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Abstract

We present theoretical and computational findings regarding second harmonic gen-

eration within plasmonic and all-dielectric metamaterials. An in-depth analysis of the

surface and bulk contributions to the second harmonic signal in centrosymmetric meta-

atoms is undertaken, whereby it is found that a common assumption of neglecting the

bulk portion of dielectric structures is unjustified.

An all-dielectric metamaterial unit cell is also presented. The power radiated by the

electromagnetic dipoles are calculated alongside the electric quadrupole for both the linear

and nonlinear regime for a LiTaO3 meta-atom. A nonlinear resonance that is engendered

by the linear toroidal dipole is also shown to be toroidal in nature.

A structure consisting of gold split ring resonators embedded in a dielectric is designed

to have a strong nonlinear toroidal dipole. The optical spectra of the metamaterial array

are simulated, with the powers radiated by the electric, magnetic and toroidal dipoles

being compared at the second harmonic, whereby the toroidal dipole dominates.

In a separate investigation, we analyse computationally and experimentally optical

meta-atoms that generate two distinct resonances in frequency-space for applications in

laser protection. Different polarisation-dependent designs are incorporated to produce a

polarisation-independent meta-atom. The optical response of this cross-shaped structure

is calculated and compared with a fabricated structure. The simulation and fabrication

process is analysed in detail. Additional to this investigation, a notch filter is designed

through using DiffractMOD’s MOST optimizer and subsequently manufactured in the

London Centre for Nanotechnology. The transmission coefficients are again measured.

Furthermore, a Bragg/metamaterial composite is briefly introduced and analysed.

This new composite is intended to improve performance on the previous transmission

notch filter by having the metamaterial effectively act as a substitute for a number of

layers of the Bragg filter.
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Chapter 1

Introduction

The role which electromagnetic waves play in aiding mankind cannot be overstated.

From medical instruments to global communication to surveillance equipment to energy

sources, the applications arising from light-manipulation have truly been revolutionary.

The desire, therefore, to master light, to completely control every possible parameter of

its constitution, is patently justified. So ingrained in our day-to-day lives are these items,

one resounding fact holds true: the greater our understanding of light, the higher the

quality of mankind’s existence.

Building upon the universal importance of light-control, therefore, this thesis sets out

to investigate and achieve two main goals on influencing light, the first of which can

be summarised with the following question: supposing we desire to block two mid-IR

frequencies of light, ω1 and ω2, as narrowly as possible, can a metamaterial be designed

to easily achieve this, and what are - if any - the limitations?

The second objective is to design and analyse meta-atoms that cause strong nonlinear

optical signals. Specifically, there are two main studies within this objective: Firstly,

are current assumptions of the negligibility of bulk centrosymmetric media justified?

Secondly, can strong nonlinear toroidal dipoles be excited within plasmonic and dielec-

tric metamaterials? While our first aim sets out to engineer a light, inexpensive multi-

functional laser-protection product, the second looks to the world of the theoretical for

the prospect of new physics.

In 1880, Alexander Graham Bell and Sumner Tainter reported their invention of the

photophone to the American Association for the Advancement of Science [1]. By using

the human voice as a means of varying the intensity of an electromagnetic source focused

on a selenium receiver, the receiver could, due to the selenium’s changing conductivity,

transmit the words uttered by the speaker. Bell and Tainter themselves utilized this in-

vention, communicating at a distance of 213m [2]. Thus the first demonstration of wireless

communication was achieved. Today, the use of wireless communication at microwave
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frequencies has permeated into nearly every culture. Mobile phones, tablets and most

computers contain small transmitters and receivers for almost instant communication

with anyone, even in outer space.

Even when hardware is required, the utilization of electromagnetic waves is prevalent

due to the work of Schultz and Keck, who in 1970 created an optical fibre with surpris-

ingly low losses [3]. A quote from the paper by F. P. Kapron et al. encapsulates the

significance of their achievement: “The preceding measurements show that waveguides

can be constructed which have radiation losses very close to the intrinsic material scatter-

ing loss” [4]. Henceforth, electromagnetic waves became one of the foundations on which

society is based.

The state of electromagnetic affairs could not be how it is today were it not for the

invention of the laser, first experimentally demonstrated in 1960 by T. H. Maiman [5].

Light amplification by stimulated emission of radiation is a process whereby a narrow

beam of light consisting of several excited modes centered around a particular wavelength

is generated. This beam is coherent, meaning there is a fixed phase relationship between

the electromagnetic field values temporally and/or spatially. The unusually-high intensity

of laser light meant that a new probe with which to study materials had been created.

It is therefore unsurprising that during the 1960s numerous reports of previously-unseen

optical activities in materials were published, including, among others, second harmonic

generation [6], third harmonic generation [7] and optical parametric oscillation [8].

Also published in this fruitful decade was the seed which would blossom into the entire

field of metamaterials: namely, the idea of negative refraction. First proposed by Veselago

in 1968 [9], he suggested that if a medium were to have simultaneously negative values

for the real part of the electric permittivity and magnetic permeability, its interaction

with an incoming electromagnetic wave would cause the wave to be refracted to the same

side of the normal, as contrary to our every-day experiences. While it was well-known at

the time [10] that the noble metals’ permittivity functions were negative for a wide range

of frequencies, figuring out how to control a material’s magnetic response to external

radiation was a hurdle that would not be cleared until near the end of the millenium.

In 1999 Sir John Pendry of Imperial College London dramatically increased the ability

to control light when he designed and demonstrated that a split ring resonator is a

structure with a profound magnetic response [11]. The ring, with its natural inductance

due to its metallic nature, is split in order to imbue it with a capacitance, in effect

becoming a resonant LC-circuit. By tuning the structural parameters of the unit cell,

this resonance causes the magnetic permeability to become negative. A year later, a

material with a negative refractive index was fabricated [12]. This unit-cell is henceforth

known as a meta-atom, the basis of a metamaterial; a material designed to have properties
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which are not found within nature. Since this monumental work, split ring resonators

have been utilized for a vast array of metamaterial applications, including perfect light

absorbers [13,14], narrow-band resonators [15], and for generating magnetic responses at

optical frequencies [16, 17]. The ground-breaking work of Pendry et al. have made the

split ring resonator one of the most common metamaterial units.

The field of metamaterials has garnered significant attention since it was proposed

that they could be responsible for the world’s first invisibility cloak. By considering the

permittivity and permeability functions of the metamaterial as anisotropic tensors, it is

possible to create a metamaterial which steers the incoming light. This has been achieved

with split ring resonators at microwaves for a specific frequency [18], but the frequency-

dependence and shape of these functions means that an invisibility cloak designed for

even a small range of frequencies is currently not feasible without additional gain media,

electromagnetically induced transparency or chirality.

Metals are not a required basis for a metamaterial structure [19]. Rather than relying

on a current generated by the metal’s free electrons, dielectric structures can be uti-

lized whereby the nature of their excited displacement currents are responsible for their

electromagnetic responses.

Metamaterials have enabled the toroidal multipole moments to be analysed in signifi-

cant detail. This electromagnetic phenomenon, first discovered in 1957 by Zel’dovich [20]

and subsequently linked to violations of Newton’s Third Law [21] and atomic parity

non-conservation [22], is often over-shadowed by the electric and magnetic multipole mo-

ments, due to their comparative strength. The power radiated by the toroidal moments

can deliberately be exacerbated through considerations of a metamaterial unit cell. Since

the first toroidal metamaterial was fabricated in 2010 [23], toroidal moments have been

measured at microwaves [24–26] and at optical frequencies [27–29], and have been shown

to be able to yield extremely high quality factors [26], and pronounced chiral activity [30].

Systems whereby the toroidal field cancels with the electric field are known as anapole mo-

ments. These non-radiating configurations have been put forward as an explanation for

dark matter [31], and have also been produced in toroidal metamaterials [32] containing

no metallic elements.

Although just a handful of unique phenomena engendered by metamaterials have been

mentioned, it is clear that they have forever changed the potential of future technology.

In recent years, companies specialising in metamaterial products have been established,

such as Echodyne [33], Kymeta [34], and Metamaterial Technologies [35]. Their services

include visor-protectors, increasing the efficiency of solar panel absorption, and scanning

arrays for radar applications. In order to help produce metamaterial antennae which can

acquire, steer and lock any beam to a satellite, Kymeta have recently been awarded 62
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million dollars [36]. This number alone speaks volumes of how sought-after the promises

of metamaterials are.

The outline of this thesis is as follows. Chapter 2 describes the main workings of

electromagnetism and plasmonics, including Maxwell’s equations, the derivation of the

damped permittivity functions, and the functions of second harmonic generation. The

fundamentals of optical metamaterials are then analysed, with a number of applications

being explained. Investigations into how to host a toroidal moment within a metamaterial

are also undertaken. The range of software packages and computational methods that

were utilized throughout this thesis, including how to simulate and calculate the relevant

structural responses at the fundamental frequency and second harmonic within plasmonic

and all-dielectric metamaterials are the subjects of Chapter 3. Chapter 4 discusses in de-

tail the differences between surface and bulk contributions to the second harmonic signal

in both plasmonic and all-dielectric centrosymmetric meta-atoms. A strong nonlinear

toroidal dipole generated by a linear toroidal resonance in a LiTaO3 meta-atom is stud-

ied in Chapter 5. The details of metamaterial fabrication are delineated in Chapter 6

along with analysis of the optical measurements of these fabricated metamaterials. Fi-

nally, in Chapter 7 we sumarize the main results of our work and present some future

perspectives.
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Chapter 2

Background

2.1 Introduction

This chapter lays the fundamental building blocks that will be built upon in subsequent

chapters to explain the physical phenomena arising from our metamaterial interactions.

We begin with a discussion about Maxwell’s equations, which neatly contain the laws

of light. The refractive index is also introduced as one of the most useful parameters

to predict a material’s behaviour. In order to explain the full behaviour of the metals

analysed throughout this thesis, the topic of plasmonics is introduced to explain the role

of electrons in generating the linear physical effects. The theoretical discussion then

moves onto nonlinear physics, which is a heavily utilised optical interaction throughout

this work. The physics of both centrosymmetric and non-centrosymmetric crystals are

delineated in detail.

Metamaterials are then introduced, with an in-depth description of both plasmonic

and all-dielectric metamaterials being given. Many examples of metamaterials are shown

and the physics of their applications is discussed. One crucial example for my thesis is

the introduction of nonlinear physics and its link with metamaterials. Furthermore, the

multipole expansion is explained to show the origin of the separate multipole moments

that become a staple of my work. Finally, the notion of combining metamaterials with

Bragg filters to form an optical composite is introduced, to show that metamaterials have

the potential to reduce the number of required Bragg layers.

2.2 Maxwell’s Equations

As the phenomena of classical electromagnetism are encapsulated by Maxwell’s equations,

it would be inaccurate to begin this chapter without immediately introducing them,
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written here in S.I. units:

∇ · E =
ρ

ǫ0
(2.1a)

∇ ·B = 0 (2.1b)

∇× E = −∂B

∂t
(2.1c)

∇×H = J+
∂D

∂t
(2.1d)

This final form of the equations, written without potentials, was first derived by Oliver

Heaviside [1]. These four equations, known individually as: (a) Gauss’s Law, (b) Gauss’s

Law for Magnetism, (c) Faraday’s Law, and (d) Maxwell-Ampère Law, describe how

the charge (ρ) and current densities (J) are the sources of the electric field, E, and the

magnetic field, H, where:

D = ǫ0E+P = ǫ0(1 + χe)E = ǫ0ǫrE (2.2a)

B = µ0H+M = µ0(1 + χm)H = µ0µrH (2.2b)

P andM are the polarization and magnetization of the medium respectively. In effect,

these describe how strongly the medium reacts to the influence of electric and magnetic

fields. In a vacuum, both polarization and magnetization are zero.

The relative permittivity and permeability, ǫr and µr respectively, are dependent upon

the electric and magnetic susceptibility tensors, χe and χm. These tensors are analysed

in more depth when we consider second harmonic generation, but it is worth noting that

they are dependent upon the symmetry properties of the unit cell of the medium. ǫ0

and µ0 are the electric permittivity and magnetic permeability of free space respectively,

which culminate in the definition of the speed of light in vacuo:

c =
1√
µ0ǫ0

(2.3)

The value adopted by the Fifteenth General Conference of Weights and Measures [2] is:

c = 299, 792.458km/s (2.4)

Ampère’s Law without the current term and Faraday’s Law can be combined to acquire

an equation that describes the propagation of electromagnetic waves through free space:

(∇2 + µǫω2)Ψ(x) = 0 (2.5)
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Figure 2.1: The physics of reflection and transmission. An electromagnetic wave is inci-
dent on an interface of a different material, giving rise to parallel (X||) and perpendicular
(X⊥) components of the absorption, reflection and transmission coefficients. Here X can
be any of R, T, and A. Also displayed are the angles of incidence (θi), reflection (θr) and
transmission (θt). Adapted from [4].

Equation 2.5 is The Helmholtz wave equation, where Ψ(x) represents either the E- or

B-field. ω is the angular frequency of the light.

The direction and magnitude of the energy flow of the electromagnetic waves is en-

capsulated in the Poynting vector, first devised by John Henry Poynting in 1884 [3].

Explicitly, the time-averaged Poynting vector, S, is often used to incorporate the full

length of the phase of the electromagnetic field, and is given by:

S =
1

2
E×H∗ (2.6)

where the asterisk denotes that the complex conjugate of the magnetic field is to be

taken. An electromagnetic wave vector incident on an interface is often referred to as the

wavevector, k, which naturally coincides with the direction of the Poynting vector. To

see this, the reader can study the electromagnetic setups of Chapters 4 and 5 (Figures

4.1 and 5.1 repectively).

A mathematical tool that is of incredible importance within the realm of simulations

(cf. Chapter 3) is the Fourier transform. Given the electric fields for all frequencies,

one can switch between the frequency-domain and the time-domain via the following
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equation:

E(r, t) =
1

2π

∫ ∞

−∞

E(r, ω)e−iωtdω (2.7)

A transverse plane wave, often utilised in the aforementioned simulations, is a solution

of Equation 2.5 in the case where the medium through which the wave is propagated is

a vacuum:

E(r, t) = E(ω)ei(kn·r−ωt) + E∗(ω)e−i(kn·r−ωt) (2.8)

The producers of all electromagnetic fields, the respective electric charge density and

current density, ρ and J, are bound to one another via the continuity equation:

g
∂ρ

∂t
+∇ · J = 0 (2.9)

This is an incredibly useful equation that is utilized many times throughout my work, as

it allows a choice to be made regarding further calculations: the equations of interest can

be rewritten so that they are wholly written in terms of either charge or current density

distributions. It is often easier to consider entire electromagnetic systems just in terms

of one parameter, as we shall particularly see in Chapters 3, 4, and 5.

Naturally, the electric and magnetic fields interact and influence a particle of charge

q via the Lorentz force:

F = q(E+ v ×B) (2.10)

where F is the force experienced by the particle traveling through an electromagnetic

field. Hence the magnitude and direction of the charged particle’s movement can be

ascertained. We now move on to a more in-depth look at light-matter interactions that

are relevant for my metamaterial work.

2.2.1 Index of Refraction

A material’s response to external electromagnetic stimuli - whether it will be transmitted,

reflected and/or absorbed, and the relevant percentages of each - is fully characterised

by its complex-valued refractive index, n. For many optical metamaterial applications,

it is therefore one of the most crucial parameters, as we will be designing materials

to purposefully interact with light sources to, for example, transmit no light for certain

wavelengths. It is important to understand the physical meaning of this parameter before

a discussion of metamaterials can be undertaken. Figure 2.1 shows the physics of the

problem. An incident light source with parallel and perpendicular components impinges

on a medium with refractive index n.
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Figure 2.2: The possibilities of permittivity (ǫ) and permeability (µ) permutations. Each
of the four quadrants leads to vastly different physics. Adapted from [5]. Within this
thesis, we will focus on the upper-most quadrants.

It can be shown [4] that solving the above problem leads to the Fresnel formulae:

T‖ =
2n1 cos θi

n2 cos θi + n1 cos θt
A‖ (2.11a)

T⊥ =
2n1 cos θi

n1 cos θi + n2 cos θt
A⊥ (2.11b)

R‖ =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

A‖ (2.11c)

R⊥ =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

A⊥ (2.11d)

Equations 2.2a and 2.2b that we saw in the previous section come in handy here, as

the electromagnetic nature of a medium can be regarded in terms of these frequency-

dependent functions, where:

n(ω) = n′(ω) + ik′′(ω) =
√

ǫ(ω)µ(ω) (2.12)

k′′ is simply the imaginary part of the refractive index. When an electromagnetic wave

traveling in a medium of refractive index n1 impinges with an angle θ1 on an interface of

refractive index n2, as in Figure 2.1, the extent to which the wave’s direction is altered -
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refracted - is expressed by Snell’s Law, where θ2 is the outgoing angle:

n1 sin θ1 = n2 sin θ2 (2.13)

The origin of the refractive index is the microscopic dipoles present in the medium, which

absorb the incoming light and consequently re-radiate it with a certain retardation. In

almost all natural media, the magnetic permeability is equal to unity as the frequency

approaches the optical band [5]. Physically, this means that the medium of interest

does not have the physical capability of interacting with the incident magnetic field, as

the magnetic dipoles inherent within the material cannot respond quickly enough to the

oscillations of the magnetic field. Equation 2.12 therefore most often reduces more simply

to:

n(ω) =
√

ǫ(ω) (2.14)

Indeed, throughout this work the parameter ǫ is of much greater importance than µ for

this very reason. After some algebraic manipulation, the full relationship between the

refractive index and the electric permittivity function can be delineated:

ǫ′ = Re(ǫ) = n′2 − k′′2 (2.15a)

ǫ′′ = Im(ǫ) = 2n′k′′ (2.15b)

n′2 = [ǫ′ +
√
ǫ′2 + ǫ′′2]/2 (2.15c)

k′′2 = [−ǫ′ +
√
ǫ′2 + ǫ′′2]/2 (2.15d)

The role that the key components ǫ and µ play in electromagnetic phenomena is

summarily depicted in Figure 2.2. Each of the four quadrants leads to vastly different

physical regimes. The fourth quadrant, corresponding to magnetic plasmas, is outside of

the research interests of this thesis due to the negligibility of permeability dispersion for

the reasons previously mentioned.

So far, we have some simple building blocks for explaining electromagnetism; Maxwell’s

equations tell us how the electromagnetic fields influence the charges and currents and

vice versa. Once the light meets with something substantial, we have the refractive index

to rely upon, a parameter that plays a role across the entire fields of plasmonics, optics

and photonics. It therefore resides at the core of all optical metamaterial considerations.

When considering metals, the seemingly simple permittivity can start to become a rather

more involved function. A more rigorous analysis of this parameter is hence required for

a deeper insight into the framework of metamaterials. A discussion on the electron model

of varying metals and this model’s dependence on the workings of plasmons now follows.
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2.3 Plasmonics

Within this section we take a look at the Drude free electron model and subsequently be-

gin to build upon this simplified framework with the inclusions of more complex plasmonic

behaviour in order to explain the role that plasmons play in the permittivity function of a

metal. The aim of this section is to show that Equation 2.12 actually contains a complex

collection of physics, and hence any attempt to truly understand what is occurring when

a light source interacts with a metamaterial must reference these rather more complicated

physical processes.

2.3.1 Drude Free Electron Model

The optical properties of metals stem from the behaviour of the metal’s electrons [6].

A common classical model, the Drude free electron model, first derived in 1900 by Paul

Drude [7], largely dictates the responses of the electrons [5]. This model considers a

mobile plasma of free electrons of number density n with the positively-charged ion core

being held fixed. The equation of motion for a free electron is dependent upon its effective

mass, m, charge, e and damping constant, γ:

m
d2r(t)

dt2
+mγ

dr(t)

dt
= −eE0e

−iωt (2.16)

The damping constant is a quantity which represents the free electron collision rate,

a parameter necessary for an imaginary part of ǫ. A larger value of γ implies a greater

number of collisions between the electrons per second. It is essentially a term that damps

the otherwise perfectly free motion of the electrons. After solving the above differential

equation for r, the displacement of the free electron can be reduced to:

r(t) =
e

m

E0e
−iωt

(ω2 + iγω)
(2.17)

By comparing equations 2.2a and 2.17 with the fact that the polarization of a medium

can also be defined by: P = ner, we arrive at the definition of the dielectric function of

the Drude free electron model:

ǫ(ω) = 1−
ω2
p

ω2 + γ2
+ i

ω2
pγ

ω(ω2 + γ2)
(2.18)

Here, ωp is defined as the volume plasma frequency of the metal, the frequency at

which the free electron plasma oscillates. Mathematically:
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ωp =

√

ne2

ǫ0m
(2.19)

It is important to note that so far we have been considering volume plasmons, a term

which describes the properties of the bulk metallic plasma. The dielectric function of the

Drude free electron model does not fully resemble reality, however, a fact that should so

far not be surprising; as mentioned at the outset, the Drude model is a classical model,

and hence any quantum effects are naturally ignored. The neglection of extra physics is

therefore traded for mathematically simplicity. Here, however, for a more complete view,

the interband and intraband transitions of the electrons must be taken into consideration.

2.3.2 Interband Transitions

From the above discussion, we can now finalise the equation for the metal’s dielectric

function by incorporating the most pertinent quantum effect. In order to do this, we

add another restraint on the freedom of the electrons. These bound electrons belong

to certain quantum orbitals of the metal atoms. At a particular frequency, ω0, these

bound electrons can be excited to a higher-order quantum orbital. The response term

that incorporates these quantum effects follows a Lorentz form:

ǫib(ω) = 1 +
ω2
1

ω2
0 − ω2 − iγω

(2.20)

where γ and ω1 are related to the damping and density of the bound electrons, respectively

[5].

Once the interband and intraband transitions are accounted for, the following equation

transpires [8]:

ǫr(ω) = ǫib + 1−
ω2
p

ω2 + iγω
(2.21)

The final form of the dielectric function of metals arises through being aware of the

fact that metals such as gold and silver have multiple transitions that must be taken into

consideration. This leads to the following equation:

ǫ(ω) = ǫ∞ −
ω2
p

ω2 + γ2
+ i

ω2
pγ

ω(ω2 + γ2)
(2.22)

The term ǫ∞ is a material-dependent property and has ‘swallowed’ the interband/intraband

frequency dependence. In the subsequent chapters when the permittivity function of a

metal is mentioned, the reader is encouraged to remember that it is Equation 2.22 that

lies beneath the definition.
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We will now briefly analyse the dispersion relation of plasmons for all frequencies and

subsequently include a brief analysis of surface plasmon polaritons.

2.3.3 Dispersion Relation of the Free Electron Gas, Additional

Parameters

In the following analysis of metallic plasmas, we will limit ourselves to the frequency range

where ω ≪ ωp, the limit where metals behave as in ‘day-to-day’ interactions [6]. This is

justified, as, for example, the plasma frequency of gold is 2.183 x1015 Hz [9]. Within this

framework, there are two regimes to consider: the high and low-frequency regions.

Beginning with high-frequencies - i.e. ω approaches ωp - it is clear from analysing

Equation 2.18 that the light’s frequency begins to drown out the effect of the damp-

ing constant, leading us to a predominantly real permittivity function of an undamped

plasma:

ǫ(ω) = 1−
ω2
p

ω2
(2.23)

In the low-frequency limit, i.e. ω ≪ γ, electron collisions play a much larger role.

The metal’s permittivity function now has a significant imaginary part, of comparable

magnitude to the real part:

n ≈ k =

√

ǫ2
2

=

√

ω2
p

2ωγ
(2.24)

When the metals have a predominantly imaginary refractive index, the metals are

mainly absorbers, expressed succinctly via the absorption coefficient:

α =

√

2ω2
pω

c2γ
(2.25)

This parameter is directly linked to one of the fundamental concepts of this section,

the skin depth of the metal:

δ =
2

α
=

√

2

σ0ωµ0

(2.26)

where σ0 is the conductivity of the metal. The skin depth is effectively the distance the

external light can penetrate through the metal. At room temperature this skin depth is

usually around 100nm [10] for most metals, explaining why metals are opaque [5]. It can

be shown [6] that by considering the transparency regime of metals, ω ≫ ωp, i.e. the

regime contrary to above, the following dispersion relation holds:
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Figure 2.3: The dispersion relation of a free electron gas. As can be seen, electromagnetic
wave propagation is only possible for ω > ωp.

ω2 = ω2
p +K2c2 (2.27)

where K is the wavevector of the surface plasmon.

Hence only transverse waves with frequency ω ≫ ωp are allowed to travel through the

free plasma. This dispersion relation of the free electron gas is plotted in Figure 2.3.

At this point, we are now in the position to consider surface plasmon polaritons.

2.3.4 Surface Plasmon Polaritons

Surface plasmon polaritons (SPPs) are the couplings of photons to plasmons at a dielectric-

metal interface [11]. These couplings produce propagating surface waves with a permittivity-

dependent wave vector and are evanescently confined.

While an in-depth mathematical framework can be found in [6, 11], we here want to

highlight a key result, namely the wavevector of the SPPs:

β = k0

√

ǫ1ǫ2
ǫ1 + ǫ2

(2.28)

where ǫ1 and ǫ2 are the permittivity functions of the surrounding dielectric and metal

respectively. As can be seen, the frequency of oscillation of the SPPs tends towards an

asymptote as the wavevector approaches infinity. This surface plasmon frequency is given

by:

ωsp =
ωp√
1 + ǫ2

(2.29)

36



However, as we saw in the discussion of the Drude model, above, the Drude model

needs the damping to be included in order to portray the underlying physics. Once this

metallic damping - including interband and intraband transitions - is taken into account,

the wavevector of the SPPs is now limited to a finite maximum, as shown in Figure 2.4.

It can be shown [6] that the dispersion relation for the surface plasmons, when the metal

is placed in an insulator-metal-insulator ‘sandwich’, splits into two equations, referred

to as ‘symmetric’ (SR) and ‘antisymmetric’ (LR) modes on account of the parity of the

electric field at the interface. For increasing metallic thickness, these modes converge.

Figure 2.4: The dispersion relation of SPPs for a silver-air interface when losses are
taken into account. Two surrounding dielectrics are considered: air and silica. The finite
maximum for the wavevector is evident; the wavevector approaches 7 x 107m−1. Taken
from [6].

The extent to which the SPPs are confined is summed up by the skin-depth equation

[11], which calculates the decay constant, κi, of the SPP perpendicular to the interface:

κi =
ω

c

√

−ǫ2i
ǫ1 + ǫ2

(2.30)

where the index i describes the media, i.e. i=1 for z<0 and i=2 for z>0. We have seen

that the metals used primarily for metamaterials - namely gold and silver - contain elec-

tronic functions rich with activity, able to sustain volume and surface oscillations. It is by

taking advantage of these highly-resonant materials that allow plasmonic nanostructures

to have such a wide-range of applications, including linear [12] and nonlinear [13] plas-
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monic devices, optical sensor applications [14] and photochemical processes [15]. Three

seminal review papers on the theory of collective electronic excitations at metal surfaces

have been given by Ritchie [16], Feibelman [17] and Liebsch [18].

2.3.5 Kramers-Kronig Relations

The real and imaginary parts of the constitutive parameter are interconnected. Explicitly:

Re(χ(ω)) =
2

π

∫ ∞

0

dω′Im(χ(ω′))
ω′

ω′2 − ω2
(2.31a)

Im(χ(ω)) = −2ω

π

∫ ∞

0

dω′ [Re(χ(ω′))− 1]

(ω′2 − ω2)
(2.31b)

Where the frequency-dependent constitutive parameter, χ(ω), can represent either the

permittivity or the permeability of the medium. Furthermore, ω′ represent the infinite

number of frequencies to be integrated over. These relations - the Kramers-Kronig rela-

tions - were first calculated independently by H. A. Kramers and R. de L. Kronig. They

show that by tuning the imaginary (real) part of the constitutive parameter, the real

(imaginary) part can be altered. This necessary condition arises from causality [72].

The Kramers-Kronig relations have been used in metamaterial applications. As has

previously been discussed, the reflection, transmission, and absorption of a medium are

dependent upon the real and imaginary parts of the permittivity and permeability func-

tions. Hence, the Kramers-Kronig relations have been successfully used to produce wide-

band metamaterial absorbers [72], reflectionless absorption [20], and omni-directional

wave absorbtion [21].

2.4 Second Harmonic Generation

With the advent of masers and, subsequently, lasers, the opportunities to study light-

matter interactions became manifold due to the high intensities of the light beams which

were hitherto inaccessible. Optical phenomena, including second-harmonic [22] and third-

harmonic [23] generation were soon observed through utilizing these lasers with metals [22]

and non-metals [24].

These processes fall under the umbrella-term of nonlinear optics. The nonlinear opti-

cal interaction that is pertinent for my work is second-harmonic generation (SHG). Above,

we mentioned that the permittivity function is dependent upon the symmetry properties

of the crystal. The symmetry properties causes SHG to be split into two camps: cen-

trosymmetric and non-centrosymmetric, both of which we shall analyse a little later on,

but firstly a general overview of SHG shall be given.
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We saw from the discussion on electromagnetic moments that the entire electromag-

netic activity of a medium can be characterised by its polarization distribution (which,

via the continuity equation 2.9, can also be expressed in terms of the current density).

The full polarization function of a medium is described [25] by the equation:

P (t) = ǫ0[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...] (2.32)

where this equation theoretically extends to infinity. The first term in this equation

describes the linear response of the medium. The remaining terms characterise the non-

linear characteristics of the material in question. The description ‘nonlinear’ refers to the

fact that these pieces are dependent upon higher-order terms of the electric fields. It is

the second term in this equation, the term describing SHG, which concerns us within the

nonlinear framework of this thesis.

Second harmonic generation is the nonlinear optical process whereby an incident elec-

tromagnetic field of frequency ω interacts with a structure to produce an outgoing field

at frequency 2ω, referred to as Ω throughout this work, as depicted in Figure 2.5. This

generation of the second harmonic field can be due to the metallic surfaces [26] or the

bulk of media [27]. In order to study second-harmonic effects in more detail, it is crucial

to gain an insight into the workings of χ(2), the nonlinear electric susceptibility tensor.

χ(2), more accurately written as χ
(2)
ijk, has 27 components, as each subscript refers to

one component from either the x, y or z -directions. The non-zero components and their

respective magnitude naturally depend upon the crystal in question. When dealing with

centrosymmetric media, it is the surfaces of the medium that utilise this susceptibility

tensor, whereas for non-centrosymmetric media, the physics describing the bulk of the

material is dependent upon χ(2), as we shall show now.

Figure 2.5: a) The principle of SHG; two photons of frequency ω combine through a
medium with permittivity χ(2) to produce an outgoing photon of frequency 2ω. b) The
corresponding energy levels of this process. Adapted from [60].
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2.4.1 Centrosymmetric

‘Centrosymmetric’ is a term used when the crystal in question has an inversion centre.

In this regime, as shall be documented in detail in Chapter 4, the physics again branches

into two categories: the processes occurring at the surface of the medium and rather

different processes that occur at the bulk. The surface physics is encapsulated by the

following equation:

Ps
Ω(r) = ǫ0χ

(2)
s : E(r)E(r)δ(r− rs) (2.33)

where the Dirac delta function ensures only the surface is considered, and hence χ
(2)
s is

the nonlinear surface electric susceptibility tensor. Ps is the nonlinear polarization term

generated at the surface.

