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Abstract: This article presents three methods to forecast accurately the amount of traffic in TCP=IP based

networks: a novel neural network ensemble approach and two important adapted time series methods (ARIMA
and Holt-Winters). In order to assess their accuracy, several experiments were held using real-world data from
two large Internet service providers. In addition, different time scales (5min, 1 h and 1 day) and distinct
forecasting lookaheads were analysed. The experiments with the neural ensemble achieved the best results for

5min and hourly data, while the Holt-Winters is the best option for the daily forecasts. This research opens
possibilities for the development of more efficient traffic engineering and anomaly detection tools, which will
result in financial gains from better network resource management.
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1. Introduction

As more applications vital to today’s society

migrate to TCP=IP networks, it is crucial to

develop techniques to better understand and

forecast the behaviour of these networks. In

effect, TCP=IP traffic prediction is an important

issue for any medium=large network provider

and it is gaining more attention from the com-

puter networks community (Papagiannaki et al.,

2005; Babiarz & Bedo, 2006). By improving this

task’s performance, network providers can opti-

mize resources (e.g. adaptive congestion control

and proactive network management), allowing a

better quality of service (Alarcon-Aquino &

Barria, 2006). Moreover, traffic forecasting

can also help to detect anomalies in the data

networks. Security attacks like denial-of-service or

even an irregular amount of SPAM can in theory

be detected by comparing the real traffic with the

values predicted by forecasting algorithms (Krish-

namurthy et al., 2003; Jiang & Papavassiliou,

2004). The earlier detection of these problems

would conduct to a more reliable service.

Nowadays, TCP=IP traffic prediction is often

done intuitively by experienced network admin-

istrators, with the help of marketing informa-

tion on the future number of costumers and

their behaviours (Papagiannaki et al., 2005).

Yet, this produces only a rough idea of the real

traffic. On the other hand, contributions from

the areas of Operational Research and Compu-

ter Science has lead to solid forecasting methods

that replaced intuition based ones in other fields.
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In particular, the field of time series forecasting

(TSF) deals with the prediction of a chronologi-

cally ordered variable (Makridakis et al., 1998).

The goal of TSF is to model a complex system as

a black-box, predicting its behavior based in

historical data, and not how it works.

Owing to its importance, several TSF meth-

ods have been proposed, such as the Holt-

Winters (Makridakis et al., 1998), the ARIMA

methodology (Box & Jenkins, 1976) and artifi-

cial neural networks (NN) (Lapedes & Farber,

1987; Ding et al., 1995; Malki et al., 2004;

Cortez et al., 2005). Holt-Winters was devised

for series with trended and seasonal factors.

More recently, a double seasonal version has

been proposed (Taylor, 2003). The ARIMA is a

more complex approach, requiring steps such as

model identification, estimation and validation.

NNs are connectionist models inspired in the

behavior of central nervous system, and in

contrast with the previous methods, they can

predict non-linear series. In the past, several

studies have demonstrated the predictability of

network traffic by using similar methods, such

as Holt-Winters (Krishnamurthy et al., 2003)

and ARIMA (Sang & Li, 2002; Papagiannaki

et al., 2005). Following the evidence of non-

linear network traffic (Hansegawa et al., 2001),

NNs have also been proposed (Jiang & Papa-

vassiliou, 2004; Alarcon-Aquino & Barria, 2006;

Wang et al., 2008).

In this work, several experiments are carried

out, based on recent real-world data provided

by two ISPs, in order to provide network en-

gineers with a useful feedback. The main con-

tributions of this work are:

i. Internet traffic is predicted using a pure

TSF approach (i.e. only past values are used

as inputs), in contrast to (Krishnamurthy

et al., 2003), which uses compact summaries

of traffic data, and (Papagiannaki et al.,

2005), which uses wavelets to smooth the

signal, allowing its use in wider contexts;

ii. several forecasting methods are tested and

compared, including a novel NN ensem-

ble based on fast heuristic procedures for

time window and model selection, and

adaptations of the Holt-Winters, both

traditional and recent double seasonal

versions, and the ARIMA methodology;

iii. in contrast with previous studies (Hanse-

gawa et al., 2001; Jiang & Papavassiliou,

2004; Papagiannaki et al., 2005; Babiarz

& Bedo, 2006; Alarcon-Aquino & Barria,

2006; Wang et al., 2008), two distinct ISPs

are considered, the predictions are ana-

lysed at different time scales (i.e. 5min,

hourly, daily) and distinct ahead forecasts

are performed.

