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Abstract

In this thesis, a comprehensive and rigorous theoretical model has been developed

in order to study nonlinear optical pulse propagation in silicon nanowires and one-

dimensional silicon photonic crystal waveguides. Our theoretical model includes all

the linear and nonlinear effects, such as free-carrier dispersion, free-carrier absorption,

self- and cross-phase modulation, cross-absorption modulation, and free-carrier gener-

ation that describe the pulse dynamics in such photonic waveguides. This work presents

results pertaining to pulse reshaping and optical signal processing using optical non-

linearities of silicon photonic wires with subwavelength cross-section. We have con-

sidered different waveguide configurations, such as adiabatically tapered waveguides,

long-period width-modulated Bragg waveguides, and photonic crystal waveguides. In

particular, we have illustrated how optical nonlinearity and dispersion engineering of

tapered photonic wires can be employed to generate optical similaritons and achieve

more than 10 times pulse compression. We also discuss the properties of four-wave

mixing pulsed amplification and frequency conversion efficiency in long-period Bragg

waveguides and photonic crystal waveguides. In the latter case, a comparison between

device performance in the slow- and fast-light regimes is also presented.
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c speed of light in vacuum (2.99792458×108 m/s)

h̄ reduced Planck constant (1.05457162853×10−34 kg/s)

ε0 electric permittivity of vacuum (8.854×1012F/m)

ε electric permittivity

εr relative electric permittivity (ε/ε0)

Si silicon

Si-PhNW Silicon photonic nanowire

Si-PhCW Silicon photonic crystal waveguide

β propagation constant

αin intrinsic losses

αFC free-carrier losses

GV group velocity

GVD group-velocity dispersion

TOD third-order dispersion

SPM self phase modulation

TPA two-photon absorption

XPM cross-phase modulation

XAM cross-phase absorption

FWM four-wave mixing

FC free carrier

FCD free-carrier dispersion

FCA free-carrier absorption

FCC free-carrier chirp

SS self-steepening

NLSE nonlinear Schrödinger equation

SSF split-step Fourier

FFT fast-Fourier transformation

PWE plain wave expansion

FWHM full-width-half-maximum

CE conversion efficiency

PhC photonic crystal
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CW continuous wave

χ(1) first-order nonlinear susceptibility

χ(2) second-order nonlinear susceptibility

χ(3) third-order nonlinear susceptibility

γ effective nonlinear waveguide coefficient

Γ effective nonlinear susceptibility

τs characteristic response time of the nonlinearity

τc recombination time of free-carriers

∆ walk-off parameter

εI similariton misfit parameter

Ψ normalized pulse amplitude

Λ grating period

Anl effective mode area

κ overlap integral

∆w width modulation
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quency dispersion of Ãnl calculated for the two modes, in the spectral

domain where they are guiding modes. . . . . . . . . . . . . . . . . . . 177

7.6 (a) Dependence of κ on z, determined for the odd (solid line) and even

(dashed line) modes for several values of the group-index, ng. (b) Fre-

quency dispersion of κ̃ calculated for the two modes, in the spectral

domain where they are guiding modes. . . . . . . . . . . . . . . . . . . 178

7.7 Dependence of δ on z, determined for several values of ng. Solid and

dashed lines correspond to the odd and even mode, respectively. . . . . 179

7.8 (a), (b) Dependence of γ ′ and γ ′′ on z, respectively, determined for kz =

0.35(2π/a). (c), (d) Frequency dispersion of spatially averaged values

of γ ′(z) and γ ′′(z), respectively, determined both for the even and odd

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.9 (a), (b) Wavelength diagrams defined by Eq. (7.43) and Eq. (7.45), re-

spectively. In both panels dashed lines correspond to ωp = ωs = ωi. . . 182

7.10 Pulse evolution in the time domain. Left (right) panels correspond

to fast-light (slow-light) regimes, the group-index of the pulses be-

ing: ng,i = 9.48 (ng,i = 20.3), ng,p = 8.64 (ng,p = 8.69), ng,s = 10.37

(ng,s = 23.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.11 From top to bottom, the left (right) panels show the evolution of the

spectra of the idler, pump, and signal in the case of fast-light (slow-

light) regimes. The waveguide and pulse parameters are the same as in

Fig. 7.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



22

7.12 (a) FWM enhancement factor vs. propagation distance, determined for

different values of the walk-off parameter, ∆ = 1/vg,s−1/vg,p. (b) Sig-

nal energy vs. propagation distance, calculated by including FWM

terms in Eqs. (7.37) and Eq. (7.38) and by setting them to zero. The

blue (green) curve corresponds to the fast-light (slow-light) regime con-

sidered in Fig. 7.10(a) [Fig. 7.10(b)], whereas the remaining triplet

of phase-matched wavelengths is λp = 1556nm, λs = 1530nm, and

λi = 1582nm (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.13 (a) Dependence of loss factor, Λ, on the propagation distance, z, deter-

mined for different values of the group-index, ng. (b) Dependence of

Λ on ng, determined for different values of z. The slopes of the curves

corresponding to z = 10µm and z = 70µm are shown in the inset. . . . . 189

7.14 (a) FCA of the idler and signal vs. distance. In inset, difference of

FCA between slow- and fast-light regimes, ∆αfc = αsl
s,i −αfl

s,i. (b) CE

vs. distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.15 Dependence of CE on: (a), linear parameters, β2, β3, and β4; (b), input

pump power, Pp; (c), pulse width, Tp; and (d), waveguide loss coeffi-

cient, αin. In (d), the dashed curve is the loci of maximum CE. . . . . . 191

8.1 Optically connected 3-D supercomputer chip . . . . . . . . . . . . . . . 206

B.2 Comparison between pulse evolution as described by the full and aver-

aged model is presented in the left and right panels, respectively. The

group-index of the pulses are ng,i = 20.3, ng,p = 8.69, and ng,s = 23.3

and correspond to the slow-light propagation scenario presented in

Fig. 7.10. The bottom panel shows the z-dependence of the normalized

pulse amplitude, Ψµ(z) = Aµ(z0+ z)/Aµ(z0), µ = p,s, i, calculated for

the unit cell starting at z0 = 200a. . . . . . . . . . . . . . . . . . . . . . 212



List of Tables

2.1 Comparison of characteristic lengths for ultrashort (200 fs) and long

(10 fs) pulses and γ parameter in a Si-PhNW (dimensions h×w= 220×

4500 nm2) and Si-PhCW (dimensions h = 0.6 a,a = 412 nm) and a

single mode optical fibre for λ = 1550 nm. . . . . . . . . . . . . . . . . 50

3.1 Input pulse parameters for the two cases presented in Fig. 3.1(a) (arrow

A−B and arrow C−D). . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Input pulse parameters for the case of similariton generation for tele-

com and mid-infrared wavelengths corresponding to the results pre-

sented in Fig. 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Input pulse parameters corresponding to the case presented in Fig. 4.3. . 103

4.2 Input pulse parameters for the case presented in Fig. 4.4. . . . . . . . . 105

4.3 Input pulse parameters for the case presented in Fig. 4.5. . . . . . . . . 107

5.1 Input pulse parameters for the case of soliton compression at telecom

and mid-infrared wavelengths corresponding to the results presented in

Fig. 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Input pulse parameters for the case of pulse compression at telecom and

mid-infrared wavelengths of Fig. 5.10. . . . . . . . . . . . . . . . . . . 129

6.1 Input pulse parameters for the case of degenerate FWM of Fig. 6.3. . . . 142

6.2 Input pulse parameters for the case of degenerate FWM of Fig. 6.3. . . . 146

7.1 Input pulse parameters for the fast light case of degenerate FWM of

Fig. 7.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2 Input pulse parameters for the slow light case of degenerate FWM of

Fig. 7.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

23



24

7.3 Input pulse parameters for the fast light case of degenerate FWM of

Figs. 7.14 and 7.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



Chapter 1

Introduction

In recent years, the field of optics has attracted a great deal of attention due to a strin-

gent need for solutions to challenges raised by chip-scale applications. Photonics is

found to be an essential discipline tool for many technological areas, such as telecom-

munications systems, computer networks as well as biomedical science for healthcare

purposes (e.g. diagnostic or therapeutic). It is for this reason that intensive research has

been carried out over the last decade, focused originally on in-depth understanding of

light propagation in different types of optical media and waveguiding devices and also

on efficient fabrication techniques for sub-wavelength structures. Such structures can

exploit efficiently the physical properties of light, giving rise to intriguing linear and

nonlinear optical phenomena. One well established optical guiding structure is silica

fibre, which has been studied and fabricated extensively since 1960s.

Optical fibres are widely used in fibre-optic communications chiefly because low

propagating loss and are immune to electromagnetic interference. Despite the remark-

able properties of optical fibres, there is a physical limitation for scaling fibres in pho-

tonic integrated circuits due to their large characteristic lengths. The latter limitation

can be eliminated by employing silicon photonic nanowires (Si-PhNW), which can be

easily fabricated due to the recent progress in CMOS technology. Such structures ex-

hibit ultra-small waveguide cross-section leading to tight optical confinement. As a

result, the linear and nonlinear properties of silicon nanowires are enhanced signifi-

cantly thus having shorten characteristic lengths, in the range of a few millimeters. The

enhanced optical nonlinearity of silicon also allows for optical propagation of low in-

put power signals. Consequently, silicon nanowires offer an abundance of nonlinear

optical effects that can be used to generate and process optical signals with low power
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in low-cost ultracompact chips.

A higher degree of device functionality can be achieved by employing an one-

dimensional (1D) silicon waveguide formed in a silicon photonic crystal (SiPhC). In

particular, the photonic crystal consists of an hexagonal lattice of air holes in a silicon

slab. The silicon waveguide is formed by filling one row of holes, which is also known

as line defect-waveguide. Such type of waveguides shorten the characteristic linear and

nonlinear lengths from a few millimetres to a few hundreds of microns. This comes

from the fact that SiPhCs exhibit a much larger frequency dispersion and enhanced

optical field confinement as compared to uniform waveguides. In addition, specific

propagating modes can be localized into a band gap exhibiting interesting linear and

nonlinear optical effects. One important linear effect is the strong dependence of the

group velocity on the wavelength of the propagation signal. This physical phenomenon

is responsible for the existence of slow and fast light regimes, which plays a critical role

in novel applications such as optical interconnects on silicon chips, optical delay lines

and optical buffers. These functionalities suggest that the bandwidth and the efficiency

of on chip optical networks could be significantly improved in the near future.

Regarding the potential applications of silicon nanowires and photonic crystals, a

large body of research has been carried out over the last decades. Very interesting and

potentially useful nonlinear optical phenomena have emerged and been investigated,

such as cross-phase modulation (XPM), self-phase modulation (SPM), four-wave mix-

ing (FWM) and generation of optical solitons and similaritons. Equally important,

nonlinear effects are induced by the generation of free carriers (FCs) through the TPA

mechanism. These carriers can add linear absorption or cause a wavelength-dependent

change in the index and implicitly in the phase of the propagating pulses. Such inter-

action will be shown to have a critical influence in specific nonlinear processes.

Most of the research on optical waveguides has been performed theoretically and

experimentally in the context of silica optical fibres. It has also been suggested many

optical schemes that could enhance the efficiency of these nonlinear processes. How-

ever, silica fibres exhibit some limitations, which are mainly related to the lack of flex-

ible geometry and to their large linear and nonlinear characteristic lengths as it has

been stated earlier. Although the research work on this field has revealed interesting

nonlinear phenomena, there are still new important nonlinear dynamics that occur when
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optical pulses propagate in media such as silicon nanowires and photonic crystals. Such

nonlinear optical dynamics can inspire novel applications in the field of computer and

communication systems and on-chip optical signal processing. The main characteristic

of such applications would be their ultra-compact size being useful for chip to chip

communications. The next section will present the main objectives that prompted the

current research project.

1.1 Main objectives of the work
The objectives of this work can be divided into two main sets, which are related to

the silicon photonic nanowires and silicon photonic crystal waveguides. Each set of

objectives can also be separated in additional sections which are related to the develop-

ment of numerical and semi-analytical theoretical models for a detailed investigation of

nonlinear pulse dynamics. In this section, we will outline and briefly discuss the main

objectives of our work.

To begin with, we will use a rigorous theoretical model, which describes the prop-

agation of pulses in Si-PhNWs, and comprehensive numerical simulations to demon-

strate that optical similaritons with parabolic shape can be generated in millimeter-long,

dispersion engineered Si-PhNWs. In particular, we have used an exponential and a lin-

ear taper profile of silicon nanowire. In order to gain a better understanding of the

underlying physics of similariton generation, we will present a comparative analysis

of the pulse dynamics in two spectral domains relevant for technological applications,

namely telecom (λ = 1.55 µm) and mid-IR (λ = 2.2 µm) spectral regions. A next step

is to study and present the collision between such optical pulses.