The second component of the nonlinear polarization is generated in the bulk of the

material and is written as:

Pb
i,Ω(r) = γ∇i [Eω(r) · Eω(r)] + δ′ [Eω(r) · ∇]Ei,ω(r)

+βEi,ω(r) [∇ · Eω(r)] + ζEi,ω(r)∇iEi,ω(r),
(2.34)

where γ, δ′, β, and ζ are material parameters dependent upon the crystal. It is important

to note that this γ is not the same as the collision-loss seen in Section 2.3. This polar-

ization originates from electric quadrupoles and magnetic dipoles located in the bulk.

This is the dominant bulk contribution in centrosymmetric media (a statement that is

rigorously explored in Chapter 4), as in this case the contributions of the electric dipoles

vanish, a fact that can be shown by solving the displacement equation for an electric

dipole, as shown in [25].

The third term in Eq. (2.34) can usually be neglected, as in homogeneous media (all

media studied throughout this thesis are homogenous) ∇·Eω(r) = 0. Furthermore, most

theoretical models [28] predict that the second term is also negligible. For example, in

the case of plane wave propagation in a homogeneous medium this term exactly cancels

due to the transverse character of the field at the fundamental field. Moreover, in the

case of noble metals the ratio between δ′ and γ is of the order of ν/ω [29], where ν is

the damping frequency, and this ratio is negligible at optical frequencies. It is important

to note, however, that the degree to which the term proportional to δ′ influences the

SHG is still a matter of debate [29]. Based on these considerations, as we shall see

later, throughout this thesis, the choice is made to set δ′ = 0 and to additionally neglect

the third term in Eq. (2.34). Furthermore, in the case of noble metals, the anisotropy

parameter has a negligible value, so that in our later calculations the choice is made to
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set ζ = 0 for gold.

Thus, these same nonlinear polarizations define nonlinear currents, via J
s,b
Ω (r) =

−iΩPs,b
Ω (r) (an e−iωt dependence of all harmonic fields is assumed throughout this thesis).

These nonlinear currents can subsequently be used to calculate the nonlinear optical far-

field by employing a near-field/far-field transformation [30], as later detailed in Chapter

3, thus enabling a complete characterization of the nonlinear scattering process.

2.4.2 Non-centrosymmetric

Comparatively, the physics that describes non-centrosymmetric SHG is simpler; only the

bulk has to be considered [25], and it is of the same form as Equation 2.33:

Pb
Ω(r) = ǫ0χ

(2)
b : E(r)E(r)δ(r− rb) (2.35)

where the ‘b’ written throughout the above equation is to denote the bulk part, with the

Dirac delta function again forcing all non-zero polarization values to belong to the bulk

of the structure.

2.4.3 Miller’s Rule

We have seen from the previous discussion that the linear permittivity of the materials

to be considered is dispersive in nature. An empirical rule that describes the frequency

dispersion of the nonlinear regime is Miller’s Rule [25]. Miller noticed [36] that the

frequency dispersion of the linear and nonlinear tensors can be arranged such that the

ratio:

χ(2)(ω1 + ω2, ω1, ω2)

χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2)
= C (2.36)

is constant. Explicitly, χ(1) is the linear susceptibility, χ(2) is any of the nonlinear surface

or bulk susceptibilities, namely χ
(2)
⊥,⊥,⊥,χ

(2)
‖,‖,⊥,χ

(2)
‖,⊥,‖, γ or ζ.

For the purposes of SHG, i.e. ω2=2ω1, this equation can be further simplified:

χ(2)(Ω, ω)

χ(1)(Ω)[χ(1)]2
= C (2.37)

Due to the nature of the Miller rule, the shape of the dispersion curves corresponding

to the other nonlinear susceptibilities will remain the same; only the scaling constant C

will change. It is clear from this equation that the dispersions in the linear regime become

amplified in the nonlinear regime. Hence, care must be taken to ensure the nature of the

nonlinearities are correctly determined.
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The lack of experimental data with regards to nonlinear susceptibilities often leads

to the nonlinear tensors being inferred from the above equations. For example, as we

shall see in Chapter 4, the nonlinear experimental data of gold was measured with a

wavelength of 810nm. This value can then be fed into Equation 2.37 to thereotically

determine the dispersion of the surface tensor.

The sensitivity of SHG is such that the resulting wave depends upon, including others,

the material roughness [31], crystal orientation [32]. As an example to exemplify this

sensitivity, SHG at a silver-air interface was shown to be enhanced by a factor of 104 due

to the surface roughness [34]. It is clear from the discussion above that laser polarization

and wavelength [35] also play a crucial role in engendering a nonlinear response.

2.5 Metamaterials

2.5.1 Nomenclature and Overview

The term ‘metamaterial’ first appeared in scientific literature in the year 2000 following

the paper of Smith et al., in which a material composite was created exhibiting a negative

refractive index [37], which we shall shortly observe. Given the widespread use of the

term in a quickly evolving field, it is perhaps unsurprising that there fails to be a rigorous

definition that accurately describes every use of the word. For example, the European

Unions Metamorphose Network, the primary sponsor of the Metamaterials Congress,

defines a metamaterial as “an arrangement of artificial structural elements, designed to

achieve advantageous and unusual electromagnetic properties” [38]. Such a definition,

as noted by Cai and Shalaev in their seminal work Optical Metamaterials [5] is overly

inclusive, as this definition makes no distinction between metamaterials and other man-

made structures, such as photonic crystals. It is common to say that metamaterials go

beyond the capabilities of nature, a fact that squares up with the very etymology of

the word: The prefix ‘meta’ has its roots in the Greek for ‘beyond’ or ‘transcendental’;

a meaning that is ascribed to these structures due to the fact that through tuning the

precise size, shape, geometry and orientation of the materials, it is thought to be possible

to achieve a material with properties that go beyond the capabilities of nature. The

phrase ‘thought to be’ is used in the preceding sentence due to a rather profound semantic

thought by Cai and Shalaev, namely, that in order to assert that a material goes beyond

the capabilities of nature is to assert the non-existence of something. As this thesis

is not to be weighed down by philosophical arguments, the definition of a metamaterial

within this thesis takes the form of Cai’s and Shalaev’s: “A metamaterial is an artificially

structured material which attains its properties from the unit structure rather than the
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constituent materials. A metamaterial has an inhomogeneity scale that is much smaller

than the wavelength of interest, and its electromagnetic response is expressed in terms

of homogenized material parameters.” Examples of these structures are shown in Figure

2.6.

Figure 2.6: A variety of meta-atoms, which form the basis of their respective metamate-
rials. Taken from [39].

Much in the same way that atoms form the basis of a crystal structure, we refer to

the basis of these metamaterials as meta-atoms. While metamaterials have applications

within, among others, acoustic [40] and structural physics [41], the focus of this thesis

is on optical metamaterials. These optical metamaterials are materials that have been

designed in order to interact with electromagnetic waves to produce new electromagnetic

phenomena, some examples of which are described below. In order to achieve this goal,

the unit cell of the metamaterial must be smaller than the wavelength of the incoming

light for the sake of anisotropy. This means that from the light’s ‘point-of-view’, the

materials are uniform, and are hence something wholly different from their subsequent

parts. The lack of inhomogeneities separates the behaviour of these structures from

others, such as photonic crystals and Bragg gratings, which usually rely on processes

such as diffraction and interference. It is crucial for the reader to constantly bear in mind

throughout this work that combining the different materials into a metamaterial causes

the entire composite to become something macroscopically different.
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Figure 2.7: The physics of negative refraction. An electromagnetic wave impinges on a
material with a negative refractive index, causing it to be refracted to the same side of
the normal. Taken from [42]

2.5.2 Negative Refraction

The advent of metamaterials lies in Sir John Pendry’s considerations about Veselago’s

idea: in 1968 Veselago stated [43] that if an incoming electromagnetic wave is greeted by

a medium that has simultaneously negative values for the real parts of the permittivity

and permeability, this wave will be refracted to the same side of the normal, as opposed

to the opposite side of the normal which is observed in ‘every-day’ refraction, as depicted

in Figure 2.7. Starting from Equation 2.12, it can be shown that for a negative refractive

index, the following conditions must hold [44]:

n′ = − 1√
2
(|ǫ||µ|+ µ′ǫ′ − µ′′ǫ′′)

1
2 (2.38a)

k′′ = − 1√
2

µ′′ǫ′ + µ′ǫ′′

(|ǫ||µ|+ µ′ǫ′ − µ′′ǫ′′)
1
2

(2.38b)

The above relations can be simplified into one equation:
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Figure 2.8: The first physical Split Ring Resonator, fabricated by Smith et al. [46]. The
dimensions of this copper structure are: c = 0.8mm, d = 0.2mm, r = 1.5mm, with a
resonance at 4.845 GHz.

ǫ′|µ|+ µ′|ǫ| < 0 (2.39)

Achieving a negative value for the electric permittivity of a material is simple: the

electrons of noble metals oscillate out of phase with the incoming electric field, giving

rise to a negative value for the noble metals’ permittivity, as we saw in Figure 2.2. The

challenge is being able to manipulate a material’s magnetic response: as has already been

stated, the deviation from unity for almost all material’s permeabilities is negligible. In

solving this problem, Pendry’s idea gave rise to the entire field.

In 1999 Pendry showed [45] in a ground-breaking theoretical paper that a split ring

resonator (SRR) has a magnetic response that is dependent upon the capacitance of the

rings:

µeff = 1−
πr2

a2

1 + 2lσ1

ωrµ0
i− 3lc20

πω2 ln 2c
d
r3

(2.40)

where σ1 and i are the resistance per unit length and current flowing through the SRR

respectively, while c, l and r are the dimension parameters of the SRR shown in Figure

2.8. Note that the physical SRR was fabricated by Smith et al. [46]. Therefore, by tuning

the structural parameters of the unit cell, it is possible to pick where in frequency space

a magnetic resonance is desired. Figure 2.9 shows a plot of this effective permeability for

typical structural dimensions, taken from [37].

An understanding of the SRR meta-atom is crucial for understanding the entire field

of metamaterials. The incoming light excites a current within the rings of the meta-

atom. Without the gap in the rings, a circular current would be generated. This would
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produce a magnetic response, but the deviation from unity for the permeability would

be small [5]. With the gaps, a capacitance is introduced. With both an inductance and

capacitance, the SRR meta-atom becomes a resonant LC-circuit, with a large potential

for permeability manipulation. The utilization of two rings with their gaps on either side

of the meta-atom is a convenient method of suppressing the electric dipole generated by

the structure: the electric dipole moment generated by one ring interacts destructively

with the other.

Figure 2.9: A plot of the calculated relative permeability - i.e. the magnetic response -
of the SRR meta-atom shown in the inset. A resonance near 8GHz can clearly be seen.
Taken from [37].

This theoretical idea became a physical reality two years later, when Shelby et al. [47]

fabricated a unit cell consisting of SRRs and a straight metallic wire, shown in Figure 2.10.

This design had been fabricated in 2000 by Smith et al. [46], but the refractive index had

not been measured. The SRR is responsible for the negative magnetic response, while

the metallic wire has a negative value for the relative permittivity. Across the entire

frequency range where both µ and ǫ are negative, a left-handed medium with inverted

Snell’s Law and Cherenkov radiation [46] is created.

As stated above, the wavelength of the probing light source must be larger than the

unit cell of the metamaterial. In order to experimentally confirm a theoretical metamate-

rial idea, it is therefore ideal to pick a light source with a large wavelength, as this enables

the construction of large unit cells, simplifying the fabrication process. Most metama-

terial ideas are therefore experimentally confirmed in the GHz-range. For example, a

probing frequency of 10GHz allows the unit-cell size to reach 3cm.
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Figure 2.10: The first metamaterial fabricated with a negative refractive index. This
left-handed material consists of SRRs combined with a metallic wire, two units which
control the relative permeability and permittivity respectively. Taken from [47].

Since the aforementioned pioneering works were published, SRRs have become the

bread-and-butter meta-atom, with successful fabrication for use, among others, at THz

frequencies [48–50]; optical frequencies [51,52]; being used to steer electromagnetic waves

for use as invisibility cloaks [53]; perfect lens production [54]; engendering Fano resonances

[55, 56], and flexible metamaterials [57–59].

While discussing the index of refraction, above, we saw that the electric dipoles of

a system which absorb the incoming light are responsible for the refractive index of the

structure. Even as the light source enters the regime of optical frequencies, the electric

dipoles are still able to respond to the probing signal. Hence, the relative permittivity can

easily differ from unity for a wide range of structures. On the other hand, the magnetic

dipoles of a system cannot respond quickly enough to magnetic fields generated at optical

frequencies. As has been described in this section, the relative permeability of a meta-

atom is dependent upon the current generated within the metal. This current arises

physically from the traveling free electrons of the metal, whose motion can be triggered

even at optical frequencies. Combining this motion with an SRR allows a metamaterial

to be constructed that can have a magnetic response at optical frequencies. In the most

common metamaterial designs, the meta-atoms of which the structure is composed are

placed far enough away from one another such that they don’t interact, as this would have

consequences on the intended physics. However, some metamaterial designs have been

proposed that deliberately go against the grain of this rule, producing interesting physical

effects. In analogy to the electronic or molecular energy theory, when electric or magnetic

meta-atoms interact, the energy levels of the coupled system will split from the initial
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Figure 2.11: The effects of hybridization in a metamaterial, taken from [42]. The indi-
vidual meta-atoms, in this case SRRs, are placed near enough to one another such that
they interact, leading to electromagnetic modes (excitations) that are sensitive to the
orientation of the coupling. As can be seen, as the lower SRR is rotated on its axis with
the upper SRR held fixed, the modes change in their relative strength.

isolated state [42]. This hybridization approach was first introduced in electric plasmon

structures [60]. In an analogous way to the plasma modes splitting into symmetric and

antisymmetric, as we saw in Section 2.3.4, magnetic meta-atoms, such as SRRs, can be

hybridized [61–63]. In fact, due to the SRRs’ abilities to generate strong electric and

magnetic dipoles and even higher-order terms, these structures offer great potential for

hybridization to be utilized. Figure 2.11, taken from [64], shows one such example of

hybridized SRR modes.

2.5.3 Invisibility Cloaks

Since the dawn of metamaterials, one idea that has garnered attention like no other is the

idea of producing an invisiblity cloak. While this exciting idea was usually confined to the

realm of science fiction, the advent of metamaterials now meant that more sophisticated

ways of controlling light were possible. Not surprisingly, then, a paper that documents the

ability of a metamaterial based on a split ring resonator to completely cloak an object [53]

at GHz frequencies is at the time of writing the third most-cited paper in the history of

metamaterial literature [65].

The structure in question can be seen in Figure 2.12. The layout consists of 10

concentric cylinders, each of which was three units cells tall. Through the mathematics

contained in [53], it can be shown that the permeability of the structure must vary

radially, the very feature we saw with the split ring resonators, above. Hence, these split

ring resonators were placed such that their axes were along the radial direction, fulfilling
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Figure 2.12: A metamaterial designed to cloak any object placed in the centre, taken
from one of the most cited papers in metamaterial literature [53]. a) The metamaterial
consists of ten layers of SRRs that vary in their structural parameters, engineered such
that the radial component of the permittivity varies throughout the structure. b) and c)
The structural parameters of the SRRs.

the required condition.

2.5.4 Optical Coefficients Generated by Metamaterials

One of the most frequent considerations for my work is to determine how much light

is reflected, transmitted, and absorbed by the designed metamaterials. A wave incident

on a metamaterial can only undergo one of these three interactions, meaning that this

relationship boils down simply to the expression:

T (ω) +R(ω) + A(ω) = 1 (2.41)

Where T, R, A are the absolute values of the transmission, reflection and absorp-

tion coefficients respectively. These three coefficients comprise the optical coefficients.

As we have seen previously, the metamaterial’s electromagnetic response is frequency-

dependent, so it is no surprise that the above optical coefficients must also contain this

dependency.
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The reflection of a material is dependent upon its complex impedance, Z :

Z =

√

µ(ω)

ǫ(ω)
(2.42)

The impedance of a vacuum is 376.7Ω. If the impedance of the metamaterial of

interest is equal to this value, then naturally there will be no reflection, as from the

light’s ‘point-of-view’ there is no physical difference between the metamaterial and the

vacuum. A strong mismatch between the impedances gives rise to a strong reflective

character.

The transmissivity of a metamaterial is dependent upon the imaginary part of the

refractive index. This parameter, referred to as k′′ in the equations above, corresponds to

the optical losses that occur in the metamaterial’s interaction with the electromagnetic

wave. The imaginary part of the refractive index is directly related to both the absorption

coefficient, α, and conductivity, σ, of the metamaterial, as shown in the following two

equations:

k′′ =
σ

ω
(2.43)

α =
4πk′′

λ
(2.44)

Therefore, the greater the imaginary part of the refractive index, the greater the conduc-

tivity of the material, corresponding to a larger reduction of the transmission of the light

source through this material.

Theoretical retrieval equations [37, 66] enable a metamaterial’s relative permittivity

and permeability to be calculated from the optical coefficients:

t−1 = [cos(nkd)− i(z +
1

z
) sin(nkd)]eikd (2.45a)

r

t′
= −1

2
i(z − 1

z
) sin(nkd) (2.45b)

Where d is the thickness of the metamaterial, n is its refractive index and z its impedance.

k is the wavelength of the external light source and t′ =eikd. These equations can naturally

be inverted. For brevity:

n =
1

kd
[[Im(ln(einkd)) + 2mπ]− iRe(ln(einkd))] (2.46)

Where m is an integer which must be correctly determined. It arises from the fact that

the logarithm functions here have multiple branches. An incorrect value for m returns a

discontinuous refractive index function, a result which has no basis in reality.
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Since the revelation that metamaterials seem to have the potential of having both elec-

tric and magnetic responses at almost any frequency (fabrication issues aside), metamate-

rials have been widely applied as absorbers. Such absorber designs include polarisation-

indepedent [67, 68]; incident angle independent [69–71]; broadband [72–74]; multiband

[75–78], perfect absorbers [79–82], and, less commonly, narrow-band [83]. The advantage

of metamaterials for absorption purposes allow many of these features to be incorporated

into one small and light product.

2.6 Multilayer Composites

Figure 2.13: The physical setup of a stratified composite. The incident light wave,
originally traveling through a medium with refractive index n1 impinges on an interface
of a composite. This composite is composed of two alternating layers with different
refractive indices and heights. The electromagnetic wave finally exits the composite into
the final medium with refractive index nf . Adapted from [4].

A medium whose properties are constant throughout each plane perpendicular to a

fixed direction is called a stratified medium [4]. A stratified medium with height h is

characterised by an electric permittivity function ǫ and magnetic permeability function

µ, a fact that should by now be unsurprising to the reader given the discussions in the

previous chapters. Assuming that our multilayer composite is periodic in the z -direction,

then our defined functions are dependent upon z such that:
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ǫ(z + jh) = ǫ(z) (2.47a)

µ(z + jh) = µ(z) (2.47b)

where j is an integer in some fixed range 1≤j≤N, as N is the total number of layers. The

physics of this problem is depicted in Figure 2.13.

Before continuing, it is important to introduce a characteristic matrix, M, that is

essentially a convenient piece of mathematics that enables the following equations to

be simplified. While a full characterisation of this matrix is given in [4], it would be

confusing to the reader not to elucidate its significance. Namely, it relates the x - and

y-components of the electric or magnetic vectors in the plane z=0, i.e. outside of the

stratified medium to the components in an arbitrary plane z=constant. This allows us to

determine the propagation of a plane monochromatic wave through our stratified medium

by only considering an appropriate two-by-two unimodular matrix M. The mathematical

underpinnings of M are such that:

M(zN) = M1(z1)M2(z2 − z1)...MN(zN − zN−1) (2.48)

The characteristic matrix that corresponds to one period is:

M(h) =

[

m11 m12

m21 m22

]

By invoking the periodicity conditions from above, the characteristic matrix of the full

setup, i.e. including all periods becomes:

M(Nh) = M(h) ·M(h)...M(h) = [M(h)]N (2.50)

The solution to N th-power unimodular matrices [84] allows the equation to take the form:

[M(h)] =

[

m11UN−1(a)− UN−2(a) m12UN−1(a)

m21UN−1(a) m22UN−1(a)− UN−1(a)− UN−2(a)

]

where:

a =
1

2
(m11 +m22) (2.52)
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and UN are the Chebyshev polynomials of the second kind [84]:

UN(x) =
sin[(N + 1]) cos−1(x)√

1− x2
(2.53)

So far we have considered a periodically stratified medium of uniform heights, permit-

tivities, and permeabilities. The most typical Bragg filters, as we shall see in Chapter 3,

consist of two layers that alternate. Naturally, we therefore want to generalise the above

equations to allow for layers of different heights and refractive indices. We refer to the

layers as n2 and n3 with respective heights of h2 and h3, as shown in Figure 2.13. As

again we do not play with the permeabilities in this thesis, we set µ=1. The characteristic

matrix of a single period is then [4]:

M2(h) =

[

cos β2 − i
p2
sin β2

−ip2 sin β2 cos β2

][

cos β3 − i
p3
sin β3

−ip3 sin β3 cos β3

]

=
[

cos β2 cos β3 − p3
p2
sin β2 sin β3 − i

p3
cos β2 sin β3 − i

p2
sin β2 cos β3

−ip2 sin β2 cos β3 − ip3 cos β2 sin β3 cos β2 cos β3 − p2
p3
sin β2 sin β3

]

where:

β2 =
2π

λ0

n2h2 cos θ2 (2.55a)

β3 =
2π

λ0

n3h3 cos θ3 (2.55b)

p2 = n2 cos θ2 (2.55c)

p3 = n3 cos θ3 (2.55d)

h = h2 + h3 (2.55e)

With the above equation, in combination with Equation 2.50, the characteristic matrix

M2N(Nh) of the multilayer, which now has 2N layers in total is given by:

M2N(Nh) =

[

M11 M12

M21 M22

]
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where:

M11 = (cos β2 cos β3 −
p3
p2

sin β2 sin β3)UN−1(a)− UN−2(a) (2.57a)

M12 = −i(
1

p3
cos β2 sin β3 +

1

p2
sin β2 cos β3)UN−1(a) (2.57b)

M21 = −i(p2 sin β2 cos β3 + p3 cos β2 sin β3)UN−1(a) (2.57c)

M22 = (cos β2 cos β3 −
p2
p3

sin β2 sin β3)UN−1(a)− UN−2(a) (2.57d)

a = cos β2 cos β3 −
1

2
(
p2
p3

+
p3
p2
) sin β2 sin β3 (2.57e)

Finally, this allows the transmission and reflection coefficients to be obtained:

r =
(M11 +M12pf )p1 − (M21 +M22pf )

(M11 +M12pf )p1 + (M21 +M22pf )
(2.58)

t =
2pf

(M11 +M12pf )p1 + (M21 +M22pf )
(2.59)

where:

p1 =

√

ǫ1
µ1

cos θ1 (2.60a)

pf =

√

ǫf
µf

cos θf (2.60b)

2.6.1 Nonlinear Optics with Metamaterials

As a large portion of my work involves analysing the nonlinear signal arising from meta-

materials in the framework of second harmonic generation, it is important to discuss the

impact of metamaterials on the world of nonlinear physics. Given the impact of meta-

materials on linear optics, might we expect to see unusual and useful behaviour arising

from the nonlinearities of these structures?

Observation of nonlinear optical activity due to the fast electronic mechanism of non-

linearity became possible in 1979 [85], using a high-intensity single-mode nanosecond-

pulsed laser and the natural crystal of lithium iodate that is simultaneously a highly

nonlinear and strongly optically active medium [86]. Thermal nonlinear optical activ-

ity was seen in optically active crystals [87–89]. Since then nonlinear optical activity

has been observed in a number of chiral liquids [90–93]. Nevertheless, the effect re-

mained challenging to detect, making it unsuitable for routine practical applications,

even in spectroscopy [85]. Due to the difficulties of performing nonlinear measurements

on metamaterials, the focus of nonlinear research in this area is mostly limited to the
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theoretical. Negative index metamaterials have been especially popular in analysing

nonlinear signals, with research including general treatments for nonlinear wave propaga-

tion and nonlinear Schrödinger equations in nonlinear index materials [94,95], as well as

specific nonlinear processes such as second-harmonic generation (SHG) and parametric

amplification [96–99]. However, that is not to say that experimental research has not

been undertaken. Indeed, metamaterial nonlinearities have been experimentally verified

for a variety of structures, including meta-surfaces producing third-harmonic Fano reso-

nances [100], giant nonlinear optical activity in a plasmonic metamaterial [85] and non-

linearities through structures combined with graphene [101]. By exciting a structure that

has both strong field enhancement and strong nonlinear properties, large nonlinear signals

can be produced at relatively low optical powers. In particular, nonlinear optical pro-

cesses in plasmonic structures have been studied extensively [102,103], including surface-

enhanced Raman scattering [104–106], second-order optical interactions [107–118], and

Kerr interactions [119, 120]. In circumventing the losses present due to the metals, the

nonlinearities of dielectrics are also becoming increasingly more researched [121,122].

2.6.2 Metals vs. Dielectrics

The strong field enhancement that accompanies the excitation of surface-plasmon polari-

tons (SPPs) on metallic nanoparticles [6, 123] makes these nanostructures ideal candi-

dates for many applications, including nanoscale antennae, single-molecule detection via

surface-enhanced Raman scattering, metallic nanotips for near-field optical microscopy,

and optically-active guiding nanostructures [104, 106, 124–128]. However, the generation

of large optical fields comes at a price of significant optical losses present in metals - the γ

parameter that we saw in Eq. 2.13. In fact, these losses are viewed as the main factor that

still precludes a widespread use of plasmonic devices in practical applications [129]. Meth-

ods that attempt to overcome this restriction include using doped semiconductors [130]

and gain media [131]. We will see the difficulties that arise when attempting to engineer

a transmission notch filter based on trenches in gold in Chapter 6.

An alternative to plasmonic materials, which aims to circumvent optical losses, con-

sists of using all-dielectric resonant structures [132, 133]. Unlike the excitation of the

metallic plasma that engenders the plasmonic resonances, it is the resonances of displace-

ment currents, known as Mie resonances [134], that enable these all-dielectric compo-

nents to be used for optical field manipulation. While the field enhancement of these

dielectric structures is typically weaker than that of their metallic counterparts, their

high quality factors enable intriguing optical phenomena to be produced, including mag-

netic mirrors [135], reflectionless ultrathin sheets mimicking highly directional Huygens

sources [136, 137], and toroidal dipole sources [138, 140]. These dielectric nanostructures
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have shown great promise in biosensing, optoelectronics, and energy applications [141].

Hence, the trade-off is clear: the selection of metal or dielectric is dependent upon the

requirements of particular applications, namely whether one desires strong field enhance-

ment or low optical losses.

This dichotomy extends to nonlinear nanoscale photonics. By exciting a structure

that has both strong field enhancement and strong nonlinear properties, large nonlinear

signals can be produced at relatively low optical powers. As in the linear case, these

strong nonlinear optical effects in plasmonic structures are accompanied by large optical

losses, which restrict the range of applications to which nonlinear optical interactions can

be employed. It is therefore of particular interest to understand, in the context of non-

linear nanophotonics, the limitations and advantages provided by plasmonic structures,

as compared to those characteristic to all-dielectric resonant subwavelength structures.

2.6.3 The Electromagnetic Multipole Family

Figure 2.14: The dipole, quadrupole, and octupole moments for the electric, magnetic,
and toroidal family, taken from [142]. Higher-order configurations naturally also exist,
but are not shown. These three families complete the entire electromagnetic group - all
electromagnetic sources are composed from these moments. The radiation patterns of
these moments are also given.

Up to this point, the electromagnetic properties of the media have been described
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in terms of the macroscopic material parameters of electric permittivity and magnetic

permeability, which dictate the extent to which the media respond to external electro-

magnetic sources. These parameters are a convenient representation, which describe the

underlying microscopic features of charge and current excitations. These excitations,

however, can be decomposed into terms of the multipolar expansion. For full details of

this expansion, the reader is encouraged to study Appendix A, where the origins and

consequences of the multipoles are pursued mathematically. Here, we will simply state

the key point: it is possible to consider electromagnetic waves as generated by an infinite

series of excitations of varying significance.

Through consideration of the first terms of the multipolar expansion, we arrive at

the equations for the electric dipole (p), magnetic dipole (m), and toroidal dipole (T)

alongside the electric quadrupole (Qαβ) and magnetic quadrupole (Mαβ):

p =
1

iω

∫

Jd3r (2.61a)

m =
1

2c

∫

(r× J)d3r (2.61b)

T =
1

10c

∫

[(r · J)r− 2r2J]d3r (2.61c)

Qαβ =
1

iω

∫

[rαJβ + rβjα − 2

3
(r · J)]d3r (2.61d)

Mαβ =
1

3c

∫

[(r× J)αrβ + (r× J)βrα]d
3r (2.61e)

The three dipoles - the first three subequations shown above - are the most primitive

building blocks of all electromagnetic sources of radiation, each belonging to a separate

class of excitations. By ‘separate’, the following fundamental principle is meant: it is

impossible to mathematically express the dipoles in terms of one another [143], and

hence each family must be individually studied for a full understanding of the underlying

physics.

These five excitations are the most important terms of the multipolar expansion with

regards to my work. The higher-order terms are often negligible within the framework of

my studies, and hence are not shown, an appropriate ansatz, as these higher-order terms

are excited with increasingly higher frequencies [144], which are not considered within

this work.

The electric dipole is a configuration of two charges, one negative and one positive,

with the direction of the electric dipole vector pointing towards the positive charge. As

can be seen in Figure 2.14, higher-order terms - such as the electric quadrupole and

octupole - can be formed by combining electric dipoles for more complex arrangements.
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A current oriented in a closed loop forms a magnetic dipole. The convention is that

a current traveling in an anti-clockwise direction gives rise to a positive-valued magnetic

moment. Again, higher-order terms in the magnetic family can be created.

While the magnetic moment is formed from a current traveling toroidally, the toroidal

dipole arises from a current traveling poloidally. This is equivalent to having magnetic

moments forming a closed loop. Like the magnetic moments, an anti-clockwise-traveling

current engenders a positive-valued toroidal response. Once again, there is no theoretical

limit on having higher-order toroidal terms.

The toroidal dipole is often overlooked in a full electromagnetic decomposition due to

its comparative weakness with its siblings [144]. The power radiated by the electric and

magnetic moments often drown out the toroidal moment’s electromagnetic contribution.

It must be noted that Radescu and Vaman are authors of two excellently in-depth papers

detailing the precise formulations of the electromagnetic fields produced by the toroidal

moments [143,185].

