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Abstract—Comparing graphs to determine the level of under- differences between graphgwo graphs with the same mea-
lying structural similarity between them is a widely encountered gyres may not in fact be the same.
problem in computer science. It is particularly relevant to the In this paper we present a new metric, theighted spectral

study of Internet topologies, such as the generation of synthiet . . = . )
topologies to represent the Internet's AS topology. We derive a distribution (WSD), which compares graphs based on the

new metric that enables exactly such a structural comparison, distribution of a decomposition of their structure. Spesailly,
the weighted spectral distribution. We then apply this metric to the WSD is based on the spectrum of the normalised Laplacian
three aspects of the study of the Internet's AS topology.if we  matrix and is thus strongly associated with the distributd
use it to quantify the effect of changing the mixing properties of - aqom walk cyclein a network (as will be shown in Section
a simple synthetic network generator. {i) we use this quantitative . Th bability of doml IKi t f d
understanding to examine the evolution of the Internet's AS ). The probability of ran omywe} mg\fseps rom anQ .e
topology over approximately 7 years, finding that the distinction Such that we return to that node, indicates the connectofity
between the Internet core and periphery has blurred over time. that node. Hence, a low probability indicates high connégyti
(iii) we use the metric to derive optimal parameterizations of (there are many routes, few of which return) while a high
several widely used AS topology generators with respect t0 a  opapility indicates high clustering (many of the routead
large-scale measurement of the real AS topology. back to the original node)
Index Terms—Internet topology, Topology generation, Spectral  The WSD is computationally inexpensive and so can be
graph theory, Graph metrics applied to very large graphs (more than 30,000 nodes and
200,000 edges). Also, it expresses the graph structure as a
. INTRODUCTION simply plotted curve which can be related to specific prapgrt
F&AS graphs: hierarchy and local connectivity. Given thneg t

Graph comparison is a problem that occurs in ma ; o . .
SD is a metric in the mathematical sense, as we show in

branches of computing, from vision to speech processing : o o
systems. Many techniques exist for graph comparison, taa., Sec':t|on. [ll, several applications become possible: patame

edit distance [1] (the number of link and node additiongStimation for' topology generators W't,h respect to a target
required to turn one graph into another), or counting tHAtaset (Section V-C), direct comparison among topology

number of common substructures in two graphs [2]. Howev&€nerators using these optimal parameters (Table If), and

for large graphs such as the AS topologies examined hegélantification of change in the underlying structure of the

these methods are computationally too expensive. In Mditi!nt'ernet as it evolves over time (Section V-B). This metri.c
they are inappropriate for dynamic graphs, resulting iryivey is aIso.a useful tool to evaluate the graphs that describe
edit distances or substructure counts. Instead, we re(z[auir@mthet'C workloads generated from trace data. In su_c_hscase
metric which reflects thestructure of large graphs in some € generated graphs shoutdt exactly match the original
meaningful sense. Typical currently used “metrics” inaugtrace data, but should share some common structure with them
the clustering coefficient, the assortativity coefficiehe node

Such situations are encountered in workload generation and
degree distribution and the-core decomposition. However, Ntémnet topology generation. o
these are not metrics in the mathematical sense, but rathel this paper we focus on applications of the WSD to

are measures, e.g., two graphs may have the same clustelilfgStudy of the Internet's AS topology. An AS represents

coefficient but hugely different structures. This distiontis & Single network which can apply its own operational and
important asa measure cannot be used to determine uniq@§€ring policy. An Internet Service Provider (ISP) may use 1
or more ASes. The Internet contains over 28,000 ASes, each
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Links between ASes depend on business relationships whitde rest of the spectrum is considered unimportant, even
can and do change, sometimes rapidly, making any interptkeugh other works have shown that the eigenvalues of the
tation of the Internet as static structure inaccurate. This richadjacency matrix or the normalized Laplacian matrix can be
and dynamic structure makes it difficult for researchers tsed to accurately represent a topology [8], and some specifi
provide either a single, representative topological model eigenvalues provide a measure of properties such as r@ssstn
a single graph metric that captures all characteristicsngf aof a network to failures [9].
topology. However, such a metric would make it possible to Vukadinovic et al. [10] were the first to investigate the
generate realistic synthetic topologies improving theusamcy properties of the AS topology based on the normalized
of Internet-wide protocol simulations, and perhaps emgpli Laplacian spectrum. They observe that the normalized Lapla
the prediction of the future evolution of the Internet'satqmgy. cian spectrum can be used to distinguish between synthetic

Many attempts to capture one or more characteristics haepologies generated by Inet [11] and AS topologies exct
been made, resulting in several topology generators whithm BGP data. These results indicates that the normalized
each synthesize Internet-like topologies using differeatlels Laplacian spectrum reveals important structural propertif
and parameters. Unfortunately, validating these mode#mnis the AS topology. However, as noted by Haddatal. [6], the
ad hoc affair that typically means matching several of thepectrumalonecannot be used directly to compare graphs as it
measures given above and hoping that this will also enswentains too detailed information about the network stmect
a matching structure. Users often select default paraséder We expand on this work by demonstrating how appropriate
these models based on specific datasets measured at partioukighting of the eigenvalues can reveal the structural dif-
times, and which no longer represent today’s Internet. Hovierences between two topologies. Perhaps the closestcmetri
ever, as noted previously, these measures cannot be usetbtthe WSD is the fast graph kernel method proposed by
estimate the optimum parameters for a model given a targéshwanathast al.[12]. Graph kernels are similar to the WSD

topology. in that they count random walks in networks but differ in the
This paper makes the following contributions: means by which they do so.
(i) a spectral metric and a strawman model for comparingShyu et al. [13] study the evolution of a set of topolog-
the structure of large graphs; ical metrics computed on a set of observed AS topologies.

