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Abstract—Many researchers have hypothesised models which
explain the evolution of the topology of a target network. The
framework described in this paper gives the likelihood that the
target network arose from the hypothesised model. This allows
rival hypothesised models to be compared for their ability to
explain the target network. A null model (of random evolution)
is proposed as a baseline for comparison. The framework also
considers models made from linear combinations of model
components. A method is given for the automatic optimisation
of component weights. The framework is tested on simulated
networks with known parameters and also on real data.

I. INTRODUCTION

The field of modelling graph topologies (and in particular
the topology of the Internet) has generated a huge degree of
research interest in recent years (see [1, chapter 3] for a review
of the subject and [2] for an Internet topology perspective).
This paper introduces FETA (Framework for Evolving Topol-
ogy Analysis) which can be used to assess potential underlying
models for any network where information about the network
evolution is available. Previously, many researchers have fitted
probabilistic topology models by growing candidate models
and assessing how well their model fitted against a selection
of statistics made on a snapshot of the real network. The FETA
approach, by contrast, uses a single statistic to get a rigorous
estimate for the likelihood of a model based upon the dynamic
evolution of the network. This paper concentrates on results
on artificial models proving the framework reproduces known
models. A companion paper [11] reports on results from five
real networks but does not present the artificial test data given
here.

It has been known for some time that a number of networks
follow an approximate power law in their degree distribution.
Such networks include the internet Autonomous System (AS)
topology, world wide web, co-authorship networks, sexual
contact networks, email, networks of actors, networks from
biology and many others (many references are in [1, table
3.1]). Researchers have attempted to grow artificial versions
of such networks with models which assign connection prob-
abilities to existing nodes based upon the graph topology.
Often surprisingly simple models replicate many features of
real networks. The celebrated Barabási–Albert (BA) model [3]
provides an explanation for such power laws in terms of a

“preferential attachment” model (the probability of connecting
to a node is exactly proportional to its degree).

Further models have given slightly different probabilities
and slightly different ways of connecting nodes to better
match the statistics of real graphs [3]–[7]. The models are
assessed by growing artificial networks and measuring sev-
eral representative statistics to compare with the real target
network. A few models work differently, for example ORBIS
[8] does not “grow” a network by link addition but instead
“rescales”. Willinger et al [9] called for a “closing of the loop”
with a verification stage which checks how well the proposed
model fits the target network. FETA addresses this validation
problem. The FETA procedure evaluates the dynamic evolu-
tion of a network not a static snapshot. It directly estimates
a rigorous likelihood rather than attempting to find several
summary statistics and this likelihood is estimated directly
from the network itself rather than by growing and measuring
an artificial network using the model to be tested.

II. EVALUATION AND OPTIMISATION FRAMEWORK

Let G be some graph which evolves in time. Let Gt be
the state of this graph at some step of evolution, t. Consider a
model for network evolution as consisting of two separate (but
interconnected) models. The outer model selects the operation
which transforms the graph between two steps. The inner
model chooses the entity for that operation. The operation and
the entity together define the transition from Gi−1 to Gi. Both
outer and inner model may depend on the state of the graph
Gi on the step of the evolution i and possibly on exogenous
parameters. Outer model operations might be the following.

1) Add a new node and connect it to an existing node.
2) Connect the newest node to an existing node.
3) Connect two existing nodes.
4) Delete an existing connection.
5) Delete an existing node and its connections.

These outer models work with inner models which select either
nodes or edges for the operation. The inner model assigns
probabilities to each node (operations 1, 2 and 5) or edge
(operations 3 and 4)1. There may be a different inner model for

1Note that the reason “add a new node” is not considered on its own here
is to confine the study here to connected graphs.
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each outer model operation. The outer model might be adapted
further if the known graph data can include unconnected
(degree zero) nodes, if graphs can be unconnected and so on.
The focus of FETA is the inner model and the outer model is
not discussed here.

Example 1: The BA model [3] has a simple outer model
which performs step 1) then step 2) twice (a new node
connects to exactly three existing nodes). The inner model,
known as preferential attachment, assigns a probability to each
node exactly proportional to its degree. This inner model is re-
ferred to in this paper as θd. The positive feedback preference
(PFP) model [7], uses a parameterised outer model involving
several connections and an inner model which assigns node
probabilities where the probability of selecting a node with
degree d is proportional to d1+δ log10(d) where δ is a parameter.