It is possible to produce an electromagnetic configuration known as an anapole mo-

ment, whereby the radiation emitted by the toroidal moments cancels with the electric

moment radiation. Upon the condition:

P = ikT (2.62)

the electric and magnetic fields of the system vanish, but a non-zero vector potential

remains. This unusual arrangement has been put forward as an explanation for dark

matter [145]. Usually, if the wavelength of the field is large compared to the size of the

object, the scattering is described mainly by the lowest- order multipole, the electric

dipole, while the contributions from all higher-order multipoles are considered as mere

perturbations [146]. However, it has been shown that in specifically designed optical

metamaterials, the contribution of the magnetic dipole [147] and the electric quadrupole

[148] can be generated to be significant role-players in the material’s interaction with

a light source. As we shall shortly see, deliberately creating strong toroidal dipoles

that are in fact stronger than their electric and magnetic counterparts in metamaterials

has been one of the main focuses of my work. To do this, the other electromagnetic

moments must also be carefully analysed; the structures designed to house prevalent

toroidal dipoles are engineered so as to suppress the electric and magnetic moments,

often through creating antisymmetric excitations that cancel with one another. Taking

care to plot the strengths of the relevant dipoles and corroborating the results through

plotting the fields and current distributions at the relevant wavelengths is therefore of

paramount importance.
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2.6.4 Toroidal Metamaterials

One of the main focuses of my work has been to analyse the different ways in which

metamaterials can be used to host toroidal dipoles, particularly at the second harmonic.

This section will detail how this is achievable. While the toroidal moment that we saw

in Section 2.6.3 was introduced by Zel’dovich in 1957, toroidal ordering in the solid

state was first investigated theoretically in 1946 by Charles Kittel [149] in his work on

ferromagnetic domains of small particles [150] and experimentally in 1974 [151] followed

by a series of observations in 1984 and 1985, which confirmed the existence of static

toroidal moments [152,153].

Analogous to the electric polarization and magnetization that we observed at the

start of this Chapter in Equation 2.2, a toroidal parameter, namely, toroidization, can

be introduced. While the electric polarization effectively describes the electric dipole

density and the magnetization describes the magnetic dipole density, the toroidization

refers to the density of the toroidal dipoles. Materials that exhibit macroscopic toroidiza-

tion are referred to as ferrotoroids, again analogous to ferroelectrics and ferromagnetics.

Ferrotoroids, due to their make-up, will exhibit electric polarization (magnetization) in

Figure 2.15: The prevalence of toroidal structures in the natural world. Taken from [149].

response to an external magnetic (electric) field [149]. This magnetoelectric response

could well have an influence in applications in technological areas, such as data storage,

where for example an electric field can read or write information in the magnetic state

of a medium [154,155]. In addition, ferrotoroids are expected to exhibit unique forms of
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magnetic response [156–158] and nonreciprocal reflection and dichroism [159].

Since the above toroidal introductions, static toroidal dipoles have been found to exist

in many natural media, including enzymes [160], DNA condensates [161], proteins [162],

borocites [163], pyroxenes [164],olivines [165], metals [166], glasses [167], and hydrocar-

bons [168]. The toroidal activities of these substances, however, have always been weak.

The prevalence of toroidal moments is described wonderfully by a figure taken from [149],

shown in Figure 2.15.

In 2008, a pioneering theoretical work by Marinov et al. [169] showed that a 3D-

array of toroidal solenoids would produce a significant dynamic toroidal response. The

first toroidal metamaterial was fabricated and analysed two years later by Kaelberer et

al. [170], with a strong toroidal dipole being prevalent. Since this work, which was aimed

at the microwave regime, a variety of toroidal metamaterials have been produced for

both microwaves [171–173] and optical frequencies [174–177] in order to further explore

this new field. Peculiar effects pertaining to toroidal metamaterials include strong circu-

lar dichroism [178], electromagnetic-induced transparency [179], non-reciprocal refractive

indices [180], parity nonconservation in atomic spectra [181–183], and violations of New-

ton’s Third Law [184]. It must be added that energy conservation is not broken here once

the energy and momentum of the electric field is taken into account.

As the far-field radiated by this moment is indistinguishable from the electric dipole

far-field [139], it is possible to construct a system whereby the electric and toroidal fields

destructively interfere with one another, leading to a non-radiating system known as an

anapole moment [140], the discovery of which has been put forth as an explanation for

dark matter [145]. While the behaviour of the toroidal dipole is clearly rich with curious

activity, this moment is often overlooked in full electromagnetic expansions [144,185,186]

due its comparative weakness with its siblings, an approach that has shown to be often

dubious to the neglection of some pertinent physics [185].

The applications of toroidal moments include, among others, nanolaser [187] and

plasmonic sensors [188].

Figure 2.16, taken from [170], shows the basic premise of toroidal metamaterials. In

order to obtain a toroidal dipole, a closed loop of magnetic dipoles must be formed. To

this end, Kaelberer et al. employed the use of split ring resonators. The light, oriented

at a 45-degree angle with respect to the structure so as to ensure maximal interaction,

excites a current within each loop. From the discussion of toroidal dipoles, it has been

shown that a looped current produces a magnetic moment. Therefore, each split ring

resonator produces their own magnetic moment, and these in turn form a closed loop,

engendering a toroidal dipole. The orientation of the gaps in the rings is to ensure a

minimal electric dipole excitation.

60



Figure 2.16: A metamaterial taken from [170], designed to host a toroidal dipole moment.
Each metallic SRR is excited by the incoming electromagnetic wave. The induced currents
give rise to magnetic moments, which in turn form a loop. A toroidal dipole is therefore
generated.

Recently, an innovative work has shown that metal is not a required composite for

a meta-atom [138] to produce dynamic toroidal dipoles. In this cited work, the struc-

ture in question consists of four parallel LiTaO3 cylinders, shown in Figure 2.17. The

incoming light induces Mie resonances, generating magnetic moments in each sub-unit

of the structure, giving rise to a toroidal dipole. As is often the case with fabricating a

structure designed to host a strong toroidal moment, achieving a ‘perfect’ loop (i.e. a

total magnetic moment equal to zero) is a theoretical impossibility; the desired circle is

‘chopped’ into a number of segments that approximate a loop. In the depicted examples

of Figure 2.16 and 2.17, if more units were incorporated, it would naturally more resemble

a circular structure.

As we saw from the previous discussion, the use of all-dielectric metamaterial struc-

tures allows the dissipation loss of metals to be overcome [189, 190]. It is therefore no

surprise that all-dielectric structures have shown promising results for biosensing and en-

ergy applications [141]. All-dielectric structures have since been theoretically [190] and

experimentally [191,192] shown to host strong toroidal dipoles.

2.7 Conclusions

We have analysed the underlying physics of metamaterials, showing how some novel phe-

nomena can arise from metallic and all-dielectric meta-atoms. In particular, focus was
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Figure 2.17: A metamaterial taken from [138], designed to host a toroidal dipole moment.
The external light excites displacement currents within each cylinder, which in turn form
a magnetic moment. The four magnetic moments interact with one another in a way
that creates a closed loop, forming a toroidal dipole without the use of metal.

given to the electric permittivity functions of the materials, as these are in effect respon-

sible for the macroscopic electromagnetic responses. Due to the fact that a large body of

my work relies on engendering nonlinear signals from meta-atoms, the physics of second-

harmonic generation of both plasmonic and all-dielectric meta-atoms was delineated in

order to familiarise the reader with the applications and ideas of this field. The multipole

expansion, with specific attention being given on the more exotic toroidal dipole, was

also presented. These electromagnetic excitations provide detailed explanations of the

workings of the meta-atoms. The curious phenomena and applications of these moments

were also specified.
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Séances (Paris, Bureau International des Poids et Mesures, 1976).

[39] C. M. Soukoulis, and M. Wegener, “Past achievements and future challenges in the

development of three-dimensional photonic metamaterials”, Nat. Phot. 5, 523-530

(2011).

65



[40] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ul-

trasonic metamaterials with negative modulus”, Nat. Mat. 5, 452456 (2006).

[41] X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D.

Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, and C.

M. Spadaccini, “Ultralight, ultrastiff mechanical metamaterials”, Science 344, 1373-

1377 (2014).

[42] Y. Liu, and X. Zhang, “Metamaterials: a new frontier of science and technology”,

Chem. Soc. Rev. 40, 2494-2507 (2011).

[43] V. G. Veselago, “The electrodynamics of substances with simulataneously negative

values of ǫ and µ Sov. Phys. Usp. 10, 509-514 (1968).

[44] R. A. Depine, and A. A. Lakhtakia, “New condition to identify isotropic dielectric-

magnetic materials displaying negative phase velocity”, Microw. Opt. Technol. Lett.

41, 315-316 (2004).

[45] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from

conductors and enhanced nonlinear phenomena”, IEEE Transactions on Microwave

Theory and Techniques, 47, 2075-2084 (1990).

[46] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Com-

posite medium with simultaneously negative permeability and permittivity”, Phys.

Rev. Lett. 84, 4184-4187 (2000).

[47] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative

index of refraction”, Science 292, 77-79 (2001).

[48] H. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D.

Averitt, “Active terahertz metamaterial devices”, Nature 444, 597600 (2006).

[49] W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D.

Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimen-

tal investigations”, Phys. Rev. B 75, 041102(R) (2007).

[50] A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and

analysis of terahertz metamaterials based on rectangular split-ring resonators”, Appl.

Phys. Lett. 92, 011119 (2008).

[51] M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit

split-ring resonators at optical frequencies: limits of size scaling”, Opt. Lett. 31,

1259-1261 (2006).

66



[52] T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and

R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an

improved LC model”, Opt. Exp. 16, 19850-19864 (2008).

[53] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields”,

Science 312, 1780-1782 (2006).

[54] J. B. Pendry, “Negative refraction makes a perfect lens” Phys. Rev. Lett. 85, 3966-

3969 (2000).

[55] B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of

merit Fano metamaterial based on dark ring magnetic mode”, Opt. Commun. 335,

60-64 (2015).

[56] I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker,

T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in

mirrored single-gap asymmetric split ring resonator terahertz metamaterials”, Appl.

Phys. Lett. 101, 071108 (2012).

[57] H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and

R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide

substrates”, J. Phys. D: Appl. Phys. 41, 232004 (2008).

[58] K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic

metamaterials at terahertz frequencies”, Opt. Exp. 19, 12619-12627 (2011).

[59] H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D.

Averitt, F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies”,

Adv. Mat. 22, 3527-31 (2010).

[60] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for

the plasmon response of complex nanostructures”, Science 302, 419-422 (2003).

[61] H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic

plasmons in metamaterials”, Phys. Status. Solidi B 246, 1347-1406, (2009).

[62] H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X.

Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies

in metallic nanostructures”, Phys. Rev. B 76, 073101 (2007).

[63] D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar,

“Metamaterial tuning by manipulation of near-field interaction”, Phys. Rev. B 86,

155128 (2010).

67



[64] N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Lagrange model for the chiral optical

properties of stereometamaterials”, Nat. Photonics. 3, 157-162 (2009).

[65] http://wok.mimas.ac.uk/

[66] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr. and J. A. Kong, “Robust

method to retrieve the constitutive effective parameters of metamaterials”, Phys.

Rev. E 70, 016608 (2004).

[67] N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla,

“Design, theory, and measurement of a polarization-insensitive absorber for terahertz

imaging”, Phys. Rev. B 79, 207402 (2009).

[68] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber

and its application as plasmonic sensor”, Nano Lett. 10, 23422348 (2010).

[69] L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. Luo, A. J. Taylor, and

H. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a

broad and flat high absorption band”, Opt. Lett. 37, 154-156 (2012).

[70] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy,

K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of in-

cidence terahertz metamaterial absorber: design, fabrication, and characterization”,

Phys. Rev. B 78, 241103(R) (2008).

[71] M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal

emitter in the terahertz regime”, Phys. Rev. B 79, 033101 (2009).

[72] D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, “Ultrawideband disper-

sion control of a metamaterial surface for perfectly-matched-layer-like absorption”,

Phys. Rev. Lett. 111, 187402 (2013).

[73] T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-

independent perfect absorber using a phase-change metamaterial at visible frequen-

cies”, Sci. Rep. 4, 3955 (2014).

[74] S. Gu, J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, “A broadband

low-reflection metamaterial absorber”, J. Appl. Phys. 108, 064913 (2010).

[75] H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W.

J. Padilla, X. Zhang, R. D. Averitt, “A dual band terahertz metamaterial absorber”,

J. Phys. D: Appl. Phys. 43, 225102 (2010).

68



[76] Q. Wen, H. Zhang, Y. Xie, Q. Yang, and Y. Liu, “Dual band terahertz metamaterial

absorber: design, fabrication, and characterization”, Appl. Phys. Lett. 95, 241111

(2009).

[77] D. T. Vieta, N. T. Hiena, P. V. Tuonga, N. Q. Minha, P. T. Tranga, L. N. Lea, Y.

P. Leeb, and V. D. Lama, “Perfect absorber metamaterials: peak, multi-peak and

broadband absorption” Opt. Commun. 322, 209-213 (2014).

[78] Z. Mao, S. Liu, B. Bian, B. Wang, B. Ma, L. Chen, and J. Xu, “Multi-band

polarization-insensitive metamaterial absorber based on chinese ancient coin-shaped

structures”, J. Appl. Phys. 115, 204505 (2014).

[79] N. I. Landy, S.; Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect

metamaterial absorber”, Phys. Rev. Lett. 100, 207402 (2008).

[80] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency

selective metamaterial with near-unity absorbance”, Phys. Rev. Lett. 104, 207403

(2010).

[81] D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwave-

length fishnetlike metamaterial-based film terahertz absorbers”, Phys. Rev. B 82,

205117 (2010).

[82] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance

optical absorber based on a plasmonic metamaterial”, Appl. Phys. Lett. 96, 251104

(2010).

[83] Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice

resonances in nanostructured metal surfaces” ACS Nano 8, 82428248 (2014).

[84] F. Abeès, “Recherches thoriques sur les propriétés optiques des lames minces”, Le

Journal de Physique et le Radium 11, 301-310 (1950).

[85] M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a

plasmonic metamaterial”, Nat. Comm. 3, 833 (2012).

[86] S. A. Akhmanov, B. V. Zhdanov, N. I. Zheludev, A. I. Kovrigin, and V. I. Kuznetsov,

“Nonlinear optical activity in crystals”, JETP Lett. 29, 264-268 (1979).

[87] D. Vlasov, and V. Zaitsev, “Experimental observation of nonlinear optical activity”,

JETP Lett. 14, 112-115 (1971).

69



[88] V. V. Borshch, M. P. Lisitsa, P. E. Mozol, and I. V. Fekeshgaz, “Self-induced rotation

of the direction of polarization of light in crystals of 422 symmetry”, Sov. J. Quantum

Electron 8, 393-395 (1978).

[89] N. I. Zheludev, I. S. Ruddock, and R. Illingworth, “Intensity dependence of thermal

nonlinear optical activity in crystals”, Appl. Phys. B 49, 65-67 (1989).

[90] R. Cameron and G. Tabisz, “Observation of two-photon optical rotation by

molecules”, Mol. Phys. 90, 159-164 (1997).

[91] H. Mesnil, F. Hache, “Experimental evidence of third-order nonlinear dichroism in

a liquid of chiral molecules”, Phys. Rev. Lett. 85, 4257-4260 (2000).

[92] H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C.

Andraud, “Experimental observation of nonlinear circular dichroism in a pump-

probe experiment”, Chem. Phys. Lett. 338, 269-276 (2001).

[93] P. P. Markowicz, M. Samoc, J. Cerne, P. N. Prasad, A. Pucci, and G. Ruggeri,

“Modified z-scan techniques for investigations of nonlinear chiroptical effects”, Opt.

Exp. 12, 5209-5214 (2004).

[94] V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and

nonlinear wave propagation in negative refraction metamaterials”, Phys. Rev. B 69,

165112 (2004).

[95] M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci,

M. J. Bloemer, and A. Zheltikov, “Generalized nonlinear Schrdinger equation for

dispersive susceptibility and permeability: application to negative index materials”,

Phys. Rev. Lett. 95, 013902 (2006).

[96] A. K. Popov, and V. M. Shalaev, “Negative-index metamaterials: second-harmonic

generation, ManleyRowe relations and parametric amplification”, Appl. Phys. B 84,

131-137 (2006).

[97] I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Second-harmonic generation in

nonlinear lefthanded metamaterials”, J Opt Soc Am B 23, 529-534 (2006).

[98] M. Scalora, G. DAguanno, M. Bloemer, M. Centini, D. de Ceglia, N. Mattiucci,

and Y. S. Kivshar, “Dynamics of short pulses and phase matched second harmonic

generation in negative index materials”, Opt. Exp. 14, 4746-4756 (2006).

[99] A. K. Popov, and V. M. Shalaev, “Compensating losses in negative-index metama-

terials by optical parametric amplification”, Opt. Lett. 31, 2169-2171 (2006).

70



[100] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky,

D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces”

Nano Lett. 15, 73887393 (2015).

[101] A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis,

S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial”

Appl. Phys. Lett. 100, 181109 (2012).

[102] M. Kauranen, and A. V. Zayats, “Nonlinear Plasmonics”, Nat. Photon. 6, 737-748

(2012).

[103] J. Butet, P. F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in

plasmonic nanostructures: from fundamental principles to advanced applications”,

ACS Nano 9, 10545-10562 (2015).

[104] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S.

Feld, “Single molecule detection using surface-enhanced Raman Scattering (SERS)”,

Phys. Rev. Lett. 78, 1667-1670 (1997).

[105] S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by

surface-enhanced Raman Scattering”, Science 275, 1102-1106 (1997).

[106] R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M.

B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated

conical metallic-probe tips”, Opt. Exp. 14, 2921-2931 (2006).

[107] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic

generation in reflection from media with inversion symmetry”, Phys. Rev. 178, 1528-

1528 (1969).

[108] S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized

second-harmonic enhancement in random metal nanostructures”, Phys. Rev. Lett.

90, 7403-7406 (2003).

[109] J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C.

Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear opti-

cal response of metallic subwavelength hole arrays”, Phys. Rev. Lett. 97, 146102

(2006).

[110] W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J.

Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned

isotropic nonlinear material”, Nano Lett. 6, 1027-1030 (2006).

71



[111] L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation

from surface plasmon waves scattered by metallic nanostructures”, Phys. Rev. B 75,

5401-5407 (2007).

[112] G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multi-

polar second-harmonic generation in noble metal nanoparticles”, J. Opt. Soc. Am.

B 25, 955-960 (2008).

[113] V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. V. Dorpe, O. A. Akt-

sipetrov, G. A. E. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmet-

ric optical second-harmonic generation from chiral G-shaped gold nanostructures”,

Phys. Rev. Lett. 104, 7401-7404 (2010).

[114] C. G. Biris, and N. C. Panoiu, “Second harmonic generation in metamaterials based

on homogeneous centrosymmetric nanowires”, Phys. Rev. B 81, 5102-5117 (2010).

[115] L. H. Haber, S. J. J. Kwok, M. Semeraro, and K. B. Eisenthal, “Probing the colloidal

gold nanoparticle/aqueous interface with second harmonic generation”, Chem. Phys.

Lett. 507, 11-14 (2011).

[116] A. Capretti, E. F. Pecora, C. Forestiere, L. D. Negro, and G. Miano, “Size-

dependent second-harmonic generation from gold nanoparticles”, Phys. Rev. B 89,

5414-5418 (2014).

[117] R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and

M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance

enhancement versus particle geometry”, Nano Lett. 15, 530-534 (2015).

[118] G. Sartorello, N. Olivier, J. Zhang, W. Yue, D. J. Gosztola, G. P. Wiederrecht,

G. Wurtz, and A. V. Zayats, “Ultrafast optical modulation of second- and third-

harmonic generation from cut-disk-based metasurfaces” ACS Photon. 3, 1517-1522

(2016).

[119] I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, “Single-photon tun-

neling via localized surface plasmons”, Phys. Rev. Lett. 88, 7402-7405 (2002).

[120] X. W. Wang, G. C. Schatz, and S. K. Gray, “Ultrafast pulse excitation of a metallic

nanosystem containing a Kerr nonlinear material”, Phys. Rev. B 74, 5439 (2006).

[121] J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechan-

ical metamaterials”, Light: Science and Applications 2, 1-5 (2013).

72



[122] C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I.

Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on

infrared Fano resonances”, Nat. Comm. 5, 3892 (2014).

[123] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon

polaritons”, Phys. Rep. 408, 131-314 (2005).

[124] B. Knoll, B. and F. Keilmann, “Near-field probing of vibrational absorption for

chemical microscopy”, Nature (London) 399, 134-137(1999).

[125] N. C. Panoiu, and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire”,

Nano Lett. 4, 24272430 (2004).

[126] G. Veronis, and S. Fan, “Bends and splitters in metal-dielectric-metal subwave-

length plasmonic waveguides”, Appl. Phys. Lett. 87, 1102-1104 (2005).

[127] T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst,

“λ/4 resonance of an optical monopole antenna probed by single molecule fluores-

cence”, Nano Lett. 7, 28-33 (2007).

[128] F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice

solitons in arrays of metallic nanowires”, Phys. Rev. Lett. 104, 106802 (2010).

[129] J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials”, Nat.

Nanotechnol. 10, 2-6 (2015).

[130] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A.

Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in

semiconductor metamaterials”, Nat. Mater. 6, 946-950 (2007).

[131] S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and

V. M. Shalaev, “Loss-free and active optical negative-index metamaterials”, Nature

(London) 466, 735-738 (2010).

[132] A. Garcia-Etxarri, R. Gomez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada,

F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic

response of submicron Silicon particles in the infrared”, Opt. Exp. 19, 4815-4826

(2011).

[133] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk,

“Magnetic light”, Sci. Rep. 2, 492 (2012).

73



[134] C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small

Particles (Wiley-Interscience, 1983).

[135] S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A.

Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical

magnetic mirrors without metals”, Optica 1, 250-256 (2014).

[136] C. Pfeiffer, and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts

with reflectionless sheets”, Phys. Rev. Lett. 110, 7401-7105 (2013).

[137] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T.

Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces”, Adv. Opt.

Mater. 3, 813-820 (2015).

[138] A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov,

V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar

response”, Phys. Rev. X 5, 1036-1046 (2015).

[139] G. N. Afanasiev and Y. P. Stepanovsky, “The electromagnetic field of elementary

time-dependent toroidal sources”, J. Phys. A 28, 4565-4581 (1995).

[140] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline,

A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating

anapole modes in dielectric nanoparticles”, Nat. Commun. 6, 8069-8076 (2015).

[141] Y. S. Kivshar and A. Miroshnichenko, “Meta-Optics with Mie resonances”, Optics

and Photonics News 28, 26-33 (2017).

[142] V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and

macroscopic electromagnetic properties of metamaterials”, Phys. Rev. B 89, 205112

(2014).

[143] E. E. Radescu, and G. Vaman, “Toroid moments in the momentum and angular

momentum loss by a radiating arbitrary source”, Phys. Rev. E 65, 035601(R) (2002).

[144] J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, 1962).

[145] C. M. Ho, and R. J. Scherrer, “Anapole dark matter”, Phys. Lett. B, 722, 341-346

(2013).

[146] P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for

optical nanomaterials” New J. Phys. 14, 093033 (2012).

74



[147] T. J. Yen, W. J. Padilla, N. Fang. D. C. Vier, D. R. Smith, J. B. Pendry, D.

N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials”,

Science 303, 1494-1496 (2004).

[148] D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric

quadrupole resonance in optical metamaterials”, Phys. Rev. B 78, 121101 (2008).

[149] N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev,

“Electromagnetic toroidal excitations in matter and free space” Nat. Mater. 15,

263271 (2016).

[150] C. Kittel, “Theory of the structure of ferromagnetic domains in films and small

particles” Phys. Rev. 70, 965-971 (1946).

[151] I. S. Zheludev, T. M. Perekalina, E. M.; Smirnovskaya, S. S. Fonton, and Y. N.

Yarmukhamedov, “Magnetic properties of nickel-boracite iodide”, JETP Lett. 20,

129-130 (1974).

[152] V. L. Ginzburg, A. A. Gorbatsevich, Y. V. Kopayev, and B. A. Volkov, “On the

problem of superdiamagnetism”, Solid State Commun 50, 339-343 (1984).

[153] D. G. Sannikov and I. S. Zheludev, “On the possibility of phase transitions with

spontaneous toroidal moment formation in nickel boracites”, Sov. Phys. Solid State

27, 826828 (1985).

[154] D. Khomskii, “Classifying multiferroics: mechanisms and effects”, Physics 2, 20

(2009).

[155] A. P. Pyatakov, and A. K. Zvezdin, “Magnetoelectric and multiferroic media”,

Phys. Usp 55, 557581 (2012).

[156] N. A. Tolstoi and A. A. Spartakov, “Aromagnetism: a new type of magnetism”,

JETP Lett, 52, 161-164 (1990).

[157] V. A. Fedotov, K. Marinov, A. D. Boardman, and N. I. Zheludev, “On the aro-

magnetism and anapole moment of anthracene nanocrystals”, New J. Phys. 9, 95

(2007).

[158] M. A. Martsenyuk and N. M. Martsenyuk, “Origin of aromagnetism”, JETP Lett.

53, 243-246 (1991).

[159] N. A. Spaldin, M. Fiebig, and M. Mostovoy, “The toroidal moment in condensed-

matter physics and its relation to the magnetoelectric effect”, J. Phys. Condens.

Matter 20, 434203 (2008).

75



[160] R. Kovall and B. W. Matthews, “Toroidal structure of lambda-exonuclease”, Sci-

ence, 277, 1824-1827 (1997).

[161] N. V. Hud and I. D. Vilfan, “Toroidal DNA condensates: unraveling the fine struc-

ture and the role of nucleation in determining size”, Annu. Rev. Biophys. Biomol.

Struct. 34, 295-318 (2005).

[162] M. M. Hingorani and M. O’Donnell, “A tale of toroids in DNA metabolism”, Nat.

Rev. Mol. Cell Biol. textbf1, 2230 (2000).

[163] D. G. Sannikov, “Phenomenological theory of the magnetoelectric effect in some

boracites”, Zh. Eksp. Teor. Fiz. 111, 536546 (1997); (English translation in J. Exp.

Theor. Phys. 84, 293299),

[164] B. Mettout, P. Tolédano, and M. Fiebig, “Symmetry replication and toroidic effects

in the multiferroic pyroxene NaFeSi2O6”, Phys. Rev. B 81, 214417 (2010).

[165] H.-J. Feng and F.-M. Liu, “Ab initio prediction on ferrotoroidic and electronic

properties of olivine Li4 MnFeCoNiP4O16”, Chinese Phys. B 18, 24812486 (2009).

[166] S. Hayami, H. Kusunose, and Y. Motome, “Toroidal order in metals without local

inversion symmetry”, Phys. Rev. B 90, 024432 (2014).

[167] Y. Yamaguchi and T. Kimura, “Magnetoelectric control of frozen state in a toroidal

glass”, Nat. Comm, 4, 2063 (2013).

[168] V. A. Fedotov, K. Marinov, A. D. Boardman, and N. I. Zheludev, “On the aromag-

netism and anapole moment of athracene nanocrystals”, New Journal of Physics, 9,

2967 (2007).

[169] K. Marinov, A. D. Boardman, V. A. Fedotov, and N. I. Zheludev, “Toroidal Meta-

material”, New Journal of Physics, 9, 324-202 (2007).

[170] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, N. I. Zheludev, “Toroidal

dipolar response in a metamaterial”, Science, 330, 1510-1512 (2010).

[171] Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar

metamaterial with toroidal moment”, Phys. Rev. B 87, 115417 (2013).

[172] Z. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a

multifold double-ring metamaterial”, Opt. Exp. 20, 13065-13070 (2012).

76



[173] V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev,

“Resonant transparency and non-trivial non-radiating excitations in toroidal meta-

materials”, Sci. Rep. 3, 2967 (2013).
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Chapter 3

Computational Tools: Software and

Scripts

This chapter will document all simulation packages that were utilized in the creation of

any computational results seen within this thesis. The first section begins by discussing

the framework of RSoft’s DiffractMOD, the software implemented for studying all of

the fabricated metamaterials within this thesis. Both the dual crosses and crosses with

reduced metal of Chapter 6 will be analysed in order to highlight why these structures

were selected to be fabricated and how the structural parameters came to be chosen by

discussing the framework of RSoft’s DiffractMOD.

Secondly, the workings of CST Studio Suite, which will be used to calculate the

results in Chapters 4 and 5 are subsequently detailed. The attention here will be focused

on purely computational work: generating toroidal dipoles in a plasmonic metamaterial

to study both the fundamental field and second harmonic fields. A script that was

heavily utilized for all the major linear and nonlinear results relied on a Near-to-Far-

Field Transformation, an analysis of which is therefore subsequently given. Finally, this

chapter concludes with a discussion on Bragg filters, showing how these filters and a

composite involving metamaterials were simulated.

3.1 DiffractMOD

Unit cells depicted in the following sections, such as Figure 6.17, were drawn with RSoft’s

DiffractMOD, a rigorous coupled-wave analysis (RCWA) package designed to calculate a

variety of electromagnetic properties that are engendered by the chosen unit cell. RCWA

is a process used to calculate scattering plane waves by deconstructing the electromagnetic

field into a finite set of terms [2], often referred to as ‘harmonics’. This can be understood

by considering a Fourier series; it is known that a periodic function can be represented
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Figure 3.1: Top - The refractive index of CaF2, taken from [3], where the Sellmeier
coefficients from [1] were taken. Bottom - The same Sellmeier coefficients implemented
in RSoft’s DiffractMOD, the definition of which is utilized in all simulations using this
material.

as an infinite sum of terms of varying significance. RCWA allows the number of terms

(harmonics) to be selected, whereby an increase leads to more accurate results at the cost

of computational time.

It must be noted that RCWA is a mathematical tool that is only applicable for periodic

structures. Hence, it is not possible to simulate a single unit cell within DiffractMOD’s

framework and other software packages must therefore be used for this purpose. The

input angle for the light source and its corresponding polarization, however, are quite

flexible; it is also possible to utilize circularly-polarized light.
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Figure 3.2: The output of DiffractMOD’s Material Profile, where the real part of the
refractive index is calculated for a cross trench for the plane z=0.09µm.

Examples of material characteristics that are able to be calculated within Diffract-

MOD include thermal conductivity, doping concentration and stress-optic coefficients.

A handy tool available in most software packages is the ability to define variables

that can be used to build our structures. Rather than specifically defining a length of

a structure, it is possible to define this length as a variable, which can then be altered

later. DiffractMOD is no different in this regard. As we shall see with regards to a

metamaterial structure utilized to create a strong toroidal dipole, often the electric fields

are required for every wavelength for further calculations. DiffractMOD is again very

flexible in this regard, allowing every component of the electric and magnetic fields to be

exported for a selected grid size in each direction. Furthermore, each diffraction order

and the three optical coefficients (transmission, reflection and absorption coefficients) can

also be output into a file.

Each electromagnetic calculation does not have to be in terms of a wavelength scan;

within the confines of the software, it is instead possible to calculate parameters in terms

of the incident angle for both planes, i.e. θ and φ.

During this software package discussion, there are two types of metamaterial designs

we are going to consider: a unit cell consisting of cross-shapes for a double resonance

in the optical spectra; and split ring resonators (SRRs) employed to create a toroidal
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resonance at the second harmonic. We will first analyse the cross-shapes.

3.1.1 Swiss Crosses

DiffractMOD contains a material library, with the permittivity and permeability functions

being available for a wide range of wavelengths for common metals and dielectrics, includ-

ing a few semiconductors. In simulating the cross-shape structures, the gold, titanium

and PMMA material properties could simply be selected from the list in DiffractMOD.