The result of this research is expected to allow

the development of intelligent TCP=IP traffic

forecasting engines.

The article is organized in four sections. First,

the Internet traffic data is presented and ana-

lysed. The forecasting methods are given in

Section 3, while the results are presented and

discussed in Section 4. Finally, in the last section

closing conclusions are drawn.

2. Time series analysis

A time series is a collection of time ordered

observations (y1, y2, . . . yt), each one being re-

corded at a specific time t (period), appearing in

a wide set of domains such as Finance, Produc-

tion and Control (Makridakis et al., 1998). A time

series model ðŷtÞ assumes that past patterns will

occur in the future. Another relevant concept is

the horizon or lead time (h), which is defined by

the time in advance that a forecast is issued.

The performance of a forecasting model is

evaluated by an accuracy measure, such as the

sum squared error (SSE) and mean absolute

percentage error (MAPE) (Makridakis et al.,

1998):

et ¼ yt � ŷt;t�h

SSEh ¼
PPþN

i¼Pþ1

e2i

MAPEh ¼ 1
N

PPþN

i¼Pþ1

jeij
yi
� 100%

ð1Þ
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where et denotes the forecasting error at time t;

yt the desired value; ŷt;p the predicted value for

period t and computed at period p; P is the

present time and N the number of forecasts.

TheMAPE is a common metric in forecasting

applications, such as electricity demand (Malki

et al., 2004; Taylor et al., 2006), and it measures

the proportionality between the forecasting er-

ror and the actual value. This metric will be

adopted in this work, since it is easier to inter-

pret by the network administrators. In addition,

it presents the advantage of being scale indepen-

dent. It should be noted that the SSE values

were also calculated but the results will not be

reported since the relative forecasting perfor-

mances are similar.

Our approach uses already available informa-

tion provided by the Simple Network Manage-

ment Protocol (SNMP) that quantifies the traffic

passing through every network interface with

reasonable accuracy (Stallings, 1999). SNMP is

widely deployed by every ISP=network, so the

collection of this data does not induce any extra

traffic on the network.

This work analyses traffic data (in bits) from

two different ISPs, denoted here as A and B.

The A dataset belongs to a private ISP with

centres in 11 European cities. The data corre-

sponds to a transatlantic link and was collected

from 06:57 hours on 7 June to 11:17 hours on 29

July 2005. Dataset B comes from UKERNA1

and represents aggregated traffic in the United

Kingdom academic network backbone. It was

collected between 19 November 2004, at 09:30

hours and 27 January 2005, at 11:11 hours. The

A time series was registered every 30 s, while the

B data was recorded every 5min. The first series

(A) included eight missing values, which were

replaced using a linear interpolation (Hastie

et al., 2001). The missing data is explained by

the fact that the SNMP scripts are not 100%

reliable, since the SNMP messages may be lost.

Yet, this occurs very rarely and it is statistically

insignificant. Finally, it should be mentioned

that within this domain it is difficult to collect

more than 2=3 months of data, since network

servers often reboot or pass through upda-

te=maintenance changes.

Depending on the time scale, the following

forecasting types can be defined (Ding et al.,

1995):

� real-time, which concerns samples not ex-

ceeding a few minutes and requires an on-

line forecasting system;

� short-term, from one to several hours, cru-

cial for optimal control or detection of

abnormal situations;

� middle-term, typically from one to several

days, used to plan resources; and

� long-term, often issued several month-

s=years in advance and needed for strategic

decisions, such as financial investments.

