 
best performance for data-dominated applications such as the DWT, is expected from the method 
that most efficiently reuses the data in the processor caches and maximally reduces the off-chip 
memory accesses to avoid additional delays and energy dissipation [25]. As a result, the data-related 
cache misses determine the efficiency of each method with respect to throughput and power.  

Following the above indications, this section analyzes the data-cache performance of various DWT-
production approaches on instruction-set platforms and not the arithmetic or instruction-related 
complexity of these applications. Although the typical target architecture is generic, it is based on 
popular (embedded) instruction-set video or multimedia processors (e.g. Philips TriMedia, 
TMS320C6x but also Pentium MMX), as these are state-of-the-art in real-time multi-dimensional 
signal-processing applications [6]. The data and instruction-memory multilevel hierarchies consist of a 
number of caches. We denote by D-Cache and I-Cache, respectively, the data and instruction cache 
memory or level (hierarchy) one. In addition, we denote by L2-Cache the cache memory of level two. 
This cache can be a separable configuration of data and instruction cache memories, or a joint 
configuration of both. The data transfer and storage organization is left to hardware. Thus, the 
instructions or data enter the processor core after passing through the cache-hierarchy [26]. The 
typical path followed is: Main Memory L2-Cache I-Cache or D-Cache Processor. When the 
instruction or data do not exist at the cache of a certain level, a miss occurs, in which case the 
processor waits until a block of instructions or data is fetched from the upper-level cache (or the main 
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memory), causing a delay to the execution not related to the computational complexity of the 
executed program. Following the classical 3-C model of the cache misses, the latter can be separated 
into capacity, compulsory and conflict misses [26]. 

This section first presents single-processor software designs for all the transform-production methods 
(Subsection 6.2.1). Based on them, an analytical model is proposed in Subsection 6.2.2 that allows for 
the prediction of the expected number of data-cache misses in a generic memory hierarchy. The 
validity of the proposed equations is bounded by a set of constraints for the cache characteristics. 
However, the linking between the transform production and the coding consumption is not studied 
here, since this would specialize the presented results for a specific application. In order to verify the 
theoretical framework and compare the proposed software designs, results are presented in 
Subsection 6.2.3 from simulations and from two real platforms. It must be noted however that the 
theoretical analysis does not aim to precisely predict the number of misses in a specified cache 
architecture, because various system-dependent operations such as data-input from storage or image-
retrieval media or memory allocation operations are expected to produce fluctuations in the final 
results. Nevertheless, using the theoretical results of this section, one can approximately calculate the 
relative performance of the presented methods with respect to the cache utilization and, more 
importantly, analytically determine the advantages and disadvantages of every approach.  

It is interesting to notice that general work on matrix computations refers explicitly to the effects of 
different traversal schedules on the input of two-dimensional matrices in a cache memory (subsection 
1.4.7 of [27]). Moreover, experimental work reporting on the efficiency of a JPEG-2000 
implementation for the DWT in a cache-based memory hierarchy can be found in [28]. An analysis 
for block-based DWT implementations in programmable architectures has been independently 
reported in [29], where the authors identify the input block-size that leads to optimum utilization of 
the system cache. The cache behaviour of different schedules under a generic memory hierarchy was 
also studied in [15]. Moreover, the work presented in this section was published in [23] [30]; our 
presentation in the following parts of this section is based on [30]. 

6.2.1  The different Wavelet Transform-production Approaches 

This section analyzes the different production schedules that will be used for the memory-related 
comparisons. The analysis is structured in two sections, depending on the coefficient-production 
schedule. A pictorial description for each proposed design is presented, which facilitates the analysis 
of the cache-miss penalties. Since these penalties are caused by the input of data in the processor 
caches, the description concentrates on the copy activities between the different components and not 
on the detailed description of the filtering processes, because the latter actions are localized between 
the internal (on-chip) data-cache and the processor core and it is expected that they do not cause 
important fluctuations in the data-related miss penalties. 

6.2.1.1 The design of strictly breadth-first methods - The RCWT approach 

These methods are based on the batch processing of all rows and columns of the input of every 
decomposition level. Since the filtering is not interleaved for each row or column, a lifting-scheme 
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implementation is assumed [31], so that the minimum number of arithmetic operations is required for 
the transform production. Hence, a number of passes (S ) are performed through every row or 
column of the input array and for every pass one predict-and-update step is performed in the input 
data [31]. For example, the 5/3 and 9/7 filter-banks are used in [13], which require one and two 
predict-and-update steps respectively through the input row or column. Hence, 1S =  for the 5/3 
and 2S =  for the 9/7 filter-bank. All steps that are simple scaling operations can be applied during 
the final storage of the results and are not counted as additional passes. It must be noted that we 
always assume that the dyadic (Mallat) decomposition is applied [24] to the input image; this means 
that for each row or column-decomposition, the output coefficients are reordered so that the low- 
frequency coefficients are stored on the left part of the output, while the high-frequency coefficients 
are stored on the right part.  

Without targeting a specific architecture, the designs of the SBF category can be studied in three 
different cases [23] [30], depending on the pursued optimizations. Apart from the pictorial 
presentation of this section, the reader is referred to [23] for detailed pseudocode for the various 
cases. The basic memory component used is array IMG  that contains the input image and the final 
result after every decomposition level. This array requires 1 2( )pN N c× ⋅  bytes of memory, where pc  
denotes the number of bytes that represent one wavelet coefficient in memory, and 1N , 2N  denote 
the size of input data rows and columns, expressed in pixels. Additionally, one extra array is utilized, 
named _TMP IMG . The size of this array varies, depending on the specific case and the value of S . 
Below, a short description is given for the three distinct cases of the application of a discrete wavelet 
decomposition at level l , with 0 l L≤ < , where L  denotes the total decomposition levels. Due to 
the dyadic (reordered) organization of the coefficients in IMG , only the upper-right 

1 2( 2 ) ( 2 )l lN N− −⋅ × ⋅  elements of the array are used for level l : 

• Case I: Minimum memory implementation. In this case, _TMP IMG  is a one-dimensional 
array containing 1 20.5 max{ 2 , 2 }l l

pN N c− −⋅ ⋅ ⋅ ⋅  bytes. The application of the transform in 
one row can be seen in Figure VI-1 for level l . As demonstrated by the left part of Figure 
VI-1, this case applies the predict-and-update steps of the lifting scheme directly in the 
elements of IMG  and replaces the results in-place (grey dots). After the end of each row or 
column processing, a reordering procedure is applied to the newly produced coefficients of 
the current row or column of IMG  with the aid of _TMP IMG  array by extracting all the 
high-frequency coefficients (white dots), shifting all low-frequency coefficients (black dots) 
into neighbouring positions and then storing back the contents of _TMP IMG  (Reordering 
of Figure VI-1). 

• Case II: Minimum number of memory accesses for the transform production. In this case, as 
shown in Figure VI-2, if 1S =  (lower part of the figure) _TMP IMG  is a two-dimensional 
array with 1 2( 2 ) ( 2 )l lN N− −⋅ × ⋅  elements of pc  bytes each. If 1S >  (upper part of Figure 
VI-2) _TMP IMG  is a one-dimensional array with 1 2max{ 2 , 2 }l lN N− −⋅ ⋅  elements. The 
application of the transform in this case for the l -th decomposition level is pictorially 
explained in Figure VI-2 and leads to the minimum amount of array access/copy operations 
[32]. 
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• Case III: Maximum locality in the processing. As shown in Figure VI-3, initially each new row 
or column of IMG  is copied in _TMP IMG , which is a one-dimensional array occupying 

1 2max{ 2 , 2 }l lN N− −⋅ ⋅  elements. All the subsequent predict-and-update passes occur locally 
in _TMP IMG . The results of the last pass are directly stored back into IMG  in reordered 
form as seen from the right part of Figure VI-3.  

 

FOR  i =1 TO  S   REORDERING   
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Figure VI-1. Application of RCWT case I. Only the row-by-row processing is shown, a similar scheme applies 
for the columns. 
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If S >1 
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Figure VI-2. Application of RCWT case II. Only the row-by-row processing is shown, a similar scheme applies 
for the columns. Operation _TMP IMG IMG  denotes the exchange of memory pointers of IMG  and 

_TMP IMG  [23]. 
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Figure VI-3. Application of RCWT case III. Only the row-by-row processing is shown, a similar scheme applies 
for the columns. 
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6.2.1.2 The design of roughly depth-first methods - The LWT and LBWT 
approaches. 

These methods are based on the separation of the input of every decomposition level into non-
overlapping components, the processing of these components using some of the previously produced 
low-frequency coefficients (or image samples for level 0l = ) and the update of these coefficients 
with some of the newly-produced low-frequency coefficients.  

The outputs of every level (high-frequency coefficients) are usually driven to a compression engine 
according to the selected compression algorithm. Typically, the outputs are grouped in parent-children 
trees [20] or intra-subband blocks [13]. However, as mentioned in the previous section, the link with a 
specific coding system is not studied in this chapter.  

The input components are blocks for the LWT method (block-based) and lines for the LBWT 
method (line-based). Since usually a software implementation targets a single-processor system, the 
single-processor architecture of [20] is selected. However, unlike [20], the presented design allows the 
implementation of both methods with the same architecture, due to the flexibility of a software 
implementation, which supports different memory configurations. Thus, the line-based architecture 
presented in this section can be seen as the asymptotic case of the block-based scheme, when the 
block width becomes equal to the image width. A detailed pseudocode for the software 
implementation of the methods of this category is presented in [23]. The LWT design that is 
presented in this section has been successfully used in a coding system in [21], where the reader can 
also find details about the initialization and finalization phenomena at the image borders. 

The processing performed by the RDF methods is shown pictorially in Figure VI-4 for decomposition 
level l . The used arrays follow the naming conventions of [20] and [21] to emphasize the 
relationships with that architecture. Thus, IPM  denotes the inter-pass memory, where each new input 
component is written. In general, IPM  is a two-dimensional array occupying ( 2 ) ( 2 )L L

pX Y c⋅ × ⋅ ⋅  
bytes, with ,X Y +∈ Z  parameters of the design; for the LBWT, IPM  has a static width of 2 pN c⋅  
bytes. Since the filtering is interleaved on the columns for every decomposition level (and also on the 
rows for the block-based architecture), the intermediate results are stored in the overlap memory, 
denoted as _OM ROWS  and _OM COLS  in Figure VI-4. For biorthogonal filter-banks with 
(2 1)/(2 1)M M+ −  taps, _OM ROWS  is a three-dimensional array (decomposition level/row of 
IPM /overlap coefficient) that occupies 12 (2 1)L

pM c+ ⋅ − ⋅  bytes (maximally) and _OM COLS  is a 
three-dimensional array (decomposition level/column of current level/overlap coefficient) that 
occupies maximally 22 (2 1) pN M c⋅ − ⋅  bytes. The actual filtering is performed using a small one-
dimensional array of (2 1) pM c+ ⋅  bytes, called filtering-FIFO (FF ) to emphasize the inherent 
functionality, and is convolution based.  

As seen in the right part of Figure VI-4, for every row of IPM , first the coefficients of the 
corresponding row of _OM ROWS  are inserted in FF , followed by each new pair of coefficients of 
the current row of IPM . After the filtering, the resulting low and high-frequency coefficients are 
written in-place in IPM . When the filtering of the current row of IPM  is completed, the results 
remaining in FF  are written back into the current row of _OM ROWS  for the processing of the 
neighbouring block. A similar scheme applies for the columns, with the aid of _OM COLS . It must 
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be noted that for the line-based approach the row filtering is not split in successive parts, thus only 
_OM COLS  is utilized. In addition, lifting-based approaches can be considered as well [15], if the 

memory sizes of the various buffers are adapted to the specific data-dependencies of the lifting-based 
filtering. 
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Figure VI-4. Illustration of the processing of one input component for the RDF methods. 

 

6.2.2  Calculation of the Data-related Cache Penalties  

6.2.2.1 Constraints of the presented Analysis 

For every different method of Subsections 6.2.1.1 and 6.2.1.2, the expected number of D-Cache 
misses varies, depending on the cache organization of the target execution-platform. For simplicity in 
the presented analysis, the case of a fully-associative data-cache is selected; in this way however, the 
conflict misses of an n -way set-associative cache are excluded from the description [26]. In the case 
of a miss due to lack of space in the cache (capacity miss), the LRU replacement strategy [26] is 
assumed, where the cache block that was least-recently used is replaced with the new input block. For 
each of the different approaches of the DWT, the boundary effects (initialization and finalization 
phenomena) are ignored so as to facilitate the description. In addition, the I-Cache behaviour will not 
be discussed because, as the experimental results show (see Table VI-I for an example) that for the 
systems of interest, the I-Cache misses are much less frequent than the data-related cache-misses. 
Apart from the algorithm parameters, the important cache parameters must be defined. We denote 

L2s , Ds  the cache size of the L2 (data-cache) and D-Cache respectively, and L2b , Db  the corresponding 
blocksizes. The blocksize represents the number of sequential bytes that are inserted in every cache 
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from the higher level of the memory hierarchy whenever an access to that level is performed [26]. In 
general, due to paging and burst-mode effects of the SDRAM chips, the number of bytes transferred 
in every RAM access is not always fixed [26]. Thus, if a more detailed analysis is desired, these effects 
should be incorporated in the model. 