This library, however, is not overly extensive. It was therefore necessary to define calcium

fluoride manually by inputting the material’s Sellmeier coefficients, which describe how

a dielectric’s refractive index is dependent on the wavelength. Explicitly:

n2(λ)− 1 =
∑

j

Bjλ
2

λ2 − Cj

(3.1)

Where Bj and Cj are the Sellmeier coefficients, which detail where in frequency-space

the material experiences a resonance. Calcium fluoride is explicitly described [3] by:

n2(λ)− 1 = 0.33973 +
0.69913λ2

λ2 − 0.093742
+

0.11994λ2

λ2 − 21.182
+

4.35181λ2

λ2 − 38.462
(3.2)

where the first term on the right-hand side of the equation is an equivalent to the ǫ∞ term

we saw in Equation 2.22. It is these Sellmeier coefficients which DiffractMOD allows to

be input for a new material to be added to the library. Before this can be done, however,

it is necessary to select an option that allows material dispersion. DiffractMOD allows

many different types of manual material definitions: while the default is a single value

of the refractive index for all wavelengths, examples include the definition of anisotropy

through input of each element of the electric susceptibility tensor; the same applies for

all magnetic permeabilities; stress can be defined through the Young’s Modulus. It is

therefore highly important to visualise the resulting refractive index with the desired

results. Figure 3.1 shows an example comparison.

When defining more complex structures such as the dual cross that we will see in

Figure 6.37, care must be taken when writing components of the structure that overlap.

As all the structures that we see in this section are composed of rectangles of varying

shape, defining the cross-shaped air trenches meant that cross-shaped rectangles had to

overwrite the underlying metal. This is achieved within DiffractMOD’s framework by

assigning priority to each element. By assigning the trenches a higher priority than the

metal beneath, it is ensured that the trenches ‘really do exist’ from the software’s point

of view. Naturally, if this step is neglected, the software will only see uniform metal films
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with no metamaterial patterns.

There is no need to draw the substrates to scale within the software, as it is simple

to command the software to consider a substrate of infinite thickness by ending the

bounding box of the CAD within the substrate. On a similar theme, care must be taken

to ensure the bounding box allows a gap between the top of the designed meta-atom and

the incident light source. Not doing so can lead to awkward unwanted scattering of the

light due to the fact that the software is not sure where the light source ends and the

structure begins.

A handy tool for allowing us to see that the simulation is setup correctly is Diffract-

MOD’s ‘Material Profile’ section. Within this part of the software an image can be

output containing information about certain calculated parameters, including the real

and imaginary parts of the permittivity and permeability functions; the stress properties;

and doping concentration. This is applied for any chosen slice through the structure. To

highlight the use of this function, the real part of the refractive index for the original

cross trench that will be fabricated in Chapter 6 is plotted in Figure 3.2 for a slice where

z=0.09µm, i.e. through the cross trenches. It must be noted that for this simulation,

the PMMA of the original cross is kept. Figure 3.3 shows the simulated reflection and

transmission coefficients calculated by DiffractMOD for the original cross trench struc-

ture, excited by a plane wave, to be compared with the results taken from the source [4],

shown in Figure 6.43. The PMMA of the original cross is again kept, but it must be

noted that the physics describing the small resonance stemming from the carbonyl bond

is not taken into account, and hence we do not expect to see this small Lorentzian. We

see a clear agreement between the results of the original paper and our simulations.

As mentioned, one important parameter in electromagnetic wave calculation that must

be selected before computation is the number of harmonics which are used. It is vital

to realise that it is not mandatory to include as many harmonics as the Random Access

Memory will allow. Rather, the results must start to show convergence when a larger

number of terms are included: it is a fruitless venture to base the results of a calculation

on 12 harmonics if the results diverge when 13 harmonics are invoked. If, on the other

hand, the results begin to converge to a particular value, the results can be considered

much more valuable. Figure 3.4 shows the importance of using an appropriate number

of harmonics.

Moving towards the goal of having two different resonant units within the meta-

atom, the effect of the periodicity on the transmission of the original cross structure is

depicted in Figure 3.5. As is immediately clear, an increase in the periodicity leads to a

decrease in the overall transmission of the incident light, a result that is exactly as we

would expect; an increase in periodicity means that there are less metamaterial elements
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Figure 3.3: The reflection (top) and transmission (bottom) coefficients simulated via

DiffractMOD for the structure that will be analysed in Figure 6.11, with each line cor-
responding to a different angle of polarization. The plots clearly match those in Figure
6.43.

84



Figure 3.4: The effect of harmonics of the incident plane wave on the performance of
the DiffractMOD simulations. Each line in this figure corresponds to a different number
of Fourier terms used by the software to calculate the optical response. Clearly, as the
number of harmonics increases, the results begin to converge. It is of primary importance
to ensure that the output converges with each investigation.

per unit area. Hence, upon when maximally excited with the corresponding incident

wavelength, there is overall less activation. This wavelength also naturally shifts to

larger wavelengths with increasing periodicity, as the wavelength of maximum excitation

is intrinsically linked with the periodicity of the structure. Also plotted in Figure 3.5

is the simulated transmission spectra of a unit cell that was a first experimentation in

creating a multi-resonant meta-atom. This meta-atom consists of four original cross-

trenches separated by a distance 2.5µm. However, two of these crosses are scaled by

a factor of 10%, thus shifting their resonant wavelength slightly. We see the effects of

this in the transmission spectra; the similar structural sizes, however, means that there

is not enough ‘space’ to form two complete, separate resonances. It is possible to keep

continuing the size of the periodicity until the peaks are distinct, but again this will

reduce the strength of the overall transmission.

Here, the idea of deconstruction came into play: we see that the asymmetric nature

of the original cross means that there are two resonances, as seen in Figure 3.3, where

each one corresponds to the excitation of an arm. Furthermore, these resonances are far

enough apart in wavelength space that the first assumption was thus: as the resonances

corresponding to the original arms are far enough apart, surely a two-unit meta-atom

could be designed, such that one unit consists of just the thinner arm, while the other is

composed just of the thicker arm. Theoretically, the resulting structure should replicate

the two resonances that we saw in Figure 3.3, but within the one structure regardless

of polarization. The new structure does not have a polarization dependence due to its
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Figure 3.5: Top - The effect of periodicity on the optical response of the cross shown in
Figure 6.11. It is clear that as the periodicity increases, the resonance simultaneously
weakens and shifts in wavelength space. Bottom - The transmission coefficients of a
hybridized meta-atom containing two different units, the first being the cross-shape of
Figure 6.11, the second being this same cross shape multiplied by a scaling factor of 1.1.
The periodicity is 2.5µm. A double resonance begins to emerge, but they are not distinct.

symmetric properties.

The deconstruction of the original cross was simulated with 14 harmonics to calculate

the reflection and transmission spectra. This output is shown in Figure 3.6, where -

as shall be seen in Chapter 6 - there is a clear agreement with the fabricated crosses.

To reiterate, the strength differences of the peaks between experiment and computation

is attributed to an insufficient milling time. We started with the idea of having two

resonances from one meta-atom. Through deconstructing a polarization-dependent cross

into two symmetric crosses, this has been achieved. We now turn to analysing the gold
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SRR metamaterial.

Figure 3.6: A dual resonance, formed by the structure in Figure 6.37, simulated by
DiffractMOD. Each cross in the meta-atom causes a separate resonance to be located in
wavelength space.

3.1.2 The MOST Optimizer

The framework for creating multiple resonances within a meta-atom has now been laid

down. The focus for this section is on increasing the quality factor of the resonances. The

quality factor is essentially the inverse of the full-width half-maximum (FWHM) value,

as we see through the relation:

Q =
∆λ

λ0

(3.3)

where ∆λ is the FWHM of the resonance located at wavelength λ0.

Achieving the maximum quality factor manually would be a pain-staking process.

Slight changes to structural parameters would have to be made, recorded and simulated

one-by-one in a brute force manner. Thankfully, there is no need for this hardship as

RSoft comes with its own optimizing tool, called the MOST optimizer. A quote from the

creators of this tool succinctly summarises its intentions and potential [5]:

“MOST, RSoft’s Multi-Variable Optimization and Scanning Tool, is an exciting so-

lution to the critical problem of design optimization for photonic devices. During the

research or design cycle, it becomes vital to understand the full parameter space of the

system. Acting as an automated driver for RSoft’s physics-based simulators, MOST takes

the drudgery out of these important operations by streamlining the definition, calculation

and analysis of scans and optimizations.”
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Figure 3.7: A gold SRR structure designed to induce a strong toroidal resonance [14]. At
an incident wavelength of 2.5µm each SRR produces a magnetic moment, which in turn
form a loop. A toroidal dipole is hence produced.

Before scans are performed, it is important to think of the goal as a function of

parameters. Our goal was to simulate (and ultimately fabricate) a device that acts as

a sharp transmission filter. We therefore want to minimise our transmission, T, which

is a function of the structural parameters: T=f (tau, a, w, l), where tau, a, w, l are,

respectively, the thickness of the gold, the width of the entire structure, the width of the

arms, the length of the arms.

One of the most important steps before running the optimizer is to implement their

scanning feature. As the output is a multi-dimensional function, there could easily be

plenty of local minima that the software wrongly converges on if a full scan is initially

ignored. These incorrect peaks can often lead to unphysical results, such as negative

transmission, or structural parameters that are impossible to fabricate. Scanning first

and foremost allows the user to get a feel for the results and physical underpinnings of the

system. This step is achieved by selecting the parameters on which the user’s function is

dependent, and thence inputting the minimum and maximum values along with the step

size.
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Figure 3.8: The transmission, reflection and absorption spectra for the SRR structure of
Figure 3.7. A resonance is clearly seen for an incident wavelength of 2.5µm.

Once the scan is completed and observed to ensure all results are both physical and

reasonable, the optimizer can be used. The optimizer works by minimising a so-called

metric. This is where the above function can expressed in a more complex mathematical

formula (metric) for the software to minimise. However, for our purposes, the required

metric is the function, i.e. the transmission for a wavelength at 2.7µm.

The optimizer comes with several algorithms, one of which the user must select. Some

of these algorithms are for specific cases, such as if the function to minimise is a function

of one variable only. The algorithm selected for the cross was Powell’s n-dimensional

minimiser, which can take 0 or 1 initial values for each parameter on which the function

depends. Once this solver was selected and the metric was defined, the optimizer was

run, leading the software to output the structural parameters that will be seen in Figure

6.17.

3.1.3 Toroidal Moments within Metamaterials

The work presented in this section was the genesis of my nonlinear analysis. The goal

here was to analyse the nonlinear signal arising from a metamaterial designed to host

a strong toroidal dipole. Specifically, the nonlinear regime that is analysed is second

harmonic generation (SHG). While a much more rigorous description of SHG is given

in Chapters 4 and 5, it is important to bear in mind that this is a nonlinear optical

interaction whereby an incident ray of light with frequency ω, interacts with and excites

the structure to produce its own electromagnetic field at a frequency of 2ω, from here

referenced to as Ω.
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Figure 3.9: Top - The calculated radiated power for the SRR structure at the second
harmonic by the electric, magnetic and toroidal dipoles. The toroidal dipole is clearly
the strongest member of the family. Bottom - The calculated power in direction of
transmission for every nonlinear moment based on a nonlinear generalised source method
[17].

In a work by Savinov et al. [6], a metamaterial was designed such that its emission

was primarily due to its toroidal dipole at the fundamental frequency. Toroidal moments

have been analysed in a wide range of metamaterials [7–13], but the subsequent analysis

always focuses solely on the linear regime. One of my aims, therefore, has been to build

upon this analysis by extending it into the world of nonlinear physics.

In order to engender a strong nonlinear response, a metamaterial similar to Kaelberer’s

[15] was designed, as can be seen in Figure 3.7 [14]. Four gold split ring resonators are

embedded in a dielectric with permittivity function ǫ = 3 + 0.0039i. The SRRs are

embedded with fabrication conditions in mind; while it is computationally simpler to

consider just 4 SRRs suspended in air, we wished to bring these results away from the

purely theoretical. The incoming light is oriented at a 45 degree angle in the x-y plane so
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Figure 3.10: Top - The default power of the input signal used by the time-domain solver
in CST Studio Suite. Bottom - an example of the energy decay in the simulation system.
The maximum energy present naturally corresponds to the peak of the time signal.

as to ensure maximum interaction with the SRRs. At a particular frequency, the current

is maximally generated within the rings, forming four loops of current. These current

loops in turn form four independent magnetic moments, which themselves in turn form

the toroidal dipole of the structure. Periodic boundary conditions were imposed along

the x- and z- directions. The dimensions of the metamaterial are also given in Figure 3.7.

Before diving into the nonlinear results, it is always important to see what is happening

in the linear regime; the linear results give plenty of pertinent information, such as the

location and strength of any resonances, and which multipoles are responsible for them.
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Figure 3.11: An example of an implementation of CST’s optimizer. The grey shading
shows the goals given to the optimizer: maximise the scattering cross section in the region
117THz - 123THz while minimising the signal elsewhere through changing the structural
parameters. The first and best-so-far cross sections are displayed.

The most important linear result with regards to this work is the calculation of the

optical coefficients, plotted here in Figure 3.8. It is clear that there is a strong resonance

corresponding to an incident wavelength of 2.5µm. While most of the light is usually

transmitted through the slab, it is blocked around this resonance, and hence the slab

acts as quite a narrow transmission filter.

Figure 3.8 tells us a key piece of information: to see the most relevant SH results,

we should look to a wavelength corresponding to half that of the resonance, as Ω=2ω,

implying Λ=λ/2. Hence, we expect to see SH results that are resonant at a wavelength

of 1.25µm.

A nonlinear optical interaction means that nonlinear currents must be calculated. In

fact, the nonlinear polarizations were first calculated, with the useful relation of Equation

2.9 being utilised to shift the physics into the realm of currents. As we saw in the

previous section, the flavour of nonlinear physics that must be considered all stems from

the symmetry properties of the crystals in question. The primary material in question

here is gold, forcing the physical framework into centrosymmetric physics.

The nonlinear currents generated by the gold are due to the fundamental frequency

electric fields emitted at the surface of the metal. Although the bulk of the gold does

have a nonlinear moment, it is assumed that the surface interactions are larger by several

orders of magnitude. This assumption, incidentally, is more rigorously addressed in

Chapter 4. For this section, it is sufficient to say that the stated assumption is accurate.
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Figure 3.12: The real part (top) and the imaginary part (bottom) of the LiTaO3 permit-
tivity function, taken from [19]. There is a clear strong resonance due to the material’s
polaritonic properties.

Hence, in order to fully scrutinise the nonlinear currents generated by the gold, it is

necessary to split the structure into two domains: surface and non-surface. To this end,

a 129x33x129 grid was fitted to the structure, which is enabled in DiffractMOD’s electric

field calculations. Care was taken to ensure that the grid step-size was smaller than the

smallest feature of the structure, namely the gaps in the rings, ensuring that we do indeed

isolate all the surfaces, no matter how small. The three electric field components - Ex,

Ey and Ez - were calculated for each grid point and output into a basic .txt file. This

same grid was applied to the structure a second time, with the purpose of calculating the

relative permittivity of each grid point. By analysing the grid points pertaining to the

permittivity, it is possible to discard any non-surface grid point: any grid point belonging

to the surrounding dielectric naturally has a permittivity value whose real part is equal

to 3. The bulk of the gold can be similarly be located: by picking a known element

pertaining to the bulk and making a note of its permittivity value, all bulk fields could
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be similarly discarded. The remaining points therefore belong to the surfaces of the gold.

However, it is necessary to know exactly which surface each point denotes, as there are

two nonlinear vectorial polarizations to calculate [16]. Explicitly:

P
(2)
⊥ (r; Ω) = ǫ0χ

(2)
⊥⊥⊥E⊥(r;ω)E⊥(r;ω) (3.4a)

P
(2)
‖ (r; Ω) = ǫ0χ

(2)
‖⊥‖E⊥(r;ω)E‖(r;ω) (3.4b)

A script was therefore implemented to sort through the electric field arrays plane by

plane, comparing each slice with the previous slice to assign the correct surface to the

grid points. For example, if, moving in the positive x -direction, the previous slice has

a permittivity belonging to the bulk, then it is clear that the slice to be determined

belongs to the surface on the positive x-side. Performing this operation for each of the

6 sides - corresponding to the three Cartesian coordinates for both the positive and

negative directions - the second harmonic currents can now be calculated. By repeating

the previous steps for 50 wavelengths for an incident wavelength range of 2µm - 4µm, the

second harmonic polarizations could be calculated. With these nonlinear polarizations,

the power emitted via the nonlinear dipoles can be ascertained through the following

equations:

p =
1

iω

∫

jd3r (3.5a)

m =
1

2c

∫

(r× j)d3r (3.5b)

T =
1

10c

∫

[(r · j)r− 2r2j]d3r (3.5c)

(3.5d)

where p, m and T are the electric, magnetic and toroidal dipoles, respectively. j is the

current density of the mesh element, which is located a distance r from the centre of the

unit cell. It must be noted that these dipole equations are not nonlinear in themselves;

they apply for all regimes, linear and nonlinear alike. It is the current density on which

they depend that determines the order of linearity.

The power of the multipoles follows the equation [15]:

P =
2ω4

3c3
|p|2 + 2ω4

3c3
|m|2 + 2ω6

3c5
|T|2 (3.6)

The resulting calculated power radiated by the nonlinear dipoles is shown in the
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top panel of Figure 3.9. It is clear that the toroidal dipole is the strongest dipole This is

compared with the power radiated in the direction of transmission by all nonlinear dipoles

obtained by an in-house software based on the non-linear generalized source method, the

details of which can be found in [17].

In conclusion, we have shown a plasmonic metamaterial whose nonlinear toroidal

response outweights that of the electric and magnetic dipoles.

3.2 CST Studio Suite

Computer Simulation Technology Studio Suite (CST) is a three-dimensional electromag-

netic simulation software with both frequency-domain and time-domain solvers. While

the full extent of the software reaches, among others, charged particle dynamics, ther-

mal and mechanical stress solutions, it is CST’s ‘high-frequency’ package that will be

employed for this section.

Figure 3.13: The absorption cross section (ACS), red, and scattering cross section (RCS),
green, calculated for an example cross shape.

For our simulations, the time-domain solver was implemented. A time domain solver

calculates the development of fields through time at discrete locations and at discrete time

samples. It calculates the transmission of energy between various ports or other excitation

sources and/or open space of the investigated structure. Consequently a time domain

solver is remarkably efficient for most high frequency applications such as connectors,

transmission lines, filters, antennas etc. and can obtain the entire broadband frequency
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behavior of the simulated device from a single calculation run. The time-domain solver is

based on the Finite Integration Technique (FIT), first proposed by Weiland in 1976/1977

[18]. FIT applies, as the CST documentation tells us, ‘some highly advanced numerical

techniques like the Perfect Boundary Approximation (PBA) in combination with the Thin

Sheet Technique (TST) to allow accurate modeling of small and curved structures without

the need for an extreme refinement of the mesh at these locations. This allows a very

memory efficient computation together with a robust hexahedral meshing to successfully

simulate extremely complex structures.’ FIT discretizes and solves the integral form of

Maxwells equations that we saw at the beginning of Chapter 2 for each mesh point. It

is worth understanding the flexibility of CST’s meshing abilities, as it allows a dynamic

range of structures to be modeled with great accuracy. After the model has been set

up geometrically and assigned the appropriate power sources and boundary conditions,

the model has to be translated into a computer accessible format. For general purpose

electromagnetic simulation methods, the calculation domain has to be subdivided into

small cells, on which Maxwells Equations are to be solved.

Figure 3.14: The electric field (left), magnetic field (centre), and current density (right)
profiles of a cross-shaped structure simulated in CST Studio Suite. The colours of the
arrows are a reference to field strength, where the bluer arrows refer to weaker parts of
the field.

CST offers a variety of meshes and algorithms, which also enables an easy possibility

of cross-verification of methods and meshes in the same GUI. The mesh influences the

accuracy and speed of the simulation, so it is worth spending some time on understanding

the meshing process. Which of these methods is best suited to the particular application

depends on various aspects. In order to make the choice of the best-fitting solver and

mesh easy for the user, CST has compiled a lot of experience in the so-called ‘Project

Wizard’. This wizard helps you to find the best solver and the best meshing technique by

asking a few application-relevant questions in a short interview. After having finished this
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interview for a certain application class, a template is saved, which can be directly used

when studying the 2nd, 3rd, etc. geometry of the same application class. Throughout our

simulations, it was found that the default mesh type (a hexagonal mesh) was suitable.

The number of mesh points across all metal structures was greatly increased in every case

to ensure high-quality results. The convergence of every structure was also tested for.

Figure 3.15: Geometry of the far-field observation point relative to the near-field integra-
tion contour, Ca.

To achieve convergence with high-quality results, a challenge when simulating metals,

a few additional parameters within the solver’s settings had to be adjusted before it could

be used. Firstly, the accuracy of the simulations was increased to its maximum setting.

This has the effect of increasing the computational time but ensures a more accurate

Fourier transform from the input time signal to the required frequency space. Secondly,

the number of pulses was increased to 500. This again has the effect of lengthening the

simulation time, but increases the accuracy of the results. An example check of input

signal quality and energy dissipation throughout the simulation is shown in Figure 3.10.

A default transient analysis uses a single signal as stimulating excitation. This signal is

called the ‘Reference Signal’. One ‘default’ signal is always pre-defined as a Gaussian
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signal type and refers to the globally defined frequency range. The context menu allows

the choice of one of the existing signals as reference. The port mode excitation selection

option in the solver menu allows the simultaneous excitation of the selected ports, each

stimulated by a different excitation signal with it’s own phase or time shift and different

amplitude. In Figure 3.10 this signal is matched up with its energy dissipation. As can

be observed, most energy contained within the simulation coincides with the peak of the

wave.

A powerful concept within CST is its ability to model both periodic and single struc-

tures, with a quick method for switching between these regimes. Naturally, the type of

simulation that we wish to undertake must be selected beforehand, by opening up CST’s

‘Boundaries’ button. For the LiTaO3 structure, ‘open boundaries with air’ was selected,

i.e. the simulation only considers the single structure encapsulated in an air box. If no

‘with air’ option was chosen, CST would assume that the structure is encapsulated in

the glass in which the parallelepipeds are embedded. For the cross structures of Chapter

4, however, it was necessary to select periodic boundary conditions with a period large

enough to effectively have a single unit cell. The options for creating a mesh for the solver

are also rigorous; the number of mesh cells for each part of the structure can be tailored

accordingly.

Figure 3.16: The optical response of a stratified medium dependent upon the number of
layers. Orange, green, and blue, correspond to 6, 10, and 14 individual layers, respectively.
Clearly, the Bragg filter acts as a notch filter much more convincingly with an increased
number of layers. The layers consist of alternating widths of 300nm and 400nm, while
the refractive indices were 1.38 and 2.32, respectively. It must be stressed that these
parameters do not correspond to particular materials, but were used to showcase the
working code.
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While the material library of CST is more extensive than that of DiffractMOD, it was

nevertheless still necessary to define key materials manually, such as the LiTaO3 that will

be seen Chapter 5. CST, like DiffractMOD, allows multiple ways of material definition

to be input into the software, including thermal and mechanical definitions. However, a

more flexible method is also applicable; CST allows the user to upload a file containing

the permittivity values at specific wavelengths. For out LiTaO3 definition, a file was

created containing its real and imaginary permittivity values for every frequency between

1THz-5THz in 0.001THz increments, and subsequently uploaded into CST’s software.

Part of this calculated spectrum is shown in Figure 3.12

Figure 3.17: The refractive indices of HfO2 (top) and SiO2 (bottom). The definitions of
these materials are taken from [21] and [22], respectively.

The visualisation abilities of CST are superior to DiffractMOD’s: while simulating the

required results, the solver can also simultaneously store the resulting electromagnetic

fields alongside the current densities for any desired frequency in any desired region of

the simulated space. This immediately allows the user to get a feel for the underlying
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physics, a feature that is especially relevant for my projects, as often it was the study of

electromagnetic multipoles that was being undertaken. To be able to view the current

density patterns gives the user a large clue as to which multipole is being excited. As an

example, we the electric and magnetic fields along with the current density profile of a

standard cross-shape calculated with CST in Figure 3.14.

Useful parameters that CST calculates that enable the user to understand which

frequencies are responsible for the resonances and how strongly the structures resonate

at these frequencies are the cross-sections, specifically the absorption cross section (ACS)

and radar cross section (RCS), which is also known as the scattering cross section. An

example of these cross sections is plotted in Figure 3.13 for the LiTaO3 structures that

will be analysed in Chapter 5.

3.2.1 CST Optimizer

CST comes with its own optimizer, which can be used to optimize the quality factor of

resonances more rigorously than DiffractMOD. It’s possible to incorporate three goals

into one optimization program; Figure 3.11 depicts an example of this. In the same style

as the cross with reduced metal, Figure 3.11 shows the results of telling the optimizer

to maximise the resonance between 117-123THz, and to minimise the signal outside of

this range through freely manipulating the width of the gold and length and width of

the arms of the cross. The resulting structure with its updated parameters is shown in

Figure 6.17.

3.3 Near-To-Far-Field Transformation via Green’s Func-

tion

In order to analyse the multipoles and their respective far-fields, a MATLAB script

was implemented that utilizes a near-to-far-field transformation via implementation of

Green’s functions. While this process is fully described in [20], an overview of its processes

is given here to aid the reader’s understanding as to how the full power of the interacting

multipoles is calculated from the simulated near-fields.

The problem of interest is shown in Figure 3.15. The top-right point denotes the

location where the far-field, arising from the near-field, is experienced. The location of

the near-field’s genesis is shown relative to the origin. The problem, then, is clear: given

this near-field, what exactly does the observer at the far-field experience?

In answering this pertinent question, it can be shown [20] that a key physical quantity

that arises is:
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Figure 3.18: Top - Incorporating a Gaussian input into the Bragg gratings. The orange
curve depicts a Bragg grating consisting of 10 layers for a uniform input. The blue curve
is a Gaussian input, designed to reflect the notch-like characteristics of the metamaterial
filter to be later placed on the Bragg filter. The green curve is a culmination of the
Bragg grating accepting the Gaussian signal. The corresponding transmission acts more
notch-like with the Gaussian inclusion. Bottom - The effect of increasing the number of
layers of the Bragg filter that takes a Gaussian input. The orange, green, and blue curves
correspond to 6, 10, and 14 individual layers, respectively. The composite acts as a notch
filter with an increasing number of layers.

F (φ) ≡ ej(π/4)√
8πk

∮

Ca

[ωµ0ẑ
′ · Jeq(r

′)− kẑ′ ×Meq(r
′) · r̂]ejkr̂·r′dC ′ (3.7)

where Jeq ≡ n̂a ×H and Meq ≡ −n̂a ×E are defined as the tangential equivalent electric

and magnetic currents observed at Ca, respectively. The above definition of F(φ) is crucial

for acquiring the near-to-far-field transformation, as the radar cross section (RCS) can
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be defined:

RCS(φ) ≡ 2π
power scattered per unit angle in direction

incident power per unit length
≡ 2π

|F (φ)|2
|Einc|2

(3.8)

A quote from [20] helps elucidate why the above equations are so powerful: ‘It should

be emphasised that Ca is not a physical surface. It is a virtual surface that is the locus

of points in space where E- and H-field data are being compiled and integrated. Because

Ca can have an arbitrary shape, we can conveniently assign it to lie along a rectangle in

the scattered-field zone of the FDTD [Finite Difference Time Domain] grid.’

The use of the term ‘FDTD’ is a reference to the popular computational technique

that can calculate the electromagnetic fields at multiple frequencies in one run. Hence,

the above method can be utilized to swiftly apply NTFF transformations for a wide range

of frequencies.

Figure 3.19: The response of the Bragg filter with a varying number of layers, composed
of SiO2 and HfO2, simulated by DiffractMOD. Both 10 and 12 individual layers are
depicted.

3.4 Conclusions

The software package DiffractMOD was introduced. The effects of periodicity upon the

optical response of a metamaterial were simulated alongside with the role of the number

of harmonics. Simulations that exhibit a double resonance from one metamaterial were

also presented. A gold split ring resonator embedded in a dielectric was shown to exhibit a

strong nonlinear toroidal resonance when excited by an impinging electromagnetic wave.
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The important parameters of CST Studio Suite were also displayed, including the

absorption cross section and time signals. The method of incorporating new materials

was documented, an important feature for the following chapters of this thesis.

In both cases, the relevant optimizers were discussed in detail. These optimizers allow

certain goals to be specified, which the optimizer then aims towards. As shall be seen

later on, a large segment of this thesis deals with the fabrication of a cross-shaped trench

structure, which is a direct result from the MOST optimizer.

Finally, this chapter finished with a brief discussion on combining metamaterials with

Bragg filters. Due to its filtering effects, it is intuitive to think that a metamaterial can

essentially act as a replacement for a number of layers in a Bragg filter. The plotted

graphs do indeed show that several layers of a Bragg filter can be replaced by instead

placing a metamaterial notch filter on top of the filter.
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Chapter 4

Analysis of surface and bulk

second-harmonic generation in

centrosymmetric nanoparticles

4.1 Introduction

In this chapter a cross-shaped meta-atom is introduced and both a plasmonic and an

all-dielectric case is considered. In both scenarios, the material from which the cross

is constructed is centrosymmetric; gold and silicon are analysed for the plasmonic and

all-dielectric case, respectively. The scattering configuration is first introduced, followed

by the physics governing the linear optical interactions. The most important terms of

the multipole expansion are also introduced. The linear results arising from both cases

are then analysed in detail, with pertinent focus being concentrated on the important

resonances.

The nonlinear regime for both the surface and bulk interactions are in each case con-

sidered, whereby the underlying physics is introduced and the nonlinear results delineated

in detail. The nonlinear results highlight that a surface neglection in the bulk case most

show itself to be valid, due to the strong possibility of the presence of salient physics.

4.2 Background

The strong field enhancement that accompanies the excitation of surface-plasmon po-

laritons (SPPs) on metallic nanoparticles [1, 2] makes these nanostructures ideal candi-

dates for many applications, including nanoscale antennae, single-molecule detection via

surface-enhanced Raman scattering, metallic nanotips for near-field optical microscopy,
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and optically-active guiding nanostructures [3–9]. However, the generation of large op-

tical fields comes at a price of significant optical losses present in metals. In fact, these

losses are viewed as the main factor that still precludes a widespread use of plasmonic

devices in practical applications [10]. Methods that attempt to overcome this restriction

include using doped semiconductors [11] and gain media [12].

An alternative to plasmonic materials, which aims to circumvent optical losses, con-

sists of using all-dielectric resonant structures [13,14]. Unlike the excitation of the metallic

plasma that engenders the plasmonic resonances, it is the resonances of displacement cur-

rents, known as Mie resonances [15], that enable these all-dielectric components to be

used for optical field manipulation. While the field enhancement of these dielectric struc-

tures is typically weaker than that of their metallic counterparts, their high quality factors

enable intriguing optical phenomena to be produced, including magnetic mirrors [16], re-

flectionless ultrathin sheets mimicking highly directional Huygens sources [17, 18], and

toroidal dipole sources [19,20]. These dielectric nanostructures have shown great promise

in biosensing, optoelectronics, and energy applications [21]. Hence, the trade-off is clear:

the selection of metal or dielectric is dependent upon the requirements of particular ap-

plications, namely whether one desires strong field enhancement or low optical losses.