(i) the analysis of more than 7 years of the evolution of thEhe authors rely on monthly snapshots extracted from BGP
Internet AS topology seen from two different measurd3outeViews from 1999 to 2006. The topological metrics
ment techniques; they study are the average degree, average path length, node

(i) a comparison among the outputs of five major Internégree, expansion, resilience, distortion, link valued &me
topology generators and a measured dataset; and Normalized Laplacian Spectrum. They find that the metrics

(iv) optimal parameter estimation of said topology generatofée not stable over time, except for the Normalized Laptacia

with respect to the measured dataset using our metricSPectrum.

We proceed in Section Il by reviewing related work on Latapy and Magnien [1.4] address the question of studying
graph matching, spectral analysis of networks and InterrFQF relatlon_between the size ofameasurement sampl_e and the
analysis. In Section Il we present the necessary theateti orresponding topological properties. Based on AS topeing
background, introducing the concepts on which we base ilt from IP-level measurements from Skitter for a period
metric, before deriving the metric itself. In Section V Wé‘Lom Januar)é 2005 to 'C\j/lag 2?06’ they obs;rye an anrealse n
demonstrate use of the weighted spectral distribution rieeth Ej;t:sveetr?sgﬁsezgree and the clustering coefficient when erlarg

distinct applications: comparing the structure of largapis, .
Pb paring gapgrs Wang and Loguinov [15] propose the Wealth-Based Internet

guantifying the evolution of the AS topology over 7 yearsj a . ) .
comparing and estimating optimal parameters for 5 Widgypolog_y (WIT) model. Interestm_gly, central .to their moagel_
the notion that each AS picks its connections to maximise

used topology generators. We conclude in Section V1. local random walks. This characteristic of the structur¢hef
AS topology is particularly targeted by the WSD. However,
as this model is not publicly available it is not included o
In this section we outline related work, classifying it intacomparisons (Section V).
three groups: spectral graph analysis and the closelyerklat Wool and Sagie [16] propose several clustering algorithms
WSD, evolution of the AS topology, and analysis of théo explore the AS topology using just a snapshot of the Skitte
clustering features of the AS topology. data. They focus on identification of the dominant clusters,
The graph spectrum has been used for a variety of purposdthough their result is sensitive to parameters such as the
in addition to characterization of Internet topologiegliing minimum cluster size. Our technique, the WSD, differs in that
space comparison [3], graph matching [4], cluster identifit focuses on random cycles instead of clusters and does not
cation [5] and topology generator tuning [6]. Gkantsiéis require any parameter estimation. In addition, we usekthe
al. [7] perform a comparison of clustering coefficients usingore decomposition to analyse the core of the Internet AS
the eigenvectors of the largest eigenvalues of the adjacencyopology.
matrices of AS topologiesk is chosen to retain the strongest Li et al. [17] perform a similar study to the one pre-
eigenvectors discarding most of the others. Those retaned sented here. In their work they use several different cturgje
then shown to represent finer elements of the Internet sieict methods to identify the distribution of clustering featire

Il. RELATED WORK
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throughout a network. Interestingly, their clustering rieet A 1,...,A;_1' are approximately equal to one and are likely
gives similar results for the Skitter and UCLA datasets,l@/hito represent links in a graph which do not belong to any
WSD shows differing results reflecting directly the diffegin particular cluster. It is then usual to reduce the dimeraion
sampling characteristics of these two measurement tegégsiq of the data using an approximation based on the spectral
The WSD also allows us to obtain a “best fit" prior todecomposition. However, in this paper we are interested in
comparing topology generators with the observed datasetsrepresenting the global structure of a graph (e.g., we are
interested in the presence or absence of many small clysters
I1l. THEORETICAL BACKGROUND which is essentially the spread of clustering across thphgra
This information is contained in all the eigenvalues of the
pectral decomposition.
Let z = (xo,...,2,-1) be a vector. From (3) we see that

We now derive our metric, theveighted spectral distri-
bution, relating it to another common structural metric, th&
clustering coefficient, before showing how it characterise
networks with different mixing properties. T _ _ 2

Denote an undirected graph & = (V, E) whereV is ke Z (u/ Vo = 20/ V) ©)
the set of vertices (nodes) ard is the set of edges (links).
The adjacency matrix off, A(G), has an entry of one if two

uwveE
Now, the eigenvalues cannot be large because from (5) we

nodes,u andwv, are connected and zero otherwise obtain
T / / 2
AG)(u,0) {1, if u,v are connected ) wla™ < ZE(%/ dy = 20/V/d)
u,v . uve
0, if u,v are not connected
oY + (@u/Vdu + 20/ dy)?

Let d, be the degree of node and D = diag(sum(A)) —9 2 _ 9T 6
be the diagonal matrix having the degrees along its diago- zu:x“ o ©)

nal. Denoting byl the identity matrix(I);; = 1if i = " .

4,0 otherwise, the Normalised Laplaciah associated with @nd SOAi = e;Le; < 2. What is more, the mean of the
graphG is constructed fromd by normalising the entries of eigenvalues is 1 because

A by the node degrees of as Z A = tr(L) = n @)

L(G)=1—-D"Y2AD~1/? 2)
by (3), wheretr(L) is thetrace of L.

or equivalentl X . o
q y To summarize: the eigenvalues bflie in the range 0 to 2

1, if u=wvandd, #0 (the smallest being 0), i.e(, = Ag < ... < A,_1 < 2, and
1 . . their mean is 1.
L(G)(u,v) = § = dyd,’ if u andv are adjacent (3) The distribution of then numbers)g, ..., \,_1 contains
0, otherwise useful information about the network, as will be seen. Imtur

) _ . ) information about this distribution is given by its momeirts
As L is a real symmetric matrix there is an orthonorma},, «iatistical sense. where théP moment is1/nS (1 —
) . ; T , _ tisl A=
basis of real eigenvectoks, ...,e,—1 (i.e., e;ej = 0,i # j X\;)N. These moments have a direct physical interpretation in