A. Evaluating inner model likelihood

Let G0 be the graph at the first step of evolution observed
(this need not be right at the start of the evolution of the graph).
Assume that the state of the graph is observed until some step
Gt. The graph evolves between step Gi−1 and Gi according
to an outer and inner model. Each step involves the addition
of one edge. For simplicity of explanation consider the outer
model to consist only of the two operations:

1) add a new node and connect it to an existing node Ni;
or

2) connect the newest node to an existing node Ni.
The inner model θ assigns probabilities to the existing nodes
at a given step. Given the above outer model, from Gi−1 and
Gi the node Ni chosen by the inner model can be inferred.
Call the set of all observed choices C = (N1, . . . , Nt).

Definition 1: An inner model θ is a map which at every
choice stage j maps a node i to a probability pj(i|θ). A model
θ is a valid model if the sum over all nodes is one

∑
i pj(i|θ) =

1.
Theorem 1: Let C = (N1, . . . , Nt) be the observed node

choices at steps 1, . . . , t of the evolution of the graph G. Let θ
be some hypothesised inner model which assigns a probability
pj(i|θ) to node i at step j. The likelihood of the observed C
given θ is

L(C|θ) =
t∏

j=1

pj(Nj |θ).

Proof: If L(Cj |θ) is the likelihood of the jth choice given
model θ then L(C|θ) =

∏t
j=1 L(Cj |θ). Given pj(Nj |θ) is the

probability model θ assigns to node Nj at step j, therefore it
is also the likelihood of choice Nj at step j given model θ.
The theorem follows.

If two inner models θ and θ′ are hypothesised to explain
the node choices C arising from observations of a graph
G0, . . . , Gt and a given outer model, then the one with the
higher likelihood is to be preferred2. In practice, for even

2A model with fewer parameters will sometimes be preferred if the gain
in likelihood is small or the number of parameters added is large [10] – the
extreme case of this is the saturated model θs.

moderate sized graphs, this likelihood will be beyond the
computational accuracy of most programming languages and
the log likelihood l(C|θ) = log(L(C|θ)) is more useful.

A common statistical measure is the deviance D =
−2l(C|θ). (The deviance is usually defined with respect to
a “saturated model” – in this case the saturated model θs is
the model which has pj(Cj |θs) = 1 for all j ∈ 1, . . . , t and
hence has l(C|θs) = 0. The saturated model θs has likelihood
one but is useless for anything except exactly reproducing
G0, . . . , Gt).

Definition 2: Let θ0 be the null model. Here, an appropriate
null model is the one which assigns equal probability to all
nodes in the choice set (the random model). The choice set
is either the set of all nodes or, if a simple graph is desired,
the set of all nodes to which the new node does not already
connect.

The null model allows the assessment of the null deviance
D0 = −2(l(C|θ)−l(C|θ0)). However, both D and D0 depend
heavily on the size of t (the number of choices made). A more
useful measure created for this situation is now given.

Definition 3: Let θ be some inner model hypothesis for the
set of node choices C = (N1, . . . , Nt). Let θA be some rival
model to compare θ with. The per choice likelihood ratio with
θA, cA, is the likelihood ratio normalised by t the number of
choices. It is given by

cA =
[
L(C|θ)
L(C|θA)

]1/t
= exp

[
l(C|θ)− l(C|θA)

t

]
.

A value cA > 1 indicates that θ is a better explanatory
model for the choice set C than θA and cA < 1 indicates it is
worse. Particularly useful is c0 the per choice likelihood ratio
relative to the null model. Note that for a fixed C, given the
c0 statistic for two models θ and θA then cA can be shown to
be the ratio of the former over the latter.

In summary, the likelihood L(C|θ) gives the absolute like-
lihood of a given model θ producing the choice set C arising
from a set of graphs G0, . . . , Gt. However, the per choice
likelihood ratio produces a result on a more comprehensible
scale.