This dichotomy extends to nonlinear nanoscale photonics. By exciting a structure that

has both strong field enhancement and strong nonlinear properties, large nonlinear signals

can be produced at relatively low optical powers. In particular, nonlinear optical processes

in plasmonic structures have been studied extensively [22,23], including surface-enhanced

Raman scattering [3,7,24], second-order optical interactions [25–36], and Kerr interactions

[37,38]. As in the linear case, these strong nonlinear optical effects in plasmonic structures

are accompanied by large optical losses, which restrict the range of applications to which

nonlinear optical interactions can be employed. It is therefore of particular interest to

understand, in the context of nonlinear nanophotonics, the limitations and advantages

provided by plasmonic structures, as compared to those characteristic to all-dielectric

resonant subwavelength structures.

In order to address this important problem, in this chapter we focus on second-

harmonic generation (SHG), perhaps the most widely studied nonlinear optical inter-

action. Since most plasmonic materials are centrosymmetric, i.e. the crystal lattice is

invariant upon inversion symmetry transformations, we consider for comparison dielec-

tric materials that are also centrosymmetric. More specifically, we assume that the plas-

monic and dielectric materials are gold (Au) and silicon (Si), respectively. Under these

circumstances, the second-harmonic (SH) field has two principal components, namely the

(local) surface and (nonlocal) bulk contributions of the medium to a nonlinear signal.

From a physical point of view, as will become clear from the mathematical description
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of these nonlinear optical effects, the main difference between the two contributions is

that whereas the surface component is (quadratically) proportional to the optical field at

the fundamental frequency (FF), the bulk component is proportional to the field and its

derivatives.

It is a common assumption that the bulk nonlinear response to an applied electromag-

netic field is negligible for plasmonic structures. The validity of this assumption, however,

has hitherto been rigorously addressed only for plasmonic structures with simple config-

urations, such as metallic thin-films [39], spherical metallic particles [40], and split-ring

resonators [41], no attempts having been made to investigate this problem in the case of

dielectric particles. It should be noted that this problem does not have a simple, a priori

answer. Thus, in plasmonic materials optical fields are highly inhomogeneous, so that the

field derivatives can be rather large; however, these fields extend from the surface into

the bulk no more than about a skin-depth, that is, the characteristic distance the electric

field penetrates into a metal. By contrast, optical fields penetrate throughout a dielectric

structure, yet they are much less inhomogeneous as compared to the plasmonic case. To

elucidate this matter, in this chapter we study theoretically and computationally, the rel-

ative contribution to SHG of the surface and bulk effects in two generic structures made

of centrosymmetric materials, one metallic and one dielectric, both exhibiting resonant

field enhancement. In particular, we choose cruciform-shaped particles as they have pro-

nounced electric dipole, magnetic dipole, and electric quadrupole resonances. However,

more complex resonances, such as Fano resonances [42–45], or particle shapes can be

considered.

The chapter is organized as follows. In the following section we describe the scattering

configuration, the computational approach used in our study, and the physical model

for SHG in nanoparticles made of centrosymmetric materials. In the third section we

present the frequency dependence of the linear and nonlinear optical coefficients of gold

and silicon. The main results of our analysis are presented in Results and Discussion,

with the main conclusions being summarized in the final section.

4.3 Model and Scattering Configuration

The structure analyzed here is shown schematically in Fig. 4.1, with the dimensions

given in the caption. This symmetric cross sits atop a glass substrate, with permittivity

ǫs = 2.5, which is assumed to occupy the region z < 0. The cross is illuminated with

normal-incidence light (–z-direction), with the E and H fields polarized along the x- and

−y-direction, respectively, the wave intensity being 1GWcm−2. The optical response of

this structure is, however, polarization-independent due to its symmetry.
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Figure 4.1: Schematics of the analyzed structure. A cruciform scatterer made of cen-
trosymmetric materials (Au or Si) sits atop a glass substrate lying in the xy-plane. The
gold cross has dimensions of L = 100 nm, W = 55 nm, and H = 30 nm, whereas the
silicon cross has dimensions of L = 370 nm, W = 220 nm, and H = 220 nm. The cross is
illuminated with a plane wave impinging normally onto the substrate, with the electric
and magnetic fields being oriented along the arms of the cross. Hence, for the purposes
of our calculations, we set θ = π and φ = π/2.

The choice of dimensions of the particles was guided by general characteristics of

common experimental set-ups. Thus, plasmonics experiments are usually performed in

the visible spectrum, whereas most applications of silicon devices are in the IR spectral

domain (1.3 µm and 1.55 µm for data centers and telecom applications, respectively).

Therefore, we chose the dimensions of our particles such that they have resonances in

the corresponding spectral domain of practical interest. In addition, we chose a thickness

of the silicon cross of H = 220 nm because a common material platform employed in

nonlinear optics experiments is silicon-on-insulator (SOI), the thickness of the silicon

layer of commonly used SOI wafers being H = 220 nm.

We select the cruciform shape of particles as they are an excellent middle-ground

between analytically solvable structures such as spheres and specifically tailored struc-

tures, i.e. they are complex enough to provide generality to our conclusions yet not too

complex to completely obscure the origin of the revealed physics. In addition, the cruci-

form particles support the most basic Mie-type resonances, i.e. electric dipole, magnetic

dipole, and electric quadrupole resonances. Therefore, we expect that most of the new

physics revealed by our study should apply to nanoparticles with other shapes, too, as

there is nothing specific regarding the nature of the Mie resonances of the nanoparticles

investigated in this work. Finally, one expects that the ratio between the contribution

110



Wavelength (µm) Wavelength (µm)

(b)(a)
Realχ

(1)

Imag χ(1)

Realχ
(1)

Imag χ(1)

χ
(1
)

χ
(1
)

Figure 4.2: a), b) The wavelength dependence of the real and imaginary parts of the
linear susceptibility of Au and Si, respectively. The dispersion of the metal is clearly
stronger.

of bulk and surface effects to SHG is primarily determined by the inhomogeneity of the

optical near-field at the FF. This inhomogeneity is the largest at the wavelengths of the

resonances of the particle, and does not change significantly with the angle of incidence.

Therefore, we employ a simple scattering configuration, which still captures the main

physics of the problem investigated in our study.

The linear optical response of the cruciform structures has been calculated using the

time-domain solver of CST Studio Suite [46]. Periodic boundary conditions are employed

in the x- and y-direction, whereas in the z-direction we use perfectly absorbing boundary

conditions. The period is chosen large enough so as in the spectral range considered

here the optical coupling between the crosses is negligible and thus we can assume that

we operate in the single-scatterer regime. Moreover, in order to study size dependence

effects, we also consider crosses whose arm length and width are scaled by a factor α (the

height is kept constant, as this choice better reflects standard experimental conditions),

with α = 1, 1.25, 1.5, 1.75, and 2.

In our calculations, a frequency scan from 200THz to 1000THz (150THz to 500THz)

in 4THz (0.5THz) increments is performed for gold (silicon), for a sufficiently fine compu-

tational mesh. In both cases the frequency dispersion of the permittivity is fully taken into

account by fitting the experimental data with a Drude function and a set of Lorentzians

in the case of Au, and a set of Lorentzians in the case of Si (see the section Dispersion of

Linear and Nonlinear Optical Coefficients for more details regarding the modeling of the

frequency dispersion of Au and Si). Note that our models for the frequency dispersion of

the permittivity of gold and silicon take into account both interband transitions effects

in the case of gold and bandgap effects in the case of silicon.

A key property of optical materials is the frequency dispersion of their permittivity.

This wavelength-dependent function describes the electromagnetic response of the ma-
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terial in the linear regime. Figure 4.2 depicts both the real and imaginary parts of the

susceptibility function, χ(1), of Au and Si. As can be seen by comparing the data plotted

in this Figure, the electric response of the metal is clearly more dispersive, a fact that

was eluded to in the theoretical discussion in Chapter 2. These linear susceptibilities

are taken from several references regarding linear optical properties of Au [47, 48] and

Si [49–51].

As is well known, electromagnetic multipoles associated to a nanoparticle can re-

veal key physical insights into the optical properties of the subwavelength scatterer [52].

Therefore, for both types of crosses, we performed a multipole decomposition, whereby the

radiated powers associated with the first three terms of the multipole expansion were cal-

culated. These multipoles, the electric dipole, magnetic dipole, and electric quadrupole,

were witnessed in detail in Chapter 2.

In order to describe the nonlinear optical signal generated by the scatterer, we employ

a widely used model of SHG in centrosymmetric media [53]. Specifically, SHG has a

surface component generated within a few atomic layers at the surface of the material

and a bulk component generated inside the material, as given in Chapter 2.

Except for the case when the surface contains structural features with intrinsic chi-

rality, the surface of centrosymmetric media possesses an isotropic mirror-symmetry

plane perpendicular to the interface. Then, the surface nonlinear susceptibility χ̂
(2)
s

has only three independent components, that is, χ̂
(2)
s,⊥⊥⊥, χ̂

(2)
s,⊥‖‖, and χ̂

(2)
s,‖⊥‖ = χ̂

(2)
s,‖‖⊥,

where the symbols ⊥ and ‖ refer to the directions normal and tangent to the surface,

respectively. As most theoretical models predict that χ̂
(2)
s,⊥‖‖ = 0 [54, 55], we make this

assumption in our calculations, too. The susceptibility components of Au, measured

at λ = 810 nm, are χ̂
(2)
s,⊥⊥⊥ = −(0.86 + 1.34i)× 10−18 m2V−1 and χ̂

(2)
s,‖‖⊥ = χ̂

(2)
s,‖⊥‖ =

−(4.61 + 0.43i)× 10−20 m2V−1 [56], whereas in the case of Si, their measured values at

λ = 800 nm are χ̂
(2)
s,⊥⊥⊥ = 65× 10−19 m2V−1 and χ̂

(2)
s,‖‖⊥ = χ̂

(2)
s,‖⊥‖ = 3.5× 10−19 m2V−1

[57].

The nonlinear polarizations that are generated can be used to calculate the nonlinear

multipoles, which can be viewed as multipolar sources for the nonlinear field. However,

this approach is less accurate when applied to the SH calculations, as in this case the ratio

between the nanoparticle size and wavelength is larger than it is at the FF and therefore

the multipole expansion converges more slowly. As a result, we use an alternative method

to calculate the nonlinear optical response of the crosses. Thus, these same polarizations

define nonlinear currents, via J
s,b
Ω (r) = −iΩPs,b

Ω (r) (an e−iωt dependence of all harmonic

fields is assumed throughout this study). These nonlinear currents can subsequently

be used to calculate the nonlinear optical far-field by employing a near-field/far-field

transformation [59], thus enabling a complete characterization of the nonlinear scattering
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process.

4.4 Dispersion of Nonlinear Optical Coefficients

As discussed in the preceding section, our calculations incorporate the frequency disper-

sion of the linear optical susceptibility function. More specifically, the permittivity for

gold is taken from Refs. [47, 48], and it is valid for the wavelength range of 0.15 µm to

24.93 µm, whereas the permittivity of silicon, valid in the wavelength range of 0.25 µm to

25 µm, is taken from Refs. [49–51].

In order to describe the nonlinear optical response of the nanoparticles, one can in-

corporate in the computational analysis the frequency dependence of the surface and

bulk nonlinear susceptibilities, too. This frequency dispersion can be described using the

Miller rule [60]. Explicitly, this rule states that the ratio

χ(2)(ω1 + ω2;ω1, ω2)

χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2)
= C (4.1)

is nearly constant. In Eq. (4.1), χ(1) is the linear susceptibility, χ(2) is any of the surface

or bulk nonlinear susceptibilities, χ̂
(2)
s,⊥⊥⊥, χ̂

(2)
s,‖‖⊥ = χ̂

(2)
s,‖⊥‖, γ, and ζ, whereas ω1 and ω2

are the frequencies of the interacting beams.

As our chapter concerns SHG, we put ω1 = ω2 ≡ ω. The constant C can be calculated

using the corresponding experimental data at an arbitrary reference frequency, ωr, and

thence subsequently used to calculate the full nonlinear dispersions of our materials. In

particular, C is given by

C =
χ(2)(Ωr, ωr)

χ(1)(Ωr)[χ(1)(ωr)]
2 , (4.2)

where Ωr = 2ωr.

The real and imaginary parts of the main bulk nonlinear susceptibility, γ, are pre-

sented for Au and Si in Figs. 4.3(a) and 4.3(b), respectively. Due to the nature of the

Miller rule, the shape of the dispersion curves corresponding to the other nonlinear sus-

ceptibilities will remain the same; only the scaling constant C will change. A comparison

of the data plotted in Figure 4.2 reveals that for Au the magnitude of the nonlinear sus-

ceptibilities increases when the wavelength increases, whereas it decreases in the case of

Si. It is also clear that the variance of the susceptibility values is greater for Au, which

is not a surprising fact considering that the nonlinear dispersion is dependent upon the

square of the linear dispersion.
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Figure 4.3: Frequency dispersion of the second-order surface and bulk susceptibilities of
Au and Si. (a), (b) The wavelength dependence of the bulk nonlinear susceptibility, γ,
of Au and Si, respectively. All nonlinear susceptibilities will follow the same wavelength
dependence, but multiplied by a different scaling constant.

4.5 Results and Discussion

The nonlinear polarization, and implicitly the sources of the SH field, is primarily de-

termined by the field at the FF, and therefore we have started our analysis with the

calculation of the linear optical field. The spectra of the linear scattering cross-section of

the metallic crosses, determined for several values of the scaling parameter α, are plotted

in Fig. 4.4(a). They show a prominent resonance, which for the cross with α = 1 is

located at 0.63 µm. Unsurprisingly, as seen from our discussion in Chapter 3, as the cross

is scaled to larger sizes, the resonance peak shifts to increasing wavelengths. The field

distribution calculated at the resonance wavelength of the cross with α = 1 and shown in

the inset of Fig. 4.4(b), suggests that this is an electric dipole resonance. To confirm this,

we performed a multipole decomposition. The results of these calculations, summarized

in Fig. 4.4(b) for α = 1, clearly prove that the electric dipole has the dominant contribu-

tion to the total radiated power, in the entire wavelength range. The peak of this electric

dipole spectrum is located at 0.63 µm, thus further validating our conclusion.

We compare these fundamental field results to those corresponding to a cross made of

Si. The spectra of the linear scattering cross-section of this structure, determined for the

same five values of α, are shown in Fig. 4.5(a). Due to the dielectric nature of the cross,

more spectral resonances exist within the scanned wavelength range. In particular, as

the wavelength of the incoming light decreases, higher-order (Mie) resonances of the cross

can be excited within the structure. Figure 4.5(b) shows the spectra of the total radiated

power as well as the spectra corresponding to the electric dipole and magnetic dipole,

all calculated for the cross with α = 1, whereas the resulting electric field distributions

within the Si structure, calculated at the wavelengths of the first three resonances, namely
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Figure 4.4: a) The spectra of the linear scattering cross-section of a cross made of gold,
determined for different scaling values, α. b) A more detailed understanding of the linear
regime for the case α = 1 is provided by the spectra of the total radiated power and
the power radiated by the electric dipole of the cross. The inset shows the electric field
distribution calculated at the resonance wavelength in the xz-plane passing through the
center of the cross.

at 0.73 µm, 0.81 µm, and 1.2 µm, are presented in Fig. 4.5(c). As these figures illustrate,

the multipole expansion is less accurate when applied to the Si cross, chiefly because

in this case the ratio between the cross size and wavelength is larger than that for the

Au cross and thus the long-wavelength approximation, in which the multipole expansion

holds, becomes inaccurate.

Inspecting the spectrum of the total radiated power, one can observe three distinct

peaks within the wavelength range. The spectra in Fig. 4.5b and the field profiles shown

in Fig. 4.5c suggest that peaks A and C correspond to an electric dipole mode and a

superposition of a strong magnetic dipole mode and a weaker, higher-order magnetic

mode, respectively, whereas the spectral peak B is the result of a mixture of multipole

resonances. Note also that both the scattering spectra and field distributions suggest that

at peak A there is an additional contribution from a magnetic dipole mode. Moreover,

one can clearly see in Fig. 4.5(b) spectral regions where the light radiated by different

multipoles interfere destructively or constructively, thus suppressing or enhancing the

total radiated power, respectively. This interference among optical fields emitted by dif-

ferent multipoles has been observed experimentally [61], both in the linear and nonlinear

regimes.

It must be noted that, as expected, the quality factor of the resonances of the gold

cross is smaller than that of the silicon cross. This is due to the optical losses in the

metal, which add to the radiative ones. Moreover, the total power radiated by the silicon

cross naturally outweighs the total power scattered by the gold cross, as the ratio of the
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Figure 4.5: a) The spectra of the linear scattering cross-section of a silicon cross, de-
termined for different scaling values, α. b) A more detailed understanding of the linear
regime for the case α = 1 is provided by the spectra of the total radiated power and
the power radiated by the electric dipole and magnetic dipole of the cross. Resonances
A and C are primarily of electric dipole and magnetic dipole type, respectively, whereas
additional terms must be considered to accurately describe resonance B. Note also that
there is a small contribution to resonance A from a magnetic dipole. c) From left to right,
bottom panels show the electric field distribution at the resonances A, B, and C, in the
xz-plane passing through the center of the cross.

structural volumes is VSi/VAu = 108.5.

An insightful picture of the nature of resonances of nanoparticles is provided by the

differential scattering cross-section, as well as the differential cross-sections of the electro-

magnetic multipoles associated to these resonances. Using a multipolar decomposition

of the linear polarization associated to the Au and Si crosses, we have calculated the

differential scattering cross-sections corresponding to these resonances. The results of

this computational analysis, summarized in Figure 4.6, clearly demonstrate the specific

nature of the main resonances of the two crosses: the Au cross has an electric dipole reso-

nance, whereas the Si cross has an electric dipole resonance, a magnetic dipole resonance,

and a mixture between an electric dipole resonance and higher-order resonances.

For resonances corresponding to a wavelength closer to the size of the structure, we

expect to see higher-order multipoles. This is clearly shown in Figure 4.7. While the

individually-considered multipoles suggest the dominance of a dipole in the metallic case,

the full interaction shows that higher-orders must indeed be considered, as the shapes do
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Figure 4.6: Spectra of the radiated power at fundamental frequency and differential
scattering cross section. (a) Spectra of the total radiated power and the power radiated
by the electric dipole of the Au cross with α=1. (b) Spectra of the total radiated power
and the power radiated by the electric dipole and magnetic dipole of the Si cross with α=1.
Resonances 2 and 4 are primarily of electric dipole and magnetic dipole type, respectively,
whereas additional terms must be considered to accurately describes resonance 3. (c)
Differential scattering cross sections corresponding to the main resonance of the Au and
Si crosses with α=1, as well as those associated to the electric dipole, magnetic dipole,
electric quadrupole, and their sum, calculated at the same resonance wavelengths.

mot match for either Si or Au.

Additional information about the specific nature of various resonances of the nanopar-

ticles investigated in our chapter is provided by the near-field distribution. In order to

facilitate a better understanding of the characteristics of the near-field distribution cor-

responding to the main resonances of the silicon cross, denoted above as resonances A,

B and C, we present in Figure 4.8 these distributions computed in the main symmetry

planes of the cross. As discussed above, resonances A and C correspond to an electric

dipole mode and a superposition of a strong magnetic dipole mode and a weaker, higher-

order magnetic mode, respectively, whereas the resonance B is the result of a mixture of

multipole resonances. At resonance A, an additional contribution from a magnetic dipole

mode can be observed, too. The SHG is primarily determined by the characteristics of

the near-field distribution at the fundamental frequency. In particular, it is expected

that the larger the enhancement of the near-field is, the stronger the SHG is. In order to

illustrate this idea, we plot in Figure 4.9 the spatial distribution of the amplitude of the

electric field determined at the resonance wavelength for gold crosses with different size.
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Figure 4.7: Differential scattering cross section at the second harmonic. (a) Differential
scattering cross section corresponding to the main nonlinear resonance for a scaling factor
of α=1.5 for Au, arrived at by summing the first three multipoles. (b) The same as in (a),
but including every multipole and their interferences with one another. The two cases
are clearly not in agreement, and hence a rigorous multipole analysis would require more
multipoles to be calculated. (c) The differential scattering cross section corresponding to
the electric dipole resonance for the case α=1.5. (d) The same as in (c), but including
every multipole and their interferences with one another.

As discussed above, it can be seen that as the size of the cross decreases, the maximum

enhancement of the near-field increases, which explains why in the case when the surface

and bulk nonlinear susceptibilities are frequency-independent the SHG increases, too (see

also Figures 4.4 and 4.5). We move now on to the nonlinear optical response of the two

types of crosses and start with a brief discussion of the key ideas pertaining to the basic

nonlinear physics. The external field of frequency, ω, impinges on the “meta-atom”, ex-

citing an electromagnetic field at frequency, Ω = 2ω. Hence, we expect to see a strong SH

signal when optical resonances are excited at the FF. Generally, this nonlinear optical

process can occur both at the surface and in the bulk of the scatterer, with different

physics governing each component.

In order to calculate the surface and bulk nonlinear polarizations we used Eqs. 2.33

and 2.35 in conjunction with the fields at the FF. These nonlinear polarizations are then

employed to calculate the corresponding surface and bulk optical powers and the total

power emitted at the SH, as explained in the preceding section. Since these calculations
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Figure 4.8: Optical near-field. Near-field distributions computed in the main symmetry
planes of the silicon cross, corresponding to the main resonances denoted in this Chapter
as resonances A, B, and C.

are performed in the frequency domain, this approach can be readily applied both in the

case when the nonlinear coefficients are frequency dependent, as well as in the disper-

sionless case. These calculations were performed both for Au and for Si. The values of

the surface and bulk nonlinear susceptibilities of Au and Si used in these calculations

are given in the Model and Scattering Configuration section, and correspond to the ref-

erence wavelengths λr = 810 nm (Au) and λr = 800 nm (Si). Hence, the dispersionless

case is based purely on experimental data, whereas the dispersive regime theoretically

extrapolates this data using the Miller rule. The results of this analysis, determined

under both the dispersive and non-dispersive regime for the surface component and for

all of the Au and Si crosses, are plotted in Fig. 4.10. As is evident from this figure, the

resonances observed at the SH are located at wavelengths Λres = λres/2, where λres are

the corresponding resonance wavelengths at the FF.

A more careful examination of the power spectra depicted in Fig. 4.10 reveals several

differences between the nonlinear optical response of Au and Si crosses. Thus, with
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Figure 4.9: Optical near-field enhancement. (a), (b), (c), (d), (e) Spatial distribution of
the amplitude of the electric field determined for metallic crosses with scaling parameter
α=1,1.35,1.5,1.75,2, respectively. The arrow indicates the polarization of the incident
wave and the amplitude of the incident field is 1V/m.
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Figure 4.10: a) The spectra of the power radiated at the second-harmonic by the non-
linear surface sources within the dispersive framework induced in a cross made of gold,
determined for different scaling values, α. b) The same as in a) but calculated for crosses
made of silicon. A log scale is chosen for the Au case to help highlight the resonances.

regards to the Au cross, the electric dipole generated at the FF is the main source of

power radiated at the SH. Indeed, the wavelength of the maximum SH intensity coincides

with half the wavelength of the dipole resonance at the FF (see Fig. 4.4). However, by
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Figure 4.11: a) The spectra of the power radiated at the second-harmonic by the nonlinear
bulk sources within the dispersive framework induced in a cross made of gold, determined
for different scaling values, α. b) The same as in a) but calculated for crosses made of
silicon. A log scale is chosen for the Au case to help highlight the resonances.

contrast, in the case of the Si cross the electric dipole resonance has the weakest signature

in the nonlinear spectrum, the main signal at the SH originating from the resonances

labeled in Fig. 4.5(b) with B and C (magnetic dipole resonance). This suggests that

in the case of the electric dipole resonance of the Si cross, there is only a small overlap

between the distribution of nonlinear surface currents and the plane waves of the radiation

continuum, and therefore only a small amount of light is radiated.

An equally important but rather unexpected result is that in the case of the silicon

cross the strongest nonlinear signal is generated by the smallest cross. This is explained

by the fact that as the size of the cross increases the resonance wavelength is red-shifted to

a spectral region of much weaker surface nonlinearity. This size dependence of the surface

SHG becomes more complex in the case of the gold cross. Thus, Fig. 4.10(a) shows that

in the dispersive case the SHG increases as the size of the cross increases, whereas if the

dispersion of the surface nonlinearity is neglected the opposite dependence is observed,

as plotted in Fig. 4.10(c). There are two concurrent effects that lead to these outcomes.

When the size of the cross increases the resonance wavelength increases, too, so that it

moves in a spectral region of much larger surface nonlinearity. On the other hand, the size

dependence of the surface SHG observed in the dispersionless case is explained by the fact

that, as our numerical simulations and previous works corroborate [62], the strongest field

enhancement is achieved for the crosses with the smallest size, an effect that outweighs

the fact that in this case the SH is generated on a smaller surface. More specifically,

the maximum field enhancement computed for gold crosses in the dispersive case with

α = 1, 1.25, 1.5, 1.75, and 2 is 56.2, 44.6, 34.8, 27, and 20.5, respectively. Removing

the dispersive behavior of the nonlinearity within the Si crosses also leads to observable

differences. It is clear, as shown in Fig. 4.10(d), that the factor by which the field is
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enhanced increases. More importantly, the radiative power becomes more comparable

between all of the crosses.

In order to quantify the relative contributions of the surface and bulk nonlinear cur-

rents to the total radiated power at the SH, we show in Fig. 4.11 the radiation spectra

corresponding to the bulk nonlinear polarization, calculated for the dispersive and non-

dispersive cases, for both types of crosses and for all values of the scaling factor. These

calculations show that generally the bulk effects are much weaker than the surface ones,

by more than four orders of magnitude for gold crosses and by more than two orders

of magnitude for crosses made of silicon. In addition, it can be seen that the relative

strength of the spectral resonances varies from the surface to bulk spectra, which is par-

ticularly evident in the case of Si crosses. In comparison with the surface spectra, the

non-dispersive regime leads to stronger field enhancement, especially in the case for larger

scale sizes. Removing the dispersion of the nonlinear optical susceptibilities leads to the

same phenomena shown in Fig. 4.10, namely, in the dispersionless case, the power ra-

diated by the Au crosses decreases with increasing scale size. Furthermore, the power

radiated by all Si crosses does not change much with the size of the cross.

Despite the fact that generally the nonlinear bulk effects are weaker than the surface

ones, close to bulk resonances their contribution can become comparable. Here we call

bulk (surface) resonances spectral peaks that are observed when only bulk (surface) non-

linear currents are included in the calculations. In order to illustrate this important idea,

we plot in Figs. 4.12(a) and 4.12(b) the ratio, κ = Ps/Pb, between the SH powers gener-

ated by the surface and bulk nonlinear currents, Ps and Pb, respectively, determined for

the gold and silicon crosses, and for all five scaling factors in the dispersive framework.

The results corresponding to the non-dispersive case are depicted in Fig. 4.13. These

figures clearly show that in the long-wavelength limit the bulk contribution to the total

SHG is negligible. For wavelengths comparable to the size of the crosses, however, the

bulk contribution can become commensurate to that of the surface, but only for silicon

crosses. Equally important, even though the surface and bulk contributions to SHG are

different in the dispersive and dispersionless cases, their ratio is almost the same (com-

pare Fig. 4.12 and Fig. 4.13). This conclusion is explained by the fact that, due to the

Miller rule, both contributions scale with frequency in the same way.

The surface and volume of the crosses increase at different rate with the cross size

and therefore one expects that the relative contribution of the surface and bulk nonlinear

currents varies with the size of the crosses. In order to verify this argument, we evaluated

the ratio κ at the wavelength at which the bulk contribution is the largest and repeated

these calculations for all values of the scaling factor, both for the gold and silicon crosses.

The histograms corresponding to the dispersive gold and silicon crosses, presented in
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Figure 4.12: a) The dependence of the ratio κ = Ps/Pb between the SH powers generated
by the surface and bulk nonlinear sources induced in a cross made of gold within a
dispersive framework, determined for different scaling values, α. b) The same as in a)
but calculated for the crosses made of silicon. c) The value of the ratio κ evaluated at
the wavelength at which the bulk contribution is maximum vs. the scaling parameter
α, calculated for the crosses made of gold. d) The same as in c) but calculated for the
crosses made of silicon.

Figs. 4.12(c) and 4.12(d), respectively, suggest that there are significant qualitative dif-

ferences between the two cases. Thus, in the case of metallic crosses, κ does not vary

much with α. This apparent paradox is explained by the fact that the effective region

where nonlinear currents are induced in the bulk only extends about a skin-depth from

the surface into the metal. As a result, the surface and bulk effects increase in fact at the

same rate with the size of the gold cross, and therefore the ratio κ should only weakly

depend on α. In the case of dielectrics, on the other hand, the field at the FF pene-

trates throughout the (nonlinear) medium and therefore nonlinear currents are induced

in the entire bulk region. Consequently, the bulk part increases faster with the cross size

as compared to the surface one, in complete agreement with the dependence of κ on α

shown in Fig. 4.12(d). All these conclusions remain valid in the non-dispersive case, too,

which can be inferred from Figs. 4.13(c) and 4.13(d).

We stress that we did not attempt to optimize our structures so as to maximize the

contribution of the bulk effects to the SHG. Nevertheless, our analysis suggests that it
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Figure 4.13: a) The dependence of the ratio κ = Ps/Pb between the SH powers generated
by the surface and bulk nonlinear sources induced in a cross made of gold under the
assumption of dispersionless nonlinearity, determined for different scaling values, α. b)
The same as in a) but calculated for the crosses made of silicon. c) The value of the
ratio κ evaluated at the wavelength at which the bulk contribution is maximum vs. the
scaling parameter α, calculated for the crosses made of gold. d) The same as in c) but
calculated for the crosses made of silicon.

is conceivable that, at least in the case of all-dielectric nanoparticles, one can design

structures for which the bulk effects are comparable or even larger than the surface ones.

This means that care must be taken when experimental results pertaining to SHG in all-

dielectric nanostructures made of centrosymmetric materials are theoretically interpreted,

as our analysis suggests that the validity of the commonly used practice to neglect the

bulk contribution to SHG might break down in this instance.

4.6 Dispersionless Nonlinearities

The results presented above correspond to the case in which the frequency dispersion of

the surface and bulk nonlinear susceptibilities is taken into account. In order to gain

a better understanding of the influence of the dispersion of surface and bulk nonlinear

susceptibilities on the conclusions of our study, we have calculated the surface and bulk

contributions to the total SHG, as well as the ratio between these two contributions,

in the dispersionless case, namely when these nonlinear optical constants are frequency
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Figure 4.14: Surface SHG radiated power - dispersionless case. (a) The spectra of the
power radiated at the second-harmonic by the nonlinear surface sources induced in a
cross made of gold, determined for different scaling values, α. (b) The same as in (a)
but calculated for crosses made of silicon. A log scale is chosen for the Au case to help
highlight the resonances.
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Figure 4.15: Bulk SHG radiated power - dispersionless case. (a) The spectra of the power
radiated at the second-harmonic by the nonlinear bulk sources induced in a cross made
of gold, determined for different scaling values, α. (b) The same as in (a) but calculated
for crosses made of silicon. A log scale is chosen for the Au case to help highlight the
resonances.

independent. These calculations were performed both for Au and for Si. The values of

the surface and bulk nonlinear susceptibitilies of Au and Si used in these calculations are

given in the preceding sections and correspond to the reference wavelengths λr = 810nm

(Au) and λr = 800nm (Si).