Owing to the characteristics of the Internet

traffic collected, this study will only consider

the first three types. Therefore, three new time

series were created for each ISP by aggregating

the original values; that is summing all data

samples within a given period of time. The

selected time scales were (Figure 1): every 5min

(series A5M and B5M), every hour (A1H and

B1H) and every day (A1D and B1D)2. Owing to

the temporal nature of this domain, a sequential

holdout (i.e. train=test split) will be adopted for

the forecasting evaluation. Hence, the first 2=3
of the series will be used to fit (train) the

forecasting models and the remaining last 1=3
to evaluate (test) the forecasting accuracies

(Table 1). Under this scheme, the number of

forecasts is equal to N¼NT� hþ 1, where h is

the lead time period and NT is the number of

samples used for testing.

The autocorrelation coefficient is a statistic

that measures the correlation between a series

and itself, lagged of k periods (Box & Jenkins,

1976):

rk ¼
PT�k

t¼ 1 ðyt � yÞðytþk � yÞPT
t¼ 1 ðyt � yÞ ð2Þ

1United Kingdom education and research networking asso-
ciation.

2The datasets are available at: http://www3.dsi.uminho.pt/
pcortez/series/
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Figure 1: The Internet traffic time series (A5M, B5M, A1H, B1H, A1D and B1D) with several daily,

weekly and seasonal patterns (e.g. traffic decrease in late December in B datasets is due to Christmas

season).
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where y1, . . . ,yT stands for the time series and y

for the series’ average. Autocorrelations are

useful for the detection of seasonal components

(Makridakis et al., 1998). For example, the

autocorrelations for the A5M and A1H Â series

are plotted in Figure 2. The daily seasonal effect

(K1¼ 288) is visible for the 5min data, while two

seasonal components appear at the hourly scale,

due to the intraday (K1¼ 24) and intraweek

cycles (K2¼ 168).

3. Forecasting methods

3.1. Naive benchmark

A common naive forecasting method is to pre-

dict the future as the present value. Yet, this

method will perform poorly in seasonal data.

Thus, a better alternative is to use a seasonal

version, where a forecast will be given by the

observed value for the same period related to the

previous seasonal cycle (Taylor et al., 2006):

ŷtþh;t ¼ ytþh�K ð3Þ

where K is the seasonal period. In this work, K

will be set to the weekly cycle. This naive

method, which can be easily adopted by the

network administrators, will be used as a bench-

mark for the comparison with other forecasting

approaches.

3.2. Holt-Winters

The Holt-Winters is an important forecasting

technique where the predictive model is based

on trended and seasonable patterns that are

distinguished from noise by averaging the his-

torical values. It presents advantages such as

simplicity of use, reduced computational de-

mand and accuracy for seasonal series. The

model is defined by the equations (Makridakis

et al., 1998):

Level St ¼ a yt
Dt�K1

þ ð1� aÞðSt�1 þ Tt�1Þ
Trend Tt ¼ bðSt � St�1Þ þ ð1� bÞTt�1

Seasonality Dt ¼ g yt
St
þ ð1� gÞDt�K1

ŷtþh;t ¼ðStþhTtÞ�Dt�K1þh

ð4Þ

where St, Tt andDt stand for the level, trend and

seasonal estimates, K1 for the seasonal period,

and a, b and g for the model parameters. When

there is no seasonal component, the g is dis-

carded and the Dt�K1þh factor in the last equa-

tion is replaced by the unity.