Further to the previous objectives, we will analyze theoretically the compression

of optical pulses upon propagation in tapered Si-PhNWs (hyperbolic tangent and linear

taper profile), with a special focus on two compression methods: the soliton compres-

sion technique and pulse compression in Si-PhNWs whose group-velocity dispersion

(GVD) coefficient β2 changes sign during pulse propagation. While the first approach

can be employed only at relatively large peak pulse power, namely in the soliton propa-

gation regime, the latter one can be used to compress pulses whose power is below the

soliton formation threshold as well. Our theoretical model rigorously describes the ef-

fects of the adiabatic variation of the cross-section of Si-PhNWs on the pulse dynamics
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by fully accounting for the influence of this variation on the linear and nonlinear optical

coefficients of the waveguide. For the sake of completeness, we consider the pulse dy-

namics at the optical communications wavelength, λ = 1.55 µm, and at mid-infrared

wavelengths (λ & 2.1 µm).

Besides the pulse compression in SiPhNW we will show that efficient quasi-phase

matched (QPM) FWM of pulses can be achieved in Si-PNWs whose width varies peri-

odically along the waveguide. To be more specific, we will focus on the QPM FWM of

pulses that propagate in the normal dispersion regime, as in this case one cannot apply

alternative phase matching methods based on nonlinearly induced phase-shifts.

The second set of the objectives is, essentially, an extension of the previous one.

To this purpose we will introduce a rigorous theoretical model that describes FWM

in SiPhCs. Our model will capture the influence on the FWM process of linear opti-

cal effects, including waveguide loss, FC dispersion (FCD) and FC absorption (FCA),

nonlinear optical effects such as SPM, XPM, TPA, and cross-absorption modulation

(XAM), as well as the mutual interaction between FCs and the optical field. We will

also illustrate how our model can be applied to investigate the characteristics of FWM

in the slow- and fast-light regimes, showing among other things that by incorporating

the effects of FCs on the optical pulse dynamics new physics emerge. One noteworthy

example in this context is that the well-known linear dependence of FCA on v−1
g is

replaced in the slow-light regime by a v−3
g power-law dependence.

Based on our previous general theoretical model, we will present a study of FWM

of optical pulses co-propagating in Si-PhCWs, highlighting the main differences be-

tween the scaling and strength of linear and nonlinear optical effects that influence the

FWM in the slow- and fast-light regimes. Our theoretical analysis rigorously accounts

for the explicit dependence of linear and nonlinear optical effects on GV and their im-

plicit variation with the GV through the spatial profile of the optical modes, as well as

the influence of these dispersive effects on FC dynamics.

It is worth mentioning that the common objective of the present research work,

either when silicon nanowires or in SiPhC are considered to explore the influence of

FC-generation on optical pulse dynamics. Note, here, that free carriers are not present

in silica fibres. That means that there may be new interesting nonlinear properties based

on FC-generation which have not been studied yet. In order to reveal the crucial role of
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free carriers on pulse propagation different propagation scenarios will be investigated

in frequency regimes where TPA and, consequently, FC-generation will have either

dominant or negligible effects.

A more detailed summary of this work will be presented in the next section.

1.2 Outline
In Chapter 2, a general description of the properties of silicon photonic waveguides will

be presented. Based on the optical properties of these devices, we describe the main

concepts and ideas which will be used in further chapters. At the same time, a detailed

review of the evolution of silicon photonics over the last decades is given through rele-

vant references to the large body of published work.

Chapters 3 and 4 are focused on the generation of parabolic pulses (similariton

generation) and their particle-like behaviour when they collide with each other, respec-

tively. A theoretical model is also introduced, a model that, with small adjustments,

is used throughout the following chapters. In particular, the model consists of a non-

linear Schrödinger equation, which describes all the linear and nonlinear optical pulse

dynamics effects, is coupled to a rate equation which governs the free carrier dynamics.

The dependence of similariton generation and collision on many pulse parameters have

been investigated revealing the main physics.

In Chapter 5 the nonlinear process of optical pulse compression in dispersion en-

gineered silicon nanowire is presented. An analytical model has also been developed in

order to provide a deeper insight in the behaviour of several pulse parameters along the

propagation distance. Different optical schemes of optical pulse compression are dis-

cussed in this chapter highlighting the effectiveness and flexibility of silicon nanowires.

The nonlinear process of quasi-phase matched FWM in a periodically width mod-

ulated silicon nanowire (Bragg nanowire) is presented in Chapter 6. A comparative

analysis of the efficiency of FWM between a uniform and a Bragg silicon nanowire is

demonstrated in this chapter. We demonstrate that by properly designing the optical

waveguide such that the interacting pulses copropagate with the same group velocity,

a conversion efficiency enhancement of more than 15 dB, as compared to a uniform

waveguide, can readily be achieved. We also analyze the dependence of the conversion

efficiency and FWM gain on the pulse width, time delay, walk-off parameter, and grat-
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ing modulation depth.

Chapter 7 describes a very general theoretical model for interacting optical pulses

in silicon photonic crystals. This rigorous model includes all relevant linear and nonlin-

ear optical effects and their dependence on the group-velocity, as well as the influence

of free-carriers on pulse dynamics. Based on this model an in-depth study of four-wave

mixing of optical pulses in silicon photonic crystal waveguides is presented in every

detail in Chapter 8. In particular, the key differences between FWM in the slow- and

fast-light regimes and how they are related to the physical parameters of the pulses and

waveguide are presented. Finally, we illustrate how these results can be used to design

waveguides with optimized FWM conversion efficiency.

Finally, the main conclusions and the contributions of this work to the field of sili-

con photonics are outlined in Chapter 9. The future prospects of the current project are

also presented in this concluding chapter.



Chapter 2

Background

2.1 Introduction
A series of important optical effects occur when light propagates into silicon nanowires

or silicon photonic crystal waveguides due to the specific optical properties of sili-

con. Silicon presents a band gap near 1.12 eV, which makes it nearly transparent in a

spectral region extending from 1.2 µm to mid-infrared (mid-IR) regime (λ ≥ 2 µm) [2.

1–3]. Silicon waveguides also exhibit ultra-small cross section, of about 0.1µm2, which

leads to a tight confinement of light and consequently strong nonlinear optical phenom-

ena, such as TPA, SPM, third-order dispersion (TOD), and self-steepening (SS). Such

nonlinear phenomena provide new functionalities in many applications pertaining to

silicon photonics [2. 4–24]. Moreover, recent advances in fabrication techniques com-

bined with the excellent electrical properties of silicon have enabled the demonstration

of ultra compact passive and active silicon photonic components with very low optical

losses. Such type of silicon components can be employed to computer and commu-

nication systems increasing the bandwidth in servers and racks, the improvement of

data transfer speeds and reduced of datacentre complexity. In order for this potential

to be fulfilled, many researchers have been working on silicon technology since mid of

1980s.

Silicon photonics has started to emerge as a field of research in 1980s with the

pioneering work of Soref [2. 25, 26]. However, many problems emerged, such as high

propagation and coupling losses. At that time it was not clear whether the losses are

induced by surface scattering or by some other mechanisms. In addition, researchers

were mainly concerned to scale down the device size and power consumption of de-
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vices as well as to increase their characteristic response time. This would allow silicon

photonics to be fully integrated with silicon electronics. However, in order to achieve

a seamless integration, losses had to be reduced drastically. Initially, the losses were

reduced to 3 dB/cm [2. 27, 28] then further to 0.026 dB/cm [2. 29–32]. The fabrication

of tapered silicon waveguides also largely eliminated the coupling losses [2. 33, 34].

The dramatic increase in research in silicon photonics was facilitated by the use of

CMOS manufacturing [2. 35]. The CMOS technology reduced drastically the propa-

gation losses, which were mainly caused by sidewall roughness of silicon nanowires.

In addition, many interesting effects have been studied and demonstrated experimen-

tally, such as spontaneous Raman emission [2. 36, 37], Raman amplification [2. 38–44],

four-wave mixing [2. 45–49], SPM [2. 50–53], XPM and cross absorption modulation

(XAM) [2. 54, 55], TPA [2. 13, 18], supercontinuum generation [2. 56]. These nonlin-

ear effects can be employed in a wide range of applications in the field of optics.

In order to gain a deeper understanding of how linear and nonlinear optical effects

determine the light propagation in silicon nanowires and silicon photonic crystals we

will present in what follows the mathematical set of equations that govern the pulse

propagation in these waveguiding devices.

2.2 Fundamental theoretical model
In order to gain a complete understanding of the rich linear and nonlinear optical prop-

erties of silicon nanowires and photonic crystals, it is necessary to describe the optical

pulse and free carrier dynamics as the pulse propagates along the waveguide. Thus, we

will present a detailed description of our theoretical model in this section. One should

note here that although the propagation equations are similar to those of standard fibre

optics, there are key differences [2. 57]. One major difference is that silicon requires

its nonlinear optical susceptibilities to be treated as tensors and not as scalar variables

that are used to describe isotropic glass fibres. Besides this difference, the strong opti-

cal confinement and the dependence of nonlinear pulse parameters on the wavelength

requires a different mathematical approach to the pulse dynamics.

Before deriving the system of equations that governs the dynamics of optical

pulses in silicon devices it is worth to mention that there is a similar approach to study

optical pulse propagation in silicon nanowires and silicon photonic crystals. The main
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difference arises from the fact that the propagating electromagnetic mode of silicon

nanowire is determined by the cross section of the guiding device whereas the period-

icity of the silicon photonic crystal slab waveguide plays a crucial role in the evolution

of the electromagnetic field. Keeping in mind this difference, we will present briefly

the theoretical approach for deriving the differential equations describing the optical

pulse propagation in silicon nanowires. This differential equation, which holds for both

cases, is the well-known perturbed nonlinear Schrödinger equation.

The description of optical pulse propagation in silicon wires and photonic crystals

begins from the Maxwell equations, which in the frequency domain are:

∇⃗× E⃗ (⃗r,ω) = iωµH⃗ (⃗r,ω) (2.1a)

∇⃗× H⃗ (⃗r,ω) =−iωεc(⃗r,ω)E⃗ (⃗r,ω)− iωP⃗pert (⃗r,ω), (2.1b)

where E⃗ (⃗r,ω) and H⃗ (⃗r,ω) are the electric and magnetic field of the propagating mode,

respectively and ω is the frequency of the propagating mode. Regarding the total polar-

ization of the mode P⃗pert it consists of two components, namely the linear and nonlinear

part. The general expression that describes the polarization of the mode can be written

as:

P⃗ = P⃗linear + P⃗nonlinear = ε0χ(1) · E⃗ (⃗r,ω)+ ε0χ(2) : E⃗ (⃗r,ω)E⃗ (⃗r,ω) (2.2)

+ ε0χ(3)...E⃗ (⃗r,ω)E⃗ (⃗r,ω)E⃗ (⃗r,ω)+ ...,

where : and
... indicates the dot product between two- and three- order tensors. Because

the Si-crystal is invariant to an inversion symmetry transformation, as it belongs to the

point group symmetry m3m, the second order susceptibility vanishes within the dipole

approximation; that is, χ(2) ≡ 0. According to this, the linear and nonlinear part of the

polarization of the mode is described by the following:

P⃗linear = ε0χ(1) · E⃗ (⃗r,ω) (2.3a)
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P⃗nonlinear = ε0χ(3)...E⃗ (⃗r,ω)E⃗ (⃗r,ω)E⃗ (⃗r,ω) (2.3b)

Equation-(2.2) can have a similar formulation regarding the physical effects that

each part of the polarization describes. To this end, the linear and nonlinear part of the

polarization is expressed as:

P⃗pert = P⃗linear + P⃗nonlinear = δεFCE⃗ (⃗r,ω)+δ P⃗Kerr (⃗r,ω), (2.4)

where the linear contribution is described by:

δεFC =
iε0cnαin

ω
+2ε0nδnFC +

iε0cnαFC

ω
, (2.5)

where δnFC is the free-carrier-induced change in the refractive index, αFC is the FCA

coefficient and the nonlinear contribution in frequency domain reads

P⃗Kerr(ω) =
3
4

ε0χ(3)(ω ;ω,−ω,ω)
...E⃗(ω)E⃗∗(ω)E⃗(ω), (2.6)

where χ(3)(ω;ω,−ω ,ω) is the third-order susceptibility tensor of silicon. Moreover,

ε0 is the vacuum permittivity and αin is the intrinsic loss coefficient, determined both

by the material losses and the optical field scattering at the silicon/silicon-oxide inter-

faces. Note here that we consider that the sum-frequencies processes are not phase

matched, and thus their contribution to nonlinear polarization can be neglected. The

phase-matched contribution will be presented extensively in Chapter 6. The coeffi-

cients δnFC, δαFC are described by [2. 25]:

δnFC =− e2

2ε0nω2

(
N

m∗
ce
+

N0.8

m∗
ch

)
, (2.7)

αFC =
e3N

ε0cnω2

(
1

µem∗
ce
+

1
µhm∗2

ch

)
, (2.8)

where N is the carrier density, m∗
ce = 0.26m0 and m∗

ch = 0.39m0 are the effective masses

of the electron and the hole, respectively, with m0 as the mass of the electron, and

µe(µh) is the electron (hole) mobility.
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Figure 2.1: a) Sketch of silicon photonic nanowire burried in SiO2 and b) geometry of silicon
photonic crystal slab waveguide.