For an easy comparison, the results are plotted in a manner similar to that of the

dispersive case. More specifically, Figure 4.14 is the analogue version of Figure 4.11 (the

dispersive case surface results) and contains scattering spectra pertaining to the surface

contributions to the SHG; Figure 4.15 is the analogue version of Figure 4.11 (the dispersive

case bulk results) and contains scattering spectra pertaining to the bulk contributions to
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Figure 4.16: Nonlinear surface and bulk currents. (a), (b) The absolute value of the
surface and bulk nonlinear current distributions, respectively, for the gold cross of scale
factor α=1.5, multiplied by a factor of 105. The surface considered is the plane z=30nmm,
whereas the bulk layer considered is the central layer, i.e. 15nm. The resonance in
consideration is the main resonance present in Figure 4.10, i.e. for an incident wavelength
of 0.82µm. (c), (d) The same as (a), (b), but for a cross made of silicon factor α=1.5.
We consider here the resonance corresponding to the linear electric dipole, i.e. for an
incident wavelength of 1.44µm.

the SHG. Finally, Figure 4.13 is the analogue version of Figure 4.12 (the dispersive case

ratio results) and contains information pertaining to the ratio of the surface and bulk

contributions. To further cast light on the SHG characteristics, we plot in Figure 4.16 the

absolute value of the current density, decomposed into the surface and bulk contributions

at a wavelength corresponding to a resonance. As discussed in the dispersive case, the

surface contribution outweighs the bulk for both materials at the resonance in question,

and this is indeed exemplified here.

4.7 Conclusions

We have studied the second-harmonic generation arising from cruciform structures made

of centrosymmetric metallic and dielectric materials, the physical cornerstones of which
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were described in Chapter 2. We have focused on the nonlinear optical response of such

subwavelength scatterers, aiming to elucidate whether the surface or bulk contribution to

the second-harmonic generation is dominant. Our analysis has provided a nuanced answer

to this question, corresponding to one of the key achievements of this thesis, namely in the

case of metallic structures the nonlinear power generated by surface interactions surpasses

by orders of magnitude that due to bulk effects, whereas in dielectric structures, in certain

circumstances, these two contributions can become comparable. This indeed adds to the

discussion of Chapter 2, where it must now be mentioned that bulk and surface sources

can become equal in magnitude. We have also discussed practical implications of these

findings for subsequent experimental verifications. We will now explore nonlinear signal

generation in metamaterials further by generating a nonlinear toroidal dipole in an all-

dielectric meta-atom.
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Chapter 5

Nonlinear Toroidal Dipoles

generated from Linear Toroidal

Dipoles

5.1 Introduction

In this chapter an all-dielectric meta-atom is shown to exhibit a strong linear toroidal

dipole. After the configuration and set-up of the system is explained, the physics regard-

ing the linear regime is detailed. The discussion then moves on to the nonlinear regime,

whereby the physics of non-centrosymmetric second harmonic generation is analysed.

The nonlinear results stemming from the linear regime show that this meta-atom also

exhibits a nonlinear toroidal dipole.

5.2 Background

First predicted by Zel’dovich in 1957 [1], the toroidal dipole was subsequently added to the

class of fundamental electromagnetic excitations. The history of this mode has hitherto

been intertwined with curious physical phenomena, with the toroidal dipole playing a

key role in parity nonconservation in atomic spectra [2–4], violations of Newton’s Third

Law [5] and the non-reciprocal refraction of light [6]. As the far-field radiated by this

moment is indistinguishable from the electric dipole far-field [7], it is possible to construct

a system whereby the electric and toroidal fields destructively interfere with one another,

leading to a non-radiating system known as an anapole moment [8], the discovery of

which has been put forth as an explanation for dark matter [9]. While the behaviour of

the toroidal dipole is clearly rich with curious activity, this moment is often overlooked
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in full electromagnetic expansions [10–12] due its comparative weakness with its siblings,

an approach that has shown to be often dubious to the neglection of some pertinent

physics [10].

Metamaterials have been shown to be excellent candidates for the generation of strong

dynamic toroidal dipoles [13–17]. By tailoring these sub-wavelength structures to either

suppress the remaining multipoles or enhance the toroidal dipole, in the past decade we

have seen scenarios where the toroidal moment can be made to be the strongest elec-

tromagnetic excitation supported by these structures at both microwave [14, 15, 18] and

optical [19, 20] frequencies. While this field is still in its infancy, the high quality fac-

tors associated with these resonances suggest that toroidal dipoles would be beneficial in

applications with narrowband filters [21], radiationless objects [22,23] and laser gain me-

dia [24]. The application of interest in this thesis, however, is the toroidal dipole’s effect

on the nonlinear physics, specifically the signal arising from the light-matter interaction

second harmonic generation (SHG). While SHG is perhaps the most widely studied non-

linear optical phenomenon, to our knowledge the influence of the toroidal dipole on this

nonlinearity has until now not been investigated.

Most of the metamaterial structures utilized to create toroidal dipoles have relied

on metals, shaping the plasmonic currents to achieve the desired resonances. Recently

however, an all-dielectric meta-atom has been shown to host a prevalent toroidal exci-

tation [25] through displacement current resonances, known as Mie resonances [26]. As

these excitations have higher quality factors than their metallic counterparts through by-

passing the inherent plasmonic loss, all-dielectric structures have shown promising results

for biosensing and energy applications [27].

All-dielectric structures have since been theoretically [8] and experimentally [28] shown

to host strong toroidal dipoles. To this end, we utilise a modified version of the LiTaO3

structure found in [25], designed in this chapter so as to be a manufacturable, experimentally-

verifiable unit. We find the unusual result that the nonlinear signal produced by the linear

toroidal dipole is also toroidal in nature.

5.3 Configuration

The meta-atom of interest is shown in Fig. 5.1, with the dimensions given in the caption.

These LiTaO3 parallelepipeds are embedded in a finite glass block with permittivity

function ǫ = 1.96, with the entire structure being surrounded by a vacuum. The incident

light is a plane wave incident in the y-direction, with the E and H fields polarized along

the z - and x -directions respectively. It must be noted that we consider in this chapter

only the one structure as shown in Fig. 5.1, i.e. the meta-atom. Naturally, however,
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Figure 5.1: Schematics of the analyzed structure. Four cuboids made of non-
centrosymmetric LiTaO3 are embedded in a glass background with height H and width
of 600µm. The structure has dimensions of H = 270µm, W = 16µm, and G = 4µm. The
meta-atom is illuminated with a plane wave traveling in the y-direction, with the electric
and magnetic fields being oriented along the z - and x -directions respectively.

the results can be extended to a fully periodic metamaterial array provided that the

periodicity is sufficiently large that there is no crosstalk between the unit cells. The

inclusion of the surrounding glass is made with experimental conditions in mind; due to

the size of the structural parameters combined with the direction of the k-vector, this

structure is experimentally verifiable.

The linear electromagnetic response of the cuboids was calculated using the time-

domain solver of CST Studio Suite [29]. We implement open boundary conditions to

ensure the subsequent results stem from one meta-atom. In our calculations, a frequency

scan from 1.5THz to 1.8THz in 0.0005THz increments was performed for a sufficiently

fine computational mesh.

LiTaO3 was selected as the material for the parallelepipeds due to its ability to host

a multipole excitation several wavelengths greater than its structural size. This phe-

nomenon arises from the consideration that λr∼na where λr is the resonant wavelength,

n is the effective refractive index of the implemented medium and a is the typical feature

size of the structure. Due to its polaritonic properties, LiTaO3 has a large refractive
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index when interacting with THz-frequency light:

ǫ = ǫ∞
ω2 − ω2

L + iωγ

ω2 − ω2
T + iωγ

(5.1)

where ǫ∞ = 13.4, the longitudinal and transverse optical phonon frequencies are ωL/2π =

46.9THz and ωT/2π = 26.7THz respectively, and the damping factor due to dipole relax-

ation is γ/2π = 0.94THz. Hence, the permittivity function for our calculations reached

a maximum of ǫmax=41.434. While the above permittivity function is indeed highly dis-

persive for frequencies close to the optical phonon frequencies, across our implemented

frequencies, the variation of the LiTaO3 permittivity is 0.118%.

To ensure the toroidal dipole as the majority power-emitter in the linear regime, the

other relevant electromagnetic multipoles must be closely regarded. We therefore also

calculated the electric dipole, magnetic dipole and electric quadrupole, the full set of

which are given in Chapter 2:

In order to describe the nonlinear optical signal generated by the scatterer, we employ

a widely used model of SHG in non-centrosymmetric media [30]. Specifically, SHG has

just a bulk component determined by the nonlinear susceptibility. The surface elements

of the cuboids hence play no role in the second harmonic (SH). This bulk component is

given by:

Pb
Ω(r) = ǫ0χ̂

(2)
b : Eω(r)Eω(r), (5.2)

where Ω = 2ω is the SH frequency and χ
(2)
b is the bulk second-order susceptibility tensor.

Due to the symmetry properties of the LiTaO3 crystal, the non-zero susceptibility

tensor values, measured with a laser of wavelength λ = 1.058µm [31], are: χ
(2)
b,xxy = χ

(2)
b,xyx

= χ
(2)
b,yxx = -χ

(2)
b,yyy = 3.4× 10−12 m2V −1; χ

(2)
b,xxz = χ

(2)
b,xzx = χ

(2)
b,yyz = χ

(2)
b,yzy = χ

(2)
b,zxx = χ

(2)
b,zyy

= 2.14 × 10−12 m2V −1; χ
(2)
b,zzz = 32.8 × 10−12 m2V −1 [32]. The meta-atom was aligned

such that the above crystal symmetry matches the computational setup.

The nonlinear polarization above can be used to calculate the nonlinear multipoles,

which can be viewed as multipolar sources for the nonlinear field. These same polar-

izations define nonlinear currents, via J
s,b
Ω (r) = −iΩPs,b

Ω (r) (an e−iωt dependence of all

harmonic fields is assumed throughout this study). These nonlinear currents can subse-

quently be used to calculate the nonlinear optical far-field by employing a near-field/far-

field transformation [33], thus enabling a complete characterization of the nonlinear scat-

tering process.

The necessity of having multiple cuboids within one meta-atom is due to the more

complex nature of the toroidal dipole. As this moment is formed via a closed loop of

magnetic moments (equivalently one can say poloidally-traveling currents), this loop is

easier to achieve with more metamaterial elements. The impinging light hence excites a
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Figure 5.2: a) The scattering cross section of the meta-atom calculated with CST Studio
Suite. The prominent resonance for an incident wavelength of 183.6µm is the resonance
of interest for this chapter. b) The relevant multipoles calculated through utilization
of the linear fields. The main resonance, corresponding to the resonance present in a),

shows that this resonance is indeed toroidal in nature. c) The value η = sign(Jz)× |Jz|
1
4

is plotted to highlight the current distribution at the surface of the cuboids in the xy-
plane, making it easier to visualise the generated toroidal dipole. d) The electric field
distribution at the surface. e) The same as in d) but for the magnetic field.

magnetic dipole in each cuboid, the close proximity of which means that the near-fields

interact, leading to four oscillating magnetic dipoles oriented such that the displacement

currents flow along the innermost vertex.

5.4 Results and Discussion

The nonlinear polarizations and subsequent SH are primarily determined through the

linear response of the structure. We therefore begin by analysing the salient linear optical

field before moving on to the nonlinear results. Finding the resonance that corresponds

to the toroidal dipole is not a trivial process; as the wavelength decreases, larger-order

multipoles are generated. This means that a strong toroidal dipole can be generated

at several distinct wavelengths, but becomes mixed with the stronger quadrupoles and

octupoles, etc. The resonance that we desire, therefore, is the resonance where the

toroidal dipole is the highest-order multipole excited at that wavelength.

The structural parameters naturally play a vital role in the generation of the required
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toroidal dipole. As we wish to study the SH signal arising from this excitation, it was

required that the other multipoles were suppressed as maximally as possible at the res-

onant wavelength. It was therefore not the toroidal resonance that generated the most

emitted power that was desired, but rather the resonance that was “most toroidal”. The

structural parameters in Fig. 5.1 were hence chosen to bring about this effect.

The full linear response of the meta-atom generated via CST Studio Suite is plotted in

Fig. 5.2. A clear isolated resonance is depicted. Resonances created at larger wavelengths

are naturally present but these correspond to lower-order multipoles, i.e. the electric

and magnetic dipole. As well as plotting the full radiated cross section, we plot the

relevant electromagnetic multipoles. A small magnetic moment accompanied with a large

toroidal moment is indicative of having a symmetric loop of magnetic moments; these

moments generate the toroidal dipole, but cancel with one another in a full summation

on account of being vectors. To further illustrate the physics of the resonance, the

quantity η = sign(Jz) × |Jz|
1
4 is calculated. It must be noted that while this is not a

physical quantity, it is useful to visualise the toroidal moment generated at the resonance

wavelength, as it gives both the direction and magnitude of the current density, but scaled

in a way that makes the results more accessible visually. The electric and magnetic fields

are also plotted in the xy-plane. For our multipole equations the glass was neglected due

to the negligible field enhancement within this dielectric. The main role played by the

glass is a structural support for the cuboids in experimental circumstances; replacing the

glass with a vacuum would simply shift the obtained spectra in wavelength-space.

We now move on to the nonlinear electromagnetic response of the meta-atom and

begin with a brief description of the underlying physics. The external incident light

of frequency ω interacts with the meta-atom, producing its own electromagnetic field

at frequency Ω = 2ω. We hence expect to see a strong SH signal at a wavelength of

91.8µm, i.e. at a wavelength half that of the linear resonance. To model the nonlinear

framework described previously, it was firstly necessary to discard the physics occurring

at the surface of each cuboid due to its negligibility in non-centrosymmetric SHG. The

nonlinear polarizations were subsequently calculated using the linear fields generated from

our computational setup. From the discussion of the linear scattering process thus far

it is clear that the nonlinear multipoles can be calculated through feeding the multipole

equations with these nonlinear polarizations. We therefore implement this method, taking

care to remove any mesh points that correspond to a surface element of our structure. Due

to the values of the crystal nonlinear susceptibility tensor, it is clear that the z -component

of the current density distribution will be the strongest.

The total nonlinear power is plotted alongside the most relevant multipoles in Fig. 5.3.

This total is not merely a summation of the individual components, but rather also cal-
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Figure 5.3: a) The total nonlinear signal calculated, which includes the interaction terms
of the multipoles. The clear resonance is, as expected, at half the wavelength of the
resonance in Fig.5.2. b) The nonlinear electromagnetic multipoles are calculated via

the nonlinear polarizations. Note that a log plot is required to accurately compare these
multipoles. Clearly the SH is primarily toroidal in nature. c) The quantity η is calculated.
Two toroidal loops are squeezed into the cuboids at the SH.

140



culates the interaction of the multipoles. We do indeed observe a resonance at 91.8µm,

as predicted from combining SHG theory with the linear results calculated previously.

Moreover, the nature of this resonance is unexpected; the SH signals generated by nanos-

tructures are most frequently due to nonlinear electric dipoles. Here, however, we observe

a rare instance where a linear toroidal dipole generates a nonlinear toroidal dipole. This

indicates that the nonlinear currents that are produced from the material’s interaction

with the external light source are rather more complicated than is typically observed.

We hence plot again the quantity η. There is an interesting difference between the linear

and nonlinear regimes: while the linear side has one loop present within each metamate-

rial component, the nonlinear current plot shows that two loops are squeezed into each

cuboid.

5.5 Conclusions

We have studied the nonlinear signal arising from a meta-atom comprised of a non-

centrosymmetric material, LiTaO3. The first goal was to ensure that the linear signal

generated by the external plane wave was primarily toroidal in nature, with the structural

parameters being chosen in such a way as to maximize this resonance. The nonlinear cur-

rents were then calculated, plotted, and utilized so as to rigorously analyze the nonlinear

electromagnetic moments arising from this structure. Surprisingly, this nonlinear signal

was also toroidal in nature. The structure was also designed such that these results are

experimentally verifiable.
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Chapter 6

Metamaterial Fabrication, SEM

Images, and FTIR Measurements

This section will firstly detail the fabrication process used to produce periodic arrays of

U-shapes. The justifications behind the equipment used is given along with the optimal

parameters. The source of the U-shapes is also given, with an explanation as to how these

shapes are useful for future fabrication work. The workings of the Fourier Transform

Infrared Spectrometer, along with its measurements of the optical coefficients of the U-

shapes are presented.

Cross-shaped trenches are the second metamaterial considered in this chapter. Once

again its origins and usefulness are delineated, with a slight modification being made

to remove an extra layer of PMMA from the original structure. Different cross-shaped

trenches are introduced and combined to formulate a multi-resonant meta-atom, the

measurements of which are also introduced. Due to small alterations in the fabrication

procedure, it is again necessary to fully expand the details of each fabrication step.

Finally, a third metamaterial is introduced that consists of a cross-shaped trench with

a reduced quantity of surrounding metal. The fabrication procedure for this structure

requires an additional substance, referred to as HSQ, which strongly alters the entire

production process. The steps are hence given, and the measured responses are shown.

Throughout the fabrication of the above-mentioned metamaterials, there were many

alternative approaches and ideas that ultimately had to be changed due to their lack of

success. The most important of these are given here in detail.

6.1 Fabrication of U-Shape Structures

Before the process of production for our metamaterials can be discussed, it must be

noted that there is no ‘one size fits all’ fabrication method for metamaterials: the choice
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of substrate, metal(s), and desired patterns all dramatically affect the role that fabrication

parameters play. Figure 6.1 helps elucidate this principle. In terms of fabrication, there

are, broadly speaking, two main types of metamaterial: hill-type structures, where the

pattern of interest is a metallic design on top of a substrate; and valley-type structures,

where the pattern of interest is a gap within the metal which sits atop the substrate, also

depicted in Figure 6.1.

Figure 6.1: Examples of different fabrication procedures to produce hill- and valley-type
metamaterials. The choice of procedure will be dependent upon the choice of materials
that constitute the metamaterial.

The structure of interest for this section is a hill-type structure, as shown in Figure

6.2. These structures are closely related to split ring resonators (SRRs) [1, 2], but the

small upper-arms of the SRR in this instance are removed to increase the resonance

frequency at a given minimum feature size and to simplify the nanofabrication procedure

[3]. These U-shapes are ideal for becoming acquainted with the equipment used for

producing metamaterials, as the structure does not present too challenging a work: there

are no tricky aspects such as small features or uncommon materials, and the structure

has been extensively analysed within metamaterial literature [3–5]. This means that the

manufactured metamaterial can be compared with the known optical response in order

to determine whether its production was successful.

The unit cell consists of a Si substrate followed by a 5nm U-shaped layer of Ti,

146



Figure 6.2: The U-shaped metamaterial that will first be analysed in order to become
acquainted with metamaterial fabrication procedures. Taken from [4].

and a final 30nm U-shaped layer of Au. It is important to note that this structure is

polarization-dependent: the orientation of the incoming electric field determines which

part of the U-shape is excited. Figure 6.3, below, taken from [4], shows the optical

response of this dependence.

6.1.1 Cleaning and Spin-coating

Surface impurities on a substrate can wreak havoc for the entire fabrication procedure.

With the potential for creating uneven metallic surfaces and producing vast areas where

patterning is impossible, the preliminary cleaning of a substrate is therefore always a

necessity. To this end, the substrates were placed in a thermal bath of 50◦C at 45KHz

sweep mode for 10 minutes in Acetone, followed by 10 minutes in IPA and 5 minutes

in DI-water at the same frequency and temperature. A plasma asher was then used

to descum the substrates: an O2 plasma buffeted the surfaces of the Si substrate for 5

minutes.

A critical layer which enables the structures to be patterned into the metamaterial is

a masking polymer. Various masking polymers designed for varying functionalities exist,

but in this instance a 100nm-layer of Poly(methyl methacrylate) (PMMA) is used. It is
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Figure 6.3: The polarization-dependence of the U-shape structure demonstrated through
measurements of the normal-incidence transmission and reflection spectra. Taken from
[4].

required, much like a stencil, for the design patterning, but must also be removed at the

end of the fabrication process. Therefore, it is often referred to as a sacrificial layer.

In order to evenly distribute and solidify the initially liquefied PMMA, it must be spin-

coated. This process involves placing the substrate centrally on a stage, which rotates

with a selected angular frequency. The substrate is then covered with PMMA, while

making sure no bubbles are present, as these interfere with how evenly the PMMA is

distributed. A spin-recipe is then selected. The rapid rotation of the stage causes the

PMMA to experience a centripetal force. This force, combined with the surface tension

of the liquid, causes the PMMA to solidify in an even manner across the surface of the

substrate [6].

Different PMMA products are dissolved in different amounts of anisole and are de-

signed to also have different molecular weights. The selection of molecular weights, per-

centage solution, and rotation frequency creates a flexible choice of PMMA thickness.

Figure 6.4 shows the dependence of the thickness of 950 PMMA-Ax (PMMA solutions

of molecular weight 950,000 which are dissolved in x percent of anisole). To produce the

required 100nm-layer of sacrificial layer, 950 PMMA-A2 was used for my experiments,

spun at 500rpm for 2 seconds and subsequently at 2000rpm for 45 seconds. After spin-

coating, the substrate was baked at 180◦C for one minute to dry, ready to be placed into
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Figure 6.4: The effect of spin rate upon the final thickness of the PMMA-layers depending
upon the concentration of the PMMA. Taken from [6].

an Electron Beam Lithographer.

At the end of this step, the sample is built up as in Figure 6.5.

6.1.2 Electron Beam Lithography

Electron Beam Lithography is the step in the fabrication procedure which enables the

patterns to be designed and implemented. By firing a beam of electrons into the PMMA

resist, the solubility of the exposed resist is altered. This means that after fabrication

there are effectively two different types of PMMA present on the substrate. By apply-

ing the right solvents, therefore, the exposed PMMA can be removed while leaving the

unexposed PMMA in place as a mask for further processing. Before the designs can be

implemented, however, the Electron Beam Lithographer (EBL) must be finely focused

by tuning a multitude of parameters, including the aperture size and working distance

of the gun; stigmation; electron beam voltage; stage height; and aperture alignment to

ensure that the patterns are as accurate as possible. It is worth discussing the role these

parameters play in the patterning process, as every slight change to an EBL function can
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Figure 6.5: a) The state of the future U-shaped sample after the substrate has been
cleaned and had a 100nm layer of PMMA spin-coated upon it. b) The bird’s eye view
is also presented for a visual aid to help the reader grasp each step in the fabrication
process.

radically alter, and hence ruin, the desired outcome.

The aperture size controls the size of the beam. If we liken the EBL’s firing of electrons

to a hose squirting water, the aperture size alters the surface area of water flowing through

the nozzle. This beam naturally spreads outwardly as it travels, and hence the working

distance of the gun to the substrate decides the extent of this spreading. The stage height

is a parameter that is utilized in conjunction with the working distance. While the stage

height is simply how far above the default position the stage must be raised, the working

distance determines the height from the sample to the EBL gun. The electron beam

voltage dictates the power with which the electrons are fired. Not all resists have the

same thickness, and hence to penetrate a more thickly coated resist it is often advisable

to ramp up the EBL beam voltage. The stigmation and aperture alignment are often

set in tandem while setting up the EBL. The stigmation is judged by eye, with the best

stigmation setting being set by the user’s sense of minimal astigmatism. The EBL can

change the stigmation of the beam by applying a weak electromagnetic field, slightly

altering the movements of the electrons. The aperture alignment simply ensures that the

beam of electrons flows dead centre with respect to the sample.

The write-field alignment must also be executed: usually, the EBL only ‘sees’ an area

of 100µm x 100µm. For areas larger than this, the stage is mechanically shifted by the

EBL. Correcting the write-field alignment therefore makes certain that the second 100µm
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x 100µm perfectly sits next to the first with no gaps or overlap. In EBL terminology

this is often referred to as ‘stitching’, a correction that must be manually accounted for

before the patterning can begin.

As mentioned, the aperture size controls the width of the beam. It is therefore no

surprise that this parameter plays a crucial role in the magnitude of the current that flows

from the electron beam. This value is of crucial significance when calculating the EBL’s

dwell time. The dwell time dictates how long the EBL should stay in a fixed position

(dwell) while firing the beam to deliver the specified dose into the resist. If this dwell time

is not recalculated for every EBL session it could easily ruin the entirety of the sample,

as the EBL will dwell for an incorrect length of time, leading to over/under-exposed

structures.

Figure 6.6: A scanning-electron microscope image of a portion of a dose test. The dose
is gradually increased moving from left to right. Hence, the top-right U-shape has the
highest dose. We can see that when the dose is very low, the U-shape’s features are not
visible.

A vital investigation when creating a new structure is to find through experimentation

the optimum dose of the EBL for that particular structure. This dose is intrinsically linked

to the intensity with which the EBL fires the beam of electrons. The EBL’s perfect dose is

hence the dose that produces the best patterns. If the dose is too small, this equivalently

means that the beam of electrons is too weak, leading to poorly-defined features. If the

dose is too strong, the required designs will have no sharp features, and any sharp corners

will be transformed into rather rounded shapes. This difference between dose values is

delineated in Figure 6.6. It is therefore a necessity to produce a full sample containing

features of varying doses, in order to find this ‘Goldilocks dose’. My usual method for

locating this dose is to create a 2x2 array of the structure in question with an assigned dose

of 0.01. This structure is then duplicated hundreds of times with an incremental increase
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in dose of 0.01. This therefore produces an array, with the constituent components

exhibiting a range from poorly defined features to overly defined features.

Figure 6.7: An example of an incorrectly aligned writefield. It is as if a column of crosses
has been ripped apart. It is often advisable for a user to repeat writefield alignments
within the EBL framework to ensure that they stitch together correctly.

An important image that highlights the importance of ensuring the writefield is cor-

rectly aligned is depicted in Figure 6.7. It is clear that one column of crosses actually

belongs to two writefields that have not been correctly stitched, a mistake that is the

fault of the user. This splitting of the crosses would naturally not be visible were the

writefields correctly aligned. With a writefield area of 100µm x 100µm, a working dis-

tance of 8.9mm, and aperture size 20µm, a dose of 1.41 generated the highest-quality

U-shapes, as depicted in Figure 6.8.

6.1.3 Development and Electron Beam Evaporation

Once the exposure is complete, the exposed PMMA resist can be removed by placing the

sample in a solution of MIBK:IPA 1:3 for 60 seconds, followed by pure IPA for a further

60 seconds. After drying the sample with N2 (placing the sample on a hot plate here

can potentially damage the patterned features), the sample is ready to have the metals
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Figure 6.8: The best dose, 1.41, taken from the same array as Figure 6.6.

evaporated upon it. At this point, the structure appears as in Figure 6.9.

An electron beam evaporator is an efficient way of achieving this goal. The evaporator

is able to fire electrons through a vacuum to irradiate the metal of choice. The metal

heats and evaporates, depositing uniformly upon the substrates which rotate above the

metal source. By tuning the current through the filament, one has the ability to finely

tune the rate of evaporation. For the manufactured U-shapes, the rates of evaporation

were, according to the crystal monitor present within the equipment, 0.043nm/s and

0.076nm/s for the titanium and gold respectively. The 5nm layer of titanium does not

play a role in the optical characteristics of the metamaterial, but is required as a glue:

gold is naturally not adhesive, and would not form a sustainable layer without the stickier

titanium.

When fixing the samples to the rotating ceiling, the simplest method is to ensure the

substrates are placed onto a glass slide enveloped in sticky-tape. This glass slide is then

in turn stuck to the ceiling. It is useful to tape over a partial region of the substrates, as

this will produce a region, once the tape has been removed, where no metals have been

deposited. Having both regions allows the height of the gold to be accurately calculated

using a DekTak Profilometer after evaporation is complete. This Profilometer consists of

a diamond-tipped stylus that outputs its height as an analogue signal. By making this

stylus run over both metallic and non-metallic regions, the height difference - i.e. height

of the deposited metal - can be measured. Once again we provide the reader with a visual

aid as to how the structure looks once this metallic evaporation is complete, depicted in

Figure 6.10.

After the metallic evaporation, the remaining PMMA must be removed. This is
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Figure 6.9: a) The sample has now been exposed to the EBL and has had the exposed
PMMA removed through development in solvents. There are therefore now gaps present
in the PMMA where the substrate can be seen from above. b) The top-down view enables
the reader to see the gaps that have been formed via the EBL exposure.

Figure 6.10: a) The metals titanium and gold are evaporated uniformly across the sample.
This naturally includes the regions where the PMMA was removed. b) The gold U-shapes
are now starting to become apparent. Once the PMMA is removed with solvents, the
sample is complete.
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achieved by placing the sample in acetone for 24 hours, followed by an ultrasonic bath in

acetone for 30 seconds, then IPA for a further 30 seconds. Once the sample is N2-dried,

the metamaterial consists of titanium and gold-layered U-shapes.

This concludes the discussion of how to fabricate the U-shaped arrays. The optical

spectra of this fabricated metamaterial is detailed in Section 6.6.1. We now turn to

fabricating Swiss Crosses.

6.2 Swiss Cross Structures - Dual Crosses

Figure 6.11: The unit cell upon which our structure is based, taken from [7]. Here, the
dimensions, in nm, are: Gx = 580, Gy = 390, Lx = 1900 Ly = 1340. The thickness of the
PMMA, gold and titanium are, in nm, 85, 35 and 5 respectively. The periodicity of the
crosses is 2.5µm. Note the way the angle of polarisation is defined here.

There are two main structures that we need look at concerning Swiss Crosses: a meta-

atom consisting of two different Swiss crosses, and a Swiss cross with a reduced amount

of metal on the surface. As these structures require different fabrication procedures, we

being with the former case.

The investigation that we wish to undertake here is the following: given two individual

unit cells, M1 and M2, each with a corresponding resonance in frequency space at f1 and

f2, is it possible to create a meta-atom M = M1 + M2 with resonances at both f1 and f2?

The structure of interest for this section is a valley-type metamaterial, with the unit

cell based on the structure shown in Figure 6.11 and dimensions given in the caption. The

unit cell consists of a CaF2 substrate followed by a narrow layer of Ti, and a final thicker

layer of Au, with the cross-shape gap cutting through everything but the substrate. This

unit cell is from the work of Osley et al. [7]. In that particular paper, the aim was to

study the Fano resonance which occurs due to the carbonyl bond of the PMMA deposited
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Figure 6.12: a) The experimental setup for the dual crosses. We must here evaporate
the metals before spin-coating the PMMA, due to the insulating nature of the CaF2. b)
From above, the only surface that the EBL will subsequently see is the 100nm layer of
PMMA.

on the unit cell [8–11]. As this Fano resonance is not required for this thesis, the PMMA

layer can simply be removed from the unit cell. This removal simply blue-shifts the main

resonance. Here, the interest lies in producing a unit cell with two distinct resonances.

The asymmetry of the above unit cell induces a polarisation-dependence of the meta-

material: we saw from Chapter 2 how the metamaterial’s response depends upon the cur-

rent induced within the metal. Depending on how the electric field is polarised, different

arms of the cross will be excited. Hence, symmetric crosses are polarisation-independent.

Asymmetric crosses have been studied extensively [12, 13]. As a unit cell exhibiting two

distinct resonances is required, a sensible starting point is the deconstruction of the unit

cell in Figure 6.11 into two crosses, where one component of the meta-atom, M1, is cre-

ated from the thinner arm of the original cross, with the thicker arm being used for the

second cross, M2.