J
T __ H i i ... .
ande;e; = 1) with associated eigenvalues, ..., An—1. It tarms of the network, as follows. Writingg for the matrix

is convenient to label these so thag < ... < \,_1. The D-1/2AD-1/2, so thatL = I — B, then by (3) the entries of
set of pairs (eigenvectors and eigenvalued.pis called the p 4.0 given b;/ '
spectrum of the graph. It can be seen that A

—1/2 -1/2y, . _ ,J

. Now the numberd — \; are the eigenvalues a8 = I — L,

The eigenvalues\y,...,\,_1 represent the strength of N o N " o
o . . ) nd soy_,(1—X;)" is justtr(B™). Writing b, ; for the (4, j)-

projection of the matrix onto the basis elements. This may be v g N

. - : . T entry of B, the (i, j)-th entry of B is the sum of all

viewed from a statistical point of view [18] where eakfe;¢; . . ) .

may be used to approximat&(G) with approximation error PrOAUCtSbio i biv.is - - Diy 11y WhEreip =i andiy = j. But
Y P PP b; j, as given by (8), is zero unless nodesndj are adjacent.

inversely propornonal - /\i..However, f°;"’? graph, thoseSo we define anV-cycle in G to be a sequence of vertices
nodes which are best approximated by;e; in fact form . . .
ug ...uny With u; adjacent tou;; fori =1,...,N — 1

a cluster of nodes. This is the basis for spectral clustering : . .
a technigue which uses the eigenvectors Iofto perform f%d W'.th UN gdjacent tou.- (Thus, for example, a triangle
n G with vertices sef{a, b, c} gives rise to six 3-cyclesbe,

clustering of a dataset or graph [19]. The first (smalles()cb bea, bac, cab and cba. Note that, in general, ai-cycle
non-zero eigenvalue and associated eigenvector are mami{éht h:clve r'epeated ver:[ices) We 'now have '

with the main clusters of data. Subsequent eigenvalues an
eigenvectors can be associated with cluster splitting dsal a Z(l )N = (BN = Z 1 9)
identification of smaller clusters [5]. Typically, thereigts =

what is called aspectral gapin which for somek and j,

A € A1 & 1 &= Aj_1 < Aj. That is, eigenvalues lie., the eigenvalues at the centre of the spectrum.

oy -y

i
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the sum being over allV-cycles C = wujus...uy in G. particular triangle gives rise to six 3-cycles and contiéisu
Therefore, >°.(1 — X;)" counts the number ofV-cycles, 6
normalised by the degree of each node in the cycle. ddd

The number of N-cycles is related to various graph prop- oot ] o .
erties. The number of 2-cycles is just (twice) the number &1 it can be seen that the clustering coefficient normalises
edges and the number of 3-cycles is (six times) the numikdch trlangle accord_lng to the total number of p_055|ble tri-
of triangles. Hencey, (1 — A\)? is related to the clustering @ngles while the weighted spectrum (wifi = 3) instead
coefficient, as discussed below. An important graph prgpefiormalises using a product of the degrees. Thus, the two
is the number of 4-cycles. A graph which has the minimuff€trics can be considered to be S.Iml|al’ bu't not eqqal. Indeed
number of 4-cycles, for a graph of its density, is quasit shou!d pe noted 'Fhat the cluster.lng coefficient is in faot n
random, i.e., it shares many of the properties of randomigrap@ Metric in the strict sense. While two networks can have
including, typically, high connectivity, low diameter, \iag the same clustering coefficient they may differ ;lgq|f|o¢1ml
edges distributed uniformly through the graph, and so ofiructure. In contrast, the elements )f; (1 — A)® will only
This statement is made precise in [20] and [21]. For regul@@ree if two networks are isomorphic.
graphs, (9) shows that the suf, (1 — \)* is directly to the We now formally define theweighted spectrumas the
number of 4-cycles. In general, the sum counts the 4-cycle@rmalised sum ofV-cycles as
with weights: for the relationship between the sum and the _ N
quasi-randomness of the graph in the non-regular casehsee t WG N) = Z(l — ) (13)
more detailed discussion in [22, Chapter 5]. The right hand ) )
side of (9) can also be seen in terms of random walks. AOWever, Ca|CU|atlhg the elgenvalues of a I_a_rge (even spars
random walk starting at a vertex with degrég will choose matnx is computationally expensive. In addition, the a|meh_
an edge with probability /d, and at the next vertex, say IS t_o represent thglqbal structure of a graph and SO precise
choose an edge with probability/d, and so on. Thus the estimates of;ll the elgenvalue va_lues are not requw.ed. Thus,
probability of starting and ending randomly at a vertex mftdhe distributiod of eigenvalues is sufficient. In this paper
N steps is the sum of the probabilities of ail-cycles that the distribution of eigenvalueg(A = k) is estimated using
start and end at that vertex. In other words exactly the righivoting and Sylvester's Law of Inertia to compute the numbe

hand side of (9). As pointed out in [15], random walks are & €igenvalues that fall in a given interval. To estimate the
integral part of the Internet AS structure. distribution we useX equally spaced bins A measure of the

aph can then be constructed by considering the distoibuti
r% the eigenvalues as

12)

i

The left hand side of Equation (9) provides an interesti
insight into graph structure. The right hand side is the su
of normalised N-cycles y\{hereas the IefF hand.side involves w(G, N) = Z(l BN =k) (14)
the spectral decomposition. We note in particular that the
spectral gap is diminished because eigenvalues close to one )
are given a very low weighting compared to eigenvalues f4fhere the elements ab(G, V) form the weighted spectral
from one. This is important as the eigenvalues in the spectf4stribution
gap typically .represent links in the network that do not heglo WSD : G — %‘K|{k EK:((1-kNfA=k)} (15)
to any specific cluster and are not therefore important drts
the larger structure of the network. In addition, a metric can then be constructed frogdr) for