We target realistic cache implementations where only a part of the input image can be buffered in the 
L2-Cache and also, in some cases, only a fraction of the currently-processed input (row, column or 
block, line) can fit in the D-Cache. This is because, even in future designs of custom DSPs that will 
target wavelet-related compression applications, the minimization of the on-chip cache will be a 
critical issue that determines performance and cost. Thus, a solution where the entire input image can 
fit in the cache is not expected to be feasible. In order to theoretically define the cases for which the 
analysis of this section is applicable, we set the following constraints: 

  2 D 1 D2 pN c s N b⋅ < < ⋅  (6.1) 

 1 L2 L2 1 22 pN b s N N c⋅ < < ⋅ ⋅  (6.2) 

where ( )D 2 12 pb N N c> ⋅  so that (6.1) is valid. These constraints come from the way the utilized 
two-dimensional arrays are stored in memory. Typically, a two-dimensional array is allocated in 
memory as a sequence of rows. Thus, when accessing elements in the row direction, sequential 
memory accesses are performed that in fact are grouped together since the cache organization of 
every level always inputs L2b  or Db  sequential bytes. However, when accessing elements in the column 
direction, these elements are not sequential in the physical memory and so, for accessing k  sequential 
coefficients of one column, L2k b⋅  or Dk b⋅  bytes will be copied in the L2 or D-Cache due to the 
unavoidable grouping. Having this in mind, the constraint of (6.1) means that the D-Cache is 
sufficiently large to hold input coefficients that correspond to two image rows ( 22 pN c⋅  bytes), but 
not large enough to sustain the coefficients of one entire image column ( 1 DN b⋅  bytes). The constraint 
of (6.2) means that the L2-Cache is sufficiently large to hold input coefficients that correspond either 
to two portions of L2b  sequential columns when each portion is coming from a different two-
dimensional array, or to L22b  sequential columns when they come from the same array. In addition, an 
upper constraint is set; the L2-Cache is always smaller than the original image size, otherwise only 
compulsory misses for the initial image input are expected in the L2-Cache. In general, the constraints 
of (6.1) and (6.2) are chosen so that the lower bound certifies that no exponential increase happens in 
the data-related misses, while the upper bound certifies that the data-related misses are not negligible 
in comparison to the instruction-related misses.  

As seen from the description of this section, we focus on a two-level cache architecture. It must be 
noted however that the presented theoretical analysis is invariant to the number of levels; it only 
depends on the cache characteristics of the system. This is a natural consequence from the fact that 
the behaviour of the cache memories is invariant to the specific level they belong to, since they are 
designed to operate independently, ignoring the upper and lower-level memory organization [26]. In 
this way, our theoretical model can cover both a two-level and a one-level cache hierarchy, if the 
equations for the prediction of the misses in level two are ignored. As a result, the vast majority of 
processors found in the market is covered by our description.  
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6.2.2.2 The expected data-related cache misses. 

Under the constraints of (6.1) and (6.2), the data-related cache misses can be estimated. For all the 
presented methods, one iteration through the input data consists of the input of an image component 
(row, column or block), the application of the filtering process to that component and the production 
and storage of the results. Since the various methods perform similar operations, such as sequential 
accessing along a row or a column of a two-dimensional matrix, the calculation of the various data-
related cache misses, was made using some templates for the most typical cases, specifically adapted 
for each method.  

For the various cases that follow, the term processing means the input of the specific array elements 
in the cache, the application of the filtering (for the convolution-based implementation) or a number 
of predict-and-update steps (for the lifting-scheme implementation), and the storage of the final 
results. The notation A B�  indicates that A  is up to one order of magnitude larger than B , while 
A B≈  denotes that A  is comparable or smaller than B .  

Template 1 (T1): Row-by-row processing of a two-dimensional array of ( )pR C c× ⋅  bytes in a cache 
of cs  bytes with blocksize cb . 

Constraint: c ps C c⋅�  (6.3) 

Expected misses: T1( , , ) ( )c p cR C b R C c b= ⋅ ⋅  (6.4) 

Proof. See Appendix. 

Template 2 (T2): Column-by-column processing of a two-dimensional array after the completion of 
the row-by-row processing. The array has ( )pR C c× ⋅  bytes and is inserted in a cache of cs  bytes with 
blocksize cb . 

Constraint:  & c p c cs R C c s R b≈ ⋅ ⋅ ⋅�  (6.5) 

Expected misses: 
( )

1 1
T2( , , , ) ( )

p cC c b i

c c j
i j

R C b s W a
⋅

= =
= +∑ ∑  (6.6) 

with: 

 ( ) ( )p c pW R C c s C c= ⋅ ⋅ − ⋅  (6.7) 

  ( )1 1
1 1

( ), if 

0,                         otherwise

j j
c u p c uu u

j
b W a C c b W a R

a
− −
= =

 + ⋅ − + ≤= 

∑ ∑  (6.8) 

Proof. See Appendix. 
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Template 3 (T3): Column-by-column processing of a two-dimensional array after the completion of 
the row-by-row processing. The array has ( )pR C c× ⋅  bytes and is inserted in a cache of cs  bytes with 
blocksize cb . Each column is processed k  times (k  passes per column). 

Constraint: c cs R b≈ ⋅  (6.9) 

Expected misses: T3T3( , , , )cR C k s f R C= ⋅ ⋅  (6.10) 

with 

  T3

1, if 

, otherwise    
c cs R b

f
k

> ⋅= 
 (6.11) 

Proof. See Appendix. 

The interested reader can find in detail the explanation for the expected misses cause by the various 
templates in the Appendix (Subsection 6.5). In short, template T1 gives the expected misses from a 
row-by-row processing of a two-dimensional array when a large cache is concerned, i.e. the L2-Cache. 
Template T2 gives the expected misses from a subsequent column-by-column processing of the input 
two-dimensional array, and template T3 shows the misses from the column-by-column processing 
when a small cache is concerned, i.e. the D-Cache.  

The following two subsections analyze our findings. 

A Data misses in the L2-Cache. 

Beginning from the strictly breadth-first (SBF) production methods, as shown in Figure VI-1 – Figure 
VI-3, all cases will process sequentially (in the row or column direction) the elements of array IMG  in 
the L2-Cache. Additionally case II with 1S =  will input the elements of array _TMP IMG  (two-
dimensional array), since the complete array does not fit in the L2-Cache due to the constraint of (6.2). 
In all cases where _TMP IMG  is a one-dimensional array, it is assumed that, after the initial input, no 
additional misses occur from this array, since it is reused in every row or column processing and hence 
it is expected to remain in the cache. This case is simplified to the row-by-row and column-by-column 
processing of a two-dimensional array with the exception of case II with 1S = , where another two-
dimensional array is inserted in the cache at the same time. By applying the template T1 for the rows, 
the misses due to the row filtering of level l  are: 

 
L2 L2 1 2 L2

2
L2 1 2 L2

_ _ ( ) T1( 2 , 2 , )

2

l l
S

l
S p

SBF row miss l f f N N b

f f N N c b

− −

−

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅
 (6.12) 

where: 

 
2( 1)

1 2 L2
L2

2, if case_II & 1 0, if 0 & 2
,   

1, otherwise            1, otherwise                                         

l
S p

S

S l f N N c s
f f

− − =  > ⋅ ⋅ ⋅ ⋅ <  = =     
 (6.13) 
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The factor Sf  of (6.12) distinguishes that sole case where two two-dimensional arrays are inserted in 
the cache. The factor 1 2 lN −⋅  represents the number of rows of the level l . Every row of this level 
has 2 2 l

pN c−⋅ ⋅  bytes. The L2f  factor is a bound that checks whether the output of the previously 
produced decomposition level fits in the L2-Cache. If so, then no additional misses are accounted for. 
Otherwise, all low-frequency coefficients are assumed non-resident in the cache. 

For the L2-Cache misses of the column processing, after the completion of the row processing of 
level l , the template T2 is applicable; thus, the number of L2-Cache misses for the processing of level 
l  is: 

 22
L2

L2 1 2 L2 L2

1 1

_ _ ( ) T2( 2 , 2 , , )

( )
lf N cS p

b

l l

i
ji j

SBF column miss l N N b s

W a
−⋅ ⋅ ⋅

− −

= =

= ⋅ ⋅

= +∑ ∑
 (6.14) 

where the Sf  factor, as before, determines the total amount of coefficients inserted, according to the 
specific case and the number of passes (S ) through the newly-inserted row or column. The factors 
W  and ja  are defined by equations (6.7) and (6.8). 

For the roughly depth-first (RDF) methods the calculation of the data misses in the L2-Cache is 
simpler. For modest values of X , Y , based on the constraint of (6.1), after the compulsory cache-
misses caused by the row-by-row processing of each new block (template T1), the column-by-column 
processing is not expected to cause any additional misses since all the data for the current block are 
assumed resident in the cache. Hence, template T2 does not apply and no misses are expected during 
this procedure. The interested reader can define exactly the set of values of X , Y  according the 
specific case where the constraint of (6.5) is not satisfied (and thus the template is not applicable). 
Essentially this means that cs  must be larger than pR C c⋅ ⋅ , where L2cs s=  and 2LR X= ⋅  and 

2LC Y= ⋅  (for the block-based). In this case, for the block-based method: 

 L2 1 2 L2

1 2 L2

_ ( 2 ) ( 2 ) T1( 2 , 2 , )L L L L

p

RDF miss N X N Y X Y b

N N c b

   = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅      
= ⋅ ⋅

 (6.15) 

The expected number of misses of the line-based method is given also from (6.15) if one replaces 
2LY ⋅  with 2N  (the line width), since the input-block of the line-based method consists of entire 

rows. It must be noted that both the LWT and LBWT methods are tuned to a streaming data input; 
hence, the image data are collected in a sequence of 2L  rows either directly in IPM  (LBWT method), 
or in a row-buffering memory of size 2L  image rows (LWT method), overwriting the previously 
inserted data. Since this memory is expected to be resident in the L2-Cache, if the image-input 
procedures are not taken into account in the total cache-miss budget, the expected misses in the L2-
Cache for the RDF methods are then obtained by replacing  by 2L  in equation (6.15): 

 L2,DIRECT_INPUT 2 L2_ 2L pRDF miss N c b= ⋅ ⋅ . (6.16) 

Equation (6.16) is useful because it excludes the image-input procedures, which are system-dependent 
functions. Thus it models the extreme (fictitious) case where the input data are written directly in the 
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L2-Cache from the input and not from the main memory. The actual experimental results are 
expected to be between the numbers reported by (6.15) and (6.16), depending on how much the 
image-input procedures are taken into account by profiling tools that produce these results. 

B Misses in the D-Cache. 

For the strictly breadth-first methods, the misses occurring in the D-Cache due to the row processing 
can be calculated using template T1 since the constraint of (6.1) assures the applicability of this 
template for all cases. Thus, the D-Cache misses for the row processing of level l  are simply: 

 2
D 1 2 D 1 2 D_ _ ( ) T1( 2 , 2 , ) 2l l l

S pSBF row miss l N N b f N N c b− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅  (6.17) 

with Sf  defined by equation (6.13). The misses during the column processing are more complex, 
since, as shown by the constraint of (6.1), an entire input column does not always fit in the D-Cache.  