B. Fitting linear combinations of model components

An inner model θ can be constructed from a linear combi-
nation of other inner models. Let θ1, θ2, . . . be probability
models. A combined model can now be constructed from
component models as follows, θ = β1θ1 +β2θ2 + · · ·+βNθN .
The βi are known as the component weights. The model θ is
a valid model if all β ∈ (0, 1) and

∑
i βi = 1. The weights β

that best explain C can be obtained using a fitting procedure
from statistics known as Generalised Linear Models (GLM).

Let Pj(i) = 1 if i = Nj , and Pj(i) = 0 otherwise.
The problem of finding the best model weights becomes the
problem of fitting the GLM, Pj(i) = β1pj(i|θ1)+β2pj(i|θ2)+
· · · + ε. A GLM procedure can fit the β parameters to find
the combined model θ which best fits the Pj(i). This fit is
obtained by creating a data point for each choice j and for
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each node i giving information about that node at that choice
time and also the value of Pj(i).

GLM fitting in a statistical language such as R3 can be used
to find the choice of βi which maximises the likelihood of this
model. This is equivalent to finding the βi which gives the
maximum likelihood for θ since for model θ, the expectation
E [Pj(i)] = pj(i|θ). The fitting procedure estimates for each
βi, the value, the error and the statistical significance.

Because this procedure requires one line of data for each
node at each choice then it produces a large amount of data
and sampling is necessary. As will be seen in section III-B the
method still recovers parameters accurately.

C. FETA in practice

For simplicity of discussion in previous sections, only
operations which connected a new node to a single node were
considered. Using the framework to connect edges between
existing internal nodes requires a small extension. The number
of potential edges is roughly the square of the number of
nodes. Instead, it makes sense to decompose the choice of
an edge into the choice of a start node and an end node.
Once a start node is picked, the choice set for the end node
can be constrained to ensure the graph remains simple. The
likelihood of adding edge (x, y) is calculated as the likelihood
of choosing node x then node y plus the likelihood of choosing
node y then node x. For the purposes of definition 3 an edge
counts as two choices (since definition 3 is in terms of node
choices).

The outer model could be further generalised by, for ex-
ample, adding the possibility of a “bare” node appearing (a
node with no links) if this event could be observed. Another
extension would be adding node or edge deletion operations.
Separate inner models can be fitted different outer model
operation. For example, in the work on FETA reported in [11]
separate models are fitted to the outer model operations which
connect a single existing node to a new node and the outer
model operation which connects an edge between existing
internal nodes. Likelihoods from the two parts of the inner
model can be directly combined by multiplication.

One concern is scalability. How quickly can the likelihood
be measured as graphs become large. Tests were run on a
2.66GHz quad core Xeon CPU using the same codebase for
two tasks, one to measure the likelihood of a target network
arising from a given model and the second to actually create a
network. The number of links created was varied from 1,000
to 100,000. While both processes increased approximately
as O(n2) where n is the number of links, the likelihood
calculation is much quicker than the network creation process.
For 100,000 links the likelihood calculation took 53 seconds,
the network creation took 2,600 seconds. Compared with
producing a test network and measuring it this approach is
extremely efficient. If the runtime were to become onerous
then sampling could be used as it is in the GLM procedure.
This was not necessary for the results in this paper.

3http://www.r-project.org/

It is worth briefly noting two points about data requirements.
Firstly, FETA does not require data from the entire history of a
network, the graph G0 can be any stage of graph construction.
Secondly, for a sufficiently large graph, knowing the exact
order of link arrival should not be necessary (this may occur
if the graph state is measured periodically rather than recorded
as every node or edge arrives). A graph with a large number of
nodes will not change its topology greatly for a small number
of arrivals and therefore a small reordering of link arrival order
should make little difference to the model likelihood. Future
work will seek to quantify the inaccuracies introduced by this
reordering.

III. TESTING THE FRAMEWORK

The obvious way to test the framework is on simulated data
sets where the underlying inner model is known. Testing mod-
els using the likelihood procedure from II-A is demonstrated
in section III-A. Optimising models using the GLM procedure
in section II-B is done in section III-B. A demonstration on
real data is described in section III-C.