Equations (2.1)-(2.8) should take into account the properties of the physical geom-

etry of our problem as shown in Fig. 2.1. Figure 2.1(a) shows a rectangular silicon core

oriented along the [11̄0] direction and burried into a SiO2 substrate. The dimensions

(h-height of the Si-PhNW and Si-PhCW, w-width of the silicon core) are in submicron

region. From a physical point of view, the waveguide can be divided in an unperturbed

and perturbed part. The perturbed part is determined by the polarization induced in the

silicon core. Based on this physical assumption, we continue our analysis by using the

reciprocity theorem:
∂
∂ z

∫
A∞

F⃗c · êzdA =
∫

A∞
∇⃗ · F⃗cdA, (2.9)

where F⃗c is the following vector function:

F⃗c = E⃗∗
1 × H⃗2 + E⃗2 × H⃗∗

1 , (2.10)

where * denotes complex conjugate and (E⃗1, H⃗1) ≡ (E⃗0, H⃗0) are the electromagnetic

fields in the unperturbed waveguide while (E⃗2, H⃗2) ≡ (E⃗, H⃗) corresponds to the per-

turbed waveguide. Accordingly, the fields E⃗ and H⃗ are guiding modes, which have

been affected not only by nonlinear effects, such as Kerr effect or TPA, but also by the

change of the dielectric constant induced by linear losses and generation of free car-

riers. Solving the source-free Maxwell equations (Eq. 2.1) for a fixed wavelength (λ )

and including in Eq. (2.10), we deduce that:

∇⃗ · F⃗c = i
2πc
λ
(
n2 −n∗2)ε0E⃗0 · E⃗∗, (2.11)
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where c is the speed of light and the refractive index is n =
√

ε . In this way, Eq. (2.9)

becomes as,

∂
∂ z

∫
A∞

(
E⃗∗

0 × H⃗ + E⃗ × H⃗∗
0

)
dA = iω

∫
A∞

P⃗pert E⃗0dA. (2.12)

As a next step, we define the electromagnetic fields for the unperturbed waveguide as:

E⃗0 =
1
2

√
Z0P0

A0
e⃗(⃗rt ,ω0)ei(β0z−ω0t), (2.13)

H⃗0 =
1
2

√
P0

Z0A0
h⃗(⃗rt ,ω0)ei(β0z−ω0t), (2.14)

where Z0 =
√

µ0/ε0 as the free-space impedance and e⃗(rt), h⃗(rt) correspond to cross-

sectional components of the electromagnetic field. The waveguide modes e⃗ and h⃗ are

also normalized according to the following formula:

1
4A0

∫
∞

(⃗
e× h⃗∗+ e⃗∗× h⃗

)
· êzdA = 1. (2.15)

This normalization ensures the total power of the electric field of the unperturbed

waveguide to be P0. In addition, we define a slowly varying normalized complex

envelope u(z,ω), such that in the time domain, its input peak amplitude is equal to

1. Accordingly, the total energy of the electromagnetic field E⃗, H⃗ of the perturbed

waveguide is P0|u(z,ω)|2. Using these definitions the fields E⃗ and H⃗ are written as:

E⃗ =
1
2

√
Z0P0

A0
u(z,ω )⃗e(⃗rt ,ω)ei(β z−ωt), (2.16)

H⃗ =
1
2

√
P0

Z0A0
u(z,ω )⃗h(⃗rt ,ω)ei(β z−ωt). (2.17)

As a next step we insert Eqs. (2.13), (2.14), (2.16), (2.17) into Eq. (2.12) and by tak-

ing into account the normalization expression of Eq. (2.15), we derive the following

formula:

∂u(z,ω)

∂ z
= B(z,ω)u(z,ω)+

iω
4P0

∫
S

e⃗∗(rt ,ω) · P⃗pert(r,ω)dS (2.18)
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where

B(z,ω) =
i

4P0

∫
S

[
µ0(ω −ω0)|⃗h(rt ,ω)|2 +(ωε̄c(r,ω)− εcω0)|⃗e(rt ,ω)|2

]
dS. (2.19a)

Here, ε̄c(r,ω) is the dielectric constant of the waveguide. The final step is to expand

Eq. (2.19a) in Taylor series around ω0. According to Taylor expansion Eq. 2.19a be-

comes:

B(z,ω)≡ ∑
n≥1

iβn

n!
(∆ω)n (2.20)

where

β1(z) =
δ (z)
vg

, (2.21a)

βn(z) = δ (z)
∂ n−1

∂ωn−1

(
1
vg

)
, n ≥ 2. (2.21b)

Here, ∆ω = ω −ω0 and the average of δ (z) over the propagation distance is equal to

one. By taking into account Eqs (2.19), (2.21) and (2.4) we can take the Fourier trans-

form of Eq. (2.18) deriving the following partial differential equation for the normalized

amplitude u(z, t) known as perturbed nonlinear Schrödinger equation (NLSE):

i
(

∂u
∂ z

+
1
vg

∂u
∂ t

)
− β2

2
∂ 2u
∂ t2 − i

β3

6
∂ 3u
∂ t3 =− icκ

2nvg
(αin +αFC)u−

ωκ
nvg

δnFCu

− γ|u|2u, (2.22)

where the parameters β1 = 1/vg (vg is the group velocity of the mode), β2 is the group

velocity dispersion coefficient, β3 is the third order coefficient (TOD) parameter, βn are

the higher order dispersion coefficients, which are defined in Eq. (2.21). One should

note here that the propagation constant β (ω) can be expanded in a Taylor series around

the carrier/pump frequency ω0 as:

β (ω) = β0 +(ω −ωp)β1 +
1
2
(ω −ωp)

2β2 +
1
6
(ω −ωp)

3β3 +
1

24
(ω −ωp)

4β4 + ..

(2.23)

Otherwise, the Taylor series need higher-order terms in order to accurately describe the
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propagation constant. For the current project we keep up to the fourth order term (β4).

Moreover, the parameters κ and γ are the overlap integral between the guiding

devices and the spatial field of the propagating mode and the effective nonlinearity,

respectively. At this point, we should stress that there is an essential difference in

calculating the latter nonlinear parameters in case of silicon nanowires and silicon pho-

tonic crystals. To be more specific, the nonlinear properties of a silicon nanowire are

determined by its cross section, whereas the nonlinear properties of a silicon photonic

crystal are strongly dependent on the period of the unit cell as it is clearly seen from

the following equations [2. 58, 59]:

knw =
n2 ∫

A0
|e(rt)|2dA∫

A∞
n2(rt)|e(rt)|2dA

, (2.24a)

kpc =
an2 ∫

A0
|e(r)|2dA∫

Vcell
n2(r)|e(r)|2dV

, (2.24b)

and

γnw =
3ωΓ

4ε0A0v2
g

(2.25a)

γpc =
3ωΓ

4ε0a2v2
g
. (2.25b)

where a is the period of the photonic crystal as it is shown in Fig. 2.1(b) and the sub-

scripts nw and pc denotes nanowire and photonic crystal respectively. The effective

nonlinear susceptibility Γ for silicon nanowire or photonic crystals is described by the

following formula:

Γnw =
A0
∫

A0
e∗(rt ;ω)x(3)(rt ;−ω ,ω,−ω,ω)

...e(rt ;ω)e∗(rt ;ω)e(rt ;ω)dA(∫
A∞

n2(rt)|e(rt ,ω)|2dA
)2 , (2.26a)

Γpc =
a4 ∫

A0
e∗(rt ;ω)x(3)(rt ;−ω,ω ,−ω,ω)

...e(rt ;ω)e∗(rt ;ω)e(rt ;ω)dA(∫
Vcell

n2(r)|e(r,ω)|2dV
)2 . (2.26b)

Equally important is to emphasize some of the assumptions on which Eq. (2.22)
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is based. Thus, we have assumed that the variation of the dielectric constant (refrac-

tive index) is small enough to consider that the propagating electromagnetic modes in

perturbed and unperturbed waveguide are the same. Moreover, by making the slowly

varying envelope approximation for u(z, t) and assuming small perturbations, the opti-

cal field propagates without experiencing backward reflections.

Moreover, we also have used the relation P0 = vgWt in order to derive Eq. (2.22).

The parameter Wt is the mode energy defined separately for silicon nanowire and silicon

photonic crystal slab waveguide as:

Wt,nw =
1
2

∫
A∞

ε0n2(rt)|⃗e(rt)|2dA. (2.27)

Note that in order to derive Eq. (2.27) we have used the fact that the mode has

equal amounts of electric and magnetic energy. A detailed expression of the mode

energy for silicon photonic crystal slab waveguides will be provided in Chapter 7.

The last step of the derivation of the theoretical model is to formulate the rate

equation, which describes the free carrier dynamics in silicon waveguides. This rate

equation will be coupled to the nonlinear Schrödinger equation Eq. (2.22). The deriva-

tion of the free carrier generation starts from Eq. (2.22), the final result being:

∂Nnw

∂ t
=−N

tc
+

3β 1
2Γ′′

4ε0h̄A2
0
|u|4, (2.28)

where tc is the characteristic lifetime of free carriers and h̄ is the reduced Planck con-

stant.

It should be emphasized that the temporal variation of free carriers density is de-

pendent on the imaginary part Γ′′ as it is expected, on tc as well as on the square power

of the propagating mode. One should note that only a fraction of the power of the elec-

tromagnetic mode contributes to the generation of free carriers as the mode profile only

partially overlaps with the silicon waveguide. The characteristic lifetime, for silicon

nanowires commonly used for photonic applications, varies from sub-nanosecond to

tens of nanoseconds, while for silicon photonic crystal slab waveguides is in the range

of few hundred of picoseconds.

It is worth mentioning that the effective nonlinear susceptibility described by Γ,
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Eq. 2.26, accounts not only for the free-carrier generation but also for all nonlinear

phenomena that occur along the waveguide. Therefore, we will present briefly in the

next section how this susceptibility is calculated.

2.3 Nonlinear response of crystalline silicon
The nonlinear optical response of crystalline silicon is strongly dependent on the elec-

tric polarization, P⃗(r, t) in the medium. In order to gain a deeper insight into this matter,

we use power series for the electric field as follows:

P⃗ = D⃗− εE⃗ = ε0(χ(1) · E⃗ +χ(2) : E⃗E⃗ +χ(3)...E⃗E⃗E⃗ + ...), (2.29)

where D⃗ is the electric displacement field and χ(i) is the ith-order optical susceptibility.

The optical susceptibilities χ(i) depend on the structure of the crystal. In particular

for silica fibres the χ(i) are represented as scalar variables whereas for silicon crystals

as an (i+1)th-rank tensors. It is worth mentioning that the crystalline silicon lattice

is invariant to an inversion symmetry transformation, as it belongs to the point group

symmetry m3m, so that the second-order susceptibility χ(2) = 0.

The tensor χ(3) has 21 nonzero elements, of which only 4 are independent, namely,

χ(3)
1111, χ(3)

1122, χ(3)
1212, and χ(3)

1221. Additional symmetry properties lead to χ(3)
1122 = χ(3)

1221.

Kleimann symmetry relations also imply that χ(3)
1122 = χ(3)

1212. Consequently, the param-

eters χ(3)
1111 and χ(3)

1122 are the remaining independent components of the susceptibility

tensor. These nonlinear components of the susceptibility have been measured recent

experiments across a broad range of wavelengths, between 1.2 and 2.4 µm [2. 60]–[2.

61]. These experiments suggest that the ratio of these two components is constant, that

is, χ(3)
1111=2.36χ(3)

1122. One should note that the frequency dispersion of χ(3) has been in-

corporated in the calculations of the nonlinear waveguide parameters used in this work

at Columbia University.

Note, that in all of our work we have calculated the effective susceptibility χ(3)
e f f

defined by:

χ(3)
e f f =χ(3)

1122[(â
∗ · b̂)(ĉ · d̂)+(â∗ · ĉ)(b̂ · d̂)+(â∗ · d̂)(b̂ · ĉ)] (2.30)

+(χ(3)
1111 −χ(3)

1122)
3

∑
i=1

â∗i b̂iĉid̂i
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Here â is a unit vector along the direction of the induced polarization, b̂, ĉ, and d̂ are

unit vectors along the polarization direction of the interacting fields, and âi, b̂i, ĉi, and

d̂i are the direction cosines of these unit vectors.