For case I (see Figure VI-1), if each column of IMG  of decomposition level l  does not fit in the D-
Cache, the application of the lifting scheme in S  passes can be calculated using template T3. The 
reordering procedure will cause an additional pass per column of IMG  and the input of _TMP IMG  
for every column. These misses can be calculated by templates T3 and T1, respectively. Furthermore, 
as shown in the right part of Figure VI-1, the last step of the reordering requires another pass through 
the last half of every column, hence these additional misses (if any) are calculated with template T3. 
Summarizing: 

D 1 2 D 2 1 D

D 1 2 D

2
T3 D D 1 2

_ _ _ ( ) T3( 2 , 2 , +1, )+ 2 T1(1, 0.5 2 , )

T3( 2 ,0.5 2 ,1, )

( 0.5 0.5 ) 2

l l l l

l l
a

l
p a

SBF caseI col miss l N N S s N N b

f N N s

f c b f N N

− − − −

− −

−

= ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅

= + + ⋅ ⋅ ⋅

(6.18) 

where T3f  is defined in (6.11) and Daf  checks if half a column fits in the cache: 

 
1 D D

D
1, if 2 2

0,  otherwise             

l

a
N b s

f
− ⋅ ⋅ >= 

 (6.19) 

For case II (see Figure VI-2), if one pass is performed ( 1 2SS f= ⇒ = ) then one column from both 
IMG  and _TMP IMG  (two-dimensional) arrays of the current decomposition level must enter the 
D-Cache, causing compulsory misses that can be calculated with template T3. Otherwise, one column 
of the current level and _TMP IMG  array (one-dimensional) must enter the D-Cache and templates 
T3 and T1 are used (in this case 2Sf = ). Hence, the misses in the D-Cache from the column filtering 
of level l  are: 

 
D 1 2 D

2 1 D

2
1 2 T3 D

_ _ _ ( ) T3( 2 , 2 , , )

(2 ) 2 T1(1, 2 , )

2 ( 2)

l l
S

l l
s

l
S S p

SBF caseII col miss l f N N S s

f N N b

N N f f f c b

− −

− −

−

= ⋅ ⋅ ⋅

+ − ⋅ ⋅ ⋅ ⋅

 = ⋅ ⋅ ⋅ ⋅ − − ⋅  

 (6.20) 
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For case III (see Figure VI-3), for the filtering of each column of the current decomposition level, the 
column itself and _TMP IMG  must enter D-Cache (copy operation of Figure VI-3). The compulsory 
misses of this operation are calculated with templates T3 and T1 respectively. The application of 

1S −  predict-and-update steps (middle of Figure VI-3) does not cause any additional misses since the 
constraint of (6.1) certifies that _TMP IMG  is expected to reside in the D-Cache. Finally, the last 
predict-and-update step (last pass) will directly store the final results in binary-tree (reordered) form as 
shown in Figure VI-3 and the capacity misses expected from this operation are calculated with 
template T3. Summarized: 

 
D 1 2 D

2 1 D

2
1 2 D

_ _ _ ( ) 2 T3( 2 , 2 ,1, )

2 T1(1, 2 , )

2 (2 )

l l

l l

l
p

SBF caseIII col miss l N N s

N N b

N N c b

− −

− −

−

= ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ +

 (6.21) 

For the roughly depth-first methods, the expected number of D-Cache misses can be calculated based 
again on the templates presented before. For simplicity we study the case where 1X Y= = . For the 
LWT method, all the memory components used for the filtering procedures of every level are 
expected to reside in the D-Cache after their initial input, except the _OM COLS  array, which is the 
only array that does not completely fit in the cache according to the constraint set in (6.1). For the 
initial input of every image block in the IPM , the compulsory misses in the D-Cache can be 
calculated with the application of template T1. The additional misses occurring in the D-Cache are 
due to the copying of the coefficients stored in _OM COLS  to FF , as seen in the right part of 
Figure VI-4; for every decomposition level l , this procedure consists of sequential processing along a 
row of _OM COLS  of level l , hence again template T1 can be utilized. In total, the following D-
Cache misses are expected for the block-based method: 

2
D 1 2 D D

1

2 2 1
1 2 D D

_ _ ( ) 2 2 T1(1,2 , ) T1(1,2 1, ) 2

2 2 (2 2) (2 1)

L
L L L l

l

L L L
p p

RDF LWT miss l N N b M b

N N c b M c b

−

=

− +
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∑
 (6.22) 

The value of M  depends on the used filter-bank taps. Usually a biorthogonal (2 1) (2 1)M M+ −  
filter-bank is used with 2M =  or 4M =  [13]. 

For the line-based method, IPM  consists of entire rows of the input image and for the row 
processing, due to the constraint of (6.1), only the two most-recently accessed rows of IPM  are 
expected to reside in the D-Cache. The coefficients of every level are skewed in the IPM  in order to 
perform in-place storage of the filtering results. For every decomposition level l , for the row filtering, 
template T1 is used for the D-Cache miss calculation and for the column filtering, template T3 gives 
the expected misses from the column input of IPM , while template T1 estimates the misses from the 
copying of the elements of _OM COLS  of the current level to FF . In total, for L  decomposition 
levels, the expected D-Cache misses are: 
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∑  (6.23) 

The presented theoretical analysis follows [30] and leads to equations similar to the ones reported in 
[23], with a few simplifications in the calculations. Using the formulas of equations (6.12) – (6.16) for 
the L2-Cache and (6.17) – (6.23) for the D-Cache, the data-related cache-misses can be found for the 
dyadic wavelet decomposition of an 1 2N N×  image in L  decomposition levels for any typical wavelet 
filter-bank. For the filter operations, either the lifting-scheme approach can be used for the strictly 
breadth-first approaches (hence S  passes will be applied for every input row or column), or a classical 
convolution-based implementation can be utilized for the roughly depth-first methods. As mentioned 
before, the convolution-based filtering was chosen so as to facilitate the generality of the presented 
design for the roughly depth-first methods without considering filter-specific lifting dependencies. 

6.2.3  Experimental Validation of the Proposed Model 

To experimentally check which traversal method appears to be the most efficient one with respect to 
the minimization of the data-related cache penalties, the different approaches illustrated in Subsection 
6.2.1 were implemented using ANSI-C and were compiled and simulated under the same conditions. 
All source codes were platform-independently optimized for speed. 

The cache-miss penalties were measured using the tools of [33] in a typical 64-bit simplescalar 
processor architecture. The specified cache organization simulated a two-level, separable instruction 
and data cache with the LRU replacement-strategy. Each of the two cache levels was considered fully 
associative, with 128 and 2048 blocks for the first and second level respectively. This configuration 
satisfies the constraints of (6.1) and (6.2) for the majority of input image sizes. A block size of 64-
bytes was selected for both levels. Figure VI-5 shows the results for the 9/7 filter-bank with floating-
point precision for the wavelet coefficients ( 2S = , 4M = , 4pc = ), while Figure VI-6 shows the 
results for the 5/3 filter-bank with fixed-point precision ( 1S = , 2M = , 2pc = ). All results are 
averages of the execution for 4 to 6 decomposition levels, which correspond to typical settings for 
image and texture compression applications. Instead of absolute values, the theoretical curves have 
been uniformly scaled to the maximum experimental point of every graph and all measurements are 
shown as a percentage of the maximum measurement, so as to facilitate the comparisons. As 
discussed in the previous section, the streaming-input design of the RDF methods is expected to have 
a linear increase of the data-related cache misses when the image size increases (equation (6.15)). 
However, since the image I/O from/to the storage medium is not measured by the simulation tools, 
the experimental results follow equation (6.16) instead. An abnormality is seen in the L2-Cache misses 
of the LBWT method, where the experimental points do not follow the theoretical curve; instead an 
exponential increase is observed. This difference is explained from the fact that for the LBWT 
method, for large image sizes and 5 or 6 decomposition levels, the IPM  size becomes larger than the 
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L2-Cache size; thus the assumption that the complete IPM  is resident in the L2-Cache does not hold 
any more and the theoretical calculations fail to comply with the actual measurements. This is 
especially noticeable for the 9/7 filter-bank (Figure VI-5) since there the IPM  is two times larger than 
for the 5/3 filter-bank (Figure VI-6).  

To show the relative comparison between instruction and data-related cache misses, in Table VI-I the 
average misses for the various system caches are displayed for the SBF category for a variety of cases. 
The ratios of Table VI-I show that, under the constraints of (6.1) and (6.2), the classical 
implementation of the wavelet transform is a data-dominated application; in the vast majority of cases, 
the misses in the I-Cache are 1-4 orders of magnitude less than the ones reported for the D-Cache. 
These facts validate our assumptions that the data-related cache penalties play a dominant role in the 
transform execution-speed.  

To show the effectiveness of the different approaches in real systems, first the Intel-Pentium 
processor [34] was selected since it has a typical, widely used, superscalar architecture. The processor 
cache is a two-level four-way set-associative cache. The first level consists of separate instruction and 
data cache of size 8 Kb each, while the second level has a joint organization of the instruction and 
data cache with total size 256 Kb. The blocksize is 32 bytes. As a result, significant differences exist 
between this cache organization and the cache model of the simplescalar processor that was used for 
the verification of the theoretical analysis. In the Pentium cache, apart from the capacity misses and 
compulsory misses, the total miss-rate comes also from conflict misses. In addition, the data-bank 
conflicts reflect the effects of the multiple Functional Units, because they refer to conflicts in the D-
Cache caused by simultaneous accesses to the same data-bank by the execution-pipelines (U and V 
pipes [34]).  
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Figure VI-5. Theoretical (lines), and experimental (points) data-related cache misses measured with simulator 
tools, for the 9/7 filter-bank. SS denotes the SimpleScalar simulator toolset. 

 



CHAPTER VI. COMPLEXITY MODELING ASPECTS FOR WAVELET-BASED SCALABLE VIDEO CODING  

  

212 

 

 
Figure VI-6. Theoretical (lines), and experimental (points) data-related cache misses measured with simulator 
tools, for the 5/3 filter-bank. SS denotes the SimpleScalar simulator toolset. 

 
Strictly Breadth-First Methods  

(average for cases I, II, III with 5 decomposition levels) 

Image size D-Cache I-Cache Ratio 
L2-Cache 

(data) 
L2-Cache 

(instruction) Ratio 

128 128×  37559 1174 32:1 1465 753 1.95:1 

256 256×  236156 1187 199:1 17475 765 23:1 

512 512×  1050275 1188 884:1 74905 766 98:1 

1024 1024×  4483127 1242 3610:1 305505 783 390:1 

Table VI-I. Cache misses for the SBF category, as measured with the tools of [33] for various image sizes. The 
9/7 filter-bank was used. 
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In Figure VI-7, the experimental results in the Pentium architecture are displayed as cache-miss rate or 
conflict-miss rate versus image-size, decomposition-levels graphs. In addition, the theoretical 
calculations of this case, based on the equations of Subsection 6.2.2, are shown in Figure VI-8. All the 
experimental results of Figure VI-7 were produced by sampling the processor registers during the 
dedicated, single-process execution using the tool of [35] for increased accuracy. Only the specific 
portions of the source codes that produce the transform are profiled, in order to avoid any system-
dependent I/O procedures. 

For the D-Cache, if one takes into account the data-bank conflicts shown in Figure VI-7 (which will 
also produce stall cycles), then the theoretical (predicted) ordering of the methods agrees with what is 
seen in the experiments, although not numerically (as for the simplescalar processor). In addition, in 
the RDF category, both methods appear to minimize the bank conflicts, mainly because the 
localization of the processing into separate small memory components ( _OM ROWS , _OM COLS , 
FF , IPM ) helps during the parallel execution, since the simultaneously executed commands are 
expected to access memory arrays that are usually resident in different (non-conflicting) banks. 

For the L2-Cache, the theoretical calculations of Figure VI-8 are not in complete agreement with the 
experimental results of Figure VI-7 with respect to the ordering of the methods for the cache misses, 
mainly because this cache is a joint organization of instruction and data caches, thus the miss penalties 
are affected also by the instruction-related behaviour of every method. Nevertheless, in general, the 
RDF category again appears to minimize the measured penalties in comparison to the SBF methods. 

In order to experimentally validate the link between the data-related cache misses and the obtained 
throughput, Table VI-II shows throughputs in an Intel Pentium III 700Mhz/Win2000. Although the 
RDF methods were found to have increased instruction cache misses in comparison to the SBF 
approaches, the reduction of the data-related cache misses in the LWT and LBWT methods practically 
doubles the achieved throughput, especially at large images.  

In a second experiment we used a typical Very Long Instruction Word (VLIW) DSP architecture, 
namely the TriMedia TM1 processor [36] introduced by Philips. TriMedia is a 32-bit dedicated media 
processor for high performance multimedia applications that deal with high quality video and audio. A 
summary of the key features of the TM1 architecture is given in Table VI-III. The experimentally 
measured cache misses are reported in Figure VI-9 using the simulator tools of the processor [36]. 
Moreover, the theoretical predictions from the proposed model can be seen in Figure VI-10.  Similarly 
as before, the theoretical (predicted) ordering of the methods agrees with what is seen in the 
experiments, although not numerically. Finally, the relative performance of the three basic transform 
production schedules in this processor is seen in Table VI-IV, where “RC” represents the RCWT case 
III algorithm (taken as an average case), “LB” represents the LBWT and “BB” represents the block-
based LWT coefficient production schedule; for each case, we display in the columns of Table VI-IV 
the scheme that achieved the highest throughput. In total, the LBWT had the best performance in 11 
cases, the LWT in 11 cases, while the RCWT outperformed the other methods in only 2 cases. This 
validates the assumption that the best-performing algorithms in terms of cache misses appear to 
produce the highest throughput. 
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Figure VI-7. Experimental data-related penalties per pixel in the Intel Pentium platform. The 9/7 filter-bank was 
used. 
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Figure VI-8. Theoretical calculations based on the fully-associative model for the application of the 9/7 filter-
bank with the Intel-Pentium cache-characteristics (cache size and blocksize). For each image size, the 
normalized average miss ratio (misses per pixel) from the theoretical predictions for 4,5,6L =  is presented. 