Next, we consider the well-known clustering coefficienicomparing two graphs/; andG», as
It should be noted that there is little connection between N 5
the clustering coefficient, and cluster identification,ereéd 3(G1, G2, N) = Z (L =F)" (A= k) = o (A =)

to above. The clustering coefficient((), is defined as the hek (16)

average ngmber of triangles divided by the total number Where f, and f, are the eigenvalue distributions 6f;, and
possible triangles G- and the distribution of eigenvalues is estimated in the set
T K of bins € [0, 2]. Equation (16) satisfies all the properties of
v(G) = 1/nz m,di >2 (10) a metric (see Appendix A).
it We next wish to test if the WSD for graphs generated
) ] . by the same underlying process vary significantly (to show
whereT; is the number of triangles for nodeandd; is the  {hat the WSD is stable). To do this, we generate a set of
degree of node. Now consider a specific triangle betweenyaphs that have very similar structure and test to see if
nodesa, b ande. For the clustering coefficient, noting that thepejr WSDs are also similar. The results of an empirical test
triangle WI|| k_)e considered threg times, once from each nodge shown in Figure 1. This plot was created by generating
the contribution to the average is 50 topologies using the AB [23] generator with the (fixed)
1 1 1 optimum parameters determined in Section V-C, but with
dq (da - 1)/2 - db(db - 1)/2 " dC(dc - 1)/2 2The eigenvalues of a given graph are deterministic ardistdbution here
is not meant in a statistical sense.

However, for the weighted spectrum (with = 3), this 3K can be increased depending on the granularity required.

keK

11)
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Fig. 1. Mean and standard deviations for WSD and (unweightpditrum Fig. 3. Eigenvectors of the simple example network.
for the AB model over 50 simulations.

TABLE |
EIGENVALUES, WSD AND DOMINANT NODES OF EXAMPLE NETWORK
; _ _ y\3 | Dominant
er Eigenvector A 1-X | (1=2X) nodes
0.2500 1 1.8615 | -0.8615| -0.6394 | 3,1,2,6
0.2500 2 1.3942 | -0.3942 | -0.0612 74,5
0.5590 3 1.3333 | -0.3333 | -0.0370 4,5
0.4330 4 1.0000 | 0.0000 | 0.0000 6,2
0.4330 5 1.0000 | 0.0000 | 0.0000 1,2,6
0.2500 6 0.4110 | 0.5890 | 0.2043 7,3
0.3536 7 0.0000 | 1.0000 | 1.0000 | 3,457
ST (=A)3 0.4667
nodes and 8 links. As can be seen there are 2 cycles of length
3 in this network and one of length 4. We will také = 3 in

this example for convenience and without loss of generality
The random walk probabilities are labeled in Figure 2. For
Fig. 2. A simple example networ& . example, node 3 has a degree of 5 resulting in a probability
of 1/5" for each edge. The total probability of taking a random
walk around each 3-cycle i§:x 1/2x 1/3x1/3 = 0.33, also
different initial conditions®. For each run the spectral andshown®
weighted spectral distributions are recorded yieldiigx 50 Figure 3 shows a 3-D plot of the absolute value (for
bin values which are then used to estimate standard davsaticclarity) of the eigenvectors of the normalized LaplaciaheT
As the underlying model (i.e. the AB generator) is the same foorresponding eigenvalues are shown in Table I.
each run, thestructuremight be expected to remain the same As is well known, the eigenvectors of the normalised
and so a “structural metric” should be insensitive to randotraplacian perform a partitioning of the nodes in a graph.
initial conditions. As can be seen the standard deviatadithe In this example nodes 4 and 5 are grouped into eigenvector
(unweighted) spectrumgy, (A), is significantly higher at the 3, nodes 1,2 and 6 into eigenvectors 4 and 5, node 7 into
centre of the spectrum. However, for the WSD, the standagijenvector 2 and node 3 into eigenvector 1 (Figure 3). Note
deviation,o 54, peaks at the same point as the WSD; the noisieat for each partition the nodes in the partition are theesam
in the spectral gap has been suppressed. The evidence sa@msve could swap the labels between nodes 4 and 5 and the
to show that the WSD is therefore stable. network would not change (i.e. an isomorphism). Eigenwecto
and eigenvalue %; and A7 = 0, are special and partitions all
the nodes in the network with the most central nodes having
) _ ) ) ~__ the highest coefficients (see Table I, column 1). In genél t
After the fairly theoretical previous section, we aim ati@% nymber of eigenvalues that are zero is equal to the number of

the reader a better intuition behind the WSD with a simplgsmponents, arguably the most important structural ptgper
example. Figure 2 shows a small network, caliéd with 7

IV. EXAMPLES

o 5The six comes from the fact that the random walk can start inobleree
4We found similar results for other parameters and topologyegears. nodes and go in one of two directions. It can be viewed in ose s really
SMultiplied by a factor of ten for clarity. just a nuisance scaling factor.
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Fig. 4. WSD of the example network. Fig. 5. The second example networks.

in a graph. This graph contains 1 connected component and V. APPLICATIONS

so has a single zero eigenvaluk;). Note that the highest | this section, we use the WSD to better understand the
possible weighting in the WSD is given at zero (i.e. 1 = 1-Okixing properties of networks, the Internet's AS topology

the number of components in the graph. evolution, and the behavior of topology generators witipees
Note that the sum of the eigenvalues taken to the powgy observed Internet AS topologies.