Before we continue with the study of the linear and nonlinear dispersive properties

of silicon nanowires and photonic crystal waveguides we mention that the linear and

nonlinear pulse dynamics are strongly dependent on the initial shape of the propagating

optical pulses. Consequently, the different pulse envelopes that have been used in this

project, namely Gaussian, super-Gaussian, and hyperbolic secant pulses, are described

in detail in the following section.

2.4 Definition of Gaussian, super-Gaussian and hyper-

bolic secant pulses
The majority of the commercial lasers emit pulses that can be approximated by a Gaus-

sian profile. However, there are specific lightwave systems that use as bits hyperbolic

secant or super-Gaussian shapes. To this end, we have taken into account all of these

pulse profiles in our work thus being able to study the dependence on the input pulse

shape of the pulse dynamics. These pulse shapes are defined as:

uG(t,z = 0) =

√
E√
πτ

e−iΩ(t−T )−(1+iC)
(t−T )2

2τ2 , (2.31)

uSG(t,z = 0) =

√
E√
πτ

e−iΩ(t−T )−(1+iC)
(t−T )4

2τ4 , (2.32)

us(t,z = 0) =

√
E
2τ

sech
(

t −T
τ

)
e−iΩ(t−T )−iC (t−T )2

2τ2 , (2.33)

where E, τ , C, Ω, and T are the pulse energy, pulse width, chirp coefficient, shift of

the pulse carrier frequency, and temporal shift of the pulse, respectively. The pulse

width τ and its full-width at half-maximum, TFWHM, are related by TFWHM = 1.665τ ,

TFWHM = 1.824τ and TFWHM = 1.763τ for Gaussian uG, super-Gaussian uSG and hy-

perbolic secant us pulses, respectively.

Note, that Eqs. (2.31)-(2.33) describe the pulse profile only at the input of silicon

Si-PhNW/SiPhCW but not along the waveguides. Most of the times, the propagating
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pulse does not preserve its shape due to the influence of linear and nonlinear effects.

However, Eqs. (2.31)-(2.33) provide qualitative information about the variation of spe-

cific features of the pulse, such as its energy E and pulse width τ . In addition, a more

in-depth analysis of linear and nonlinear pulse dynamics can be conducted through the

mathematical expression of the pulse envelope as each linear and nonlinear phenomena

affect specific pulse parameters. It is for this reason that a comprehensive semi-analytic

method that describes these effects has been developed in this thesis and it will be pre-

sented in Chapter 5.

The next section is focused on which and to what extent each of the linear and

nonlinear parameters of Eq. (2.22) affect the pulse shape along the propagation dis-

tance.

2.5 Dispersive properties of silicon waveguides

As it has already been mentioned silicon nanowires and silicon slab waveguides are

characterized by their submicrometer cross-section and high-index contrast, which

leads to strong optical confinement and waveguide dispersion. Therefore, great care

needs to be taken during the design and fabrication of silicon waveguides. Moreover,

the waveguide dispersion is derived from the propagation constant, β (ω), which is

strongly dependent on the specific waveguide geometry. Note also that each coefficient

of the Taylor series expansion of Eq. (2.23) has a different and a unique influence on

the pulse evolution along the waveguide.

To be more specific, the first order parameter β1 determines the group velocity.

In particular, β1 plays a crucial role on the interaction between optical pulses that co-

propagate in an optical medium. The significance of β1 is revealed by the analysis of

nonlinear phenomena, such as FWM or similariton collision, which will be described

in the Chapters 3 and 4, respectively.

The most important dispersion coefficient is β2, which represents frequency dis-

persion of the group velocity and is responsible for the variation of the pulse width. In

order to quantify the effect of GVD, a dispersion parameter D is defined as follows:

D =
dβ1

dλ
=−2πc

λ 2 β2. (2.34)
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The coefficients β3 and β4 are known as third and fourth order dispersion coef-

ficients, respectively. Their effects are negligible for pulse widths of picoseconds and

larger. Third order dispersion (TOD) coefficient is more important in the case of ultra

short pulses while β4 plays a crucial role in many parametric processes in optics, such

as FWM.

The effects of GVD and TOD are presented in the subsections 2.5.1 and 2.5.2,

respectively. However, we will not provide a comprehensive description of dispersive

effects but only a brief qualitative presentation of the dispersive effects induced by

GVD and TOD. More specifically, the fundamental phenomena induced by GVD and

TOD properties are qualitatively the same for silica fibres, nanowires and photonic

crystal slab waveguides. However, the extension to which the effects contribute to

the pulse reshaping is significantly different in each of these cases. In particular, as

the study of optical pulse propagation shifts from silica fibres to silicon nanowires and

then to silicon photonic crystal slab waveguides the dispersive characteristic lengths are

significantly reduced due to the increase of the optical pulse confinement. This means

that all the linear dispersive effects are enhanced in the case of silicon nanowires and

slab photonic crystal waveguides as compared to the case of silica fibres.

2.5.1 Group velocity dispersion effects

Group-velocity dispersion is the dependence of the group velocity of light propagating

in a transparent medium on the optical frequency (or wavelength). Specifically, the

phase of an optical pulse changes differently for each frequency component as the

pulse propagates in the waveguide. Furthermore, there are cases where the phase also

depends on whether the pulse experiences normal or anomalous dispersion. To be more

specific, when a pulse is unchirped (C = 0), the phase is affected by the same amount

for a pulse propagation in normal or anomalous dispersion regime. However, in the case

of a chirped pulse (C ̸= 0), the sign of β2 has an important influence on the evolution of

the pulse shape. Many qualitative features arise from the dependence of GVD on the

particular nature of dispersion, such as pulse compression or generation of parabolic

pulses.

The effects of GVD are strongly dependent on the propagation distance of the

pulse. A dispersion length, LD, is defined, in order to provide a length scale over which
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dispersive effects become important as far as the pulse evolution is concerned:

LD =
τ2

|β2|
. (2.35)

When the propagation distance is much shorter than the dispersion length (L ≪

LD) GVD plays no significant role during pulse propagation. However, the opposite

occurs when the length of the silicon nanowire is such that LD ≪ L. In addition, ultra-

short pulses in the femotsecond regime broaden much more than in picosecond regime

because of a smaller dispersion length as Eq. (2.35) suggests. For instance, let us as-

sume two pulses with the same value of β2=1.11 ps2 m−1 and different pulse widths

τ1=200 fs and τ2=2 ps have LD1=3.6 cm, and LD2=3.6 m, respectively. An interest-

ing question is raised regarding to which extent GVD affects the pulse propagation.

The answer depends on the profile of the propagating pulse. For an initially unchirped

pulse profile, GVD broadens the pulse during propagation. Pulse broadening can be un-

derstood better by taking into account that different frequency components of a pulse

travel with different speeds through the silicon nanowire. For instance, red compo-

nents (low frequency components) travel faster than blue components (high frequency

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

−8 −4 0 4 8
0

0.5

1

time [T
0
] time [T

0
]

p
o

w
e

r 
[P

0
]

fr
e

q
u

e
n

cy
 c

h
ir

p

z=0

z=2L
D

z=4L
D

z=0 z=2L
D

z=4L
D

(a)
(b)

Figure 2.2: a) Pulse intensity and b) chirp as functions of normalized time for a Gaussian pulse
at z = 2LD and z = 4LD propagating in the normal dispersion regime.
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Figure 2.3: Broadening factor as a function of distance propagating at anomalous dispersion
regime.

components) for β2 > 0 while the opposite happens for β2 < 0. Therefore, the pulse

will not maintain its shape when all the spectral components do not arrive at the same

time. In any other case, an unchirped pulse will broaden. One should note that GVD

produces a linear chirp across the pulse even though the initial pulse was unchirped.

The dispersion induced pulse broadening for an unchirped Gaussian pulse as well its

dispersion induced linear chirp are shown in Fig. 2.2.

Figure 2.2 shows that the dispersion-induced linear chirp switches from positive to

negative values. This feature plays a crucial role on pulse evolution in case of initially

chirped pulses. More specifically, chirped pulses may broaden or compress depending

on whether β2 or C have the same or opposite signs. A chirped pulse broadens at a

faster rate than that of an unchirped pulse when β2C > 0 . On the other hand, a chirped

pulse can be compressed for a certain propagation distance if β2C < 0. The evolution

of the broadening factor, final pulse width divided by the input pulse width, determined

for Gaussian pulse is presented in Fig. 2.3.

A complete theoretical analysis of pulse compression is provided in Chapter 5,
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where we provide the analytical expressions that describe the evolution of different

pulse profiles in silicon nanowires.

2.5.2 Third order dispersion effects

As it has been mentioned in the previous sections, TOD can be neglected in many cases

of practical interest. However, there are certain cases where it is necessary to take into

account the TOD effects. For example, if the pulse wavelength corresponds to zero

group velocity dispersion (ZGVD, β2 = 0) wavelength, the TOD becomes the dominant

dispersive effect influencing the pulse propagation. In addition, when the pulse width

(τ) is in the femtosecond range, it is necessary to incorporate β3 into the mathematical

model because ∆ω ≪ ω0 is no longer valid so that the truncation of Eq. (2.23) is no

longer justified.

Similar to the case of the dispersion length LD, it is useful to introduce a dispersion

length associated with TOD as

L
′
D =

τ3

|β3|
. (2.36)

According to this equation, TOD plays an important role when L
′
D ≈ LD. Thus TOD

contributes significantly to pulse reshaping, making the pulse profile to be assymetric.

In such cases, TOD is the main source of pulse distortion. Specifically, when β3 > 0 an

oscillatory structure appears at the trailing edge of the pulse whereas in the case when

β3 < 0 it appears at the leading edge of the pulse. The pulse assymetry is elliminated

when LD = L
′
D. The physical effects of TOD on the pulse shape are depicted in Fig. 2.4.

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

p
o

w
e

r 
[P

0
]

time [T
0
]

output pulse pro!le

input pulse pro!le

(β
2
=0)

Figure 2.4: Gaussian shapes at z = 0 and z = 2 m for the case of β2 = 0.
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Note, that for the case of extremely short pulse widths of a few femtoseconds β4

and higher order terms in Eq. (2.23) should be taken into consideration. Regarding

some of the problems studied in this thesis, higher-order terms up to the fourth-order

term (β4) have been included in the rigorous theoretical model of Eq. (2.22) even when

hundreds of femtoseconds or a few picoseconds pulse widths have been used. In addi-

tion, β4 plays a significant role in the nonlinear process of FWM. This is due to the fact

that β4 is one of the terms that defines the phase-matching condition for an efficient

FWM. A detailed study of FWM in silicon nanowires and silicon photonic crystal slab

waveguides is provided in Chapters 6 and 7, respectively.

It is important to mention, that not only the linear effects determine the evolution

of an optical pulse but also the nonlinear properties of the silicon nanowire. Thus, a

description of nonlinear effects in the silicon waveguides is presented in the following

section 5.2.

2.6 Nonlinear properties of silicon nanowires
Optical pulse propagation in silicon photonic waveguides exhibits rich nonlinear dy-

namics. This feature is mainly derived from the large third-order susceptibility χ(3) of

silicon. More specifically, third-order susceptibility has two dominant contributions,

one comes from the instantaneous response of bound electrons (Kerr effect) and the

other one from the optical field interaction with optical phonons (Raman effects).

The effective nonlinear waveguide coefficient γ is strongly dependent on the oper-

ating wavelength as well as on the geometry of the propagation media. The sub-micron

cross section of silicon nanowires as well as the even smaller dimensions of silicon

photonic crystal slab waveguides lead to large values of γ because of the tight light

confinement. As a result, such type of silicon waveguides are expected to have also

strong nonlinear frequency dispersion, too.

The nonlinear coefficient γ has a significant impact on optical pulse reshaping.

Thus real part of γ (γ ′) is directly related to the nonlinear change of the refractive index

n while the imaginary part governs the TPA phenomenon. The real part of γ governs

the SPM phenomenon, which is a nonlinear process characterized by an induced opti-

cal phase delay due to Kerr effect. This can be described as a change in the refractive

index. As a result, an additional chirp is produced during the pulse propagation re-
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sulting in spectral pulse broadening. Furthermore, the interplay between the effects of

SPM and GVD can lead to the generation of pulses with unique properties. Exam-

ples of such type of pulses are the well known solitons, which can preserve their shape

along many characteristic lengths under certain circumstances, and similaritons, which

are pulses that self-preserve their shape during propagation. More information about

solitons is provided in Section 2.6.2. In addition to the solitons generation, an in-depth

investigation of the generation and collision between similaritons in silicon nanowires

is presented in Chapter 4.