Let di be the degree of node i and ti be the triangle count
(the number of triangles, or 3–cycles, the node is in). The
model components used in the testing are the following: θ0
– the null model (random model) assumes all nodes have
equal probability pi = kn; θd – the degree model (preferential
attachment) assumes node probability pi = kddi; θt – the
triangle model assumes node probability pi = ktti; θS – the
singleton model assumes node probability pi = kS if di = 1
and pi = 0 otherwise; θD – the doubleton model assumes node
probability pi = kD if di = 2 and pi = 0 otherwise; θR(n) –
the “recent” model where pi = kH if a node was one selected
in the last n selections and pi = 0 otherwise and θ

(δ)
p – the

PFP model assumes node probability pi = kpd
1+δ log10(di)
i .

The k• are all normalising constants to ensure
∑
i pi = 1.

A. Testing the likelihood framework

The best way to test the likelihood framework is on
simulated networks with a known underlying inner model.
Test model one has a simple outer model which creates
a new node and then connects it to exactly three distinct
nodes. The inner model θ1 which chooses these nodes is
θ1 = 0.5θp(0.05) + 0.5θt. That is, it is 50% the PFP inner
model with δ = 0.05 and 50% the triangle model. Naturally,
nodes with a high number of triangles also have a high degree
so these model parameters are, to some extent, correlated.

An artificial network was grown with 10,000 edges us-
ing the model described above. Assuming that the model
was known to be of the form βpθp(δ) + βtθt then, since
βp + βt = 1 a sweep of the parameters δ and βt should
give a likelihood surface with a maximum at the correct
values of βt and δ. The values tried were all possible
combinations of βt = (0.1, 0.15, . . . , 0.85, 0.9) and δ =
(0.01, 0.0125, . . . , 0.0875, 0.09). The likelihood surface pro-
duced is shown in Figure 1 with contour lines projected below.
As can be seen, the maximum likelihood is in the correct part
of the region (βt = 0.5, δ = 0.05). In fact the highest c0 was
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with δ = 0.0525 and βt = 0.5, an almost exact recovery of
the correct parameters.
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Fig. 1. A likelihood surface for the model θ1 with a contour plot beneath.

Test model two has an outer model which connects a
new node to either one or two distinct inner nodes (equal
probability of each). The inner model θ2 is given by θ2 =
0.25θ0 +0.25θt+0.25θS +0.25θD. Again 10,000 edges were
generated using this model. A few test models with similar
parameters to θ2 are tested against θ2.

Model c0
θ2 = 0.25θ0 + 0.25θt + 0.25θS + 0.25θD 2.45188

0.2θ0 + 0.3θt + 0.25θS + 0.25θD 2.43070
0.25θ0 + 0.25θt + 0.3θS + 0.2θD 2.43474
0.2θ0 + 0.25θt + 0.3θS + 0.25θD 2.43549

0.24θ0 + 0.25θt + 0.26θS + 0.25θD 2.45135

As can be seen, even the final model which has extremely
close parameters produces a slightly lower c0 value. However,
with three free parameters in the model a state space search
could quite time consuming. If the network were bigger or
more parameters were required in a test (a real network would
not have known model components) a state space search would
be out of the question. For models with many parameters the
c0 parameter could be used as a fitness function for an opti-
misation procedure such as genetic algorithms. Alternatively,
for linear parameters, the GLM fitting from section II-B can
be used and these tests are performed in the next section.

B. Testing the parameter optimisation

The next stage is to test the GLM fitting procedure described
in section II-B on artificial models. This can, in theory, retrieve
parameters from models produced by linear combinations of
model components. In this section, statistical significances
from the GLM procedure are quoted at the 10%, 5%, 1%
or 0.1% levels.

First tests were performed on θ1 = 0.5θp(0.05) + 0.5θt
as described in the previous section. The test network again
had 10,000 edges. Sampling was used to generate just over
4,000,000 items of data for the GLM fit. Fitting θ =
βpθp(0.05) + βtθt gave the following results.

Parameter Estimate Significance
θp(0.05) 0.53± 0.031 0.1%
θt 0.47± 0.031 0.1%

The parameters were recovered almost exactly. However,
this assumed that δ was known precisely. If δ is not known
then the GLM procedure behaves reasonably with incorrect δ.
The table below shows fits of the model with δ = 0.2 and
δ = 0.01 – considerably above and below the correct values.