Table 1: The scale and length of Internet traffic

time series

Series Time
scale

Train
length

Test
length

Total
length

A5M 5min 9848 4924 14772
A1H 1h 821 410 1231
A1D 1day 34 17 51
B5M 5min 13259 6629 19888
B1H 1h 1105 552 1657
B1D 1 day 46 23 69
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Figure 2: The autocorrelations for the series A5M (left) and A1H (right).
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More recently, this method has been extended

to encompass two seasonal cycles (Taylor,

2003):

Level St ¼ a yt
Dt�K1

Wt�K2

þ ð1� aÞðSt�1 þ Tt�1Þ
Trend Tt ¼ bðSt � St�1Þ þ ð1� bÞTt�1

Seasonality 1 Dt ¼ g yt
StWt�K2

þ ð1� gÞDt�K1

Seasonality 2 Wt ¼o yt
StDt�K1

þ ð1� oÞWt�K2

ŷtþh;t ¼ðSt þ hTtÞ �Dt�K1þhWt�K2þh

ð5Þ
where Wt is the second seasonal estimate, K1

and K2 are the first and second seasonal periods;

and o is the second seasonal parameter.

The initial values for the level, trend and

seasonal estimates will be set by averaging the

early observations (Taylor, 2003). The para-

meters (a, b, g and o) will be optimized by a grid

search, which works by testing all combinations

of a discrete set of values for each parameter.

The aim is to get the lowest training error

(SSE1), which is a common procedure within

the forecasting community.

3.3. ARIMA methodology

The ARIMA is another important forecasting

approach that goes through model identifica-

tion, parameter estimation and model valida-

tion (Box & Jenkins, 1976). The main advantage

of this method relies on the accuracy over a

wider domain of series, despite being more

complex than the Holt-Winters. The model is

based on a linear combination of past values

(AR components) and errors (MA components),

being named autoregressive integrated moving-

average (ARIMA).

The non-seasonal model is denoted by the form

ARIMA(p, d, q) and is defined by the equation

fpðLÞð1� LÞdyt ¼ yqðLÞet ð6Þ
where yt is the series; et is the error; L is the

lag operator (e.g. L3yt¼ yt� 3); fp¼ 1�f1

L�f2L
2� . . . �fpL

p is the AR polynomial

of order p; d is the differencing order; and

yp¼ 1� y1L� y2L
2� . . . � yqL

q is the MA

polynomial of order q. When the series has a

non-zero average through time, the model may

also contemplate a constant term m in the right

side of the equation. For demonstrative pur-

poses, the full time series model is presented

for ARIMA(1,1,1,): ŷt;t�1 ¼mþ ð1þ f1Þyt�1�
f1yt�2 � y1et�1. To create multi-step predic-

tions, the one step-ahead forecasts are used

iteratively as inputs (Taylor et al., 2006).

There is also a multiplicative seasonal version,

often called SARIMA and denoted by the term

ARIMA(p, d, q)(P1,D1,Q1). It can be written as:

fpðLÞFP1
ðLK1Þð1� LÞdð1

� LÞD1yt ¼ yqðLÞYQ1
ðLK1Þet ð7Þ

where K1 is the seasonal period; FP1
and YQ1

are polynomial functions of orders P1 and Q1.

Finally, the double seasonal ARIMA(p, d, q)

(P1, D1, Q1)(P2, D2, Q2) is defined by (Taylor

et al., 2006)

fpðLÞFP1
ðLK1ÞOP2

ðLK2Þð1�LÞdð1�LÞD1

ð1�LÞD2yt ¼ yqðLÞYQ1
ðLK1ÞCQ2

ðLK2Þet
ð8Þ

where K2 is the second seasonal period; OP2
and

CQ2
are the polynomials of orders P2 and Q2.

The constant and the coefficients of the model

are usually estimated by using statistical ap-

proaches (e.g. least squares methods). It was

decided to use the forecasting package X-12-

ARIMA from the US Bureau of the Census

(Time-Series-Staff, 2002), for the parameter es-

timation of a given model. For each series,

several ARIMA models will be tested and the

BIC statistic, which penalizes model complexity

and is evaluated over the training data, will be

the criterion for the model selection, as advised

by the X-12-ARIMA manual.

3.4. Artificial neural networks

Neural models are innate candidates for fore-

casting due to their flexibility (i.e. there is no a

priori restrictions on the type of relationship to

be modeled) and non-linear learning capabil-

ities. Indeed, the use of NNs for TSF began

in the late 1980s with encouraging results and

the field has been consistently growing since

(Lapedes & Farber, 1987; Ding et al., 1995;

Malki et al., 2004; Cortez et al., 2005).