of N is indeed the same as the sum of the probabilities of
taking N random walk cycles in the graph. This is shown . ,
in Table 1, last row,>""_, (1 — A;)? = 0.4667 which can be - Mixing properties of networks
easily verified by adding the cycle probabilities from Fig® The synthetic topology generator introduced in this sectio
(0.3333 + 0.1333 = 0.467). What is interesting is how this is a strawman (demonstration) tool that can be adjusted to
sum is constructed. In Table | the main contributions to trehow the effect of different parts of a topology on the resglt
sum are from eigenvalues 1,2,3 and 6 (we ignore eigenval#SD. It generates a set of topologies using a simple model
7 as it merely reflects that the graph is connected) which drased on the existence of a network core and a periphery.
dominated by the nodes which form the cycles; 3, 4, 5 and 7.Figure 6 shows a small topology of 500 nodes. Minodes
However, this does not mean that the information providetithin the graph are first assigned locations using a uniform
by the WSD is confined taV-cycles in the graph. For exampledistribution. Nodes within a circle of diametdp are then
in Figure 5 we take the edge linking nodes 1 and 3 and rewidefined as thecore and nodes outside a circle of diameter
it so that 1 and 6 are now connected. Note that while the rightx (1 —m) as the periphery, whene. < 1 is a factor called
cycle is still in place its probabilities have now changesl, dhe mixing factor. Connections are then assigned betwezn th
the degree of node 3 is now 4. The corresponding eigenval@@se nodes using a Waxman model:
have also changed as seen in Figuré 4.
In conclusion, the WSD can roughly be seen as an amal-

gamation oflocal views (i.e. walks of IengtHV) taken from \where P denotes the probability that node is connected

all the nodes. A1 — \;) < 1 Vi, (1 — \;)™ will suppress to node v, apre and Buo.. are the Waxman coefficients
the smaller eigenvalues more and more Msincreases?. for the core, andd is the distance between two nodes
We consider 3 and 4 to be suitable values /6f for the and . Subsequently, connections are also assigned in the
current applicationN. = 3 is related to the well-known and periphery using a Waxman model with different coefficients,
understood clustering coefficient; amd = 4 as a 4-cycle ¢, andg,.,. After this process, isolated nodes are connected
represents two routes (i.e., minimal redundancy) betwaen tto their nearest neighbé?. Figure 7 shows the WSD (using

nodes. For other applications, other valuesNofmay be of N — 4) for a topology generated with/ = 2000 nodes,
interest. Also note that in section Il we propose using the — (.25, aupre = 0.08, Beore = 0.08, Qper = 0.06,

distribution of the eigenvalues for large networks; unfortunatl)g e = 0.7, andm = 0.95 (i.e., 5% mixing), resultmg in
it is not instructive to talk about a distribution for a smalb small (relatively) meshed core with a less well connected
number of eigenvalues (7 in this example). periphery. There are several things to note from this figure.

—dBcore

P(u— v) = Qeore€xXp~ D a7

"Note that if we had used the adjacency matrix instead of thealised 9Note that nodes lying betweeR and D x (1 — m) are members of the
Laplacian the re-wiring would have no effect on the sum ofeéigenvalues. coreand the periphery and can be assigned connections by both gexes
8This is closely related to the settling times in Markov chaivisich are 10Note that there are likely to be some disconnected componertisei
often expressed in terms of the largest non-trivial eigerezdt differs in that resulting graphs giving asymmetrical spectra, but this do¢sffect the main

the Walk Laplacian and not the normalised Laplacian is used. results.
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Fig. 6. Synthetic topology examplé/{ = 2000). Fig. 7. Synthetic topology spectra.

Ignoring the asymmetric part of the curve, which is due tc 0.01

a small number of disconnected components, the peak of t o009 , T ;Z" E:z::g ,
. . . 0
weighted spectrum of the periphery alone lieshat= 0.7 0.008 n L\ #11 20% mixing N
while that for the core lies dt.5. The spectrum for the overall O —e—40% mixing | |
0.007

network hastwo peaksat these points. This is a direct result
of the fact that the spectrum of a graph is the union of th 5= 0006
spectra of its disconnected subgraphs [22]. In terms of tF ’I'x 0.005}
WSD, the union of spectra is equivalent to a weighted avera¢ <.
of the WSD. That is, for a graplty + H composed of two
disconnected subgraplis and H:

w(G,N) w(H,N)
o ) (18)

where|.| denotes graph volume (number of vertices). Althoug!
there is 5% mixing between the core and periphefys +

H,N) results in a close estimate of the network WSD (s
Figure 7, denoted||E(1 — X;)*||). As m — 0 (i.e., the core
and periphery become less and less connected) this estimate

becomes more accurate and is exaciat 0. (i.e. the mix). These edges cause the eigenvalu€s-off to

Figure 8 shows the effect of increasing the mix between “%Eread by by at most places. Thus the core peak becomes

periphery and the coré. As can be seen, the core becomeggs gistinct. This reflects that the core is less distinct.
less distinct in the resulting spectrum, and has pracicall

disappeared with 40% mixing. By increasing the mix we are )

effectively adding edges connecting the core and periphey Evolution of the Internet

which results in a spreading of the eigenvalues and thus dn this section two data sets measuring the Internet's AS

spreading of the WSD, giving less distinct peaks. This restitipology over several years are compared using the WSD and

is a consequence of the following theorem from [24]: standard measures. The first dataset we study consists of 7

Theorem 5.1:Let G be a weighted graph and a subgraph years of traceroute measurements starting in January 2@01 a

on the vertices ofG with ¢ non-isolated vertices. If{\; < ending in December 2007, collected by the CAIDA Skitter

Aee. < Ap—1Fand{6y < 0;... < 0,,_1} are the eigenvalues of project [25]. Traceroutes are initiated from several lmret

L(G) and L(G + H) respectively, then fok = 0,1,...,n—1 in the world toward a large range of destination IP addresses

we have: The IP addresses reported in the traceroutes are mapped to

T AS numbers using RouteViews BGP data. We use a monthly
Aegi—1 <Ok < {/\kt“’ H'is b|part|te (19) union of the set of all unambiguous links collected on a daily

Akt otherwise basis by the Skitter projet

In the current contextt is the subgraph containing the nodes The second dataset consists of 52 snapshots, one per month,

connecting the core and periphery withconnecting edges from January 2004 to April 2008. This dataset, referred to as

0.004

0.003

0.002 -

0.001 -

w(G+ H,N) = |G+H<

> e

q:elg. 8. Effect of a change im on the spectrum of the overall network.