As mentioned earlier, the imaginary part of γ is responsible for the TPA phe-

nomenon, which is a process where two photons are absorbed simultaneously from the

optical pulse. The specific process generates free electrons-hole pairs (free carriers,

FC), which not only absorb light but also induce a wavelength-dependent change in the

refractive index. A main conclusion that can be drawn from this is that the phase of a

propagating pulse in a silicon nanowire is not only affected by SPM effects but also by

free carrier generation. To be more specific, carrier density is not constant through the

pulse propagation as free carriers can recombine. Note, that the temporal variation in

carrier density strongly depends on the relation between carrier relaxation time tc and

pulse width τ . For pulse widths larger than the relaxation time, the free carrier density

provides strong contribution to pulse reshaping, particularly to the trailing edge of the

pulse. The leading part of the pulse generates free carriers and as a result, an additional

complex linear susceptibility χ(1)
FC is induced. In this way, the imaginary part of χ(3)

FC

corresponds to light absorption due to free carrier (FCA). Moreover, the real part of χ(1)
FC

is responsible for a phase shift of the pulse, which occurs due to a free-carrier-induced

variation of the index of refraction.

The influence of each of the previous nonlinear effects is summarized in Fig. 2.5,

where a long pulse width is considered. Red curves correspond to the case when both

FCA and FCC assuming negligible density of free carriers. Black curves include FCA

but neglect FCC, while the green curves correspond to the case when both effects are

included. First, notice that the free carries have a significant influence on the spectral

components of the pulse as they introduce considerable spectral asymmetry. Note, also,

the additional losses induced by free carries (FCA) (black curves). An important feature

illustrated by Fig. 2.5 is the existence of a spectral shift towards shorter wavelengths
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when all the nonlinear effects are included. This can be explained by the nonlinear

phase shift, which switches from positive to negative values because of free carrier

effects. The nonlinear phase shift is limited if the lifetime of free carries is shorter than

the pulse width.
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Figure 2.5: a) SPM-broadened spectra and nonlinear phase shift showing the impact of non-
linear effects, such as TPA, FCA and FCC, on pulse spectrum. b) Evolution of
the pulse energy along propagation distance without (red curves) and with (green
curves) FCA.

The effects of SPM are characterized by a nonlinear length, LNL, defined as:

LNL =
1

γ ′P0
(2.37)

where P0 is the peak power of the input pulse and γ ′ is the real part of γ . As the values

of γ are large in silicon waveguides, the nonlinear length can become short. Therefore,

strong nonlinear effects can occur over a propagation distance of only a few millimetres

(in silicon nanowires) or even less than millimeters (in silicon photonic crystals).

Unlike silica fibres, Si-PhNW/Si-PhCW can be employed in chip scale devices.

To illustrate this idea, we provide a comparison of characteristic lengths of a Si-PhNW,

Si-PhCW and a single-mode optical fibre in Table-2.1. This table reveals many key fea-

tures of the nonlinear properties of Si-PhNWs and Si-PhCWs. Firstly, the dispersion

lengths in SiPhNWs (Si-PhCWs) is 2 (≈ 5) orders of magnitude shorter than in optical
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Dispersion and Si-PhNW Si-PhCW silica fibre
nonlinear parameters T0 = 200 f s T0 = 200 f s T0 = 200 f s

β2 1.11 ps2m−1 −138.3 ps2m−1 0.02ps2m−1

LD 3.6 cm 262 µm 2 m
γ = 107.12 W−1m−1 = 754 W−1m−1 = 0.003 W−1m−1

LNL for P0 = 0.2 mW 4.6 cm 6.6 mm 2 km

Table 2.1: Comparison of characteristic lengths for ultrashort (200 fs) and long (10 fs) pulses
and γ parameter in a Si-PhNW (dimensions h×w = 220×4500 nm2) and Si-PhCW
(dimensions h= 0.6 a,a= 412 nm) and a single mode optical fibre for λ = 1550 nm.

fibres. Moreover the nonlinear factor γ in silicon photonic crystals is 5 orders of mag-

nitude larger than in optical fibres. As a result, the nonlinear length LNL is much shorter

in the case of SiPhNW/Si-PhCW than that of optical fibres. One should note that the

effective nonlinear parameter γ can be much larger than the one presented in Table-

2.1 for the case of Si-PhCW. This comes from the fact that, Si-PhCWs exhibit specific

wavelengths regimes, which are known as slow-light regimes, where the nonlinearity is

dramatically increased, as discussed in Section 2.6.5. Therefore, the nonlinear length

for Si-PhCW could amount to just a few microns for specific wavelengths. An addi-

tional general property of the nonlinear length is its independence on pulse width while

it is fully determined by the peak power of the pulse.

The appropriate manipulation of the linear and nonlinear properties presented in

Section 2.5 and Section 5.2 can lead to interesting nonlinear phenomena, such as soliton

and similariton generation, Raman scattering or FWM. Such type of nonlinear phenom-

ena are used in the development of optical interconnects for chip to chip communica-

tions. A brief presentation of such nonlinear effects follows in the next subsections.

2.6.1 Self-steepening

Although Eq. (2.22) is a rigorous theoretical model providing detailed information

about the evolution of pulse profile in silicon nanowires, it does not include fully the

large variation of nonlinear coefficient γ with frequency. Frequency variation of γ leads

to a large characteristic optical shock time, which induces rich nonlinear effects on

ultra short optical pulses. In order to investigate in more detail the contribution of

characteristic optical shock time on pulse dynamics of ultra short optical pulses, we

need to modify Eq. (2.22) in order to incorporate the frequency dependence of the

nonlinear coefficient γ . Similar to Eq. (2.23), we expand γ(ω) in a Taylor series around
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a fixed frequency ω0 as:

γ(ω) = γ(ω0)+ γ1(ω −ω0)+
1
2

γ2(ω −ω0)
2 + ..., (2.38)

where γm = ( dmγ
dωm )ω=ω0 . In most cases of practical interest it is sufficient to keep the

first two terms in this expansion.

Keeping in mind that during the Fourier-transform to time domain, ω −ω0 is re-

placed by the differential operator i∂/∂ t, the modified Eq. (2.22), written in a reference

system moving with the pulse group velocity vg, becomes as:

i
∂u
∂ z

− β2

2
∂ 2u
∂ t2 − i

β3

6
∂ 3u
∂ t3 =− icκ

2nvg
(αin +αFC − ωκ

nvg
δnFC)u

− 3ωP0Γ
4ε0A0v2

g

[
1+ i

(
1

ω0
+

∂ ln[g(ω)]

∂ω
|ω=ω0

)
∂
∂ t

]
|u|2u,

(2.39)

where ω0 is the carrier frequency and g(ω) = Γ/v2
g.

Equation (2.39) reveals an additional nonlinear phenomenon, the so-called self-

frequency shift (or self-steepening). More specifically, if we combine the RHS terms

of Eq. (2.39) that contains the derivative ∂/∂ t, we find that γ forces the group velocity

to depend on the optical intensity and leads to the phenomenon of self-steepening.

As a result, the refractive index is different across the pulse width depending on the

local power. Hence, there is a phase shift for the different frequent components of the

pulse. The broader in spectral domain the optical pulse is, the stronger the effect of

self-steepening is.

Figure (2.6) shows the influence of self-steepenig on the pulse profile of an optical

pulse. The dependence of the group velocity on the pulse intensity forces the peak of

the pulse to move at a lower speed than the wings. This feature is responsible for

the observed pulse asymmetry, not only in the time domain but also in the frequency

domain. Note, that the induced shift in the group velocity of the spectral components

leads to spectral broadening, similar to the effects induced by SPM. The strength of the

self steepening phenomena is determined by the characteristic time τs, which is defined

as

τs =
∂ ln[g(ω)]

∂ω
|ω=ω0 = τ0 + τwm, (2.40)
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Figure 2.6: Self steepening of a Gaussian pulse at different propagation distances. Blue curve
corresponds to the input pulse at z = 0.

where τ0 = 1/ω0 is related to the frequency-dependent response of the nonlinearity in

a bulk crystal and τwm = τr + iτi quantifies the waveguide contribution including that

due to χ(3)(ω). It should be mentioned that the parameter τi is equal to zero in the case

of optical fibres. One should also note that , especially in silicon waveguides, τwm plays

a significant role only in the case of ultra short pulses (femtosecond pulse widths).

Equations (2.27)-(2.39) provide the information required to determine the pulse

dynamics upon its propagation in silicon waveguides. Based on these equations, we

can investigate in detail many interesting phenomena, such as soliton and similariton

generation.

2.6.2 Generation of optical solitons

The interplay between dispersive and nonlinear effects in Si-PhNW and Si-PhCW de-

termines the evolution of the pulse shape as it propagates along the waveguide. An

appropriate control of both effects can lead to the generation of pulses unique proper-

ties. One example of such type of pulse is the soliton, namely a pulse which preserves

its shape along its propagation. Solitons are primarily characterized by the soliton



53

number, N, which is equal to:

N =

√
LD

LNL
=

√
γP0τ2

|β2|
. (2.41)

The case of N = 1 corresponds to the fundamental soliton whereas N > 1, higher-

order solitons, where the pulse profile of the soliton follows a periodic pattern in time

and frequency domains as it is shown in Fig. 2.7. In order to investigate further the

properties of a soliton, we should focus on the physical meaning of soliton number

N. The soliton number reveals the dominant linear or nonlinear effect during the pulse

propagation. In the case of a fundamental soliton, the GVD and SPM effects act equally

on the pulse shape enforcing the pulse to preserve its pulse profile. This feature amounts

to the cancellation of SPM and GVD effects. As SPM always produces a positive

chirp, GVD should produce a negative chirp in order to compensate for that generated

by SPM. Accordingly, soliton formation requires that β2 should be negative. It is for

this reason, that one should propagate pulses in the anomalous dispersion regime in

order to generate solitons. Note, also, that recent experiments revealed that solitons are

dependent on the initial chirp of the pulse[2. 57]. This comes from the fact that, solitons

are generally stable under weak perturbations. However the fundamental soliton could

be generally destroyed if |C| exceeds a critical value [2. 57].

It is not sufficient to launch a pulse in the anomalous dispersion regime in order to

generate solitons. If the soliton number is less than unity, solitons can not be formatted

meaning that the soliton generation is a threshold effect. The physical meaning of this

feature is the existence of a power threshold over which a soliton can propagate in a

medium that exhibits anomalous dispersion regime. Moreover, a large value of the

soliton numbers ensures that the input power is large enough for the input pulse to

contain more than one soliton. However, large values of soliton number constitutes the

main source of pulse degradation as the larger the N is, the more energy is wasted in

the developed pedestals of the pulse.

The main concern regarding the generation of solitons in silicon waveguides is the

large losses due to nonlinear optical effects, such as TPA and FCA. This means that the

pulse can not preserve its shape for long propagation distances. However, soliton-like

pulses are formatted in long millimetres silicon nanowires due to strong GVD and SPM
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Figure 2.7: a) Periodic evolution of higher-order solitons, N = 3, pulse profile in time domain.
b) Temporal pulse evolution for a fundamental soliton N = 1.

effects when the characteristic linear and nonlinear absorption lengths are much larger

than the soliton length.

A nonlinear effect similar effect to soliton formation is the similariton genera-

tion, which occurs in the normal dispersion regime. This nonlinear optical process is

described in the following subsection.
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2.6.3 Generation of optical similaritons

Unlike solitons, which require a threshold power to form, no constraints have to be

imposed on the pulse energy, initial shape, or optical phase profile to generate similari-

tons. These type of pulses maintain a certain relation (scaling) among changing power,

pulse width, and chirp, generally leading to a parabolic intensity profile. It has been

demonstrated that parabolic pulses represent an asymptotic solution of the nonlinear

Schrödinger equation [see Section 2.2 for more details about NLSE] with a gain term

for an optical pulse propagating in the normal dispersion regime.

The generation of parabolic pulses is strongly dependent on the interplay among

the gain, dispersion and nonlinearity. From a practical point of view, in many optical

fibres applications, amplifiers as source of gain are not preferred because their use

increases the cost and the complexity of the whole system. Alternatively, similariton

generation schemes have been suggested in recent years based on dispersion decreasing

silicon or silica tapered fibres [2. 62–64] because decreasing dispersion acts in a similar

way as gain.