6 Expert Systems c� 2010 Blackwell Publishing Ltd148 c� 2010 Blackwell Publishing LtdExpert Systems, May 2012, Vol. 29, No. 2



Although there are other neural architectures,

the majority of the NN studies use the multi-

layer perceptron network (Lapedes & Farber,

1987; Cortez et al., 1995,2005; Ding et al., 1995;

Tong et al., 2004). With this network, TSF is

achieved by using a sliding time window (Wang

et al., 2008), defined by the set of time lags fk1,
k2, . . . k1g used to build a forecast. For a

given time period t, the NN inputs are

yt�kI ; . . . ; yt�k2 ; yt�k1 and the desired output is

yt. For example, let us consider the series 51, 101,

143, 194, 235 (yt values). If the f1, 3g window is

adopted, then two training examples can be

created: 5, 14 ! 19 and 10, 19 ! 23.

In this work, fully connected multi-layer percep-

trons, with one hidden layer of H hidden nodes,

bias and shortcut connections will be adopted

(Figure 3). To introduce non-linearity, the logistic

activation function was applied on the hidden

nodes. The linear function was used in the output

node, in order to scale the range of the outputs

(Cortez et al., 2005). The final model is given by:

ŷt;t�1 ¼wo;0 þ
XI
i¼ 1

yt�kiwo;i

þ
Xo�1

j¼ Iþ1

fð
XI
i¼ 1

yt�kiwj;i þ wj;0Þwoj

ð9Þ
where wi,j denotes the weight of the connection

from node j to i (if j¼ 0 then it is a bias connec-

tion), o denotes the output node and f the logistic

function ( 1
1þe�x). Similar to ARIMA, multi-step

forecasts are built by iteratively using 1-ahead

predictions as inputs (Taylor et al., 2006).

In the training stage, the NN initial weights

are randomly set within the range [� 1.0; 1.0].

Then, the RPROP algorithm was adopted, since

it presents a faster training when compared with

other algorithms such as the backpropagation

(Riedmiller, 1994). The training is stopped when

the error slope approaches zero or after a max-

imum of 1000 epochs.

The quality of the trained network will depend

on the choice of the starting weights, since the

error function is non-convex and the trainingmay

fall into local minima. To solve this issue, the

solution adopted is to use a neural network

ensemble (NNE) where R different networks are

trained (here set to R¼ 5) and the final prediction

is given by the average of the individual predic-

tions (Hastie et al., 2001). In general, ensembles

are better than individual learners, provided that

the errors made by the individual models are

uncorrelated, a condition easily met with NNs,

since the training algorithms are stochastic in

nature (Dietterich, 2000).

Under this setup, the NNE performance will

depend on two crucial parameters: the choice of

the input time lags and number of hidden nodes

(H). Feeding a NN with uncorrelated variables

or time lags will affect the learning process due

to the increase of noise. A NN with 0 hidden

neurons can only learn linear relationships and

it is equivalent to the classic Auto-Regressive

(AR) model. By increasing the number of hid-

den neurons, more complex functions can be

learned but also it increases the probability of

overfitting to the data and thus losing the gen-

eralization capability.

Since the search space for these parameters is

high, heuristic procedures will be proposed in the

next section to reduce the computational effort,

limiting the search to a few time window=hidden
node combinations during the model selection

step. In this stage, the training data (2=3 of the

series’ length) will be further divided into training

and validation sets. The former, with 2=3 of the

training data, will be used to train the NNE. The

latter, with the remaining 1=3, will be used to

i

w
i,0

w
i,j

j

Input Layer Hidden Layer Output Layer

+1

+1

xt−kI

xt−k2

xt−k1

x t

...

...
+1

...

+1

Figure 3: The neural network architecture.
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estimate the network generalization capabilities.