Parameter Estimate Significance
θp(0.2) 0.12± 0.022 0.1%
θt 0.84± 0.021 0.1%
θp(0.01) 0.43± 0.025 0.1%
θt 0.57± 0.025 0.1%

In both cases the model correctly gave statistical signifi-
cance to the θp component of the model. The actual estimates
were not 0.5 but nor would they be expected to be. The true δ
parameter could be found by trying a range of values within
the GLM procedure just as it was with the likelihood estimator
in Figure 1.

In reality, the true underlying model is not known. Thus
some “misspecified” models (models known to be incorrect)
were tried to see whether incorrect components could be
identified. The model θ = βdθd + βtθt + β0θ0 has the θd,
preferential attachment model and the θ0 null (or random)
model.

Parameter Estimate Significance
βd 0.46± 0.057 0.1%
βt 0.57± 0.031 0.1%
β0 −0.031± 0.032 none

The θ0 component has been rejected having both a low value
and a low statistical significance. The θd model has stayed in,
almost certainly because it has such a strong correspondence
with the θp(δ) model – indeed, for δ = 0 it is the same model.

The GLM fitting procedure does not always produce the
correct answer, in particular, when θd and θp are included in
the same fitting procedure problems can occur. Fitting θ =
θd + θp(0.05) + θt gives the following.

Parameter Estimate Significance
βd 0.28± 0.085 0.1%
βp(0.05) 0.18± 0.11 none
βt 0.54± 0.038 0.1%

Here the GLM procedure gave an incorrect answer. The
θp(δ) model was incorrectly been rejected an given no sta-
tistical significance. This kind of error is common when θd
and θp(δ) are combined in the same model. This model gives
c0 = 5.17 compared with c0 = 5.18 for the correct model –
the likelihood still identifies the correct model even when the
GLM procedure fits an incorrect model.

The GLM procedure was next used to recover parameters
from θ2 = 0.25θ0+0.25θt+0.25θS+0.25θD. The test network
had 10,000 edges as previously. Sampling was used to obtain
just over 3.5 million data points for model fitting.
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Parameter Estimate Significance
β0 0.23± 0.021 0.1%
βt 0.28± 0.017 0.1%
βS 0.24± 0.016 0.1%
βD 0.25± 0.020 0.1%

As can be seen, this recovery of parameters was quite
successful. The parameter βt is actually 0.25 and therefore
slightly outside the error range 0.28 ± 0.017. The next test
was to add a spurious model component θd.

Parameter Estimate Significance
β0 0.33± 0.059 0.1%
βt 0.29± 0.017 0.1%
βS 0.24± 0.016 0.1%
βD 0.23± 0.022 0.1%
βd −0.089± 0.059 5%

The βd parameter was given a negative value (which is
likely to produce an invalid model for the likelihood estimate)
and the relatively low statistical significance also suggests θd
should be removed from the model. Because the GLM model
is simply a fitting procedure it is not constrained to produce
the β parameters in the range (0, 1).

In most circumstances tested, the GLM model performed
extremely well. When the correct model was tested, the
correct results were obtained and spurious model components
were only accepted if they correlated strongly with genuine
model components. The GLM model is a very useful tool for
exploratory data analysis but the likelihood framework remains
the true test of model fit to data.

C. Tests on real data

Tests on five different data sets are reported in [11]. These
data sets were two different views of the internet AS topology,
a co-authorship network and two networks based on connec-
tions in photo sharing networks. Here, for space reasons, only
one network is reported, the Routeviews AS network. This
is a view of the AS topology collected by the University of
Oregon Routeviews project4 (see [11] for details). The data
set gives the growth of the AS topology from 42,000 edges to
over 90,000. Throughout this section, it is important to keep in
mind the aim of this paper, to test the FETA framework. The
models described here are not claimed to be the best known
models for the network in question. The PFP model [7] with
its special outer model gets a closer match to the final network
statistics. The ORBIS model [8] does not model evolution but
is very good at matching statistics on a target network. The
model presented here as “best” is the best model found using
the FETA framework with a simple outer model. The claim
being verified in this section is not that this is the best possible
model of the real network but that models can be assessed and
optimised using the FETA framework without looking at any
target statistics other than likelihood.