 

 

Image size 
RCWT 
case I 

RCWT 
case II 

RCWT 
case III 

LWT LBWT 

512x512 1.075 1.841 1.887 3.369 2.455 
1024x1024 0.940 1.700 1.600 3.558 2.831 
2560x2048 0.926 1.690 1.759 3.506 2.952 

Table VI-II. Average throughput in Mpixels/sec for 4 to 6 levels (10 runs per method/image size/level). 
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Feature Value Feature Value 

Clock frequency 100 MHz SW controlled part of data 
cache Up to 8 kBytes 

Maximum performance 4 giga operations per second On chip instruction cache 
size 32 kBytes 

Number of parallel data 
paths 27 Off-chip main memory size 

range  0.5 MBytes to 64 MBytes 

Maximum number of data 
paths activated by the 

same instruction 
5 External highway width and 

speed 
32 bits - 400 

MBytes/second 

Register file 
size/bandwidth 

128 32-bit registers with 15 
read and 5 write ports Packed instruction width 32 bits 

On chip data cache 
size/bandwidth 16 kBytes/dual port Decompressed instruction 

width 220 bits 

Table VI-III. Major architecture features of TriMedia TM1. 
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Figure VI-9. Experimental data-related cache misses in the Philips TriMedia TM1 with the 9/7 filter-bank. 
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Figure VI-10. Theoretical calculations based on the fully-associative model for the application of the 9/7 filter-
bank (average for 4,5,6L = ) with the Philips TriMedia TM1 cache-characteristics (cache size and blocksize). 
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Image size 
# of Decomposition 

levels 
Best implementation 

for 5/3 filter-bank 
Best implementation 

for 9/7 filter-bank 
128×128 4 LB LB 
128×128 5 LB LB 
128×128 6 LB LB 
256×256 4 LB LB 
256×256 5 LB BB 
256×256 6 BB BB 
512×512 4 LB RC 
512×512 5 LB BB 
512×512 6 BB BB 

1024×1024 4 BB RC 
1024×1024 5 BB BB 
1024×1024 6 BB BB 

Table VI-IV. Best wavelet transform implementation option for all possible sets of image size, number of 
decompositions levels and filter-bank in terms of highest throughput. The results are inferred from the 
experiments on a VLIW DSP (Philips TriMedia TM1). 

 

6.2.4  Concluding Summary for the Proposed Cache-modeling 
Approach 

In this section, it has been shown that the data-related cache penalties are expected to dominate the 
execution of the two-dimensional multilevel DWT in typical programmable platforms since they are 
by far more frequent than the instruction-related cache penalties. In Table VI-V, we list the 
conclusions drawn from the presented experiments with respect to the software design and the cache 
efficiency of the various DWT-production methods. From the relative comparisons shown in Table 
VI-V, one can identify the various trade-offs for the software design of DWT systems. Apart from 
quantitative results, a theoretical framework was also proposed for the analytical estimation of the 
data-related misses, which can be utilized for high-level parametrical estimation of the DWT 
implementation-efficiency in a variety of cache architectures. This was verified by simulation results in 
a conflict-free cache model and partly by experimental results from (a) a superscalar processor with a 
two-level, set-associative cache; (b) a VLIW DSP with a single-level, set-associative cache. 
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Coefficient-Production 
Scheme 

Strictly Breadth-First 
(RCWT) 

Roughly Depth-First 
(RDF) 

Software Implementation Case I Case II Case III LWT LBWT 

C-code design complexity low low low high high 
Average assembly-code size in two systems: 
superscalar (Pentium) / VLIW (TriMedia) 72 72 72 100 86 

Expected gain from platform-dependent 
optimizations low low medium high high 

Cache Behaviour: Simulator [33] 
% Average  5/3,9/7, 4-6 levels 

Case I Case II Case III LWT LBWT 

I-Cache accesses 64 53 61 100 74 

Instruction-related misses 12 12 12 100 65 

D-Cache accesses 100 78 93 94 82 
Level-one 

Cache 

Data-related misses 100 63 66 4 6 

prediction-accuracy of proposed model very good very good very good very good very good 

Instruction-related misses 54 54 54 100 65 Level-two 
Cache Data-related misses 28 100 20 1 10 

prediction-accuracy of proposed model very good very good very good good constraint 
violation 

Cache Behaviour: Real Platform [34] % 
Average  5/3,9/7, 4-6 levels Case I Case II Case III LWT LBWT 

Instruction-related misses 2 2 1 100 6 Level-1 
Cache Data-related misses 100 47 29 9 29 

model validation – prediction of ordering of the 
methods with respect to the data-cache penalties correct 

Level-2 
Cache 

Misses 
Note: joint I and D-Cache 

100 40 38 0.1 1 

Model validation – prediction of ordering of the 
methods with respect the cache misses partially correct, not fully verified 

Table VI-V. Relative comparisons of the various methods of the two categories with respect to cache efficiency 
and design flexibility. Image sizes of 128 128×  up to 1024 1024×  are considered and the reported numbers 
are percentages that are normalized to the maximum measurement. 
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6.3 Complexity Modeling of Transform-based Video 
Decoders 

The second modeling topic of this chapter concerns system complexity of video decoders. Since links 
are established in this section with MPEG-21 terminology [37] and we present an application example 
within a streaming scenario, we shall use the term “decoder” interchangeably with the terms 
“terminal” and “receiver”. The work presented in this section was published in [12]; consequently, our 
presentation in this section follows [12]. 

Traditionally, multimedia compression and streaming have been studied within the rate-distortion 
theory framework that defines tradeoffs between information rate and distortion. Non-scalable 
bitstream switching, adaptive rate scaling, transcoding, scalable coding, distortion-optimized packet 
scheduling, network-adaptive source/channel coding, multiple description coding, etc. [38], have been 
developed to address real-time adaptation of multimedia content at the server or on-the-fly at a proxy, 
based on the network conditions. However, in most cases, these network-centric approaches neglect 
the user experience, as well as the capabilities and resource constraints of the receiver (e.g. display size, 
processing power, battery-life etc.).  

Part 7 of the MPEG-21 standard, entitled Digital Item Adaptation, has defined a set of description 
tools for adapting multimedia based on the user characteristics, terminal capabilities, network 
characteristics and natural environment characteristics [39] [37]. We introduce a new complexity 
model that can assist the MPEG-21 DIA engine within a rate-distortion-complexity (R-D-C) 
framework to explicitly consider the resources available at the receiver. These can include hardware 
resources such as memory, processors, functional units, instruction and data memory bandwidths and 
limits on the power dissipation.  

The focus of this section is not on system-specific complexity or power optimization since these 
topics have already been thoroughly studied for different multimedia codecs (e.g. see [2] [3] for 
software implementations of the AVC codec and [4] for Motion JPEG2000). Instead, the novelty of 
our approach is twofold. Firstly, in this section we introduce the concept of “virtual” decoding 
complexity and determine a general R-D-C framework that can be easily applied to a variety of 
existing and upcoming image and video compression schemes. Secondly, unlike the MPEG-4 Video 
Complexity Verifier (VCV) [5] [14] that determines whether the decoding resources fit within a certain 
profile (which corresponds to maximum allowable decoder resources), we consider average decoding 
complexities estimated using a model-based approach that considers the decoding algorithm 
implementation, as well as the transmission bit-rate and content characteristics. While worst-case 
bounds on complexity are extremely important for dedicated hardware implementations (e.g. 
application-specific integrated circuits), they are not very meaningful for next generation 
programmable architectures that can support multi-fidelity algorithms by allowing dynamic resource 
allocation. Examples of such architectures include energy-adjustable processors with dynamic 
frequency and voltage scaling and reconfigurable architectures.  
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In the proposed framework, the server generates a platform-independent model quantifying a set of 
Generic Complexity Metrics (GCMs) for decoding/streaming. Within the R-D-C framework the 
GCMs are linked with different operational R-D points.  

The (pre-computed) GCMs are then mapped into Real Complexity Metrics (RCMs) that explicitly 
consider the specific terminal architectures and available resources. Consequently, within a multimedia 
streaming scenario, compressed bitstreams are correspondingly adapted at the server, proxy or 
receiver based on the determined RCMs.  

This section is organized as follows. Subsection 6.3.1 presents a general methodology for constructing 
the R-D-C framework. We also introduce the GCM concept, which enables the definition of common 
(generic) complexity metrics across different classes of receivers. Subsections 6.3.2 and 6.3.3 illustrate 
how the proposed complexity model can be used for multimedia adaptation based on network 
characteristics and terminal capabilities. In Subsection 6.3.4, indicative simulation results and 
experiments using the proposed R-D-C framework are presented. Finally, Subsection 6.3.5 concludes 
the proposed approach and discusses future research topics. 

6.3.1  Rate-Distortion-Complexity Framework 

Recently, rate-distortion theory was extended to complexity-distortion theory and the complexity 
scalability of several simple algorithms (e.g. searching algorithms) has been investigated [7]. To enable 
on-the-fly adaptation within the MPEG-21 DIA framework, a practical R-D-C framework is required 
that relates the various operational R-D points (corresponding to different sub-streams) to their 
corresponding decoding complexity. Our focus within this subsection will be on modeling the generic 
complexity of multimedia decoding algorithms that does not consider the specific receiver features, 
capabilities and instantaneous resources.  

6.3.1.1 Generic Modeling of Complexity  

In order to represent at the server side different receiver architectures in a generic manner, we will 
deploy a concept that has been successful in the area of computer systems, namely, a virtual machine. 
We assume an abstract receiver referred to as Generic Reference Machine (GRM). This is 
representative of the computation and resource models of the receiver architectures in use. The GRM 
can be viewed as a basic pipelined RISC machine [8]. Assuming the GRM as the target receiver, we 
will develop an abstract complexity measure to quantify the decoding complexity of multimedia 
bitstreams.  

The key idea of the proposed paradigm is that the same bitstream will require/involve different 
resources/complexities on various receivers. Given the number of factors that influence the 
complexity of the receiver, it is impractical to determine at the server side the specific (real) complexity 
for every possible receiver architecture. Consequently, we adopt a generic complexity model that captures 
the abstract/generic complexity metrics (GCMs) of the employed decoding or streaming algorithm 
depending on the content characteristics and transmission bit-rate. GCMs are derived by computing 
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the average number of times the different GRM-operations are executed. We consider a simple GRM 
that supports the following operations1:  

 { }, ,op add multiply assign=  (6.24) 

In DIA, the AdaptationQoS tool [39] defines adaptation units (AUs) as a group of video macroblocks, 
an entire video frame, a certain resolution of a frame, a group of pictures etc. The GCMs necessary 
for the decompression and streaming can be transmitted to the receiver at different granularities (e.g. 
for each functional unit, sub-unit etc.) and for varying-size AUs [39]. In general, finer granularity 
allows better control of the adaptation, but this may come at the expense of an increased 
communication and computational overhead.  

Several illustrative examples on how R-D adaptation can be performed in the AdaptationQoS 
framework can be found in [39]. In this section, we develop models to be used in this framework for 
complexity adaptation. Although our experiments will be based on a scalable video coder, it is 
important to notice that the proposed models can apply more broadly, e.g., to conventional non-
scalable video coding schemes [40] [1], as well as multiple description coding schemes. The difference 
is that, to create a set of alternative bitstreams resulting in different rate, distortion and complexity 
tradeoffs, multiple encodings/transcodings of the same content are typically required, which incurs 
higher computational load for the server.  

We assume that each video group of pictures is partitioned into N  independently-coded adaptation 
units. For example, to provide efficient resolution scalability, the maximum size of an AU is usually 
bounded to be an entire resolution level of a given intra- or inter-frame in the GOP. Let the set of 
AUs that correspond to the decoded resolution and frame rate of a GOP be denoted as 
{ }1 2, , , Nb b b… . Each independent AU ib , 1 i N≤ ≤ , is associated with a set of rate-distortion points 
{ }( ) ( ),j i j i
i iR D  with ( )j i  indicating the corresponding bitstream-adaptation point. Within the 

AdaptationQoS tool of MPEG-21 DIA, the rate-distortion points are termed as dependent IOPins [41] 
since they depend on the number of permissible decoding parameters. This dependency stems from 
the fact that feasible adaptation points, which are referred to as free IOPins [41], can be derived at 
different spatio-temporal resolutions.  