The NNE with the lowest validation error (aver-

age of all MAPEh values) will be selected. After

the model selection, the final NNE is retrained

using all training data.

4. Experiments and results

The Holt-Winters and NNs were implemented

in an object oriented programming environment

developed in the Java language by the authors.

Regarding the ARIMA methodology, the dif-

ferent models will be estimated using the X-

12-ARIMA package (Time-Series-Staff, 2002).

The best model (with the lowest BIC values) will

be selected and then the forecasts are produced

in the Java environment.

The Holt-Winters models were adapted to the

series characteristics. The seasonal version

(K1¼ 7) was used for the daily values, while the

double seasonal variant (K1¼ 24 and K2¼ 168)

was applied on the hourly series. Both seasonal

(K1¼ 288) and non-seasonal versions were

tested for the 5min scale data, since it was

suspected that the seasonal effect could be less

relevant in this case. Indeed, SSE errors ob-

tained in the training data backed this claim. To

optimize the parameters of the selected models

(Table 2), the grid-search used a step of 0.01 for

the 5min and daily data. The grid step was

increased to 0.05 in the hourly series, due to the

higher computational effort required by the

double seasonal models.

Regarding the ARIMA, an extensive range of

models were tested. In all cases, the m constant

was set to zero by the X-12-ARIMA package.

For the daily series, the p, P1, q and Q1 orders

ranged from 0 to 2; and the d andD1 orders were

set to 0 and 1, in a total of 35 models. In case of

the hourly data, no differencing factors were

used, since the series seems stationary and the

Holt-Winters models provided no evidence for

trended factors, with very low b values. A total

of eight double seasonal ARIMA models were

tested, by using combinations of the p, P1, P2, q,

Q1 and Q2 values up to a maximum order of 2.

Finally, for the 5min datasets, three single

seasonal (maximum order of 1) and 25 non-

seasonal (maximum order of 5) models were

explored. Similar to the Holt-Winters case, for

these series only non-seasonal ARIMA models

were selected. Table 3 shows the best ARIMA

models.

The NNE heuristic rules for model selection

were set as follows. The number of tested hidden

nodes (H) was within the range f0,2,4,6,8g,
since in previous work (Cortez et al., 2005) it

has been shown that complex series can be

modeled by small neural structures. Based on

the seasonal traits, three different sliding win-

dows were explored in each time scale:

� f1,2,3,4,5,6,7,8g, f1,2,3,6,7,8g and f1,7,8g
for the daily series;

� f1,2,3,24,25,26,168,167,169g, f1,2,3,11,12,
13,24,25,26g and f1,2,3,24,25,26g for the

hourly data; and

� f1,2,3,5,6,7,287,288,289g, f1,2,3,5,6,7,11,12,
13g and f1,2,3,4,5,6,7g for the 5min scale.

Table 4 presents the selected NNEs. Regarding

the selected time lags, it is interesting to notice

that there are two models that contrast with the

previous methods. The B5M model includes

seasonal information (K1¼ 288), while the A1H

does not use the second seasonal factor

(K2¼ 168).

After the model selection stage, the forecasts

were performed for each method by testing a

lead time from h¼ 11–24, for the 5min and

hourly data, and an horizon of h¼ 1–7 for the

daily series. In case of the NNE, 20 runs were

applied to each configuration in order to present

the results in terms of the average and t-student

95% confidence intervals (Flexer, 1996). Table 5

shows the forecasting errors for each method,

Table 2: The selected Holt-Winters forecasting

models

Series K1 K2 a b g o

A5M – – 0.76 0.09 – –
A1H 24 168 0.70 0.00 1.00 1.00
A1D 7 – 0.00 0.00 1.00 –
B5M – – 1.00 0.07 – –
B1H 24 1105 0.95 0.00 0.75 1.00
B1D 7 – 1.00 0.01 0.01 –
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when using the smallest and largest lookaheads.

The global performance is presented as the

average error (h) for all h values. The overall

view is given in Figure 4, where the MAPE is

plotted for all horizons.