The essential feature of a parabolic similariton pulse is that its induced chirp has

a linear dependence on time. This property is responsible for the self-similar evolu-

tion of parabolic pulses along the waveguide. This self-similar behaviour of optical

similaritons is fully determined by the interplay between the GVD and SPM. As a con-

sequence, the process of parabolic pulse generation in silicon waveguides is strongly

dependent on the input pulse width and power. To be more specific, there is an op-

timum combination between pulse width and input power, which forces the temporal

chirp to vary linearly across the pulse. When the chirp does not have monotonic linear

time dependence across the optical pulse, the pulse is subject to wave-breaking upon

its propagation [2. 65].

It can be shown that by taking advantage of the characteristics of the linear and

nonlinear properties of silicon waveguides, the generation of parabolic pulses requires

relatively short propagation distances. For instance, our recent work [2. 66, 67] on sim-

ilaritons in silicon nanowires suggests than only a few millimetres of pulse propagation

are needed in order to generate a parabolic pulse, while in the case of optical fibres this

distance can be a few meters or longer. This is due to the large values of the linear

and nonlinear optical waveguide coefficients of silicon waveguides. Note, also, that
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there are additional parameters that affect the efficiency of the similariton generation

process, such as the input pulse shape and the input power. A detailed analysis of the

generation of parabolic pulses in silicon nanowires is provided in Chapter 3.

2.6.4 Four-wave-mixing in silicon waveguides

So far, we have described different nonlinear phenomena in silicon waveguides, which

greatly affect the optical pulse dynamics, both in the time and frequency domains. In

this section we discuss, an additional nonlinear process, which generally involves the

interaction of four waves with different frequencies. This generic nonlinear process is

called four-wave mixing. During this nonlinear process an energy transfer among the

co-propagating pulses occurs. In order to maximize this energy transfer, a phase match

between the co-propagating pulses is required. Generally, there are two types of FWM

based on the number of the pumps beams. The first type describes the energy transfer

of three photons ω1,ω2,ω3 to a single photon at the frequency, ω4 =ω1+ω2+ω3. The

special case where ω1 = ω2 = ω3 corresponds to the phenomenon of third-harmonic

generation. However, it is difficult to eliminate the phase mismatch of such process.

The second type of FWM corresponds to the case where two photons with fre-

quencies ω1 and ω2 are annihilated and generate two photons at frequencies ω3 and ω4

such that

ω1 +ω2 = ω3 +ω4. (2.42)

In case where ω1 = ω2 FWM is initiated with just one pump, which will generate two

frequency components with ω3 and ω4) such that:

Ωs = ω1 −ω3 = ω4 −ω1. (2.43)

This nonlinear process is known as degenerate FWM. From a practical point of view, it

is more useful the pump co-propagates with an additional pulse, which is employed as

a carrier of information (signal). In this way, a down or an up conversion of information

can be achieved (a process called also wavelength conversion) or amplification of initial

signal could be obtained as well. In order to achieve this, the phase mismatch among

the pump (ωp), the signal (ωs) and the third frequency component, known as idler (ωi),

should be eliminated.
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Let us now consider and see what physical aspects should be considered when

investigating the FWM. Firstly, let us assume that an unchirped Gaussian pump and

signal pulse are launched in the waveguide

u(z0, t) =

√
Pp√

Pp +
√

Ps
e−

t2

2τ2 +

√
Ps√

Pp +
√

Ps
e−

t2

2τ2 −i∆ωt (2.44)

where Pp and Ps are the peak power of the pump and signal, respectively, and ∆ω =

ωs −ωp. The value of ∆ω plays a crucial role for the accuracy of the computational

method. In order to solve a single equation describing both pulses, it is required that

the time-step is much shorter than π/∆ω . This requirement makes it necessary to

incorporate into Eq. (2.39) additional dispersive coefficients, such as β3 and β4. In

this way, cubic and higher order terms in the expansion of Eq. (2.23) must satisfy the

condition (β4/β3)∆ω ≪ 1 and (β3/β2)∆ω ≪ 1 .

Further to this, the efficiency of the degenerate FWM process is governed by the

conservation of energy and momentum, which are expressed as:

2ωp = ωs +ωi, (2.45)

and

∆β = 2γPp − (2βp −βs −βi) = 0, (2.46)

where Pp, βp, βs, βi stands for the pump power and propagation constants for pump,

signal and idler, respectively. Note, that we assume that the powers of the signal and the

idler are much smaller than the pump power, such that the nonlinear Kerr phase shift

is completely determined by the pump pulse. The phase-mismatch is mainly derived

from the material and waveguide dispersion. Due to phase-mismatch, in general only

a small fraction of the pump energy is transferred to the signal and idler. Therefore the

phase-mismatch should be eliminated, as it was mentioned earlier, in order to maximize

the energy transfer.

The basic idea employed to overcome this problem is to design a silicon waveguide

for which the difference among the propagation constants of the three pulses is com-

pensated. This wavevector mismatch can be canceled by using a periodically width

modulated silicon photonic nanowire, as has been suggested in [2. 68]. According to
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Eq. (2.46), in this case the phase match condition becomes:

∆β = 2γPp − (2βp −βs −βi)±
2π
Λ

= 0, (2.47)

where Λ denotes the period of the width modulated waveguide.

As it has been discussed, the propagation constant β and the nonlinear coefficient

γ are strongly dependent on the operational frequency, as well as on the physical geom-

etry of the guiding medium. Consequently, β and γ exhibit a periodical variation along

the waveguide, which is derived from the periodical width modulation of the silicon

nanowire.

According to Eq. (2.47), a practical question is raised, namely is it possible to

calculate the optimum period of the width modulated waveguide in order to increase

the efficiency of degenerate FWM? In order to answer this question, the coefficients

βp, βs and βi are expanded in Taylor series around the pump frequency ωp, which

corresponds to the pump frequency, such that:

β (ωs) = β0 +β1(ωs −ωp)+
1
2!

β2(ωs −ωp)
2 + .., (2.48)

and

β (ωi) = β0 +β1(ωi −ωp)+
1
2!

β2(ωi −ωp)
2 + .. (2.49)

Equations (2.48)− (2.49) can be expressed in a more general form as:

β (ωs) = ∑ 1
n!

dnnβ
dωn |ω=ωp(ωs −ωp)

n, (2.50)

and

β (ωi) = ∑ 1
n!

dnnβ
dωn |ω=ωp(ωi −ωp)

n. (2.51)

By taking the sum of Eqs. (2.50)− (2.51) and substituting it in Eq. (2.47), the final

form of the mismatch condition becomes:

|2γPp +β2,p∆ω2 +
1

12
β4,p∆ω4|= 2π

Λ
. (2.52)

One should note that Eq. (2.52) holds for small ∆ω as the previously described Taylor
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expansion is valid for small ∆ω . Equation (2.52) reveals that the period Λ is determined

by ∆ω , the pulse and the waveguide parameters. To be more specific, the mathematical

formula that describes the relation between ∆ω and Λ, derived from Eq. (2.52), can be

written as:

∆ω2 =
6[−β2,p ±

√
β 2

2,p −
β4,p

3 (2γPp ± 2π
Λ )]

β4,p
(2.53)

It is clear that the phase-matching condition is strongly dependent on the input

power, on the nonlinear parameter γ and on the even-order dispersive coefficients de-

termined by the pump pulse. An additional parameter that has influence on the phase-

matching condition is the period of the width modulation thus allowing for large de-

sign flexibility. In this way it is convenient to pick the desired pairs of wavelengths for

which the FWM process is meant to be quasi-phase matched, and then calculate the

corresponding period, Λ.

An alternative approach to calculate the period Λ, is the calculation of each prop-

agation constant β separately for pump, idler and signal pulse. After the incorporation

of the propagation constants into Eq. (2.47), the period Λ can be found as:

Λ =± 2π
2γPp − (2βp −βs −βi)

(2.54)

Following this approach, one can calculate a relation between the three wavelengths,

λp, λs, and λi and the period Λ.

2.6.5 Slow light in silicon photonic crystal waveguides

One of the most exciting characteristic of Si-PhCWs is that they possess specific fre-

quency regimes, known as slow light regimes, where the group velocity of the pulse

becomes significantly smaller than the speed of light. This physical property of silicon

photonic crystals has been actively investigated over the last decade [2. 69]-[2. 71],

particularly due to its potential applications. Thus, the photonic band theory allows

the study of the dispersion characteristics of photonic crystals by providing the band

diagram of such multidimensional periodic structures. For instance, a generic silicon

photonic crystal slab waveguide and its band diagram are shown in Fig. 2.8.

Figure 2.8(b) shows that the slow light regime is located for both modes in region

where the band is almost flat as the group velocity of light is given by the inverse of
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the first-order dispersion (dk/dω)−1, where k and ω are the wavenumber and angular

frequency. In addition, slow light spectral regions can always be found at the edge of

the photonic bands (k = 0.5 2π/a) because in these regions dω/dκ ≈ 0.

There are two key optical properties that should be considered in the slow light

regimes. The first is the bandwidth for which the slow light regime holds. This is

an important parameter, which is essential for many applications. For instance, appli-

cations related to the information storage and adjustment of timing of optical packets

(optical buffers) require a certain slow light bandwidth in order to accommodate the

temporal pulse widths. Further, the slow light bandwidth implicitly determines the ca-

pacity of the buffer. Although a wide bandwidth is an ideal goal for many applications,

it comes at the expense of a smaller time delay.

A second important property is the higher order of dispersion that characterizes the

slow light regimes. Such feature defines the shape of the propagating pulse as the high

dispersion usually accounts for strong pulse re-shaping. One should note here that the

nonlinearity also increases in the slow light regime leading to large SPM. Therefore, the

pulse starts to undergo significant TPA. The increase of linear and nonlinear dispersion

could be an advantage of Si-PhCWs but also an important limit for specific applications,

such as amplifiers or wavelength converters.

Regarding the high frequency dispersion, which mainly distorts the pulse shape

along the propagation distance, there are effective ways to overcome this problem [2.

73–78]. The common purpose of these techniques is either to suppress the high-order

dispersion using the so-called zero-dispersion periodic structures, or to compensate

this higher-order dispersion by structuring the waveguide. The main concept of this
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Figure 2.9: a) Dispersion compensated structure by changing the radius of the holes along the
length of the middle structure b) Suppressing the high order dispersion using a
zero-dispersion structure. The first part of the device produces positive GVD while
the second exhibits negative GVD [2. 72].

idea is to gradually change the propagation constant of the guiding mode. One of the

most well known techniques is to change either the size or the position of the holes,

which form the boundary of the defect line [2. 72]. Equally important technique, is

to combine appropriately two structures with positive and negative GVD. Such type of

optical schemes are shown in Fig. 2.9.

The nonlinear effects occurring in the slow light regime are mainly employed in

applications for controlling optical signals in the time domain. Such applications find

their use primarily to optical interconnects for high data rate transmission in optical

networks. However, there is a multitude of efficient applications based not only on the

nonlinear properties of silicon waveguides but also on their linear properties. In this

context, the next section will briefly present state-of-the-art applications employing Si-

PhNW and Si-PhCW.

2.7 Applications of silicon waveguides
Optical interconnects for high performance computing is probably the most important

application of silicon photonic waveguides. The main objective is to connect different

parts of a computer system by silicon waveguides. It is possible to have a chip-to-chip

Si-PhNW/Si-PhCW interconnect, enhancing the transmission of data [2. 79, 80]. A

recent experiment demonstrates a low error-transmission of 1.28 T b/s stream through
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5 cm long wire waveguide of 3 dB/cm losses [2. 81]. The computing power of optical

computers can further be enhanced by optical pulse compression. A Gaussian pulse

can be compressed by an order of magnitude, increasing the information capacity that

usual computer connections can manipulate [2. 82].

Silicon photonics are also employed for nonlinear optical conversion, which is a

key functionality in telecommunications. A well-known technique for parametric op-

tical conversion is FWM. A usual set up for parametric gain is shown in as shown in

Fig. 2.10. In a recent experiment a 10 Gbit/s non-return-to-zero data train was con-

verted across C band from 1535 to 1566 nm with minimal degradation of the signal

quality [2. 83]. In addition, there are many experiments that have improved the process

of FWM in order a multiband operation to be realized over a broad spectral region. For

instance, in the experiment of Q. Lin [2. 49], spectral region extends from 1390 nm to

1730 nm. However, most of these applications make use of continuous waves as pump

and signal inducing losses due to TPA and FC. In order to overcome these obstacles we

have suggested an optical scheme where we launch optical pulses as pump and signal

into a periodically modulated SiPhNW [2. 84]. Our work demonstrates under these

circumstances a conversion enhancement of 20dB as compared to the case of a con-

stant width nanowire. However, it is not only high conversion efficiency that can be

achieved via FWM but also pulse reshaping and regeneration, taking advantage of the

intense nonlinearities of SiPhNW. For instance, an optical clock recovery system that

uses TPA in a silicon photodiode to sychronize a 10GHz optical clock to an 80Gb/s

RZ data signal has already been suggested [2. 85].