An optimization that aims to minimize the overall distortion in the GOP under a rate-constraint maxR  
can be stated as: 

 { } ( )( ) ( )
max( ), 1

( ), =arg min + :
i

N
j i j i

r r GOPi ib j i i
j i D R R R

λ
λ λ∗ ∗

∀
=

   ⋅ ≤    
∑  (6.25) 

The Lagrangian multiplier λ  must be adjusted until the value rλ λ∗=  is found where the rate 
corresponding to the selected points ( )rj i∗  is (approximately) equal to maxR . 

                                                 

1 More sophisticated GRMs can be defined to facilitate better mapping of GCMs to architecture-dependent 
resources, e.g. different data- and memory types, word lengths, etc. However, this involves more complex R-D-
C modeling, GCM to RCM mapping and bitstream adaptation mechanisms. 
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A Proposed Generic Complexity Model 

To each possible bitstream adaptation point formulated by the set of solutions of (6.25), an associated 
complexity metric can be defined. We illustrate here how a generic complexity model can be built for 
video decoders employing motion compensation and transform coding. Similar models can also be 
built for alternative coding and/or streaming algorithms. 

The proposed framework is inspired by the work of He and Mitra [40] on rate-control for image and 
video compression. Our approach models the expected decoder complexity with an AU-level 
granularity based on source (video-data) characteristics as well as implementation-related features. For 
a transform-based motion-compensated video coding scheme, the complexity of decoding is primarily 
determined by:  

• the intra- and inter-frame decoding and inverse transform; 

• the motion-compensation process2.  

For each AU ib , we define the following complexity-function variables, corresponding to these 
decoder operations: 

• the percentage of non-zero (decoded) transform coefficients, denoted by ( )Tp i ; 

• the percentage (per pixel) of decoded motion vectors out of the maximum number of 
possible motion vectors (hypotheses) provided by the utilized motion model, denoted by 

( )Mp i . 

The purpose of these variables is not to encapsulate the input source characteristics but rather to 
represent the underlying mechanism based on which the input source characteristics can vary. It was 
already shown that a model that depends on these variables can be generic and yet efficiently predict 
the variations of the compressed source data, e.g., see the model of [40], as well as the use of non-zero 
transform coefficients in the VCV buffer model of [5].  

Our motivation behind the choice of Tp  comes from the fact that, in the decoding process, particular 
processing operations are activated only when a significant (non-zero) coefficient is found. For 
example, during the decoding process of wavelet-based embedded codecs, for each processed 
bitplane, the transform areas with insignificant (zero) coefficients are either skipped or processed in a 
uniform way by performing a fixed operation such as decoding a non-significance symbol. On the 
other hand, more complex operations such as sign decoding, list management and coefficient 
refinement operations occur at the areas where coefficients are found to be significant. We refer to the 
JPEG-2000 algorithm [42] as a practical test case. Similar observations hold for the decoding of other 
wavelet-based and DCT based image-coding schemes. 

                                                 

2 Although the decoding of the motion-vector information also contributes in the complexity profile of the 
decoding process, with the exception of extremely low bitrates, the effect of this process in the complexity of 
practical video decoders can be considered to be negligible. 
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Concerning motion information, in state-of-the-art video coding systems motion is adaptively 
estimated using a system with variable block-size multihypothesis prediction [43], as explained in 
Chapter III and Chapter IV. An example of such a system is pictorially demonstrated in Figure VI-11. 
Depending on the motion characteristics, the motion estimation algorithm partitions each macroblock 
adaptively and a variable number of motion vectors are assigned to the pixels belonging to each 
macroblock area. However, due to complexity and bandwidth limitations, there always exists a 
maximum number of motion vectors that can be associated with each pixel in a given frame. 
Consequently, at the pixel-level, the motion vectors associated with each error frame represent a 
percentage Mp  of the maximum number of the vectors that represent the maximum-density motion 
field. As a result, the number of arithmetic operations and memory accesses during motion 
compensation depends on Mp . 
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Figure VI-11. Motion estimation with variable block-size multihypothesis prediction. Notations: HYP  is the 
number of motion-vectors (hypotheses) used for the prediction of each subblock ( 0HYP =  denotes intra-
prediction); hMV , 1 h HYP≤ ≤ , is the h -th motion vector; hRFI  represents an index to the fractional-
pixel interpolated position for the h -th motion vector. 

 

For each AU ib , the proposed complexity functions can now be defined as ( ( ), ( ))op
T MW p i p i , with 

the superscript op  given in (6.24). This estimation of ( ( ), ( ))op
T MW p i p i  is based on a decomposition 

in a set of basis functions that characterize the complexity of the different parts of the motion-
compensated wavelet decoding system. These basis functions can be considered as high-level 
descriptors of the complexity characteristics of each part of the entire decoding system. In particular, 
we introduce the texture-related complexity basis-function, ( ( ))Tp iT , and three motion-related 
complexity basis-functions, ( ( ))F MM p i , ( ( ))S MM p i  and ( ( ))Z MM p i , which relate to the operation 



CHAPTER VI. COMPLEXITY MODELING ASPECTS FOR WAVELET-BASED SCALABLE VIDEO CODING  

  

224 

modes associated with the motion-compensation process. Their precise definitions will be given in 
Subsection B. 

For a given AU ib , the complexity functions ( ( ), ( ))op
T MW p i p i  are formulated as: 

 
( ( ), ( ))= ( ( )) ( ( ))+ ( ( )) ( ( ))

+ ( ( )) ( ( ))

+ ( ( )) ( ( ))

op op op
T M T T M M

op
M M

op
M M

W p i p i A p i p i B p i p i

C p i p i

D p i p i

⋅ ⋅

⋅

⋅

F

S

Z

T M

M

M

 (6.26) 

where ( ( ))op
TA p i  is the texture-related complexity-decomposition coefficient, and ( ( ))op

MB p i , 
( ( ))op
MC p i , ( ( ))op

MD p i  are the motion-related complexity-decomposition coefficients. For each AU 
of the input video, the complexity basis functions provide a high-level estimation of the data-
dependent computational resources that are required for the processing of its associated bitstream. 
They are varying solely based on the source characteristics. On the other hand, the texture- and 
motion-related complexity-decomposition coefficients are dependent on the decoding algorithm and 
its implementation architecture. Once the algorithm (and its implementation) is fixed for a given 
transmission scenario they can be determined offline by using a number of training sequences and 
profiling results from the specific decoder implementation architecture. Finally, if intra-frame coding 
algorithms are considered (e.g. Motion JPEG), the motion-related complexity decomposition 
coefficients and basis functions are annulated and hence, : ( ) 0Mi p i∀ ≡ . 

Based on (6.26), the complexity-decomposition functions for a GOP consisting of N  AUs is given 
by: 

 ( )
1

( , ) ( ), ( ) ( , )
N

op op op
T M T M T MGOP

i
W p p W p i p i E p p

=
= +∑  (6.27) 

where ( , )op
T ME p p  can be interpreted as the basic decoding complexity per GOP, which varies based 

on its average texture and motion content, represented by: 

1
1 ( )N

TT i
p p i

N =
= ∑ ,

1
1 ( )N

MM i
p p i

N =
= ∑ . 

In typical scenarios, this factor represents the cumulative effect in complexity of decoding operations 
that are almost data-independent, such as the inverse transform (inverse DCT or inverse DWT). 
Conceptually, equation (6.27) is analogous to a frequency-decomposition of a signal. In this case, 

( , )op
T ME p p  can be seen as the “DC” component of the decomposition.  

B Basis-functions for the Complexity Decomposition 

The texture-related complexity basis-function ( ( ))Tp iT  of an AU ib  is the function associated with 
the number of operations needed to decode a transform representation with a percentage of ( )Tp i  
non-zero coefficients. Following [40], we define ( ( ))Tp iT  as: 

  ( )20, ( ( )) 0
1

( ( )) log ( ( )) 2l l

k T

X Y
T k Tk c p il l
p i c p i

X Y
⋅
= ≠

= +
⋅ ∑T  (6.28) 
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where ( ( ))k Tc p i  represents the decoded value of the k -th transform coefficient of an AU that 
reconstructs l lX Y×  pixels of the input video frame. When decoding stops at resolution l  (with 

0l =  being the original resolution), we have:  

 4 l
l l or orX Y X Y−⋅ = ⋅  

where the original frame has or orX Y×  pixels. Equation (6.28) shows that the decoded transform-
coefficient values kc  are a function of ( )Tp i . In embedded coding, the coefficient values kc  of each 
AU ib  are a function of the number of decoded (integer or fractional) bitplanes ( )q i . In typical 
transform-coding schemes, ( )Tp i  is monotonically-increasing with ( )q i . As a result, there is a one-to-
one mapping between ( )Tp i  and ( )q i . Hence, kc  is also a function of ( )Tp i . We note here that in the 
generic case of non-embedded coding, e.g. quantization of DCT coefficients, equation (6.28) can be 
applied as well [40]. 

Equation (6.28) determines the sum of the magnitudes and sign information of the non-zero 
transform coefficients. This is representative for the complexity variations associated with classical 
transform-based coding schemes.  

As explained before, the complexity of motion compensation for each AU ib  is expected to be 
proportional to the percentage ( )Mp i  of the existing motion vectors per pixel. This is modelled by 

( ( ))F MM p i , which is defined as: 

 ( ( )) ( ) 4 l
F M MM p i v p i −= ⋅ ⋅  (6.29) 

where v  represents the maximum number of motion vectors (hypotheses) associated with each of the 
l lX Y×  pixels of the decoded AU ib  (see Figure VI-11).  

The complexity of motion compensation is also related to the number of motion vectors associated 
with fractional-pixel positions. Fractional-pixel accurate motion compensation typically involves 
interpolation operations with a filter kernel approximating the sinc function, hence requiring 
additional processing operations. This is modelled by the ( ( ))S MM p i  function, defined as: 

 ( ( )) ( ( )) ( ( ))S M F M MM p i M p i s p i= ⋅  (6.30) 

where ( ( ))Ms p i  is the percentage of existing vectors associated with a fractional-pixel position. For 
each AU ib , we define this percentage as a function of ( )Mp i  since, in our experimentation over a 
large set of sequences encoded using different settings, it was found that, for block-based motion 
estimation, this percentage is monotonically increasing with ( )Mp i . Finally, the additional complexity 
of advanced techniques using overlapped block motion compensation or deblocking is modelled by 
the ( ( ))Z MM p i  function. The application of such techniques strongly relates to the local differences 
between neighbouring motion vectors. Specifically, the definition of ( ( ))Z MM p i  is based on the 
following steps: 

• The motion vectors are organized in an one-dimensional array. All the macroblocks are 
scanned in a raster order, while motion vectors inside the macroblock are parsed in a zigzag 
scan order, as shown with the arrows of Figure VI-11.  
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• For every motion vector ( ),m m mv x y=  that points to reference frame mr , where m  is the 
index in the 1-D array, (1 ( ( ))F M l lm M p i X Y≤ ≤ ⋅ ⋅ ) calculate: 

( )1 1,m m m m md x x y y− −= − −  

 where we preset ( )0 0, 0v = . 

• Let { }11 :  if  or ;  0 :  otherwisem m m mt d Q r r −= ≥ ≠ , where Q  represents a pre-
determined threshold.  

 We define ( ( ))Z MM p i  as: 

 ( ( ))
1

( ( )) F M l lM p i X Y
Z M mm
M p i t⋅ ⋅

=
=∑  (6.31) 

The basis functions of (6.28) – (6.31) can be calculated dynamically during encoding for each AU ib . 
In order to avoid any increase in the encoding computational complexity, statistical methods could be 
adopted to calculate these basis functions based on their observed properties, following techniques 
similar to the ones used in [40]. In practice, the increase in encoder complexity was found to be 
negligible in comparison to the motion estimation complexity and the direct calculation of the basis 
functions provides a higher modeling accuracy. Having pre-determined values for the complexity-
decomposition coefficients, the generated basis-function values for each adaptation point are used in 
(6.26) to estimate the GCMs.  