As expected, the naive benchmark reveals a

constant performance at all lead times for the

5min series and it was greatly outperformed by

the other forecasting approaches. Indeed, the

remaining three methods obtain quite similar

and very good forecasts (MAPE values within

the range 1.4–3%) for a 5min lead. As the

horizon is increased, the results decay slowly

and in a linear fashion, although the Holt-

Winters method presents a higher slope for both

ISPs. At this time scale, the best approach is

given by the NNE (Table 5).

Turning to the hourly scale, the naive method

is still the worst method. As before, the other

methods present the lowest errors for the 1-

ahead forecasts. However, the error curves are

not linear and after a given horizon, the error

decreases, in a behavior that may be explained

by the seasonal effects (Figure 4). The differences

between the methods are higher for the first

provider (A) than the second one. Nevertheless,

in both cases the ARIMA and NNE outperform

the Holt-Winters method. Overall, the neural

approach is the best model with a 3.5% global

difference to ARIMA in dataset A1H and a

0.4% improvement in the second series (B1H).

The higher relative NNE performance for the

A ISP may be explained by the presence of

non-linear effects (as suggested in Table 4).

The analysis of the daily results shows a

different behavior. The naive approach is one

of the best options for the A1D data. This effect

also occurs for series B1D, although only after a

lead time of hZ3 for NNE, hZ4 for ARIMA

and hZ6 for Holt-Winters. In both series, the

best choice is the Holt-Winters method, which is

equivalent to the naive method for the A series.

These results are not surprising, since the Holt-

Winters can be quite accurate even when few

historic values are present (Makridakis et al.,

1998). It should be noticed that the training data

for A1D contains only 34 elements, while B1D

contains 46. In contrast, NNs tend to give bad

results when < 50 observations are used (Mak-

ridakis, 1982).

For demonstrative purposes, Figure 5 pre-

sents 100 forecasts given by the NNE method

for the series A1H and horizons of 1 and 24. The

figure shows a good fit by the forecasts, which

follow the series. Another relevant issue is re-

lated with the computational complexity.With a

Table 3: The selected ARIMA forecasting models

Series Model Parameters

A5M (5 0 5) f1¼ 2.81, f2¼ 3.49, f3¼ 2.40, f4¼ � 0.58, f5¼ � 0.13
y1¼ 1.98, y2¼ 1.91, y3¼ 0.75, y4¼ 0.26, y5¼ � 0.20

A1H (2 0 0)(2 0 0)(2 0 0) f1¼ 1.70, f1¼ � 0.74, F1¼ 0.60, F2¼ 0.06
O1¼ � 0.08, O2¼ � 0.28

A1D (2 1 0)(0 1 0) f1¼ � 0.46, f2¼ � 0.35

B5M (5 0 5) f1¼ 1.58, f2¼ � 0.59, f3¼ 1.00, f4¼ � 1.58, f5¼ 0.59
y1¼ 0.74, y2¼ � 0.08, y3¼ � 0.97, y4¼ � 0.77, y5¼ � 0.06

B1H (2 0 1)(1 0 1)(1 0 1) f1¼ 1.59, f2¼ � 0.62, F1¼ 0.93, O1¼ 0.82,
y1¼ 0.36, Y1¼ 0.72, C1¼ 0.44

B1D (1 1 2)(0 1 1) f1¼ 0.41, y1¼ 0.45, y2¼ 0.36, Y1¼ 0.53

Table 4: The selected neural forecasting models

Series Hidden nodes
(H)

Input time lags

A5M 6 f1,2,3,5,6,7,11,12,13g
A1H 8 f1,2,3,24,25,26g
A1D 0 f1,7,8g
B5M 0 f1,2,3,5,6,7,287,288,289g
B1H 0 f1,2,3,24,25,26,168,167,169g
B1D 0 f1,7,8g
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Pentium IV 1.6GHz processor, the NNE train-

ing (including five runs of the RPROP algorithm)

and testing for this series required only 41 s. In

this case, the computational demand for Holt-

Winters increases around a factor of three, since

the 0.05 grid-search required 137 s. For the dou-

ble seasonal series, the highest effort is given by

the ARIMA model, where the X-12-ARIMA

estimation tookmore than 2h of processing time.