The common feature of the previous applications is the use of dispersion engi-

neered silicon nanowires with few millimetres length. Thus, they can be incorporated

into future ultradense multichannel telecommunication systems. These features point

to be a potential application of silicon nanowires for lightwave systems. Super contin-

uum generation and optical spectral broadening also constitute essential components

within and outside the field of optical communications. These type of functionalities

strongly depend on the interaction between different nonlinear processes. As silicon

nanowires are characterized by strong nonlinearities, it is expected to play a crucial

role to such type of applications. Recently, a spectral broadening of more than 350 nm

upon propagation of ultrashort 1.3 µm wavelength optical pulses in a 4.7 mm SiPhNW
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Figure 2.10: Set-up of FWM based parametric gain. A strong pump pulse is launched into a
silicon nanowire together with a continuous signal wave. Energy is transferred
from the pump to the signal [2. 88].

has been observed [2. 56]. Spectral broadening can also be experienced via the mech-

anism of soliton fission. This process has already been presented in photonic crystal

fibres [2. 86]. Such type of spectral broadbands has been proposed as a simple way

to create multiwavelength division multiplexing (WDM) applications. Therefore, su-

percontinuum generation can be employed in optical transceivers, in emerging on chip

optical networks for multiprocessor-chips, in optical coherence tomography [2. 87] and

optical frequency metrology. The essential requirements of these applications are the

low power consumption as well as the ultra compact dimension of the optical devices.

Further to the previous applications, there is a number of technological areas which

are relevant to mid-infrared wavelengths (2−14 µm). Such type of applications include

environmental monitoring, personalized results-driven healthcare, and public safety.

This optical spectrum is often referred to as the molecular fingerprinting spectrum, as

it includes the fundamental vibrational absorption lines of many molecules of practi-

cal interest. It is for this reason that mid-IR spectroscopic sensors are superior from

a sensitivity standpoint and they are mainly used for medical diagnostic (e.g. tomog-

raphy) [2. 89–92]. One should note here, that holmium and thulium lasers offer ad-

vanced performance at mid-IR wavelengths. More specifically, holmium and thulium

lasers make endoscopic procedures safer and less invasive than the traditional surgi-

cal procedures. Furthermore, free-carrier dispersion-based electrooptic Mach-Zehnder
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modulators have recently been characterized at mid-IR wavelengths near 2.2 µm, illus-

trating that design methodologies previously applied to telecom-band modulators can

also be effective at longer wavelengths [2. 93]. Finally, a mid-IR photodetection device

which spectrally translates signals near 2.4 m to the telecom-band near 1.6 µm with

simultaneous amplification of 19 dB, has also been demonstrated [2. 94].

The applications that have been mentioned so far are mainly based on the advan-

tageous linear (GVD, TOD) and nonlinear (SPM, TPA) effects of silicon photonics.

However, there is an intensive research effort to exploit the slow light regimes of sil-

icon photonics, especially silicon photonic crystals waveguides, to real applications.

One target application is the all-optical routers, which will be able to store and identify

optical data packets. In order to achieve this, the propagating pulses should be slowed

down (the longest delay so far is 80-pulsewidths, [2. 95]-[2. 96]). This is beneficial for

telecommunication systems since they need to consume large power for the electronic-

optical conversion. One should note, that the electronic-optical conversion limits the

bandwidth of the interchanging information. In the same context, slow light effect fa-

cilitates many application in quantum optics [2. 97]. In particular, the storage of the

quantum state of light for long time is necessary in order to create correlated photons,

which forms the basic building blocks of a quantum processor. Besides quantum optics,

all optical demultiplexing based on FWM in Si-PhCWs is another key application for

converting high speed signals to lower bit rates that can be electronically processed.

One of the well known applications, which is also based on FWM in silicon pho-

tonic crystals is the (green light) spectrum. The main goal of this application is to

convert three photons of energy h̄ω into a single photon of energy 3h̄ω . The main chal-

lenge of this process is the single photon of 3h̄ω not to be absorbed from the silicon due

to large nonlinear losses. The large enhancement of the electric field in the Si-PhCW

and the appropriate design of the geometry ensured the success of this application as

shown in Fig. 2.11.

As such silicon photonics seem to be the most suitable platform for integration of

optical circuits due to the availability of waveguides with sub-micron transverse size.

In order to analyze the previous applications and design novel photonic devices

a rigorous mathematical method should be employed. In the current project, a highly

efficient numerical technique, which is known as split step Fourier (SSF) method is
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Figure 2.11: Schematic of generation green light in a slow light Si-PhCW [2. 98].

adopted. A description of this technique is presented in the following section.

2.8 Split-step Fourier method

The SSF method falls under the category of pseudospectral numerical methods, char-

acterized by fast speed as compared to other methods, such as time-domain techniques.

Time-domain techniques take into account the carrier frequency of the waves while

SSF drops the carrier frequency from the derivation of Eq. (2.22). Thus, time-domain

techniques can account for forward and backward propagating waves while SSF can

describe only one-directional propagation. The disadvantages of the SSF method do

not affect our analysis as the extra cost for this advantage of time-domain techniques is

the increase in the computation time. However, in all instances analyzed in this project

backward waves are not generated because the width variations of the waveguides are

small and smooth.

The computation speed of the SSF is due to the calculation of the dispersion con-

tribution to the pulse propagation in the frequency domain, thus avoiding any numerical

derivatives. Equally important, the use of fast Fourier transform (FFT) method to move

between frequency and time domain significantly speeds up the computations. Specif-

ically, the basic idea that governs the SSF method is the separation of Eq. (2.39) in

linear and nonlinear terms as follows:

∂u
∂ t

= (D̂+ N̂)u, (2.55)
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where D̂ is a differential operator related to linear properties and N̂ denotes the non-

linear features of SiNW/Si-PhCW. These operators are written in the following form:

D̂ =
β2

2
∂ 2u
∂ t2 + i

β3

6
∂ 3u
∂ t3 − icκ

2nvg
αinu, (2.56)

N̂ =−γP0

[
1+ iτs

∂
∂ t

]
|u|2u− icκ

2nvg
αFCu− ωκ

nvg
δnFCu. (2.57)

One should make clear here that the second (aFC) and third (δnFC) RHS terms of

Eq. (2.57) are strongly dependent on the free-carrier generation described by Eq. (2.28).

This means that they are indeed nonlinear terms as the free-carrier generation is pro-

portional to the square power of the mode.

From a physical point of view, the linear and nonlinear effects are coupled via the

pulse envelope. The SSF method assumes that both effects act independently on each

other over the short length of an integration step. More specifically, the propagation

from z to z+ h is carried out in two steps. Firstly, the linear effects act alone (D̂ ̸= 0,

N̂ = 0) and secondly only the nonlinear effects act on the pulse (N̂ ̸= 0, D̂ = 0).

According to Eqs. (2.56) and (2.57) the solution of the next spatial step of

Eq. (2.22) has the following formulation:

u(z+h, t)≈ eh(D̂+N̂)u(z, t) (2.58)

where

eh(D̂+N̂) ≈ ehD̂ehN̂ . (2.59)

One should note here that the primary source of error in SSF emerges from the fact that

the operators D̂ and N̂ do not commute. Thus, the approximation of Eq. (2.60) will

provide solution accurate to second-order in the step-size, h. In order to improve the

accuracy of the solution a symmetrized split-step Fourier method [2. 99] is employed.

In particular, the expansion of Eq. (2.60) can be formulated using the Baker-Hausdorff

formulae as:

ehD̂ehN̂ = h(D̂+ N̂ +
h
2
[D̂, N̂]+

h2

12
[D̂− N̂, [D̂, N̂]]+ ...). (2.60)
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Figure 2.12: Schematic illustration of the symmetrized split-step Fourier method used for nu-
merical simulations.

By keeping up to the second term of the latter formulation, the error is of third-order in

terms of step-size h. According to this observation the solution can be cast as:

u(z+h, t)≈ e
h
2 D̂e

∫ z+h
z N̂(z′)dz′e

h
2 D̂u(z, t). (2.61)

This mathematical procedure is illustrated in Fig. 2.12 where the whole propaga-

tion distance has been divided in a series of small steps. Each segment has a length

equal to h. According to the symmetrized formulation of SSF, the linear effects are

calculated for a distance of h/2. Note, here that the optical field is calculated in the

frequency domain for the linear case. At the midplane, z+h/2, the field u(z, t) is mul-

tiplied by a nonlinear factor that represents the effect of nonlinearity over the whole

segment h. Finally, the field is calculated for the remaining distance h/2 assuming that

only the linear effects act.

Equation (2.61) describes an iterative algorithm, where the calculation of the field

at each distance step h needs the field at the end of the previous step. The iterations

begin at z = 0, where the input pulse shape is set up. One should note, that we have

adopted a more advanced mathematical scheme of SSF method in our theoretical model

as we need to take into account the generation and dynamics of free-carriers. Conse-

quently there is an additional intermediate computational step between the linear and
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nonlinear step. To be more specific, the field calculated in the linear step is used to

compute the generation of free carriers through the rate equation (2.28). Following

this approach we incorporate the nonlinear effects related to the free-carriers (FCA

and FCD) into our initial NLSE Eq. (2.22) leading to a system of coupled differential

equations, which is solved through a Runge-Kutta method of 5th order.

It is important to mention that the nonlinear part of the SSF method, which also

includes the implicit nonlinearity of free carrier generation, is calculated in the time

domain, as the nonlinearity is dependent on the square of the electric field magnitude.

On the other hand, the linear part of SSF is calculated in the frequency domain. In this

way, the use of the FFT algorithm [2. 100] makes the numerical evaluation of Eq. (2.39)

relatively fast. It is for this reason that the split-step Fourier method can be faster by up

to two orders of magnitude as compared with most finite-difference schemes [2. 101]

as it has already been mentioned.

The accuracy of the SSF method needs to satisfy certain mathematical require-

ments. For instance, SSF implicitly imposes periodic boundary conditions at the bound-

aries of the computational time window. Hence, the width of the temporal window must

be large enough in order to accommodate any temporal or spectral broadening due to

linear and nonlinear dispersion. An appropriate boundary will also absorb the energy

reaching the edge of the window, preventing its reflections back into the computational

domain. One way to estimate the width of the time window would be to estimate in

advance the temporal and spectral pulse broadening. However, this is not a conve-

nient technique especially in cases of studying super-continuum generation. In order

to overcome such type of inconveniences an adequate number of time-points should be

chosen. The temporal sample array of u(z, t) for each z should be M = 2m, which is

required by FFT. The most accurate way to ensure that correct parameter values (M,

h, time window) have been chosen is to change these parameters for a specific simula-

tion until the solution has converged. However, these parameters (M, h, time window)

are not the same for each simulation as the propagation distance, the pulse width and,

in general, the pulse dynamics change significantly for each application. One com-

mon characteristic of our simulations was that, in most cases the step length was much

shorter than (1.0 µm).

The previous conditions are not enough to verify that the results of our developed
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software are reliable. We have checked the code in many test cases in order to ensure

that it is rigorous and valid. Initially, we checked that the energy is conserved along the

propagation distance when the intrinsic and nonlinear losses are not taken into account.

Everytime, we incorporate a nonlinear parameter in the NLSE we checked and verified

its effect against published results. This can be seen in Fig.2.5. The same results are

published in Agrawal’s paper about silicon nanowires[2. 102]. The next step was to

check if well known phenomena such as soliton generation have the same properties

in silicon nanowires as in optical fibres. Indeed, our simulations as shown in Figs 2.2-

2.7 verify that our results are similar to what has been published in the well-known

Agrawal’s book on nonlinear fibre optics [2. 57].

The last condition that we have to take into account is our assumption that the

propagating optical field is assumed to be quasi-monochromatic. That means that

the pulse spectrum centered at ω0, is assumed to have a spectral width ∆ω such that

∆ω/ω0 << 1. This assumption is valid for pulses as short as 100 f s. It is for this

reason that the shortest pulse width used in our simulations is 180 f s and so we could

develop our mathematical model based on the slowly varying envelope approximation.

One should also note here that SSF method has been developed in the current

work in such a way to incorporate all the changes of linear and nonlinear parameters

that occur along the propagation distance. These changes are due to the variation of the

width of the silicon nanowire and those of the optical pulse. As it will be presented,

we change the width of the silicon nanowire in different ways such as exponential,

hyperbolic tangent or linear one. The choice of different taper profiles is based on the

fact that we want to study to what extent the optical pulse dynamics are affected when

the linear and nonlinear parameters change along the propagation distance. Particularly,

when similariton generation or soliton pulse compression is studied, the change of the

width of the silicon nanowire is important because such nonlinear phenomena have

their origin in the interplay between GVD and SPM. As a result, we tried different

taper profiles in order to gain a more complete view of the latter nonlinear phenomena.