6.3.2 Estimation of the Complexity Decomposition Coefficients 

In this section, we outline the practical method we used to estimate the values of the complexity-
decomposition coefficients of equation (6.26) for each op  of (6.24). This estimation is based on a 
training algorithm. For this purpose, we chose seven CIF video sequences (“Coastguard”, “Foreman”, 
“Stefan”, “Tempete”, “Paris”, “Football”, “News” – first 48 frames of each, which correspond to the 
temporal dependencies required for the MCTF operation of the first GOP in the utilized codec – 
SDMCTF codec used in Chapter IV with the “best mode” settings). These sequences were chosen as 
representative of a large variety of content. For each AU ib , 1 i N≤ ≤ , of each sequence, the values 
of the basis functions ( ( ))Tp iT , ( ( ))Mp iFM , ( ( ))Mp iSM , ( ( ))Mp iZM  were calculated for a 
representative set of values of ( )Tp i , ( )Mp i . In particular, we chose two sets of values for ( )Tp i , 

( )Mp i , denoted by {0.01, 0.02, 0.03, 0.04, 0.05}e
Tp =  and {0.001, 0.002, 0.003, 0.004}e

Mp = , 
respectively. The range of these sets was selected so that the corresponding bitrate for the texture and 
motion-vector information fits in the practical bitrate regimes of CIF video sequences. Naturally, the 
use of more sequences for the training stage and a high granularity in the regime of practical values of 

( )Tp i , ( )Mp i  helps in increasing the accuracy of the complexity-modeling process. In practice, the 
estimation of the values of the complexity-decomposition coefficients was performed by the following 
process. 

The encoding algorithm was executed multiple times for each sequence, each time enforcing the 
number of motion vectors that corresponded to each AU ib  to be equal to a pre-determined value 
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that corresponds to the specific value that is of interest, i.e. for every i  we select one e
Mp  and set 

( ) e
M Mp i p= .  

The bitstream extraction and decoding occurred by selectively decoding a number of bitplanes for the 
texture information of each AU ib  that corresponds to the specific value that is of interest, i.e. for 
every i  we select one e

Tp  and set ( ) e
T Tp i p= .  

In this way, for each possible pair { },e e
T Mp p  from the set of values that spans the bitrates of interest, 

based on (6.26), (6.27), we have: 

 ( , ) ( , ) ( , )op e e op e e op e e
T M T M T MGOPW p p N W p p E p p= ⋅ +  (6.32) 

The actual values of ( , )op e e
T MGOPW p p  were (off-line) measured by profiling the software implementation 

of the video decoder for the set of operations defined by (6.24). Hence, the experimentally-derived 
GCMs ( , )op e e

T MGOPW p p  depend on the software implementation of the decoder.  

Based on the profiling results and on the complexity basis functions (which were calculated using 
equations (6.28) – (6.31) with ( ) e

T Tp i p=  and ( ) e
M Mp i p=  for every i ), the values of ( )op e

TA p , 
( )op e
MB p , ( )op e

MC p , ( )op e
MD p  and ( , )op e e

T ME p p  of equation (6.27) were determined using multiple 
linear regression. In particular, for each pair of permissible values { },e e

T Mp p  and for each op  defined 
in (6.24), we establish the linear system:  

 op op op op
GOP = ⋅ +W T C E  (6.33) 

where , (1) , (7)( , ) ( , )
Top op ope e e e

T M T MGOP GOP seq GOP seqW p p W p p =   W …  is the 7 1×  vector containing the 
total number of op  operations for each sequence ( )seq j , 1 7j≤ ≤ , of the training set, measured by 
profiling the decoder software; opT  represents the 7 4×  matrix of the estimated basis functions 

( )( )eseq j TpT , , ( )( )eseq j MpFM , , ( )( )eseq j MpSM , , ( )( )eseq j MpZM  for the complexity decomposition for all the 
sequences ( )seq j  and is defined as: 

 
(1) , (1) , (1) , (1)

(7) , (7) , (7) , (7)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e e e e
seq T seq M seq M seq M

op

e e e e
seq T seq M seq M seq M

p p p p

p p p p

 
 
 =  
 
   

T # # # #
F S Z

F S Z

T M M M

T M M M

 (6.34) 

for each op  and { },e e
T Mp p ; ( ) ( ) ( ) ( )

Top op e op e op e op e
T M M MGOP A p B p C p D p =   C  is the 4 1×  vector 

containing the complexity decomposition coefficients that we want to estimate, which depend on e
Tp  

or e
Mp  as explained before; finally, ( , ) ( , )

Top op e e op e e
T M T ME p p E p p =   E …  is the 7 1×  vector 

containing the “mean” (DC) complexity decomposition coefficient ( , )op e e
T ME p p . In order to provide 

the best estimation of op
GOPC  and opE  based on multiple linear regression [27], we have:  

 ( ) 1( , )

( , )

op e e
T M T TGOP opop op op

GOPop e e
T M

p p

E p p

− 
       =               

C
T 1 T 1 T 1 W  (6.35) 

where 1 1 1 1 1 1 1
T =   1  is a column vector with unitary entries that is used to incorporate 

opE  in the estimation of (6.35).  
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Once computed for each op  and each { },e e
T Mp p , the values of the complexity decomposition 

coefficients are kept in lookup tables for the actual GCM estimation during the bitstream adaptation 
process.  

To summarize, the previously-described off-line training stage only involves the adjustment of the 
number of motion vectors and the number of significant coefficients of each frame to predetermined 
values that correspond to each pair { },e e

T Mp p . The first task is typically accomplished by iteratively 
adjusting the Lagrangian-based motion-vector pruning scheme of the encoder (see the advance 
motion estimation algorithm of Chapter IV for details). The latter is easily performed at the bitstream 
extraction stage.  

We note here that the profiling of the decoder software implementation is generic and can typically be 
performed using automated analysis tools (e.g. [44] for the memory-related operations). This is an 
important aspect since, in this way, if a different decoder software-implementation is to be used, the 
off-line training stage can be re-performed with the new software and different sets of complexity 
decomposition coefficients can be derived and used in the model.  

Finally, the usage of the proposed model during the actual bitstream adaptation process in a streaming 
server is straightforward. For each AU ib , depending on the { }( ), ( )T Mp i p i , the complexity-
decomposition functions are calculated (equations (6.28) – (6.31)). Then, the corresponding 
complexity decomposition coefficients are found by using the lookup tables and rounding the values 
{ }( ), ( )T Mp i p i  to the closest lookup-table entry. At this stage, using equations (6.26) and (6.27) for 
the current GOP, the model-based estimation of the GCMs takes place. 

6.3.3 A Practical Scenario For Complexity-Driven Adaptation 

In this section, we show how the proposed R-D-C framework allows for dynamic adaptation to 
network characteristics and terminal capabilities. As mentioned in the introduction, the mapping of 
GCMs into RCMs can be performed either at the server or the receiver.  Figure VI-12 pictorially 
represents an example of the proposed R-D-C bitstream adaptation.  

 

Decision  Taking 
Engine Receiver Metadata 

Bitstream Adaptation
EngineBitstream Adapted 

Bitstream

Source & Adaptation 
Metadata

GCMsComplexity 
Model

Complexity 
Mapping

Server/Proxy Receiver

For every AU    :

,       

RCMs

( )Tp i( )Mp i
ib

Decision  Taking 
Engine Receiver Metadata 

Bitstream Adaptation
EngineBitstream Adapted 

Bitstream

Source & Adaptation 
Metadata

GCMsComplexity 
Model

Complexity 
Mapping

Server/Proxy Receiver

For every AU    :

,       

RCMs

( )Tp i( )Mp i
ib

 
Figure VI-12. An example of R-D-C driven adaptation. 
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The GCMs { } ( )j i
op iW  are determined at encoding time for each AU, based on the values of ( )Mp i  

and ( )Tp i . The GCMs are then transmitted to a complexity mapper3, which is aimed at translating the 
GCMs into RCMs by taking into account a number of factors specific to the receiver architecture and 
processing platform. These factors include the instruction set of the underlying processor, the data-
types supported within the processor, the number of functional units (including hardwired co-
processors), the memory hierarchy and input-output processors, the available energy resources and 
special resources such as FIFOs or other buffers [4]. To determine the available resources, a resource 
monitor can be implemented at the receiver that maintains the current utilization of various resources 
especially memory, energy etc. The complexity mapper and resource profiler can be implemented in a 
variety of ways. The reader is referred to [9] [10] [11] for some illustrative examples for this topic. 
Based on the generated RCMs that entail the number of different operations that can be supported at 
a specific time, the receiver metadata is generated. Within the DIA standard [39], the generation of 
such metadata will utilize UED tools such as the CPUBenchmark, PowerCharacteristics, 
DisplayCapabilities, etc. With such descriptions, complexity adaptation at the server/proxy is enabled. 
Moreover, other metadata (e.g. MPEG-7 content descriptors) can also be generated to assist the 
Decision Taking Engine (Figure VI-12) that derives the adapted multimedia bitstream that will be 
streamed to the receiver. 

As a result, for each AU ib  and at each possible adaptation point ( )j i , the receiver formulates the 
RCM-based metric as:  

 { }( )( ) ( )j i j iop
i iop
C W

∀
= ∑ L  (6.36) 

where ()⋅L  represents the mapping operation from GCMs to RCMs, which, in the framework of 
MPEG-21 DIA, involves descriptors from the AdaptationQoS tool. Notice that the RCMs of (6.36) 
are additive for all the AUs of each GOP, i.e. ( )

1
N j i

GOP ii
C C

=
=∑ . Let maxC  denote the upper bound 

for the complexity of the receiver in terms of RCMs per GOP. The adaptation points ( )j i  for each 
GOP can be formulated as the parameters to a complexity-constrained optimization problem: 

 { } ( )( ) ( )
max( ), 1

( ), arg min :  
i

N
j i j i

c c GOPi ib j i i
j i D C C C

λ
λ λ∗ ∗

∀
=

   = + ⋅ ≤    
∑  (6.37) 

where the Lagrangian multiplier λ  must be adjusted until the value cλ λ∗=  is found where the RCM-
based complexity corresponding to the selected bitstream adaptation points ( )cj i∗  is equal to the RCM 
constraint maxC . The optimization of (6.37) determines the adaptation points for each AU incurring 
the minimum distortion under the pre-defined constraint maxC .  

In general, the solutions of (6.25) and (6.37) (rate and complexity-constrained optimizations, 
respectively) will produce different truncations for each resolution and frame-rate. However, for 
                                                 

3 As mentioned in the introduction, the complexity mapper can be located at the receiver (as depicted 
in Figure 2), or at the server/proxy. 
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practical applications of video streaming, both the rate and complexity constraints must be satisfied, 
i.e. the solution { }( ),

ib
j i λ∗ ∗

∀  must satisfy maxGOPC C≤  and maxGOPR R≤ . The optimization 
problem is then expressed as:  

 
{ } (

)}

( ) ( )
( ), , 1

( )
max max

( ), , arg min

                     :  and 

i r c

N
j i j i

r c ri ib j i i

j i
c GOP GOPi

j i D R

C R R C C

λ λ
λ λ λ

λ

∗ ∗ ∗
∀

=

= + ⋅
+ ⋅ ≤ ≤

∑
 (6.38) 

Since the solution of (6.38) involves searching among various values of ,r cλ λ , the optimization 
problem can be efficiently solved by first excluding all the truncation points ( )nj i  that do not produce 
monotonically-decreasing slope values (for each ib ). Effectively, a point ( )nj i  is excluded if 

1n n
r rλ λ+ >  or 1n n

c cλ λ+ > , with 1 1,n n
r cλ λ+ +  defined as:  

 
1 1

1 1

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ),  
n n n n

n n n n

j i j i j i j i
n i i n i i
r cj i j i j i j i

i i i i

D D D D
R R C C

λ λ
+ +

+ +

+ +− −
= =

− −
 (6.39) 

with { }1 1 1( ) ( ) ( ), ,n n nj i j i j i
i i iR D C+ + +  the rate, distortion and complexity estimates of the next valid 

truncation point ( 1( )nj i+ ) and n
rλ , n

rλ  the slope values of ( )nj i , defined analogous to (6.39).  