Three inner models were compared to the routeviews AS
network. The outer model was simple – the choice of operation

4http://www.routeviews.org

(add new node, add link to new node or add inner edge) was
exactly that sequence observed in the real data. The inner
model θ0 was used as a base for comparison. The other two
models were a “pure” PFP model (but without the PFP special
outer model) θp(0.005) and the “best” model found which
was 0.81θp(0.014) + 0.17θR(1) (PFP + “recent”) to connect
new nodes and 0.71θd + 0.22θR(1) + 0.07θS (preferential
attachment + “recent” + singleton) to connect edges between
existing nodes. The PFP model θp(0.005) had c0 = 4.81 and
the “best” model had c0 = 8.06. From these results PFP and
“best” should be a significant improvement on random and
“best” should be better than PFP. These modelling results
should not be taken as a criticism of PFP as described in
[7] since the special “interactive growth” outer model of that
paper was not used (the focus of this paper is comparing inner
models and using different outer models would invalidate this).

Each model grew a test network from the seed network of
42,000 edges. The first point in each plot is after edge 40,000
and hence shows all models to perform the same (since the
network is still the seed network at this point). Figures 2 and
3 show the evolution of various graph statistics for the real
network compared with the three models. The leftmost point
for each is within the seed graph and hence should always be
the same. The statistics are d1 and d2 the proportion of nodes
of degree one and two, max d the degree of the highest node,
d2 (the mean square node degree), the assortativity coefficient
r and the clustering coefficient γ. See [2] for full descriptions
of these statistics. (Note that d is fixed by the outer model and
is an exact match to the real topology).

As mentioned at the start of this section, the claim is not
that these models are a perfect fit to the evolution of the target
network but, instead, that the order in which they fit the target
network is that given by the likelihood estimator: the “best”
model better than the pure PFP and both are much better than
random. The models and the c0 measures which predicted this
were produced before any artificial topologies were generated
and without reference to the graph statistics plotted in the
figures. This is a convincing demonstration that the likelihood
measure translates directly into fit to real data over a number
of statistical measures.

For almost all statistics in all graphs the ordering seems
correct with “best” being closest to real followed by PFP then
random. An exception is in the graphs for γ and r where PFP
is slightly closer than “best”. Arguably in d1 and max d the
PFP model is approximately the same as random when we
would expect it to be better. However, in the case of max d
random is predicting very slow growth which is unrealistic.
For some statistics, none of the models given are very close
(for reproducing the statistics of a graph snapshot it seems
likely that ORBIS for example will be better). However, the
framework has clearly shown its ability to assess which model
best fits a target graph and this is clearly reflected in these
statistics.
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Fig. 2. The evolution of the d1 (left), d2 (center) and max d parameters.
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IV. CONCLUSIONS

The Framework for Evolving Topology Analysis (FETA) is
a useful toolset for investigating growth models of networks
where evolution information is available. Network growth
models were described in terms of an outer model (which
selected the operation to perform on the graph) and an
inner model (which selected the entity for the operation).
A likelihood statistic was given for an inner model giving
rise to a target network. The likelihood statistic given is a
rigorous and quick to calculate. It has been shown to recover
the statistics of a known model from a network grown using
that model. A method was given for exploring and optimising
linear combinations of model components and this was tested
successfully. The fitting procedure can give insight into what
model components are required to best fit the data. Models
output by the fitting procedure can then be assessed precisely
using the likelihood measure.

FETA has been tested on real data from five real networks,
one of which was presented in this paper. The likelihood
measure was found to be a good predictor of how well a
network grown from a given model would match the statistics
of the real data. The models presented here were not perfect
at capturing the evolution of the AS graph. Different inner
model components or a more sophisticated outer model would
be needed to improve this.

Much more can be achieved with the statistical analysis
of network growth. A similar likelihood approach could be
applied to the outer model. Inner models which themselves
change in time would be another improvement. Models con-
structed multiplicatively from components (θβ1

1 θβ2
2 · · · ) would

seem more natural than linear additive models but normali-
sation problems exist. Network models could be considered
which remove nodes or edges as well as add them and which
do not necessarily remain connected. Finding new data sets to
apply the method to is also a priority. Other researchers are
encouraged to download and try the software and data5.
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