11Again the large peaks before 0.2 represent isolated subgrapd are 12A link may be ambiguous for a variety of reasons, principallye do
ignored. problems resolving an IP address to its AS number; we ignork koks.
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the UCLA dataset, is available at the Internet topologyemll to the way Skitter probes the Internet around month 40: the
tion'* maintained by Oliveirat al.[26]. These topologies are metrics take an unusual value, very small for the clustering
built and updated daily using data sources such as BGP goutand very high for assortativity. The values of the clusgrin
tables and updates from RouteViews, RIBEAbilene!®> and and the assortativity coefficients fluctuate randomly over t
LookingGlass servers. 7 years, as if the sampling of the AS topology by Skitter is
Figure 9 shows the values of several graph measures for tizg stable. Neither the clustering nor the assortativignséo
Skitter and UCLA datasets. As can be seen there is an overtigerease or increase over thie/ears. The value of (G, 3)
between 2004 and 2007. shows a long-term increasing trend, similar to the decngasi
The number of ASes seen by Skitter exhibits abrupt changesnd in the average node degree. Although related to the
during the first40 months. At the end of thosé0 months, clusteringw(G, 3) gives different weights to different parts of
changes were made in the way probing was perfortfidthe the topology. The subset of the topology that corresponds to
large increases in the number of ASes, observed during #ie fatuplicated topological structures (e.g., the peripheegeives
40 months, are due to new monitors being added to the systearsmaller weight than the rest. The increasindr, 3) is likely
After each increase in the number of ASes a smooth decreés®e caused by the shrinking network sampled by Skittet, tha
follows, corresponding to a subset of the IP addresses of tentains more 3-cycles on average.
Skitter list that no longer respond to probes, e.g., becauseThe UCLA AS topologies display a completely different
a firewall starts blocking the probes. The variations in thevolution to the Skitter dataset, more consistent with etge
number of ASes seen by Skitter are probably not caused tiyn. As the three upper graphs of Figure 9 show, the number
changes in the AS topology itself, but rather by artifacts aff ASes, AS edges, and the average node degree are all
the probing, e.g. firewalls that block probes or non-respuand increasing, as expected in a growing Internet.
hosts. The increasing assortativity coefficient indicates thaeé&S
The number of AS edges and the average node degmeereasingly peer with ASes of similar degree. The prefeéaén
both follow the behavior of the number of ASes seen. Wattachment model seem to be less dominant over time. This
only observe a large increase in the number of links duririgend towards a less disassortative network is consistéht w
the first few months, during which new monitors are addedore ASes bypassing the tier-1 providers through public
resulting in new regions of the Internet being covered HYPs [31], hence connecting with nodes of similar degree.
Skitter measurements. As the list of destinations used Byother possible explanation for the increasing assoityati
Skitter does not cover the global set of ASes well [27], ard ths an improvement in the visibility of non-core edges in BGP
same list is shared by all monitors, a new monitor will tyflica data. Contrary to Skitterp (G, 3) for UCLA decreases over
discover new ASes close to its location. However, most of tiiene. As a weighted clustering metrig,(G, 3) indicates that
AS edges close to the destination IP addresses have probdbéy transit part of the AS topology is actually becoming
already been discovered by existing monitors [28]. sparser over time compared to the periphery. Increasirgj loc
The AS edges that Skitter no longer observes probalggering with small ASes in order to reduce the traffic sent
still exist but can no longer be seen by Skitter due to ite providers decreases both the hierarchy induced by strict
shrinking probing scope. To be effective in observing toggl customer-provider relationships, and in turn decreases th
dynamics, traceroute data collection must update deitimatnumber of 3-cycles on whicly(G, 3) is based.
lists constantly to give optimal AS coverage. This limibatiof To further investigate this result, we now introduce sup-
Skitter is visible in the decreasing average node degree. YWerting evidence using-cores. Ak-core is defined as the
would normally expect to see a net increase in the averag@ximum connected subgraph, of a graph,G, with the
node degree as ASes tend to add rather than remove peeripggperty thatd, > k Vv € H'. As pointed out by Alvarez-
and the results of the BGP data support this view. If thdamelin et al. [32], the k-core exposes the structure of a
coverage of the Skitter measurements was not worsening, graph by pruning nodes with successively higher degrees
should see an increasing node degree. and examining the maximum remaining subgraph. Note that
The lower three graphs of Figure 9 present the evolutidhis is not the same as simply pruning all nodes with degree
of the clustering coefficient, the assortativity coeffi¢ifhand & or less. Figure 10 shows the proportion of nodes in each
the weighted spectrum withi' = 3, w(G, 3) (related to the k-core as a function of for the Skitter topologies. There are
topology’s clustering®. We observe that changes were mad@4 plots shown over the 7 years, but as can be seen there is
e little difference between each of them, demonstrating thet
l4http-”'”-CS'“_C'a-ed“’tOPO'Ogy’ proportion of nodes in each core is not changing over time.
15httpf”WV-VW'”p?'nEUdb/'”'html This is not surprising due to the nature of the Skitter sangpli
http://abilene.internet2.edu/ . .
16These changes were subject to caveats and bugs affectingreeasts, Process: the Skitter data set is composed of traceroutésdroo
and, thus, the resulting metrics, at mordth For more information we refer at a limited set of locations. The observed network is tlogeef

to http://www.caida.org/data/active/skittesslinks dataset.xml/ tree-like and so the:-core typically just removes the leaves
17passortativity is a measure of the likelihood of connectionnaides of

similar degrees [29]. This is usually expressed by means o&ssertativity of the tree. [32] referred to this as being similar geeling

coefficient-: assortative networks have> 0 (disassortative have < Oresp.) the layers from an onianFrom an evolution point of view

and tend to have nodes that are connected to nodes with si@issimilar

resp.) degree. 1970 take thek-core of a graph we first remove all nodes with degree 1.
18gee [30] for a detailed explanation on the mathematical messamé  This might split the graph into two or more pieces, in which cesetake

different datasets the largest piece. We then remove all nodes of degree 2 andtrepignes.
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this result shows that, although the number of nodes beir
sampled by Skitter is decreasing, the hierarchy of the meter
as observed by Skitter is not changing. This also implies thi

0.5

0.45

Skitter is not sampling the edge of the AS topology well anc
S0 cannot see evolutionary changes there.