 

Proposed R-D-C based adaptation for each GOP : 

Initialization 

• Let adapt = ∅  represent the set of R-D-C optimized adaptation points 

Metadata Generation and Transmission 

• Establish the set of AUs ib , 1 i N≤ ≤  of the GOP 

• Establish the set of bitstream adaptation points and their corresponding R-D-C metadata: 

{ }{ }( ) ( ) ( ): ( ), , ,j i j i j iop
i i i ib j i R D W∀  

Adaptation Mechanism 

• For the current GOP: 

Determine maxR  (for eq. (6.25)) based on the network monitor  

Determine maxC  (for eq. (6.37)) based on the resource monitor 

• For each AU ib , 1 i N≤ ≤ , of the GOP: 

Establish ( )j i
iC  from eq. (6.36) (GCMs-to-RCMs) 

Invalidate all points ( )nj i  for which: 1n n
r rλ λ+ >  or 1n n

c cλ λ+ >  

• Given maxR , find { }( ),
ir r bj i λ∗ ∗

∀  from eq. (6.25) (which corresponds to (6.38) with 0cλ = ) 

• Given maxC  and { }( ),
ir r bj i λ∗ ∗

∀ , find { }( ), ,
ir c bj i λ λ∗ ∗ ∗

∀  from (6.38) with the additional constraint: 
( ) ( )

( )( ):
j i j ip
i i

j ij i p
i i

D D
r

R R
i λ

∗

∗
− ∗
−

∀ ≥ , where { }( ) ( ),p pj i j i
i iR D  correspond to the previous (valid) truncation point ( )pj i  

• For each AU ib , 1 i N≤ ≤ , of the GOP: 

set { }( )adapt adapt j i∗= ∪  

Figure VI-13. Pseudo-code for the optimized R-D-C adaptation. 
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An algorithm to determine the adaptation point for the AUs of each GOP under joint rate and 
complexity constraints maxR  and maxC  is given in Figure VI-13. Unlike previous multimedia 
streaming approaches that considered only the network limitations, the proposed joint R-D-C 
optimization may result in the transmission of a bitstream at a lower rate than that provided by the 
channel, because higher rates streams could not be appropriately decoded by the receiver, thereby 
unnecessary wasting channel bandwidth. 

One possible solution for implementing the above R-D-C adaptation in a streaming scenario is to 
consider the file format of the media. In [12] [45], an abstraction layer referred to as “multi-track 
hinting” is introduced, which is an extension of the hinting mechanism that is part of the MP4 file 
format specification [46]. Multi-track hinting allows structuring compressed video into multiple 
prioritized sub-streams that can be independently transmitted through multiple channels, as illustrated 
in Figure VI-14.  

This extension to conventional hinting mechanisms provide the flexibility necessary for network- and 
complexity-adaptive multimedia streaming by adjusting the number and type of transmitted (sub-) 
streams. Using the multi-track hinting method, each bitstream remains unchanged and it is stored 
once, but it is virtually divided into multiple sub-streams having different corresponding rates, 
distortions and complexities [45]. This means that, at the AU-level, the adaptation points ( )j i  and 
their corresponding R-D-C metrics { }{ }( )( ) ( ), , j ij i j i

opi i iR D W  are predetermined at the hinting stage, i.e., 
post encoding, but prior to the actual transmission. 

  
 Bitstream 1 (priority layer 1) 

Bitstream 2 (priority layer 2) 

Priority layer 1 movie track 

Priority layer 2 movie track 

Hint track for priority layer 1 – truncation point ( )ij1 : { }{ }( ) ( ) ( ),  ,  i i iop
i i iR D Wj j j1 1 1  

Hint track for priority layer 2 (sub-layer 1) – ( )ij21 : { }{ }( ) ( ) ( ),  ,  i i iop
i i iR D Wj j j21 21 21  

Hint track for priority layer 2 (sub-layer 4) – ( )ij24 : { }{ }( ) ( ) ( ),  ,  i i iop
i i iR D Wj j j24 24 24  

Hint track for priority layer 2 (sub-layer 3) – ( )ij23 : { }{ }( ) ( ) ( ),  ,  i i iop
i i iR D Wj j j23 23 23  

Hint track for priority layer 2 (sub-layer 2) – ( )ij22 : { }{ }( ) ( ) ( ),  ,  i i iop
i i iR D Wj j j22 22 22  

 
Figure VI-14. The multi-track R-D-C hinting file format. 
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6.3.4  Experimental Validations 

We first present some results that demonstrate the feasibility of the proposed model in predicting 
generic complexity metrics for a given decoding system. In addition, an example of the R-D-C based 
adaptation is presented with a prototyped multimedia streaming system. 

6.3.4.1 Validation of the Proposed GCM Estimation Model 

The proposed model for the GCM estimation of video decoding was tested using the spatial-domain 
motion-compensated temporal filtering codec used in the experiments of Chapter IV. As explained 
therein, the chosen decoder implementation combines a number of advanced features such as 
adaptive temporal decomposition with long temporal filters, variable block-size multihypothesis 
prediction and update steps, sub-pixel accurate motion compensation and QuadTree Limited coding, 
which was described in Chapter III. A number of video sequences not belonging to the training set 
were encoded. From the compressed bitstream of each sequence, several substreams were extracted 
that correspond to different bitrates. We present results relating to the estimation of the 
computational complexity, which is quantified with the number of integer additions and 
multiplications per pixel. A natural extension of the presented results involves estimation of the 
assignment operations (memory accesses). Some preliminary results concerning the profiling of 
memory accesses have been presented in [47]. We find that the effect of the memory accesses in the 
total decoding complexity relates strongly to a certain memory partitioning into local (internal) and 
non-local (external) accesses. This requires a specific assignment of the memory footprint of the 
MCTF-based decoder to a certain category of architectures and represents a direction for future 
research.  

 
Sequence Hall Monitor Ice 

Bitrate/ 
frame-rate 

32kbps 
15Hz 

64kbps 
30Hz 

256kbps 
30Hz 

256kbps 
15Hz 

512kbps 
30Hz 

2048kbps 
30Hz 

op

multiply

=
 6 

(6) 
14 

(14) 
16 

(15) 
48 

(45) 
119 

(125) 
130 

(128) 
op

add

=
 24 

(30) 
55 

(54) 
60 

(65) 
176 

(214) 
400 

(394) 
428 

(436) 

Table VI-VI. Multiplications and additions per pixel of each GOP of two typical sequences at three different 
adaptation points. The numbers in parentheses present the prediction based on the proposed GCM model 
approach. The arithmetic complexity of the inverse DWT is not included, since, under the chosen decoder 
implementation, it consists of a fixed overhead in terms of additions and multiplications per pixel regardless of 
the compressed bitstream. 

 

Typical experimental results for the derived GCMs per GOP (software profiling) as well as the model-
based GCMs (equations (6.26) – (6.31) with the estimated complexity-decomposition coefficients) are 
illustrated in Table VI-VI. Notice that the decoder arithmetic complexity can increase by a factor of 
three for an eighth-fold increase in decoding bitrate. Table VI-VII presents the average model 



CHAPTER VI. COMPLEXITY MODELING ASPECTS FOR WAVELET-BASED SCALABLE VIDEO CODING 

  

233

estimation-error (per GOP) for different sequences. For each sequence, the average error of the 
model prediction over a set of adaptation points is presented. These points represent an eighth-fold 
increase over the lowest (base-layer) bitrate. In total, the average error between the experimental and 
model-based GCMs was found to be approximately 10%. Note that this estimation accuracy is 
achieved without focusing on the specific MCTF coding algorithm or the texture-coding features of 
the codec. Moreover the software profiling was performed in a generic manner, without isolating 
specific implementation features. 

 

Sequence 
Average error (%) 

multiply  
Average error (%) 

add  
Hall Monitor 5.7 5.7 

Ice 3.5 1.2 
Harbour 17.6 13.4 
Canoa 13.5 14.3 

Total average: 10.08 8.65 

Table VI-VII. Percentage of error between the model prediction and the actual measured additions and 
multiplications per pixel. For each GOP of every sequence, the average error over a number of adaptation 
points is presented. 

 

6.3.4.2 R-D-C driven Multimedia Streaming 

To present an example of the proposed R-D-C adaptation within an application scenario, we include 
one set of results with a real-time open-source multimedia streaming system based on the open-source 
MPEG4-IP software [12]. The results obtained with the proposed R-D-C adaptation mechanism are 
illustrated in Figure VI-15. In particular, Figure VI-15(a) shows the average-RCM vs. bitrate results 
associated with eight RTP channels. The RCMs were generated from the model-based GCMs of this 
paper (see Table VI-VI– “Hall Monitor” sequence) with the methodology described in recent work 
[48], and are expressed in terms of execution cycles in an Intel Pentium IV processor. Figure VI-15(b) 
shows the number of channels transmitted to the receiver based on rate and/or complexity 
constraints. Initially, the adaptation was solely done based on network characteristics information (i.e. 
rate-distortion constraints) provided by the UEDs. Subsequently, the receiver started another complex 
application (during the time tick=400 until tick=750), and hence, the complexity of the transmitted 
bitstream was adapted based on the receiver RCMs. 

It was determined that the storage overhead associated with multi-track R-D-C hinting is about 5–
15% of the total bitstream, depending on the packet size chosen for a particular hinting scheme [12]. 
Moreover, it was found [12] that increasing the number of hint tracks only causes negligible increase 
in overhead due to the fact that, the amount of information generated by hinting is determined by the 
total number of hinted packets; when the packet size is selected, the total number of packets is also 
consequently determined independent on whether they are hinted using one track or multiple tracks. 
Alternatively, if the GCMs are sent to the receiver, the transmission overhead is low (less than 5%): 
only one number for each op  is transmitted per AU. 
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Figure VI-15. R-D-C driven multimedia adaptation. 

 

6.3.5  Conclusions And Future Work 

The recently standardized MPEG-21 framework enables adaptation based on both terminal 
capabilities and network conditions. We propose a new and generic rate-distortion-complexity 
framework that can generate metadata necessary for MPEG-21 Digital Item Adaptation based on the 
available receiver resources. We illustrate the simplicity and accuracy of the proposed complexity 
model by predicting the computational complexity of motion-compensated wavelet video coders. The 
average error between the experimental and model-based generic complexity metrics was found to be 
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approximately 10%. An example of the proposed network and receiver R-D-C adaptation was 
presented using a real-time multimedia streaming test-bed. In general, the derived complexity model is 
generic and can be used for a variety of video coders. As a result, we believe that the proposed 
complexity-related descriptions could be useful for standardization purposes. Future research could 
focus on quantifying the extent to which continuous adaptation to the receiver resource complexity 
can improve the end-to-end performance of multimedia delivery and the battery life of receivers. 
Another aspect of future research could be to investigate the accuracy of different mappings between 
GCMs and RCMs for various architectures. 

6.4 Summary of the Results of this Chapter 
Two models for predicting the complexity of video coding algorithms under realistic conditions have 
been proposed in this chapter. The two proposals target different aspects of complexity; in particular, 
the cache modeling of two-dimensional discrete wavelet transforms presented in Section 6.2 targets 
platforms where the memory bottlenecks are expected to dominate the execution of data-dominated 
signal processing tools, such as the DWT. The analysis in that section is based on analyzing the 
algorithmic flow and expressing the expected cache misses in analytical formulations. On the other 
hand, the complexity modeling framework of motion-compensated video decoders (Section 6.3) is 
based on a generic decomposition of the arithmetic (and potentially the memory) profile of these 
systems into a set of basis functions, without specific regards to the details of the algorithms involved. 

In the first case, experiments with a simulator of generic pipelined simplescalar architecture revealed 
that the theoretical framework predicts the expected number of cache misses accurately (Figure VI-5 
and Figure VI-6). In the case of real platforms, one can establish a ranking of the different approaches 
for the memory organization of the DWT calculation that appears to be matching the real 
measurements (Figure VI-7 and Figure VI-8). Perhaps more importantly, due to the fact that the 
proposed cache modeling of Subsection 6.2.2.2 is based on the analysis of the data flow within the 
cache hierarchies for the performance of the DWT, the proposed parameterized equations lead to a 
deeper understanding of the strengths and weaknesses of each transform-production schedule for the 
realization of the DWT in programmable platforms.  

In the case of the complexity modeling framework of Section 6.3, experiments demonstrate that the 
proposed paradigm predicts the arithmetic complexity of the chosen video decoding scheme within an 
accuracy of 10% for a wide variety of video content (Table VI-VII). Due to the fact that no specific 
fine-tuning of the modeling parameters was performed, the obtained prediction accuracy is a 
promising result for this category of approaches. Finally, in order to demonstrate a concrete link with 
practical systems, the proposed framework was utilized within a new streaming architecture and 
receiver-based complexity adaptation was performed by streaming the model-based generic 
complexity metrics to the receiver and adapting the decoded bitstream layers according to the 
estimated complexity (Figure VI-15).  
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6.5 Appendix 
Proof of Template 1: Due to the fact that the processing occurs along a row, all data are taken 
sequentially from the memory. Thus, the cache blocking strategy will input cb  (useful) bytes 
simultaneously. Due to the constraint of (6.3) set for this template, all elements of each row fit in the 
cache. Thus, if each row is processed many times (many passes per row), no additional misses are 
expected per row. Hence, for a total of pR C c⋅ ⋅  bytes, the compulsory misses reported in (6.4) are 
expected.                      ■ 

Proof of Template 2: The situation after the completion of the row processing can be seen in the left part 
of Figure VI-16. Due to the sequential processing of the rows, ( )R W−  rows of the two-dimensional 
array are expected to be resident in the cache. Of course, the least-recently-accessed row of the array 
may not be fully stored in the cache, but Figure VI-16 shows the simple case of a number of full rows 
of the array in the cache in order to facilitate the drawing. The term W  can be easily calculated since 
the total cache size ( cs ) is known, and in this way we reach equation (6.7). 