6.2.1 Cleaning, Electron Beam Evaporation and Spin-Coating

The initial substrates were cleaned in the same way outlined above, but here the metals

must be evaporated on the substrate before the PMMA is spin-coated. For the Swiss

crosses manufactured below, the filament current was 27mA for titanium and 27.4mA

for gold. The rates of evaporation were 0.153nm/s and 0.357nm/s for titanium and gold

respectively. 100nm of PMMA A4 was spin coated on top of the metal. At this stage,

the sample is configured as in Figure 6.12
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6.2.2 Electron Beam Lithography

Figure 6.13: A scanning-electron microscope image of the dose-test undertaken for the
thick-armed cross. In the upper-area of the picture, poorly-defined structures can be
seen. The dose for these crosses was too small.

Once again, a dose test is mandatory for generating the highest-quality features. Here,

with a writefield area of 100µm x 100µm, a working distance of 8.9mm, an aperture size

20µm, and a dose of 0.75 generated the highest-quality crosses. One example of a dose

test for this structure is depicted in Figure 6.13, whereas the perfect dose is shown in

Figure 6.14

6.2.3 Development and Argon Ion Milling

The exposed PMMA resist can now be removed in the same manner as for the U-shapes,

by placing the sample in a solution of MIBK:IPA 1:3 for 60 seconds, followed by pure

IPA for a further 60 seconds. After drying the sample with N2, the sample is ready to be

exposed to argon ion milling, the purpose of which is to remove cross-shaped portions of

the gold and titanium. This step was not required when considering the U-shapes, due

to the fact that there the metal was deposited upon the sacrificial layer, and hence could

easily be removed with the PMMA. Before the argon milling takes place, the sample is

depicted in Figure 6.15.

By bombarding the entire surface of the sample with argon ions, the gold and titanium

atoms are ejected from their respective layers. The control over the voltage and current
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Figure 6.14: A dose of 0.75 yielded the highest-quality cross-shapes. Shown here is the
cross made of the thick-armed cross.

allows precise milling rates to be achieved. For example, a standard recipe for the accel-

eration voltage, beam voltage and beam current of 390V, 200V and 10mA respectively

leads to a milling rate of 5.5 nm/s for gold and 2.2nm/s for silicon. The PMMA, which

is still present on the remainder of the sample, acts as a mask for these surfaces. The

purpose of having a mask with a low milling rate (2.2nm/s for the above parameters)

enables the surface under the PMMA to remain unaltered throughout the milling process.

After milling, the sample appears as in Figure 6.16. It was subsequently left in acetone

for 24 hours, followed by an ultrasonic bath in acetone for 30 seconds, then IPA for a

further 30 seconds. Once the sample is N2-dried, the metamaterial consists of cross-

shaped gaps within the deposited titanium and gold.

6.3 Swiss Cross Structures - Reduced Metal

This section arises from an investigation into metamaterial notch transmission filters using

metal. The origins of the structure and its parameters, depicted in Figure 6.17, were dealt

with in more detail in Chapter 3. The basic premise, however, is that the reduction of

metal on the surface allows for greater transmission by removing the possible reflection
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Figure 6.15: a) After the EBL exposure the sample has the exposed areas of the PMMA
removed, and the metal shines through ready for milling. b) The metallic crosses are
clearly visible. As the end goal is to have cross-shaped trenches, this sample must be
milled with the PMMA acting as a mask.

Figure 6.16: a) The trenches have now been made, and all that is left to complete is
the removal of the PMMA. b) It is clearer from the top-down perspective that once the
PMMA has been removed with acetone and IPA, cross-shaped trenches are present in
the metals.

159



and/or absorption via the gold. There is, on the other hand, still enough gold present

for a metamaterial to be present that can interact with the extraneous light source and

block the desired wavelength(s). The desired wavelength we wish to block and hence

upon which the structural parameters are based, is 2.7µm.

Figure 6.17: The new Swiss cross meta-atom optimized for improving transmission, i.e.
generating sharper and deeper resonances in the transmission spectrum. The width and
length of the cross is 174nm and 486nm respectively. The square made of gold (depicted
as red) has a width of 600nm. The periodicity and thickness of the gold is 1620nm and
30nm respectively, as generated by RSoft’s DiffractMOD MOST optimizer. The blue and
cream colours refer to the surrounding dielectric and the cross-shaped gaps, respectively.

6.3.1 Cleaning, Electron Beam Evaporation and Spin-Coating

The substrates were cleaned in the same way as before. At this point in my fabrication

career I was adding 2 more minutes to each solvent bath simply for good measure. As

in the other Swiss Cross case, the metals have to be evaporated upon the substrate

before any spin-coating takes place. At this stage, too, a small change was made; after

experiencing less than desirable results, the amount of titanium was decreased from 5nm

to 1nm. As mentioned previously, the role of the titanium plays no optical role, it is

simply a glue used to keep the gold on the substrate. Due to the weak resonances being

acquired, it was thought that the 5nm layer was potentially too thick and in actual fact

interacting with the impinging light. The reduction could only have a positive effect, as

a 1nm coat is still plenty for the Ti to act as cement.

During my time in the lab attempting to fabricate this sample successfully, the PMMA

at one point had to be changed; the cleanroom was out of stock of PMMA A2 (950) and

had no plans to continue its purchase. I subsequently had the selection of PMMA A4

(950) and PMMA A2 (495). Initially I opted for the latter, as it supposedly gave the

same thickness as my original source. However, this radically altered the optimal dose,

and hence all the EBL parameters. When using the 4% PMMA instead, although the

160



Figure 6.18: a) The setup for the notch filter to be manufactured. The substrate has had
the metals evaporated upon it, with both PMMA and subsequent HSQ spin-coats. b)
The bird’s eye perspective. From the EBL’s point of view it will only ‘see’ the HSQ.

thickness was now to be 200nm, it was substantially easier to achieve sharply defined

structures using this brand of PMMA.

The change in structure from an all-gold background to a mostly-transparent back-

ground requires a rather dramatic way in fabricating this metamaterial. We cannot

simply follow the method of the dual-crosses, as we need to be more selective about how

our gold is removed. To this end, a second sacrificial layer is added on top of the PMMA;

6% hydrogen silsesquioxane (HSQ) is spin coated at 5000rpm for 45 seconds to give a

layer of 85nm. It will shortly become clear why this is necessary. After these steps are

implemented, Figure 6.18 represents how the structure appears.

One important factor to note here is that HSQ is a negative resist, while PMMA is

a positive resist. This means that while it is the exposed area of PMMA that is usually

removed, it is the unexposed region of HSQ that gets removed upon development.

6.3.2 Electron Beam Lithography

Through much trial and error, it was found that a change to the aperture size, from 20µm

to 10µm, produced better results. The writefield area was kept at 100µm x 100µm. A

working distance of 9.1mm was implemented. These parameters gave an optimal dose of

0.141 as depicted in Figure 6.19.

6.3.3 Development and Argon Milling

As can be immediately seen from viewing Figure 6.18, we cannot immediately jump

to developing the PMMA like we did with the other structures. In fact, the PMMA
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Figure 6.19: The optimum dose, 0.141, for the Swiss cross with reduced metal. The base
dose was 500µAscm−1.

cannot be developed, it is the HSQ that the EBL’s electrons interfered with, changing

the solubility of the HSQ. The PMMA is, under correct implementation of the EBL,

untouched. The following question naturally arises: why is the PMMA necessary? If

it is added, never touched or interfered with, only to be removed, is it not possible to

skip a step and only use the HSQ? Here, however, we have a problem that is the exact

opposite of the gold; the HSQ is too adhesive. Spin-coating HSQ directly onto the metal

would simply ruin the sample, as removing the HSQ would not leave the metal intact.

The addition of using PMMA allows us to sidestep this issue, as the HSQ is removed

alongside the PMMA. To develop the HSQ, the sample is placed in solvent MF 26-A for

1 minute, followed by DI water for a further minute.

The PMMA layer is, naturally, still present. While we want to keep the PMMA that

is under the unexposed HSQ, we must remove the PMMA that is now exposed to the air

due to the HSQ removal. Once this is complete, the sample is ready to be placed in the

argon miller. Figure 6.20 elucidates this principle.

Once again, the PMMA acts as a mask so that the desired gold is not milled away. The

freely exposed metal is bombarded with argon ions, removing the metal. It is important

to note here that for many trial runs, a thin metallic layer was deliberately left un-milled,

so as to provide an easily conductive surface when the sample is later placed again in
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Figure 6.20: As both the unexposed HSQ and the PMMA underneath this region must
be removed, there are two steps to the development process. a) Firstly, the unexposed
HSQ is removed with MF 26-A and DI water. b) The underlying PMMA is then removed
in an alternate fashion to the previous metamaterial cases as it has not been exposed to
the EBL beam. It is removed through placing the sample in an O2 plasma asher.

the EBL to record images with the scanning electron microscope. It is possible to use

another method, whereby conducting tape joins the substrate to the EBL stage, but the

method of reduced argon milling is simplest. This process is necessary due to the fact

that CaF2 is a natural insulator. For the EBL to successfully have a functioning beam of

electrons, there must be some conduction on the receiving end of the beam. We illustrate

the state of the sample at the end of this milling in Figure 6.21.

Afterwards, the remaining PMMA is removed as before by placing the sample in

acetone for 24 hours, followed by an ultrasonic wash of acetone for 30 seconds and a

further ultrasonic wash in IPA for 30 seconds. The sample is then dried with N2.

6.3.4 Box Shapes

Alongside these crosses, I experimented with another shape that, according to simula-

tions, should yield promising transmission results. This shape, a box shape, is depicted in

Figure 6.22. It should not be surprising that there exist other structures that effectively

give the same results as the crosses. The crosses are essentially a symmetric piece of

metal on top of a substrate, and hence this box shape works in the same way; composed

of a square, it is also polarization independent.

There is no need to thoroughly document how this box shape was made; the struc-

tural properties meant that it was fabricated in the same way as the crosses. The only

parameter that needs to be changed is the dose of the EBL; yet again a dose test must

be undertaken to find this value.
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Figure 6.21: a) The state of the sample after the metal has been milled. The remain-
ing stack of resists on the metals is simply removed with acetone. b) The bird’s eye
perspective helps show the cross-shapes that have now been formed.

Figure 6.22: The origins of the box-shape. The width of the gold is 600nm, while the
width of the air-gap is 200nm. The periodicity is 1.62µm.

164



Figure 6.23: An example of HSQ that has started to degrade but has been spin-coated
and exposed in the EBL. The layer is clearly not uniform, and causes scattered clumps
of low-quality resist.

6.4 Scanning Electron Microscope Results - Incor-

rect Procedures

In this section a large quantity of images taken with the scanning electron microscope

(SEM) are given whereby some parameters were not set correctly or a false assumption

was made, to further cast light on the myriad of factors that govern the fabrication

procedure.

6.4.1 The instability of HSQ

HSQ is rather more sensitive than PMMA. While a PMMA solution can be stored after

opening for months at a time and still give the appropriate uniform thickness after spin-

coating, there is no such guarantee with HSQ; the short shelf-life and the need to be

stored in a fridge can often cause an unwanted low-quality coating to be applied to the

sample, as can be seen in Figure 6.23. A work-around is to take small samples frequently

from a large sample continuously stored in a freezer, an unfortunately more expensive

process.

A further complication caused by adding HSQ to the PMMA is the stark difference

in power that is required from the EBL to produce an array of well-defined features. The

base power with which the EBL is utilized in conjunction with PMMA A2 is 180µAscm−1.

Upon adding the HSQ, it was recommended to increase this base dose to 330µAscm−1.
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However, as is shown in Figure 6.24, the dose tests that we apply shows significant

sensitivity with each incremental increase in dose. With previous structures, the perfect

dose sits between the poorly defined dose and the overly defined dose, with a wide range

of adequate doses separating them. The reader may benefit by thinking of a bell curve,

with the dose along the x -axis and the quality of the structure along the y-axis. While

the perfect dose is the peak of the curve, that is not to say that all the other doses

will not give good results. Indeed, any structure designed with a dose that is within a

significant margin of this peak will engender a strong response when utilized for optical

experiments. What we effectively see when using this HSQ in conjunction with a low

base dose, however, is again a bell curve but with an extraordinarily low full-width

half maximum (equivalently a high quality factor). This phenomenon was overcome

by increasing the base dose further to 500µAscm−1. The range of adequate doses was

therefore increased to a more acceptable level.

Figure 6.24: An example of how sensitive the dose tests can be if the base dose is not
correctly set. With PMMA the usual base dose is 180µAscm−1. The sample in this
Figure is based on an HSQ resist of base dose 330µAscm−1. However, this is still too
small, evidenced by how quickly the shapes go from poorly defined to overly defined.
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6.4.2 The Switching of PMMA

As noted earlier, there was a point in time at which the London Centre for Nanotechnology

stopped stocking the PMMA that I was regularly using. At this point I was focused purely

on fabricating the Swiss crosses with reduced metal. Due to the fact that the PMMA

that I require lies underneath the HSQ, and hence does not get directly exposed, my

assumption was that the PMMA played no great role in the EBL optimisation, i.e. that

the PMMA is a sacrificial layer placed under the HSQ so as to avoid the HSQ adhering to

the gold and could subsequently be removed, having caused no alterations in the actual

patterning process.

This was not the case. Once the A2 PMMA was switched to A4, giving a thicker

layer, it became immediately obvious that the optimum dose that I had before was no

longer applicable. A new dose test had to be administered to find the new optimum dose,

as this thicker underlayer had changed. Most likely this is due to the scattering of the

electrons at the PMMA/HSQ interface.

6.4.3 Complex Polygons

Initially while trying to create the Swiss cross with reduced metal, as seen in Section 6.3,

I created a single shape for the EBL to expose, i.e. the orange area that is depicted in

Figure 6.21. This is not quite as simple as it first sounds due to the rudimentary nature

of the EBL CAD. Instead, a two components must be input into the CAD - specifically a

square and a cross - and a subsequent Boolean operation applied. These Boolean logical

operators are present within the interface of the CAD, and Figure 6.25 is intended to

help the reader understand how the EBL’s logical operators function. From this Figure,

it is clear that it is the XOR command, which stands for ‘exclusively OR’, that produces

the desired structure.

This option - creating a polygon from a Boolean operation - caused a number of

problems, as we shall now see. It was later suggested to me by a more experienced user

to never use these operations; no matter how complex the structure to be designed, it

should always essentially be composed of circles and rectangles. The software glitches

that follow can thus be quite simply side-stepped.

The SUB operation (standing for subtract) also appears that it should create the

Swiss cross with reduced metal. My first attempts at creating this structure focused on

applying this Boolean operation. However, it quickly became apparent that this would

not be a fruitful endeavour. Figure 6.26 gives a couple of examples where this operation

was applied. Regardless of the dose, the resulting structure has no features. One possible

reason for this is that the way the EBL attempted to subtract one logical operator
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Figure 6.25: Four of the logical operators provided by the EBL CAD. Assuming that the
blue square is element 1 and the red cross element 2, logical operators can be applied to
these elements. As an OR function produces a positive result when even both structures
are present, it will be the XOR (exclusively OR) function that shall interest us more in
this section.

from the other; perhaps it attempted to subtract the smaller structure from the larger,

confusing its internal logic process, or some other reason entirely. It is clear that more

fruitful results will be found elsewhere.

Figure 6.27 documents a phenomenon that occurred while using the XOR operation.

We see well-defined features for the cross, but it is apparent that a large portion of the

crosses, while having been exposed, have not properly developed; the middle of the cross

is still present. The panel on the left is the same structure but multiplied by a scale

factor of 2. Another case was observed on more than one occasion while creating these

structures: as seen in Figure 6.28, there were times when whole segments of an array

simply were not fabricated, always in the centre of the array.

An effect similar to this was produced on another sample, where an array with uniform

doses was fabricated. However, rather than producing an array of identical crosses, there

is a clear variance of dose across the sample. This is demonstrated in Figure 6.29.

Results were immediately improved upon switching from a Boolean-designed cross to

a cross made from a selection of rectangles. The dichotomy between these two regimes is

strongly demonstrated in Figure 6.30. The left panel of this Figure shows a portion of a

dose test from the newly conceived rectangle collection, whereas the right panel shows the

Boolean operation. Both of these arrays were created on the same sample on the same

day. The rectangle collection clearly provides a more stable, better defined meta-atom.
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Figure 6.26: 3 separate examples of the SUB Boolean operation are given. It is clear that
at best we get an incredibly poor representation of a cross shape. Rather than trying to
further battle through the complications that the SUB operation creates, I thought the
XOR Boolean operation would lead to better results.

6.4.4 Two-Tone Colouring

After viewing many different versions of the Swiss cross with reduced metal, I noticed

a common pattern pertaining to many of my samples. While this phenomenon is quite

glaring when looking for it, it is easily overlooked if the focus is on the shape and quality

of the fabricated structures. This phenomenon is the colouring of the crosses, as shown

in Figure 6.31. There seems to be two types of crosses in terms of the colouring; one is

clearly brighter than the other. What causes this? The electrons flowing from the EBL

beam are hitting the sample and traveling through the metal, effectively ‘activating’

the meta-atoms. The most plausible explanation is that the darker meta-atoms are not

being activated, i.e. the metal of which they are comprised does not have a current flowing

through it. A possible reason for this could be residual resists amongst some of the crosses,

insulating them from electron flow, possibly combined with the heights of the crosses - a

factor that we naturally cannot see due to the bird’s eye view. It is very telling about

the EBL that this problem went away as soon as the Boolean operations, which we saw

above, were discontinued. The combination of errors so far is strong evidence that when

using these Boolean operations, the crosses are no longer identical, but particular software

glitches imbue many of the array elements with their own characteristic properties.

6.4.5 Rectangular Composites

While it may seem initially trivial, there are multiple ways to construct this cross from

rectangles. As we shall quickly discover, this problem does not stay trivial when it is
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Figure 6.27: Two panels are shown. The size of the structure in the bottom panel is
twice that of the structure in the top panel. In both cases we see a significant portion
of the array is ruined; even though the features are sharply defined, the middles of many
crosses have not been emptied.
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Figure 6.28: A phenomenon is observed whereby the centre of the array has not been
correctly exposed.

Figure 6.29: There is a clear variance of dose across this array of crosses, despite each
member of the array being given the identical dose value.

viewed from the point of view of the electron beam of the EBL. There are two ways that

I experimented with designing these structures, as shown in the upper portion of Figure

6.32. Initial fabrication efforts were geared towards the construction on the upper-left

side of the Figure, i.e. a cross composed of four squares and four much smaller rectangles

that joined these squares.

It did not take long before the second construction was invoked, due to the results
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Figure 6.30: Two arrays fabricated on the same sample are shown. Top - the Swiss cross
with reduced metal made by stitching rectangles together. Bottom - the Swiss cross made
via a Boolean operation. The former clearly wins in a competition of quality.

attained through SEM imaging, as shown in Figure 6.33. This Figure contains a small

segment of crosses created for a dose test. A comparison of the cross in the bottom-left

corner with the cross in the top-right corner will help the reader to see the variance in

dose across this image. There are two main problems with every cross in this picture.

Firstly, there is an evident kink on the right-hand side of every cross, perturbing what
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Figure 6.31: A phenomenon whereby some meta-atoms have a different colouring. The
most plausible explanation is that some of these elements are not conducting as they
should.

should be the square boundary that encloses the cross pattern. The second problem is

the shape of the cross itself. While with a dose test we expect to see poor drawings of

our shapes though either over exposure or under exposure, we see that the crosses are

not symmetrically ruined. Observing the lower-end of the dose spectrum, it is clear that

the left arm is longer and fatter than the right arm. However, even when we shift our

attention to the upper-right corner of the image, the size of the top and bottom arms

in comparison to the other two reveals an unequal distribution of beam exposure. It

therefore seemed a sensible idea to opt for the second design in Figure 6.32.

This very same issue can be extended to the box-shapes mentioned briefly in Section

6.3.4. The inclusion of the small hole in the middle of the square turns an easily-fabricated

square into a more subtly complex pattern. As before, while there exist multiple ways

of constructing this box from individual rectangles, we will see that the first structure

leads to unsuccessful SEM images, prompting a much-improved second attempt at pat-

terning the structure. Alongside the different cross designs, Figure 6.32 also shows the
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Figure 6.32: Two different ways of drawing the surroundings of crosses (top) and boxes
(bottom). In both cases, the left-hand structures, when implemented in the EBL CAD,
were not drawn sufficiently, as shall be seen in Figures 6.33 and 6.34. The right-hand
side, in both cases, were the most acceptable, leading to well-drawn structures.

Figure 6.33: A portion of a dose test for the construction of a Swiss cross with reduced
metal designed from the upper-left panel of Figure 6.32.
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Figure 6.34: Upper-left - A segment containing the small doses of a dose test for a box-
shape of size half that in Figure 6.22. The EBL clearly struggles to fabricate the desired
structure designed according to the lower-left part of Figure 6.32. Lower-left - The same
dose test as before, focused on the higher-end of the dose spectrum. We see that the
dose is immaterial with respect to creating quality structures through the implemented
design. Right - A dose test for a box-shape twice the size of the boxes in the left-hand
panels. While we see the central hole start to emerge, the actual quality of the structures
is no better than the previous dose test.

two box-shape designs implemented, with the first, unsuccessful attempt on the lower-

left. With hindsight it is easy to see why the design on the right-hand side is naturally

superior; composed of four equally-portioned segments, the EBL is not forced, as it is for

the first design, to switch between patterning large and small segments that have been

stitched together. In Figure 6.34 we plot portions of two dose tests, one fabricated for

a structural size of half that in Figure 6.22, seen in the two left-hand panels, and one

dose test consisting of a box-shape twice that structural size. On the upper-left picture,

corresponding to the lower-end of the dose spectrum, we see that there is no discernible

hole in the middle of the box. Furthermore, the boxes are not even square-shaped. The

structures do indeed become more square-shaped as the dose is increased, as evidenced

in the lower-left panel. However, there is still no requisite hole. The structures do not

much improve once the structure is scaled by a factor of 2; the right-hand panel shows

oddly-shaped polygons with a rather poor round hole.

6.4.6 Step Sizes in the EBL

This section is intended to highlight for the reader how the EBL ‘sees’ the patterns that

we implement in the CAD. Within the software of the EBL a mesh is applied to the

structure, which the user can alter from the default value to vary the density of the

mesh. The default step size, which is 10nm, is perfect for creating structures such as

the U-shapes we saw previously; each individual component of the array has, due to its
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Figure 6.35: Two identical crosses are given that have different meshes applied to them
via the EBL software. A denser mesh can often lead to refined structures when dealing
with scales in the order of tens of nanometres. However, this increase in mesh points
comes at the cost of computational time.

micron-sized width and length, has enough mesh points for the EBL to make an accurate

representation of this structure in the resist. When dealing with smaller structures, it

can however be beneficial to decrease the step size to a value such as 2nm for an attempt

at increasing the definition of the structure. It is important to note that, for example,

decreasing the step-size from 10nm to 2nm in both directions causes the fabrication time

to increase by a factor of 25. Figure 6.35 showcases two identical crosses with different

meshes applied in each case.

6.5 Scanning Electron Microscope Results - Success

Stories

Thankfully the fabrication story told here is not all replete with doom and gloom; in this

section we provide the reader with images of high-quality structures that were fabricated

regarding the structures that we have hitherto discussed. The results that we later discuss

are all based on the structures documented in this section.

6.5.1 U-shapes

There are, regrettably, no images of the high-quality U-shapes that generated the success-

ful transmission and reflection measurements performed later on. These patterns were

created at the very beginning of my fabrication adventures and it did not occur to me

to take some SEM images of the final result. While I do have images of the dose tests

and therefore the optimum dose of the structures, these images were taken before the

titanium and gold were deposited on top of the U-shaped gaps. The contrast of these

images, while useable on a computer monitor, do not lend themselves to printed versions,

as I discovered after they were printed in my transfer thesis.
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Figure 6.36: High quality U-shaped trenches, fabricated via the HSQ method in Section
6.3. The dose used here is 1.41.

I therefore offer the reader images of the inverse-structure, where U-shaped valleys

are fabricated instead of the hills. The reason for their fabrication is due to the trials

and tribulations experienced while attempting to manufacture a working Swiss cross with

reduced metal. The sheer number of factors that I started to discover were thwarting

my fabrication process caused me to return to the drawing board and fabricate a much

simpler pattern that had already been designed, to see if these same factors were present.

This U-shape implementation indeed helped me to discover that the HSQ base dose that

I was utilizing in the EBL was far too low, while simultaneously forcing me to realise that

a Boolean operation is not needed to fabricate the polygon. These high quality helpful

U-shapes can be seen in Figure 6.36.

6.5.2 Swiss Crosses Deconstructed

There are three cross-shapes that are pertinent to this section. As we shall discover a

little later on while analysing in detail the origins of these structures, these experiments

began with a cross-shaped trench taken from [7]. My fabrication of this asymmetric cross

is depicted in Figure 6.37. This cross-shape is clearly of high-quality. There are well-

defined edges without any roundness to the structure. The dose used for this structure

(after a base dose of 180µAscm−1.) was 0.62. As mentioned previously, this structure

lends itself to the creation of two symmetric crosses, each composed of one of the original’s
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arms. Both of these crosses are depicted alongside the original cross in Figure 6.37. The

perfect dose for the thinner and thicker cross was also 0.62.

Figure 6.37: The three crosses fabricated via the method described in Section 6.2. Top -
the original cross fabricated with dose 0.62. Bottom - The thin and thick armed crosses
alternating in an array. The dose used is the same as the original cross, 0.62.
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6.5.3 Swiss Crossed with Reduced Metal

Two cross structures of high quality are pictured here, one corresponding to the structure

created with PMMA A2, with the other cross being produced after it became necessary to

switch PMMA solutions to PMMA A4. The dose corresponding to the PMMA A2 cross is

0.141 and is displayed on the left-hand side of Figure 6.38. The cross corresponding to the

implementation of A4, shown on the right-hand side of the same Figure, was fabricated

with a dose of 0.277, all other parameters being equal. This is a stark shift and highlights

the underlying sensitivity of every step in the fabrication procedure.

Figure 6.38: Left - A cross made through the use of PMMA A2, fabricated with a dose
of 0.141. Right - A cross consisting of the same dimensions but fabricated with PMMA
A4. This change in PMMA required a new dose; shown here is a dose of 0.277.

6.5.4 Box-Shapes

The boxes described above were, after correcting for the Boolean operations and tessel-

lation of rectangles, produced with a dose of 0.145, as shown in Figure 6.39.

6.6 Fourier Transform Infrared Spectroscopy

The results presented here all stem from the high quality samples we saw in the previous

section. The initial focus, when fabricating U-shapes, was to ensure that both the trans-

mission and reflection measurements matched up to the literature, as a sure sign that

every step I was doing in the cleanroom was correct. The focus subsequently started to

shift to only transmission, as we shall shortly see. Before delving into the measurements

obtained, it is important to explain the inner workings of Fourier Transform Infrared
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Figure 6.39: A box-shape fabricated via the HSQ method outlined in Section 6.3. The
utilized dose was 0.145.

Spectroscopy, commonly abbreviated as FTIR. FTIR measurements have a wide-range

of applications, including pharmaceutical and life science sectors, building materials and

soil analysis [15].

As stated, the entire purpose of my FTIR measurements was to measure reflection and

transmission coefficients for a wide range of wavelengths. To do this, the FTIR does not

utilize one wavelength of light at a time. Rather, a polychromatic light source impinges

upon a beam splitter, in our case composed of KBr. Once the beam is split, there are

two possible pathways for the light to follow: one path leads to a stationary mirror, while

the other leads to a crucial moveable mirror. Once the two beams of light recombine,

they interfere with one another, producing an interference pattern that is recorded and

analysed by the FTIR. The moveable mirror is not moved manually, but rather by the

FTIR itself. The adjustment of this mirror enables the FTIR to alter the frequencies of

light that are emitted through interference. The interference pattern that is produced

measures two variables: the intensity of the light recorded as a function of the mirror

position. After hundreds of such measurements, a Fourier transform is applied to the

data, which gives rise to the optical spectra in terms of wavenumber. An understanding

of these principles is aided by the diagram in Figure 6.40, which briefly highlights the

pertinent physics and gives an example of an interferogram, which is the name given to

the interference patterns produced by the FTIR.

When using the FTIR, it is first necessary to cool the detector down using liquid

nitrogen. There is a small hole at the back of the machine that can be opened, where

liquid nitrogen should be poured to ensure the detector operates as quickly, sensitively

and accurately as possible. Once this action is performed, the FTIR can operate for a few
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Figure 6.40: The setup of the FTIR. A polychromatic light source impinges upon a
beam splitter, allowing two possible pathways for the light to follow: one path leads to a
stationary mirror, while the other leads to a crucial moveable mirror. Once the two beams
of light recombine, they interfere with one another, producing an interference pattern that
is recorded and analysed by the FTIR. The moveable mirror is not moved manually, but
rather by the FTIR itself. The adjustment of this mirror enables the FTIR to alter the
frequencies of light that are emitted through interference. The interference pattern that
is produced measures two variables: the intensity of the light recorded as a function of
the mirror position. After hundreds of such measurements, a Fourier transform is applied
to the data, which gives rise to the optical spectra in terms of wavenumber.
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hours before the detector begins to lose its calibration. Thankfully, the FTIR itself will

tell the user when this happens with its own built in detector, so there is no guesswork

needed on the user’s end.

Ensuring that the sample receives the maximum amount of light is of paramount

importance before the measurements begin. To do this, the FTIR enables the user to

minutely alter the stage height and outputs the intensity of the received signal. Infrared

(IR) filters are then inserted into their place and the appropriate scanning settings are

chosen. Typically, for the FTIR measurements depicted here, 800 scans were run per

measurement with a resolution of 8cm−1. The wavevector range varied depending upon

the sample to be measured, but the total range across all samples was from >10000cm−1

to 500cm−1, corresponding to a wavelength range of <1µm to 20µm.

Before the main reflection/transmission measurements can be obtained, it is neces-

sary to perform a background measurement. The FTIR then compares its interferogram

with the background measure to give the true reflection/transmission coefficients. For a

reflection background measurement, it is necessary to focus the incoming polychromatic

source onto a region that is highly reflective and that does not contain any special fea-

tures. When performing these measurements for the cross trenches, for example, this

was simply done, as most of the sample is covered in gold, with the exception of the

cross-shaped holes of the array. For a sample such as the U-shapes, obtaining a highly

reflective non-metamaterial surface requires a little more engineering on the user’s part.

Throughout the fabrication process it is important to keep in mind the final goal, i.e.

FTIR measurements. Hence, for samples such as the U-shapes, throughout the fabrica-

tion procedure sections on the sample were masked so that the gold was not removed at

the end of the process with the acetone wash.

As one would expect, a highly transmissive section of the sample is required to perform

a background measurement before transmission optical coefficients are calculated. While

this naturally would be difficult to ensure with certain substrates, CaF2 is highly trans-

missive in the wavelength regions of interest. It must also be noted that any change to

the FTIR’s parameters requires an immediate re-doing of the background measurement.

We are now in a position to analyse, in detail, the optical spectra gathered from the

FTIR measurements.