5. Conclusions

In this article, three time series methods were

presented to forecast the amount of traffic in

TCP=IP based networks. A neural network

ensemble (NNE) was developed and the both

the Holt-Winters and the ARIMA methods

were adapted. Recent real-world data collected

from two large Internet source providers (ISPs)

was analysed using different ahead predictions

and time scales (e.g. every 5min, hour and day).

A comparison among the time series methods

shows that both ARIMA and NNE produce the

lowest errors for the 5min and hourly data, with

the latter method presenting the best overall

performance. As shown in the previous section,

and also argued in (Taylor et al., 2006), the

ARIMA methodology is impractical for on-line

forecasting systems because it requires more

computation. Although the search space for

NNE is high (i.e. selecting the best neural

architecture and set of time lags), the heuristics

proposed here for feature=model selection re-

duce substantially the computational effort and

are easy to implement, while still providing

competitive forecasts. Hence, the NNE is the

recommended approach, since it can be used in

real-time and this is crucial for dynamic re-

source allocation. At the daily scale, the Holt-

Winters provided the best forecasts since our

datasets contained few observations. However,

in a on-line setting, an ISP could easily store

hundreds of daily aggregated data. Thus, we

believe that the proposed NNE would also lead

to accurate forecasts in such scenario.

The experimental results reveal promising

performances. Only a 1–3% error was obtained

for the 5min forecasts. This value increased

from 11% to 17% when the forecasts were

issued 2 h in advance. For the short-term

Table 5: Comparison between the forecasting methods (MAPEh values, in percentage, bold denotes

best values)

Series Horizon
(h)

Naı̈ve Holt-
Winters

ARIMA NNE

A5M 1 34.79 2.98 2.95 2.91 � 0.00*

24 34.83 21.65 18.08 16.30 � 0.21*

h 34.80 11.98 10.68 9.59 � 0.08*

B5M 1 20.10 1.44 1.74 1.43 � 0.01
24 19.99 14.36 11.32 10.92 � 0.24*

h 20.05 7.65 6.60 6.34 � 0.11*

A1H 1 65.19 12.96 7.37 5.23 � 0.03*

24 65.89 33.95 28.18 25.11 � 0.59*

h 65.67 50.60 26.96 23.48 � 0.49*

B1H 1 34.82 3.30 3.13 3.25 � 0.01
24 35.54 17.31 15.15 12.20 � 0.07*

h 35.18 13.69 12.69 12.26 � 0.03*

A1D 1 6.77 6.77 8.49 8.76 � 0.00
7 6.25 6.25 7.23 7.99 � 0.00
h 6.34 6.34 8.12 8.48 � 0.00

B1D 1 20.81 7.00 9.79 12.99 � 0.01
7 13.65 18.38 21.11 31.04 � 0.01
h 17.62 13.43 18.18 24.89 � 0.01

*Statistically significant when compared with other methods.
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Figure 4: The forecasting error results (MAPE) plotted against the lead time (h).
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predictions, the error goes from 3% to 5% (1 h in

advance) until 13–22% (24h lookahead). Finally,

the daily forecasts gave rise to error rates of 7%

(1 day horizon) and 6–13% (1 week lookahead).

Moreover, once this work was designed assuming

a passive monitoring system, no extra traffic is

required in the network. Hence, the recommended

approach opens room for the development of

better traffic engineering tools and methods to

detect anomalies in the traffic patterns.

In the future, similar methods will be applied

to forecast traffic demands associated with spe-

cific Internet applications, since this might ben-

efit management operations performed by ISPs,

such as traffic prioritization. Another interest-

ing possibility, would be the exploration of

similar forecasting approaches to other domains

(e.g. electricity demand or road traffic).
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