The left part of the constraint set for this template (equation (6.5)) assures that almost in all cases 
0W > . In addition, the right part of the constraint assures that any additional passes per column are 

not expected to cause misses, since the currently-processed column elements are expected to fit in the 
cache. The on-cache part of the array is stored into the various cache blocks in portions of cb  bytes, as 
seen in the example of Figure VI-16. For the input of the first column, the grouping of the cache 
blocks will cause the simultaneous input of c pb c  sequential columns, as the middle of Figure VI-16 
shows. These blocks are expected to replace a number of rows of the array that were stored at the 
least-recently accessed blocks of the cache, due to the LRU replacement strategy. The replaced rows 
are denoted as 1a . As seen in Figure VI-16, some of the last elements of the first c pb c  columns will 
not be inserted, since they are already on-cache. The number of rows that are replaced can be 
calculated since the dimensions of the array are known and the number of input blocks of data is 

1W a+ : 

 1 1 1( ) ( )c p c p cb W a a C c a W b C c b+ = ⋅ ⋅ ⇒ = ⋅ ⋅ −  (6.40) 

Similarly, the right part of Figure VI-16 shows the input of the second group of sequential c pb c  
columns. Following the same idea, the term 2a  can be calculated as: 

 1 2 2 2 1( ) ( ) ( )c p c p cb W a a a C c a b W a C c b+ + = ⋅ ⋅ ⇒ = ⋅ + ⋅ −  (6.41) 

Generalizing, for the j -th input set of c pb c  columns, with 1j >  we reach equation (6.8). The 
constraint set in (6.8) ensures that the total size of the j -th inserted group of columns is smaller than 
the array height (R ). Decimal values for ja  are acceptable in the sense that an incomplete row-
replacement was made during the input of the j -th set of c pb c  columns. 

Every replacement of a cache block in this case constitutes a capacity miss. Thus, for the input of the 
first column, 1( )W a+  misses are expected. Since cs  is larger than cR b⋅  (constraint (6.5)), the cache 
is sufficiently large to fit one group of c pb c  columns and no additional misses are expected to occur 
for the rest ( 1)c pb c −  columns. Thus every group of columns stays in the cache after it has been 



CHAPTER VI. COMPLEXITY MODELING ASPECTS FOR WAVELET-BASED SCALABLE VIDEO CODING 

  

237

used. This explains the rationale behind the right part of the constraint stated for this template. The 
total number of groups of columns is ( )p cC c b⋅ . Hence, under the constraint set, the expected 
amount of misses, is reported in (6.6).                   ■ 

 
Input and processing of the second bc/cp columns
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…
…
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Figure VI-16. The column-by-column input of a two-dimensional array in the cache, after the completion of the 
row-by-row processing. 

 

Proof of Template 3: This template is similar to the previous one, however, the constraint set for this 
case shows that it applies for a small cache that has comparable size to a group of input columns. 
After the row-by-row processing, when one column is inserted, a group of columns comes in the 
cache as shown in the middle of Figure VI-16. This column causes R  misses for one pass. For k  
passes, if cs  is smaller than cR b⋅ , a total of k R⋅  misses are expected, since this case implies that the 
entire column does not fit in the cache. If however cs  is larger than cR b⋅  then, after the first input of 
each column, no additional misses are expected for the subsequent passes. Thus only R  misses are 
expected for all the k  passes. However, since cs  is comparable to cR b⋅ , the subsequent ( 1)c pb c −  
columns of every group will have to be re-inserted (in the vast majority of cases), causing misses as 
well and as a result a total of k R C⋅ ⋅  or R C⋅  misses are expected for the processing of all the 
groups of columns, depending on the cache size cs . This is shown in (6.10) and the distinction 
between the two cases is made with the factor T3f .                  ■ 
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VII.  
Chapter VII 

CONCLUSIONS 

OLLOWING current technological and social trends, today’s majority of digital video 
transmissions around the globe occur via diverse computer network architectures and 

inhomogeneous end-user terminals. Consequently, a large number of requirements need to be 
satisfied by modern state-of-the-art source coding algorithms, if these algorithms are to be used in 
such scenarios. At the source-coding level, these requirements correspond to support for multiple 
resolutions and frame-rates, and easy adaptability to bandwidth variations of error-prone transmission 
channels. This adaptability should be provided based on a single compressed bitstream, with every 
sub-stream producing comparable visual quality to state-of-the-art non-scalable coding operating at 
the specified bitrate, resolution and frame-rate. Finally, for each operating point, the decoding of each 
sub-stream should have comparable complexity as non-scalable coding. These requirements constitute 
the “holy-grail” of scalable video coding research. As in every difficult quest, their complete 
achievement has been a withstanding problem for a number of years.  

7.1 Dissertation Overview and Concluding Remarks 
In this dissertation, based on previous research advances in motion-compensated prediction and 
motion-compensated temporal filtering, we made a number of proposals in the area of wavelet-based 
scalable video coding. In particular, we introduced in-band motion compensated prediction within 
closed-loop and open-loop video coding systems. For open-loop systems, in-band motion-
compensated temporal filtering was proposed by coupling in-band motion compensated prediction 
with in-band motion compensated update. In all cases it was found that, with the use of a complete-
to-overcomplete wavelet transform for motion estimation and compensation in the wavelet domain, 
an equivalent system with the conventional closed-loop and open-loop frameworks can be provided 
in-band. This was shown to have several advantages from the functionality point of view, e.g. for 
base-layer compatibility with existing MPEG-alike systems. In general, different prediction structures 
for each resolution level may satisfy different application requirements. Experimental evidence 
confirmed that performing in-band motion compensated prediction and update provides 
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substantially-improved resolution scalability versus that provided by conventional systems that 
perform MCP in the spatial domain. Similar to the way an open-loop video coding architecture 
provides bitrate scalability at seemingly no cost in compression efficiency versus the equivalent closed-
loop system, in-band video coding based on the ODWT appears to provide improved resolution 
scalability at little or no cost in compression efficiency for the full resolution. 

Finally, it was shown that the use of advanced motion estimation benefits both spatial-domain and in-
band systems in the same manner. Moreover, objective evaluations, performed by coding a large 
variety of standard-definition video sequences in a wide range of bitrates, revealed that fully-scalable 
wavelet-based systems using advanced motion-compensated temporal filtering are (on-average) 
comparable or superior to the current state-of-the-art in non-scalable coding, i.e. the MPEG-4 
Advanced Video Coder.  

By focusing on the transform aspects of the proposed in-band video coding architectures, a new 
framework for the construction of the overcomplete DWT starting from the subbands of the 
critically-sampled decomposition was presented. The proposed framework has inherent advantages in 
comparison to the conventional approach since it consists of a direct transform from the complete to 
the overcomplete DWT, using the minimum number of downsampling operations and no 
upsampling. For resolution-scalable video coding applications that utilize a level-by-level construction 
of the ODWT, it was demonstrated that the proposed CODWT has significant implementation 
advantages over the conventional approach because it offers (a) significant computation savings, and 
(b) a single-rate calculation that can provide a scalable reduction in the transform-production delay. 
These features lead to inherent computational scalability in comparison to the conventional approach.  

In the last part of this dissertation, complexity aspects of scalable video coding were studied. In 
particular, two models for predicting the complexity of video coding algorithms under realistic 
conditions have been proposed. The two proposals target different aspects of complexity; our first 
proposal consists of a theoretical framework for cache modeling of two-dimensional discrete wavelet 
transforms and targets platforms where the memory bottlenecks are expected to dominate the 
execution of data-dominated signal processing tools, such as the DWT. The analysis is based on 
analyzing the algorithmic flow and expressing the expected cache misses in analytical formulations. 
Our second proposal consists of a complexity modeling framework of motion-compensated video 
decoders. The framework is based on a generic decomposition of the arithmetic (and potentially the 
memory) profile of these systems into a set of basis functions, without specific regards to the details 
of the algorithms involved. 

In the first case, experiments with a simulator of a generic pipelined simplescalar architecture revealed 
that the theoretical framework predicts the expected number of cache misses accurately. In the case of 
real platforms, one can establish a complexity ranking of the different approaches for the memory 
organization of the DWT calculation that appears to be matching the real measurements. Perhaps 
more importantly, due to the fact that the proposed cache modeling is based on the analysis of the 
data flow within the cache hierarchies for the performance of the DWT, the proposed parameterized 
equations lead to a deeper understanding of the strengths and weaknesses of each transform-
production schedule for the realization of the DWT in programmable platforms.  
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In the case of the complexity modeling framework for motion-compensated video decoders, 
experiments demonstrated that the proposed paradigm predicts the arithmetic complexity of the 
chosen video decoding scheme within an accuracy of 10% for a wide variety of video content. Due to 
the fact that no specific fine-tuning of the modeling parameters was performed, the obtained 
prediction accuracy is a promising result for this category of approaches. Finally, in order to 
demonstrate a concrete link with practical systems, the proposed framework was utilized within a new 
streaming architecture and receiver-based complexity adaptation was performed by streaming the 
model-based generic complexity metrics to the receiver and adapting the decoded bitstream layers 
according to the estimated complexity. 

7.2 Prospective Work 
In this dissertation we dealt with a number of topics in the area of video compression. Based on 
practical requirements, several wavelet-based video coding architectures have been proposed. Starting 
from the presented results, a number of video coding topics could still be investigated in future 
research.  

One particularly important aspect from a practical point of view, concerns the visual improvement of 
the results obtained with the proposed codecs versus visually-optimized video codecs such as the 
MPEG-4 AVC. Visual inspections reveal that, although at the same PSNR level, in many cases the 
wavelet-based codecs of this thesis tend to produce significantly more blocking artifacts (or ringing) 
versus AVC. Tools to be considered for this task could include adaptive deblocking filters and post-
processing filters.  

Another practical aspect concerns the improvement of low-resolution and low frame-rate results of 
wavelet-based MCTF systems. The proposed in-band MCTF architectures perform a significant step 
in this direction by improving the visual quality of low-resolution sequences. Nevertheless, different 
spatial decomposition filters might provide a smoother approximation signal at low resolution, 
thereby reducing the amount of spatial aliasing observed in some cases in the low-frequency subbands 
of wavelet-based codecs. In relation to this topic, improvements in the overall compression results are 
expected if additional research is performed in the still-image coding part of the proposed 
architectures. Although coders such as the QT-L perform very well for natural images, there are 
improvements to be obtained with an entropy coding scheme specifically designed based on the 
statistics of error-frame images.  

Finally, an interesting research direction would be to attempt to combine adaptive spatial wavelet 
decompositions, such as bandelets, with the adaptive temporal filtering techniques proposed in this 
thesis. This may provide significant gains, especially if it is combined with better entropy coding 
strategies. 

In the area of complexity modeling, there are a number of open questions that could be addressed in 
future research. Although the cache-modeling strategy appears to provide some insight on the relative 
performance tradeoffs of different traversal schedules for the discrete wavelet transform, it may be 
interesting to extend this analysis to other parts of the system, such as the MCTF process. Moreover, 
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in such a case, the tradeoffs in terms of memory and arithmetic complexity would be significantly 
higher since entire frames (or wavelet subbands) participate in the temporal filtering process. Finally, 
with respect to the proposed modeling framework for motion-compensated wavelet decoding, a 
number of different topics could be addressed, such as: establishment of more basis functions for the 
complexity decomposition; theoretical investigation of statistical properties of the basis functions and 
the complexity decomposition coefficients; study of the inter-relationship of the various basis 
functions (e.g. whether some functions can be considered to be orthogonal to others); validation of 
the proposed framework for the case of the memory-complexity estimation. In addition, by 
considering fine-grain sampling of the complexity decomposition variables during the off-line training 
and establishing the complexity decomposition coefficients based on a larger training set, the limits in 
the accuracy of the modeling strategy could be investigated.  

Finally, an interesting research direction in this area would be to combine the complexity models 
proposed in this dissertation with parameterized weighing factors in order to take into account current 
and future technology effects on performance of both the memory hierarchy and the arithmetic and 
instruction decoding units. In this way, a final ranking of the proposed coding methods with state-of-
the-art existing related methods could be established, in terms of speed and power consumption.  
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