6.6.1 U-shapes

We have hitherto seen the fabrication procedure and best dose utilized to create the U-

shapes. Also shown were the measured transmission and reflection spectra taken from [4]

for this structure. As these U-shapes were analysed in order to learn how to fabricate

metamaterials, a true test of this is matching my reflection and transmission measure-
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Figure 6.41: The optical coefficients (reflection and transmission) measured by the FTIR
for two different polarizations. Top - 0◦ and bottom - 90◦ polarizations. Blue and green
correspond to reflection and transmission results, respectively.

ments to those of the simulations.

Figure 6.41 shows the FTIR measurements collected by measuring the fabricated

U-shapes that we saw in the fabrication section. For 0◦ polarization, we see a peak

corresponding to an incident wavelength of 16µm, whereas 90◦ polarization has almost

uniform reflection and transmission, i.e. there are no main peaks to speak of.

Figure 6.42, on the other hand, shows the transmission, reflection and absorption

coefficient obtained through simulating the periodic U-shapes with DiffractMOD. We

have seen how these structures are simulated in detail in Chapter 3. Here it is important

to note the peak corresponding to a wavelength of approximately 16.4µm for an incident

polarization of 0◦, whereas there is a weak bump for a polarization of 90◦ for a wavelength

of approximately 15.3µm.

As Figures 6.41 and 6.42 demonstrate, the fabricated structures do indeed strongly
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Figure 6.42: The optical coefficients (reflection and transmission) simulated by Diffract-
MOD for two different polarizations. Top - 0◦ and bottom - 90◦ polarizations. Blue,
green and red correspond to reflection, transmission and absorption curves, respectively.
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match the simulated predictions. The slight shift in wavelength space between the simu-

lated and measured resonance for an incident polarization of 0◦ is easily explained: slight

deviations in the structural sizes, a common theme for experimentalists, would shift the

location at which the metamaterials would resonate. In simulations, the structural di-

mensions are perfect, whereas it is not unreasonable to observe a structural difference

of 10% when these structures are made in a lab. From the above figures, therefore, the

fabrication process can be regarded as a success.

6.6.2 Swiss Cross Trenches

This section documents a deconstruction of the cross seen in Figure 6.11, hereafter referred

to as the original cross, into two symmetric crosses.

Figure 6.43: Simulated and measured reflection and transmission spectra of the original
cross from [7]. The differently coloured lines refer to different values for incident polar-
ization. This polarization-dependence is a by-product of utilising an asymmetric cross.
The small resonance at 5.75µm is due to a carbonyl bind within the final layer of PMMA,
a feature which we do not expect to see with our modifications. This phenomenon is an
example of absorption-induced transparency [14].

Because the transmission spectrum calculations require a background measurement
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focused on a highly transmittive part of the sample, during the fabrication process of

these crosses, an area of CaF2 was left untouched by the gold and titanium precisely for

this purpose. This is easily achieved by simply covering a section of the sample with

sticky tape, a commonly used implement in the cleanroom.

In the same manner as the U-shapes, above, for every following FTIR measurement,

800 scans were run with a resolution of 8cm−1 for a wavevector range of 10000cm−1 to

500cm−1 - corresponding to a wavelength scan of 1µm to 20µm.

The transmission and reflection spectra obtained by Osley et al. are shown in Figure

6.43. Within every panel of this Figure, a small resonance for an incident wavelength of

5.75µm can be seen. In the cited paper, Osley et al. were studying the effects of this

resonance, produced by a carbonyl bond in the PMMA that was spin-coated on top of

the sample after all other fabrication steps. Hence, in that paper, there is an extra layer

of PMMA on top of the deposited metal. As the studying of this bond is not crucial

for my work, no final layer of PMMA was added to my cross-shaped trenches. Two

main consequences of this decision are expected: firstly, of course, the small carbonyl

bond interaction should not appear in our FTIR results. Secondly, we expect the main

resonances to shift in wavelength-space.

The FTIR measurements of the original crosses that I produced are shown in Figure

6.44 for P- and S-polarisations (0◦ and 90◦ respectively). The polarisation-dependence

of these asymmetric crosses can be seen. While the resonances occur in almost the same

frequency-space - a blue-shift due to lack of PMMA accounts for this - the resonances

produced by my structures are not as strong. This can be attributed to not milling the

structure for a long-enough time period, meaning that a thin layer of metal still lingers

on top of the calcium fluoride substrate.

After the cross was deconstructed into the two symmetric crosses, as depicted in

Figure 6.45, the reflection and transmission spectra were measured for arrays composed

of each cross individually, i.e. I acquired the FTIR spectra for an array of thin-armed

crosses and separate FTIR results for thick-armed crosses, as seen in Figure 6.46. Also

in these figures are the spectra for arrays where both crosses are in one unit cell. We

expect the combined unit cell to experience two resonances, one corresponding to the

excitation of the thick-armed cross, and one corresponding to the excitation of the thin-

armed cross. The results collected in Figure 6.46 agree reasonably well with this theory:

the resonance at approximately 4.25µm corresponds to the electromagnetic excitation of

the thin-armed cross. After this peak, the activity of the thick-armed cross takes over

with a much broader resonance.

We have seen that a polarisation-dependent cross can be deconstructed into two

polarisation-independent crosses exhibiting both resonances of the polarisation-dependent

186



Figure 6.44: Top - the measured reflection spectra of my fabricated crosses for 0◦ (blue)
and 90◦ (green). The same frequency dependence as Figure 6.43 can be seen. Bottom -
the measured transmission spectra of the Swiss crosses for 0◦ (blue) and 90◦ (green).

cross.

6.6.3 Swiss Cross - Reduced Metal

The above cell created from the hybridisation of two Swiss crosses has rather broad

resonances. With regards to transmission filters, where we only want to block a small

range of frequencies, the transmission must naturally be large outside the frequency

of interest, with a sharp, narrow drop occurring for the frequency we wish to block.

Moving towards this goal, a Swiss cross structure similar to the design of above was

utilised, but with the amount of gold covering the surface being reduced, as we saw

previously in Figure 6.17. To understand why this structure is so intriguing, we plot here
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Figure 6.45: The deconstructed cross. A meta-atom with thick and thin arms is repeated
periodically with a horizontal and vertical distance of 2.5µm between each cross.

the simulated transmission and reflection spectra obtained through implementation of

RSoft’s DiffractMOD, displayed in Figure 6.47.

The structural dimensions of this new meta-atom were arrived at by using Diffract-

MOD’s MOST optimizer. By defining a function of multiple parameters, MOST attempts

to minimise the defined function. Here, it was told to minimise the transmission at 2.7µm

as a function of the height and width of the cross alongside the thickness of the deposited

gold. Further details of how this optimizer is implemented and how exactly the software

obtains the optical coefficients were given in Section 3.

This reduced quantity of gold enables the plasmonic features of the meta-atom to still

apply, as the crucial cross-structure is present. It is outside of the resonance frequency,

however, that this structure has a true advantage over a structure with more metal: the

reflection will be greatly reduced due to the lack of reflective metal present.

Following successful fabrication of this metamaterial, as seen in Figure 6.38, the FTIR

measurements were collected. Thanks must be given here to Professor Shuang Zhang at

Birmingham University for allowing me to use his FTIR machine once UCL’s became

inoperable due to a laser fault. The Birmingham FTIR is superior to UCL’s for two rea-

sons: firstly, it was no longer necessary to run a recommended 800 scans per measurement

for the FTIR to calculate the optical coefficients. Instead, only 32 runs were required for

high-quality results, naturally saving plenty of time. Secondly, the range of wavelengths

accessible to the FTIR was greater; while UCL’s FTIR could not give any meaningful

results for a wavelength below 2µm, the FTIR in Birmingham allowed wavelengths below

1µm to be measured. All other parameters were kept constant.

In Figure 6.48 the transmission coefficients are plotted for both 0◦ and 90◦ polariza-

tions. Reflection measurements were not taken here, as the purpose is to manufacture
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Figure 6.46: Top - the reflection spectra for the thick-armed cross (blue), thin-armed
cross (green) and combined crosses as in Figure 6.45 (red). The resonances, particularly
in regards to transmission, appear to agree with the theory that the cell should experience
two resonances. Due to symmetry, the unit cell is now polarization-independent. Bottom
- the transmission spectra for the same crosses. 0◦ polarization is used for all results in
this Figure.

a transmission filter. How this light is blocked at the crucial wavelength, i.e. whether

it is reflected or absorbed, is to us immaterial. We see in this Figure some interesting

phenomena. It is immediately apparent that the metamaterial is strongly resistant to

polarization change, but not immune; there is, outside of the main resonance, slightly

reduced transmission for 90◦-polarized light.

The main feature of interest, however, is the resonance itself. It is clear that there is

reduced transmission at the point corresponding to maximum metamaterial excitation.

The shift of wavelength from the simulated (shown in Figure 6.47) to the actual can be

explained by considering the effects of slight alterations to the heights of the metal, as

189



Figure 6.47: The reflection (blue) and transmission (green) spectra of the structure shown
in Figure 6.17, calculated via RSoft’s DiffractMOD.

Figure 6.48: The transmission spectra of a fabricated array of crosses with reduced metal
measured with the FTIR, shown in Figure 6.17. The incident polarization is 0◦ (blue)
and 90◦ (green). There is clear activity at 2.7µm.
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Figure 6.49: The transmission spectra of a fabricated array of box-shapes measured with
the FTIR, shown in Figure 6.39. The incident polarization is 0◦. While activity can be
seen centered at 2.65µm, there is no clear resonance.

we discussed in Section 6.6.1. There are two main problems with the resonance, however.

The first is that the ‘exit’ from the notch to the surrounding wavelengths is far too

shallow on one side when compared with the other. If the steep jump to approximately

85% transmission at a wavelength of 2.8µm could be replicated on the other side of the

resonance, the fabricated metamaterial would be much more satisfactory. Secondly, the

resonance is not deep enough, i.e. not enough light is blocked at the resonance. Possible

distortions from the ‘perfect’ cross to the real may be the cause of this.

6.6.4 Box-Shapes

The box-shapes fabricated in the same manner as the above crosses were shown previously

in Figure 6.39. Both the simulated and obtained transmission spectra are depicted in

Figure 6.49. While DiffractMOD predicts a sharp resonance for a wavelength of 2.7µm,

we see no such activity in the fabricated patterns. There is a glimmer of activity in this

region, and hence the metamaterial appears to be activated, but the match between the

simulations and actuality cannot be considered a success.

6.7 Conclusion

This chapter began with a discussion about a U-shape metamaterial. The simplicity of

the structure combined with its strong optical response made it a perfect metamaterial to

first fabricate in the laboratory while becoming acquainted with the different equipment.
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Each fabrication step for the manufacture of this structure was broken down. The FTIR

measurements acquired from the best-manufactured cross were shown and compared to

simulations obtained via RSoft’s DiffractMOD and were successfully shown to agree with

one another.

Cross-shape trenches were subsequently introduced for the purpose of making a multi-

resonant meta-atom. An asymmetric cross-shape was decomposed into two symmetric

cross-shapes and combined within one unit cell. Once again the procedure utilized to

produce these metamaterials was delineated. The FTIR results shown that an expected

double resonance does indeed occur when the two different cross-trenches are combined

into one unit cell.

An important inclusion within this chapter was the documentation of different obsta-

cles that presented themselves. This included, but was not limited to, two-tone colourings

present upon SEM viewing; the construction of structures within the CAD; the role of

PMMA and the instability of HSQ.

Finally, a cross-shaped trench with a reduced amount of metal surrounding the trench

was presented. The notch-like qualities of a simulated version of this meta-atom were

shown. Due to the inclusion of HSQ, the fabrication procedure is radically altered. All

the subsequent changes necessary to produce this structure were documented along with

the highest quality parameters. Alongside the simulated results of this metamaterial, the

most successful FTIR results were also shown.

The FTIR measurements for both the U-shapes and cross-shapes were promising;

while the fabricated notch filter does not display as profound a resonance as the simula-

tions suggest, there is nevertheless a strong agreement between the two regimes. Given

more time, this cross with reduced metal would be re-fabricated with more sensitivity,

including a more rigorous dose test and altering the thickness of the metal film. This

cross would then subsequently be placed in a meta-atom with another larger cross to de-

liberately ensure a double transmission resonance that we observed in the deconstruction

of the original cross.
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Chapter 7

Conclusions and Future Work

Due to their seeming ability to bend the laws of physics, metamaterials have experienced

a busy flurry of activity since their inception. The benefits of patterning metals atop a

substrate have lead to sci-fi dreams becoming a tangible possibility, with a plethora of

applications in nanoprinting, invisibility cloaks, and earthquake protection. Currently

the metamaterial community are making sure that no stone goes unturned; indeed, there

seems no end of novel ideas being published that document potential new game-changing

structures. As slight changes to a meta-atom’s constitution appear to have rather strong

consequences, it is of paramount importance to study the underlying theoretical frame-

work that governs the laws of this field. Making use of the computational tools at our

disposal, therefore, is an unavoidable necessity.

Ensuring that every metamaterial studied is theoretically sound is, however, often not

enough. One of the cornerstones of this thesis has been to ensure that each meta-atom

introduced to the reader has been designed in such a way so as to be experimentally

verifiable. It is with this approach that tomorrow’s technology will be created today; the

abstractly theoretical structures, while rich with interesting physical phenomena, will,

more often than not, stay confined to the pages of a journal. This principle is more easily

stated than achieved, especially with regards to nonlinear physics.

Making sure that a nonlinear signal can be detected and measured from a fabricated

meta-atom has therefore been one of the main aims of this thesis. The investigation and

analysis of nonlinear signals arising from both centrosymmetric and non-centrosymmetric

meta-atoms have been heavily undertaken in order to elucidate new insights. Firstly, a

theoretical analysis of plasmonic and all-dielectric centrosymmetric meta-atoms docu-

mented how a common assumption regarding the treatment of the bulk media within

dielectric metamaterials is unjustified. Secondly, an in-depth exploration of the nonlin-

ear signal arising from an all-dielectric non-centrosymmetric meta-atom delineated how

a nonlinear toroidal dipole can be engendered.
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Another aspect of my work was to investigate and fabricate metamaterial notch filters

in such a way that multiple notches can be incorporated within the design of one meta-

atom. An analysis of multi-resonant metamaterials was undertaken and documented

alongside the fabrication procedures of each metamaterial created in the London Centre

for Nanotechnology. The optical results measured by Fourier Transform Infrared Spec-

troscopy were also shown to match the results of simulations. Additionally, the theoretical

idea of combining a metamaterial notch filter with a Bragg grating was outlined, with

computational results showing that by placing a metamaterial on top of the surface of a

Bragg grating, many layers of a pure Bragg grating can be removed.

The following sections discuss the contributions of my work to both nonlinear and

notch metamaterials and outline the future goals that this work can help achieve.

7.1 Contributions

With regards to the physics arising from nonlinear metamaterials, the achievements of

this thesis can be split into two regimes: centrosymmetric and non-centrosymmetric. Re-

garding the centrosymmetric framework, it has been a common assumption throughout

metamaterial literature that the contribution to the nonlinear signal arising from the

bulk of an all-dielectric metamaterial is negligible, and can therefore be ignored in com-

putational calculations. Furthermore, the bulk of plasmonic metamaterials is neglected

for the same reason. These assumptions were, for the first time, rigorously addressed for

a general centrosymmetric cruciform meta-atom of varying size.

Utilizing in-house code, the surface and bulk contributions of both a plasmonic and

all-dielectric meta-atom were calculated and compared. Due to an empirical rule known

as Miller’s Rule, the validity of which is a controversial topic for centrosymmetric crystals,

results were obtained for both with and without the inclusion of this rule.

The linear results of this cruciform structure were first analysed, the common recipe

throughout this thesis due to the fact that the nonlinear results that are investigated all

stem from the activity of the linear regime. The linear results show that the dielectric

case is much more rich with activity than the plasmonic case; while only one simple

resonance is observed for the gold cross, several resonances appear in the linear spectra

of the silicon case. These resonances are shown, upon analysis of the multipole expansion,

to belong to different multipole excitations.

The nonlinear results show several intriguing phenomena: firstly, the surface contri-

butions of the plasmonic cruciform outweigh, by orders of magnitude, the contributions

of the bulk to the nonlinear signal. Furthermore, it is the smallest plasmonic structure

that generates the strongest nonlinear signal. Regarding the dielectric case, while the
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surface contributions do, as in the plasmonic case, outweigh the bulk contributions, the

surface and bulk signals are much more comparable in magnitude, and thus the bulk

contribution cannot a priori be neglected. Additionally, although the smallest dielectric

cross is responsible for the largest nonlinear signal, it is the largest dielectric cross that

has the more impacting bulk activity.

The non-centrosymmetric nonlinear investigations do not revolve around testing a

commonly-held assumption. Rather, it is the creation and analysis of new physics that is

the primary goal. An all-dielectric meta-atom is introduced that is designed to be exper-

imentally verifiable through size considerations and embedding it in a glass background.

Instead of being composed of one structure, the meta-atom consists of four parallelepipeds

placed close enough to one another such that their electromagnetic excitations can inter-

act.

As in the centrosymmetric case, the linear results are analysed firstly to become

acquainted with the underlying physics that is prevalent. Through analysis of the most

important multipoles from the multipole expansion, it is found that a linear toroidal

dipole is primarily responsible for the linear signal arising from this meta-atom. This

toroidal dipole arises through the coupling of the four individual components of the

meta-atom. The nonlinear results that are subsequently analysed are hence nonlinear

signals produced by a linear toroidal dipole.

The calculated nonlinear signals document an interesting physical effect: the linear

toroidal dipole is producing a nonlinear field that is itself toroidal in nature. Furthermore,

plots that are produced to highlight the underlying current density distributions show

that there are in fact two toroidal loops that are squeezed into the structure. It is the

unequal balance in these two vectors that causes one loop to be more prevalent than the

other.

An investigation was undertaken to create a multi-resonant meta-atom. Starting

with an asymmetric cross that is therefore polarization-dependent, two symmetric crosses

were generated from it; one symmetric cross arose from the smaller asymmetric arm,

the other symmetric cross from the larger arm. The effects of periodicity were firstly

investigated for a single meta-atom. The reason for this is knowing how far apart multiple

meta-atoms can be placed so as to not interfere with one another. An example is given

whereby two different meta-atoms that are placed too closely together are included in a

metamaterial. The example shows that no clear resonance arises from this case. Putting

the two symmetric crosses together within one structure, two distinct resonances were

shown to be possible. The manufacture of this meta-atom is explored in detail, whereby

the process of collecting the results through Fourier Transform Infrared Spectroscopy is

elucidated. The measured results show that the simulations were indeed correct.
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The discussion then moved on to developing a notch filter, i.e. a metamaterial trans-

mission filter that blocks only a small number of wavelengths, transmitting all other

wavelengths outside this range. The process of acquiring the structural parameters of

this notch filter through utilising DiffractMOD’s MOST optimizer is discussed, and the

simulated transmission spectra are shown. The structure involves reducing the amount of

metal that surrounds the metamaterial pattern, thus increasing the transmission of most

wavelengths. The entire fabrication process of this metamaterial is again given. While

the simulations and measured results both depict a resonance at a wavelength of 2.7µm,

the response of the fabricated metamaterial is not quite as sharp as the simulations. How-

ever, the given meta-atom offers fruitful results. A combination of this notch filter with

other similarly-designed but differently-sized notch filters would allow a multi-resonant

notch filter metamaterial to exist.

Finally, a computational analysis is described in detail to answer the following ques-

tion: by placing a metamaterial notch filter on top of a Bragg grating, is it possible to

reduce the number of layers that make up the Bragg filter, i.e. can the metamaterial act

as a replacement for a number of layers within the Bragg filter? The mathematics and

computational set-up of the problem are depicted, with the role that the number of layers

plays being shown. The notch filter from the previous discussion is then incorporated

into the set-up. The results of this endeavor, however, are still ongoing.

7.2 Future Work

Metamaterials have shown their potential to have applications in numerous fields. Ad-

vancing the collective knowledge of these nanostructures, therefore, can have a dramatic

impact on the shape of future technology. The computational, theoretical, and exper-

imental procedures discussed throughout this thesis not only provide new insights into

the underlying physics, but offer a springboard from which further as-yet-unseen physical

phenomena can be investigated, as shall now be outlined.

Firstly, it would be of great interest to see just how far the bulk contribution of

centrosymmetric all-dielectric meta-atoms can be pushed. Would it be possible for the

bulk contribution to outweigh the surface contribution, and what optical consequences

could this have? The meta-atom provided in this thesis lays out in detail the starting

point from where this investigation could begin.

Achieving experimental verification of a nonlinear toroidal dipole would be the first of

its kind. As this thesis depicts an all-dielectric meta-atom that is manufacturable along

with the wavelength of maximal nonlinear toroidal excitation, achieving this is not an

unrealistic possibility. The set-up of this meta-atom encourages a few more prospects

198



for the investigation of new physics. Firstly, if the two nonlinear toroidal loops that are

generated could cancel with one another, this may lead to a nonlinear anapole moment.

Secondly, an exciting prospect would be to see if toroidal dipoles can be excited at the

third harmonic.

Incorporating all of the fabrication goals into one fully-functioning meta-atom would

have enormous applications for laser protection. By having a multi-resonant meta-atom,

where each constituent acts as a notch filter for a small group of wavelengths, a multi-

notch filter could be created for any wavelengths by tuning the scale and pattern of the

constituents. Furthermore, the multi-notch filter could be modified to become a wide

band-pass filter by having the individual notches effectively overlap. Naturally, a more

robust metamaterial-Bragg filter composite could prove to reduce costs on fabricating an

effective transmission filter through radically altering the number of layers required. The

details of how this could be achieved are delineated in the next section.

7.2.1 Bragg Gratings

Figure 7.1: The metamaterial is now placed on the Bragg grating. Left - a view of the
xz -plane. Right - a view of the xy-plane.

An interesting side project was the idea of seeing what would happen when a meta-

material transmission filter was placed on top of a Bragg filter, which is a combination

of alternating layers that enables certain modes of light to cancel with one another. The

more layers that are included, the more the Bragg filter acts as a complete transmission

filter. The question that arises when placing a metamaterial on top of this Bragg filter

is the following: how many Bragg layers can be removed, i.e. that are superfluous, due

to the presence of the metamaterial?

199



To explore this problem, a Python script was written that solved the Chebyshev

polynomials and hence the characteristic matrix equation (Equation 2.56). As we saw,

this allows the reflection and transmission coefficients to be computed. The results of

a pure Bragg grating are shown in Figure 3.16. The orange, green, and blue curves

correspond to 3, 5, and 7 periods of the two materials, respectively, i.e. 6, 10, and 14

individual layers, respectively.

Rather than inputting a wave with uniform power across all wavelengths, a modifica-

tion was made that enables the metamaterial to be simulated: a reverse Gaussian signal

is given as the input. The Gaussian signal is dependent upon three parameters:

G(a, b, c) = 1− ae
−(x−b)2

2c2 (7.1)

Hence, by choosing the parameters a,b,c correctly, we can engineer a Gaussian that

resembles the transmission signal emitted from a metamaterial notch filter. For the

following results, the two alternating layers, l1 and l2, correspond to Silicon Dioxide

(SiO2) and Hafnium Dioxide (HfO2), with the heights of each layer being 400nm and

300nm respectively. The refractive indices are plotted for both of these materials across

the wavelength range of interest in Figure 3.17.

Figure 7.2: The results of the metamaterial-Bragg composite shown in Figure 7.1. 10,
12, and 14 layers are calculated. The notch-like qualities are not exactly present; an
additional resonance at 2.7µm is seen that appears to ‘throw-off’ the full notch effect.

Figure 3.18 shows the culmination of the discussion so far. In the top panel, the blue

curve shows the reverse Gaussian signal that is input into the Chebyshev equations. It

is clearly centered at a wavelength of 2.6µm with a high quality factor, resembling the

transmission spectra of the metamaterial filter. The orange curve shows the Bragg filter
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consisting of 10 layers ‘in isolation’, i.e. the results of purely the Bragg filter with no

metamaterial or Gaussian signal involved. A deep transmission can be seen owing to a

number of modes of the light that are reflected or absorbed due to the contrast of the

refractive indices of the layers. The green curve take the Bragg filter and applies the

Gaussian as an input. It is clear that adding this Gaussian, i.e. fixing a metamaterial

on top of this Bragg filter, can increase the strength of the resonance, making it more

notch-like than the filter alone.

To highlight the role of the number of layers, the lower part of Figure 3.18 shows three

curves, each one corresponding to a different number of layers within the Bragg composite.

It is clear that as the number of layers increases, the Bragg filter acts increasingly as a

notch filter.

These simulations were further corroborated by implementing RSoft’s DiffractMOD.

Figure 3.19 shows the effect of altering the number of layers in the simulations. Again,

a sharper and deeper resonance is observed when the number of layers is increased. The

metamaterial was subsequently fitted onto the top layer of SiO2, as in Figure 7.1. The

inclusion of the metamaterial gives the results in Figure 7.2 for 10, 12, and 14 layers. This

structure currently does not give the full filter-like results that we expect to see. Given

more time, this metamaterial-Bragg composite would be more rigorously examined.

To sum, the investigations described throughout this thesis have offered insights to

further the collective knowledge of metamaterial physics. The rapid pace of this field

combined with its seemingly limitless applications makes this an exceptionally exciting

and revolutionary field to be a part of.
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Appendix A

Multipole Origins

Here, the origins of the multipole expansion is shown mathematically, as a complement

to the analysis of Maxwell’s equations in Chapter 2. It was seen that the sources of elec-

tromagnetic radiation are the oscillating charge and current distributions. An important

parameter characterizing electromagnetic fields is the vector potential, A:

A(x) =
µ0

4π

∫

J(x′)
eik|x−x

′|

|x− x′|d
3x′ (A.1)

This is the vector potential at x due to current density distributions at x’. The source

electric and magnetic fields can be equivalently written in terms of this potential. Ex-

plicitly:

H =
1

µ0

∇×A E =
i

k

√

µ0

ǫ0
∇×H (A.2a)

The basis of the multipole expansion comes from the consideration of the denominator

within the integral of equation A.1. It can be shown mathematically that:

1

|x− x′| = 4π
∞
∑

l=0

l
∑

m=−l

1

2l + 1

rl<
rl+1
>

Y ∗
lm(θ

′, φ′)Ylm(θ, φ) (A.3)

Where r< (r>) is the smaller (larger) of |x| and |x′|. Hence, the vector potential - and

consequently the electromagnetic source field - is an infinite sum which gives rise to the

multipole family. Before the multipoles are analysed, a brief inspection of the Ylm terms

must be undertaken.
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A.0.2 Spherical Harmonics

The spherical harmonics arise from the ansatz to the Laplace equation in spherical coor-

dinates:
1

r

∂2

∂r2
(rΦ) +

1

r2 sin θ

∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

r2 sin2 θ

∂2Φ

∂φ2
= 0 (A.4)

By considering the angular factors of this equation, it is possible to construct a complete

set of orthogonal functions, Ylm(θ, φ) known as the spherical harmonics. Explicitly:

Ylm(θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (A.5)

Pl refer to the Legendre polynomials, succinctly expressed by Rodrigues’ formula:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l (A.6)

Where x=cos θ.

Equation A.6 contains a modified form of the Legendre polynomials, Pm
l (cos θ). This

notation, combined with Rodrigues’ formula, explicitly denotes:

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l (A.7)

A.0.3 Electromagnetic Multipoles

The potential of a system is dependent upon the aforementioned polynomials:

Φ(x) =
1

ǫ0

∑

l,m

1

2l + 1
[

∫

Y ∗
lm(θ

′, φ′)r′lρ(x′)]
Ylm(θ, φ)

rl+1
(A.8)

The integral in the square brackets in the above equation are referred to as the mul-

tipole moments. It is the expansion of this series that gives rise to the phenomena that

was particularly prevalent in Chapters 4 and 5.

This section is intended to show that at the heart of all electromagnetic sources, there

is an infinite series consisting of terms of varying significance. It is these terms which are

responsible for the characteristic behaviours of each system. As was seen in Chapter 4,

only several terms of the series are usually analysed in most electromagnetic models, as

the higher-order terms are negligible when considering observable phenomena. How this

series manifests itself physically is also detailed in Chapter 4.
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Appendix B

Derivation of the Toroidal Dipole

Power

For a rigorous analysis of the toroidal dipole power, most prevalently discussed in Chapter

5, it was helpful to have this quantity in S.I. units for a direct comparison with the other

multipoles given in [1]. This derivation is the subject of this appendix. Firstly, the

method of comparing the power of the electric dipole between CGS and S.I units is

worked through for brevity.

Jackson [1] states:

Ep =
1

4πǫ0
[k2(n× p)× n

eikr

r
+ [3n(n · p)− p](

1

r3
− ik

r2
)eikr] (B.1)

where Ep is the electric field associated with the electric dipole in S.I. units. Fedotov [2]

gives the associated electric dipole field as:

Ep = [
r · p
c2r2

F (k, r)r− G(k, r)

c2
p]
eikr

r
(B.2)

where:

F (k, r) = c2(−k2 +
i3k

r
+

3

r2
)

G(k, r) = c2(−k2 +
ik

r
+

1

r2
)

(B.3)

There are two small tools that enable us to complete the comparison:

r = rn

n× p× n = p− n(p · n)
(B.4)
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By substituting the first part of Equation B.3 into Equation B.2, we obtain:

Ep = [(n · p)n(−k2) +
(n · p)ni3k

r
+

3(n · p)n
r2

+ pk2 − pik

r
− p

r2
]
e−ikr

r
(B.5)

Now implementing the second part:

Ep = [k2(n× p)× n+ [3n(n · p)]( ik
r
+

1

r2
)]
eikr

r
(B.6)

Two transformations bring us from the above CGS-units equation to that in Jackson’s

renowned work: firstly, Jackson’s system here has assumed the notation ‘-i ’ instead of

‘i ’. A simple switch does not change the physics. Secondly, by multiplying the CGS-unit

system by 1/4πǫ0 brings the two systems to agreement.

We can now proceed to the toroidal dipole, where we use Fedotov’s formula:

ET = [
ikG

c2
T− ik(r ·T)Fr

c2r2
]
e−ikr

r
(B.7)

Where F and G are as above. Proceeding with the relations in Equation B.2, we obtain:

ET = [ik3(n ·T)n− ik3T+
3k2(n ·T)n

r
− k2

r
T− 3ik

r2
(n ·T)n+

ik

r2
T]

e−ikr

r
(B.8)

Rearranging and applying the transformations in Equation B.4:

ET =
1

4πǫ0
[−ik3(n×T)× n

eikr

r
+ [3(n ·T)n−T](

k2

r2
+

ik

r3
)eikr] (B.9)

In the far-field, this equation reduces to:

ET =
−ik3

4πǫ0
(n×T)× n

eikr

r
(B.10)

Hence, we are now in a position to write the full equation for the power emitted by

an array of periodic electric dipoles, magnetic dipoles, electric quadrupoles and toroidal

dipoles together with their interferences:

Iω =
Z0ω

2

8A2
0 cos

2 θi
|(n0 × p0)× n− n×m0 −

ik

6
(n×Q0)n− ik(n×T0)× n|2 (B.11)

where Z0 is the impedance of free space, θi is the angle of the incident exciting light wave,

A0 is the area of the unit cell. It is clear that upon the condition p=-ikT, the electric

and toroidal fields cancel with one another.
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