Figure 11 shows the proportion of nodes in e&ebore as
a function ofk for the UCLA data set. There are 52 plots (for
more than 4 years) shown as a smooth transition between t
first and last plots, emphasized. As can be seen, the distribu
of k-cores moves to the right over time, indicating that the
proportion of nodes with higher connectivity is increasovgr
time. This adds further weight to the conclusion that the BCL
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dataset shows a weakening of hierarchy in the Internet, wi
more peering relationships between ASes. Note that the UCL
data set was not examined in [32].

Next we examine the WSDs for the two datasets; a subset _ _
showing their evolution is presented in figures 12 and 139 10 k-core proportions, Skitter AS topology.
There are two peaks which evolve (Skitter) and disappear

(UCLA). Comparing Figures 12 and 13 with Figures 7 and 8

we confirm the results given by the other graph measures. 1?‘{]aluable tool together with more traditional graph measure

e L
WSDs show in the case of the UCLA dataset (Figure 12) 3r network characterisation.

less dominant core (the comeakis disappearing) and less

structured Internet (the WSD is getting lower and movinf- Tuning Synthetic Topology Generators

to the right), while Figure 13 shows a more dominant core This section examines the estimation of optimal parameters

for Skitter and a more structured Internet (the WSDs afgr several well known topology generators. Parameter esti

increasing and moving to the left). mation requires two elements: a metric and a target graph.
The differences in AS topology evolution observed byhe aim is then to estimate the parameters that give a best

Skitter and UCLA are likely to reflect different views of thefit between the target graph and the topologies generated.

Internet from the two datasets. The IP-level tracerouteta Typically, topology generator parameters are tuned by Imatc

Skitter traverses paths and sees only a small portion of 8¢ Ang measures such as the number of links, the node degree

level topology, mainly at the core. In contrast, the BGP ddita distribution or the clustering coefficient [33, 34]. Howevas

the UCLA dataset is provided by public feeds from monitorthese are not metrics in the strict sense, obtaining a “gadod fi

not located at the core. In conclusion, the WSD providesdmes not mean that the topology generator is a good model of

8

10
k-core

12 14 16 18
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here is: is the target graph likely to have been generated by
this topology generator? As the WSD is a metric, obtaining
identical or close WSDs implies that the target is likely toda
been generated by this topology generator. However, tims ca
only happen if the topology generator is capable of mimigkin
the structure of the target graph. As will be seen, all the
topology generators examined in this section fail to do so. F

a more detailed examination of this application see Haddadi
et al. [6].

The topology generators we consider are Waxman [35],
AB [23], GLP [34], Inet [11] and PFP [36] (PFP does not
have any parameters but is included for completeness of the
comparison). For this study we use a particular sample AS
topology, the Skitter graph from March 2004 as used by
Mahadevaret al. [37]. The process we describe could easily
be applied to other sampled AS topologies. The cost function
used is the standard quadratic norm between the weighted
spectral distributions using a value 8f = 4 (N = 3 gives
similar results)

J(Gs, Gi(©)) = > (1=k)*(fs(A = k)= fi(A = k))* (20)

keK

where the distribution of eigenvalues is estimated in the se
K of bins € [0,2], J(Gs,Gi(0©)) is the cost between the
weighted spectra of the Skitter grapH; and the graphs
generated by the®* topology generator using a vector of
parameter®.

To facilitate this comparison, grids are constructed oker t
possible values of the parameter space d0@;, G;(0)) is
evaluated at each point. For example, Figure 14 shows the
case for the AB model which has two parametész [p |7
The first thing to note is the dark region at the centre of the
graph, which represents those parameter values that riteirn
lowest values off (G, G;(0)). Figure 14 shows that the WSD
varies smoothly with changing structure. The AB model is
known to exhibit scale free behavior below the line indidate
in Figure 14 and exponential behavior above this line. It is
satisfying to note that a clear minimum exists and also that
the region with low cost (Region A) lies in the scale free
region as expected for a model of the Internet. Similar tesul
were also found for the other topology generators [6].

As an aside, a similar grid was also constructed using the
spectrum, specifically the unweighted spectral distrdntias
the basis for a cost function:

J(Gs,Gi(©) = Y (fsA=k) = fiA=k)*  (21)

keK

The resulting grid is shown for the AB model in Figure 15. As
can be seen/J'(Gs,G;(©)) does not change smoothly with

O, which implies that a small change in the structure can lead
to a large change in the spectrum. In other words, the tuning
of the topology generator parameters through a cost fumctio
based on the spectrum is too sensitive to changes in the graph

the target graph. For example, we can tune the AB model stfucture. The main reason for this was shown in Figure 1: the
match the clustering coefficient of our target graph exauatly variance in the spectral gap is too large.

then the degree distributions might differ. The core questi

In order to estimate the optimum parameters for the topol-
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The INET generator is interesting in that it is the one
generator that obtains a peak at the correct point. Thisés du
to the nature of the generator: the parameteio the INET
generator specifies the percentage of nodes that are in ly high
meshed core. While a similar structure exists in the Skitter
dataset, the WSD shows that the INET core is too densely
connected relative to the Skitter observations.

All the WSDs for the generated topologies lie to the right
of the target WSD, showing that the Skitter data has far more
structure than is mimicked by any of the topology generators
It is important to note that these are the closest approxomsit
that the topology generators can make to the Skitter data. In
other words, it is simply not possible to force the AB model
for instance to have a peak at = 0.4 with amplitude of
0.03. It is our experience that each topology generator leads
Fig. 15. J'(Gs, Gap(®)) for allowed values oB(= [p q]"). to topologies that cover only a small subset of the WSD space.

ogy generator8, we optimise Equation 20 using the Nelder VI. CONCLUSIONS

Meade simplex search algorithm [38, 39]. In this paper we introduced a new metric, theighted spec-
Table Il displays these optimum parameter val@esf the tral distribution (WSD). The WSD differs from other graph
topology generators when matching to the Skitter graph. fRéasures such as the clustering and assortativity coefficie
addition, Table Il displays the values dfG,, G;(©)), which the node degree distributiorfc in that it is a metric in the
shows that PFP provides the closest fit followed by AB, GLE)athematical sense, and so it can be used to measure the
Waxman and, finally, Inet. While these results are generally @istance between two graphs.
expected, the ranking of Inet as the least desirable togolog The WSD has many applications, and in particular can be
generator is not as it is one of the most recent models. ~ used for very large graphs because of its low computational
Figure 16 shows the WSD of the target graph and of tfgauirements, making it a good choice for topology tunind an
“best fit” WSDs for each of the topology generators. As Caq),ther. applications that require mu_ltlplfa evaluations ofoatc_
be seen, the main peak in the WSD for the Skitter data occidi#gction. We presented three applications of the WSD, using
at a value of\ = 0.4. The Waxman generator peak occur§ 0 u.nderstand:ll the mixing properties of .graphsu)(the
at A = 0.6, which is closer to 1 and demonstrates the great@Yelution of the AS topology, andii( the tuning of Internet

amount of random structure in the Waxman topologies.  {OPology generators to match a target graph.
Observed evolution in the WSD of the Internet graph,

20For a given®, each run of a topology generator will lead to a differ—SUpported by evidence US'_ng other 'Common graph megsures,
ent network because of random initial conditions. This riefes with the suggests that the Internet is becoming more edge-centdc. W
estimation of the gradients used in the search algorithm. Ttwseduce created a similar effect using our strawman model suprg)rtin
the variance of gradient estimates, the averaged weightectrapfrom ten . . "
runs are used, although empirical evidence suggests thaathace of these (IS hypothesis. In a.ddltlon,. we observed that the topology
weighted spectra is very low (see Figure 1). generators we examined fail to match the complex structure
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OPTIMUM PARAMETER VALUES FOR MATCHING SKITTER TOPOLOGY SAMPLED INMARCH 2004.

TABLE Il
Waxman a = 0.08 (default= 0.15) B = 0.08 (default= —0.2)
AB p = 0.2865 (default= 0.6) q = 0.3145 (default= 0.3)
GLP p = 0.5972 (default= 0.45) | 3 = 0.1004 (default= 0.64)
Inet « = 0.1013 (default= 0.3) —
PFP - -

J(Gwaxman G'skittep) = 0-0026
J(G B, Gskitter) = 0-0014
J(GgLP: Gskitter) = 0.0021
J(GINET, Gskitter) = 0-0064
J(GpFpP; Gskitter) = 0-0014

of the Internet. This result is important for future topojogwhere

generators: the WSD could provide a valuable tool in their
design and validation.

In conclusion, the WSD provides a new analytical tool
augmenting other the ability of the graph analyst to obtaw
a more complete picture of a network’s structure. Futur
avenues of research also include examining the WSD of large
biological and social networks, among others.

APPENDIXA
METRIC DEFINITION

The metric we propose in this paper is

ha(A=k) = (1 = k)*fo(X = k) (24)

and h, (A = k) is similarly defined. The triangle inequality
olds for (23). For a detailed proof see [41] Chapter 2, $acti
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J(Ge,Gy) = Y (=R (fo(A=k) = f,(A=k))* (22)

keK

We now show that\/J(G,,G,) is a metric in the math-
ematical sense. The difference betweg¢n/(G,,G,) and
J(G.,G,) is similar to the difference between the sum 1]
squared error and the root mean squared error. We prefer tILIe
sum squared error (i.eJ(G,,G,)) in this application as it
provides the well known minimum variance-bias trade-off.

A metric satisfies the following four conditions:

(@ J(G.,Gy) > 0 (non-negativity)

(b) J(Gs,Gy) =0 < = =y (identity of indiscernibles)
(©) J(Gay Gy) = J (G, Gy) (symmetry)

(d) J(Gs,G2) < J(Ga, Gy) + J(Gy, Gy) (triangle in-
equality)

(8 and ¢) follow directly from (22). Noting that all
the elements of the sum id(G,,G,) are positive —
J(Gs,Gy) = 0 if and only if f,(A = k) = f,(A = k) VE.
Arranging (and increasing the number of bins if necessary
the k& bins such that each bin contains at most 1 eigenvalu
RequiresG, to be co-spectral and isomorphic t@,. Two
graphs may beo-spectral i.e., they share the same spectrum
but are not isomorphic. However, studies have shown [4Q] tha
the number of co-spectral graphs falls dramatically witd th [6]
number of vertices in the graph. For example, only 0.05% of
all graphs with 21 vertices are co-spectral and not isonioyph
this number is thought to decrease with increasing number of
vertices [40]. Thus, conditionb} is true almost certainly in
the statistical sense.

\/J(G.,G,) defines the standard metric spaBé [41].

This can be seen by distributing the weiglits— £)* as:

1/2
V1(G..Gy) = (Z (ha(A k))?)

keK
(23)
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