Another important issue should be emphasized here. Throughout the study, we have

not tried to find the most efficient taper profile. This is because the linear and nonlinear

dispersion maps vary significantly for different heights of silicon nanowires or by using

different material for substrate. That means that the effects of width modulation are
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specific to the silicon nanowire configuration. However, we have considered only taper

profiles that can be easily fabricated, thus anchoring our work into the world of practical

applications. In particular, the most natural transition between two waveguides with

constant width follows a hyperbolic tangent profile.

One interesting note for this work is to emphasize on how all the simulation in-

put parameters have been chosen throughout the thesis. It should be clear that all the

parameters have been chosen in order the current work to be able to focus on the non-

linearities of silicon. For example, powers and wavelengths are chosen in order to show

the differences in pulse dynamics between telecom and mid-IR regimes or in the chap-

ters related to FWM all the input parameters are selected in order to attain the phase

matching condition. Besides that, the whole theoretical model is implemented in a C++

code. I should mention that I have taken and edited some functions from [2. 103] and

added a few more features. The simulation time is not the same for each propagation

scenario. It depends on the temporal sampling of the time window and on the number

of the distance steps. For example, one simple propagation scenario of launching one

pulse in a silicon nanowire needs about a minute in order to be completed. However,

for the case of three co-propagating pulses in the slow light regime of a silicon photonic

crystal it requires more than 40 minutes.
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Chapter 3

Similariton generation in silicon

photonic nanowires

3.1 Introduction
Generation of pulses with specific spectral and temporal characteristics is a key func-

tionality needed in many applications in ultrafast optics, optical signal processing, and

optical communications. One type of such pulses are those that preserve their shape

upon propagation. Solitons are the most ubiquitous example of such a pulse that form

in the anomalous GVD regime, whereas their counterpart in the normal GVD region

are self-similar pulses, called similaritons [3. 1–3]. Unlike solitons, which require a

threshold power, no constraints have to be imposed on the pulse energy, initial shape,

or optical phase profile to generate similaritons in silicon nanowires [3. 4, 5]. Due to

their self-similar propagation, similaritons do not undergo wave breaking and the lin-

ear chirp they acquire during their formation makes it easy to employ dispersive pulse

compression techniques to generate nearly transform-limited pulses. These remarkable

properties of similaritons have provided a strong incentive for their study, and optical

similaritons have been demonstrated in active optical fibre systems such as Yb-doped

fibre amplifiers [3. 3, 6], using passive schemes based on dispersion-managed or ta-

pered silica fibres [3. 7–10], and high-power fibre amplifiers [3. 11–13].

Driven by the ever growing demand for enhanced integration of complex opto-

electronic architectures that process increasing amounts of data, finding efficient ways

to extend the regime of self-similar pulse propagation to chip-scale photonic devices

is becoming more pressing. One promising approach, based on silicon (Si) fibres with
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micrometre-sized core dimensions [3. 14], has recently been proposed [3. 15]. A further

degree of device integration can be achieved by employing Si-PhNWs with submicrom-

eter transverse size fabricated on a silicon-on-insulator material system [3. 16]. In addi-

tion to the enhanced optical nonlinearity, which allows for increased device integration,

Si-PhNWs enable seamless integration with complementary metal-oxide semiconduc-

tor technologies. The use of Si-PhNWs can be extended to the mid-infrared (mid-IR)

region (λ & 2.2 µm) [3. 17], where silicon provides superior functionality due to low

TPA and, thus, reduced free-carrier absorption (FCA). In fact, it has already been shown

that nonlinear optical effects such as modulational instability [3. 18, 19], frequency dis-

persion of the nonlinearity [3. 21], and supercontinuum generation [3. 19, 22–24], can

be used to achieve significant pulse reshaping in millimeter-long Si-PhNWs (for a re-

view, see [3. 25]). Before we continue with our theoretical model we should mention

that we have used a linear and an exponential taper profile in the current chapter in

order to study how the width variation of the silicon nanowire affect the efficiency of

the similariton generation process.

3.2 Mathematical formulation

The pulse dynamics that emerge during the optical pulse propagation in silicon

nanowires are described by the following equation [3. 21, 26–28]:

i
∂u
∂ z

+
3

∑
n=1

inβn(z)
n!

∂ nu
∂ tn =− icκ(z)

2nvg(z)
αFC(z)u−

ωκ(z)
nvg(z)

δnFC(z)u

− γ(z)
[

1+ iτ(z)
∂
∂ t

]
|u|2u, (3.1)

where u(z, t) is the pulse envelope, measured in
√

W, z and t are the distance

along the Si-PhNW and time, respectively, βn(z) = dnβ/dωn is the nth order dis-

persion coefficient, κ(z) quantifies the overlap between the optical mode and the

active area of the waveguide, vg(z) is the group-velocity, δnFC(z) [αFC(z)] are

the free-carrier (FC) induced index change (losses) and are given by δnFC(z) =

−e2/2ε0nω2 [N(z)/m∗
ce +N(z)0.8/m∗

ch

]
and αFC(z) = e3N(z)/ε0cnω2(1/µem∗

ce
2 +

1/µhm∗
ch

2), respectively, where N is the FC density, m∗
ce = 0.26m0 (m∗

ch = 0.39m0)

is the electrons (holes) effective mass, with m0 the electron mass, and µe (µh) the elec-
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tron (hole) mobility. One should note here that the intrinsic losses have not been taken

into account as their characteristic length is much longer than the propagation distance

studied in this work. According to this, intrinsic losses do not have any influence in

parabolic pulse generation process.

The nonlinear properties of the waveguide are described by the nonlinear coeffi-

cient, γ(z) = 3ωΓ(z)/4ε0A(z)v2
g(z), where A(z) and Γ(z) are the cross-sectional area

and the effective third-order susceptibility of the waveguide, respectively. Nonlinear

optical effects higher than the third-order are not considered here although at high peak

power they might become important. One interesting part of Eq. (3.1) is the shock

time scale, i.e. the characteristic response time of the nonlinearity, τ(z). The explicit

formula of τ(z) is the following one:

τ(z) = ∂ lnγ(z)/∂ω , (3.2)

We should stress at that point that we have expressed the characteristic response time of

the nonlinearity in such a way in order to make the initial NLSE, Eq. (2.39), shorter. We

also want to show the dependence of the shock time on γ(z). If one wants to formulate

Eq. (2.39) then γ(z) should be replaced into Eq. (3.1) as it follows:

τ(z) = (
1
ω

+
∂Γ

Γ∂ω
). (3.3)

By multiplying and dividing the term ∂Γ
Γ∂ω with v2

g, Eq. (3.3) is formulated as it follows:

τ(z) = (
1
ω

+
∂g(ω)

g(ω)∂ω
), (3.4)

where g(ω) = Γ
v2

g
. By replacing Eq. (3.4) into Eq. (3.1) one can derive the initial NLSE,

Eq. (2.39). Besides that, our model is completed by a rate equation for the FC density,

∂N
∂ t

=−N
tc
+

3Γ′′(z)
4ε0h̄A2(z)v2

g(z)
|u|4, (3.5)

where Γ′′ (Γ′) is the imaginary (real) part of Γ and tc is the FCs recombination time (in

this work, tc = 1 ns).
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3.3 Dispersion properties of Si-PhNWs
The system (3.1)-(3.5) provides a rigorous description of pulse propagation in Si-

PhNWs with adiabatically varying transverse size since the z-dependence of the waveg-

uide parameters is fully incorporated in our model via the implicit dependence of the

modes of the Si-PhNW on its transverse size. Thus, we consider a tapered ridge

waveguide with a silicon rectangular core buried in SiO2, with height, h = 250 nm,

and width, w, varying from win to wout between the input and output facets, respec-

tively. Our colleagues in Columbia university used a finite-element mode solver to

determine the propagation constant, β (λ ), and the fundamental TE-like mode, for

1.3 µm ≤ λ ≤ 2.3 µm and for 51 values of the waveguide width ranging from 500 nm

to 1500 nm. The dispersion coefficients are calculated by fitting β (λ ) with a 12th or-

der polynomial and subsequently calculating the derivatives with respect to ω . Alterna-

tively, direct numerical differentiation can be used [3. 29] or other rigorous and efficient
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Figure 3.1: Dispersion maps of a) GVD coefficient, β2, b) third-order dispersion coefficient,
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f) imaginary part of the shock-time, τ . In a), β2 = 0 on the black contour and
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numerical methods can be employed [3. 20]. Using these results and the optical modes,

the parameters, κ , γ , and τ , are computed for all values of w. Their z-dependence is

then found by polynomial interpolation.

3.4 Results
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Figure 3.2: Temporal pulse shape (normalized to input power P0 = 7 W ) with increasing z and
the chirp of the output pulse, calculated for the full model (solid line) and for β3 = 0
and τ = 0 (dotted line) (top panels) and the corresponding pulse spectra (bottom
panels). e)-f) ε2

I vs. z, for the full model (solid line) and for β3 = 0 and τ = 0
(dotted line). Left (right) panels correspond to λ = 2.2 µm (λ = 1.55 µm).

The results of this analysis are summarized in Fig. 3.1, where we plot the disper-
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sion maps of the waveguide parameters. Thus, Fig. 3.1(a) shows that if w < 887 nm

the Si-PhNW has two zero GVD wavelengths, defined by β2(λ ,w) = 0, whereas if

w > 887 nm the Si-PhNW has normal GVD in the entire spectral domain. In addition,

if λ > 2187 nm the waveguide has normal GVD for any w. Important properties of

the Si-PhNW are revealed by the dispersion maps of the nonlinear coefficients as well.

Specifically, the strength of the nonlinearity, γ ′(λ ,w), decreases with both increasing w

and λ , meaning that in the range of wavelengths and waveguide widths explored here,

nonlinear effects in Si-PhNWs are stronger if narrow waveguides are used at lower

wavelengths. On the other hand the TPA coefficient, γ ′′(λ ,w), and consequently non-

linear losses, decrease with w and λ , which suggests that the waveguide parameters and

wavelength must be properly chosen for optimum device operation. Finally, as seen in

Fig. 3.1(e), the shock time τ ′(λ ,w) has large values at long wavelengths but decreases

with w.

physical λ = 1.55µm λ = 2.2µm
parameters
TFWHM [ f s] 220 220

P0 [W ] 7 7
αin[dB cm−1] 0 0

win [nm] 1500 1500
wout [nm] 1080 850

βT PA [cm/GW ] 1.3·10−11 1.5·10−13

n2 [cm2/W ] 5.37·10−18 1.04·10−17

β1(in) [ps/m] 1.26·104 1.21·104

β2(in) [ps2/m] 1.11 1.53
β3(in) [ps3/m] 0.5·10−3 -2.9·10−3

γ ′(in) [W−1m−1] 107.2 59.26
γ ′′(in) [W−1m−1] 32.63 0.3

τ ′(in) [ f s] 1.36 2.24
τ ′′(in) [ f s] 0.34 0.6

β1(out) [ps/m] 1.27·104 1.25·104

β2(out) [ps2/m] 79·10−2 88·10−3

β3(out) [ps3/m] 1.4·10−3 -1.37·10−3

γ ′(out) [W−1m−1] 141.23 74.95
γ ′′(out) [W−1m−1] 44.16 387·10−3

τ ′(out) [ f s] 1.44 2.55
τ ′′(out) [ f s] 3.38·10−1 59·10−2

L [mm] 3.5 6

Table 3.1: Input pulse parameters for the two cases presented in Fig. 3.1(a) (arrow A−B and
arrow C−D).
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To investigate the formation of self-similar pulses, we launch a Gaussian pulse,

u(t) =
√

P0e−t2/2T 2
0 , in an exponentially tapered Si-PhNW, w(z) = wine−az. We study

similariton generation in telecom and mid-infrared wavelengths. All the input pulse

parameters which used for our simulations are presented in Table-3.1. In Fig. 3.2 we

plot the pulse profile and its spectrum, calculated for several values of z. As expected,

the pulse decay is stronger at λ = 1.55 µm as compared to that at λ = 2.2 µm, due

to larger TPA. The stronger nonlinear effects at λ = 2.2 µm are also revealed by the

spectral ripples that start to form at z & 5 mm (no such modulations are seen at λ =

1.55 µm). Also, the pulse becomes more asymmetric at λ = 2.2 µm, due to increased

τ [3. 21]. However, the most important phenomenon revealed by Fig. 3.2 is that at both

wavelengths the pulse evolves into a parabolic one, |up(t)|2 = |up(t0)|2[1−(t−t0)2/T 2
p ]

for |t − t0| < Tp and up(t) = 0 otherwise, where up(t0), t0, and Tp are the amplitude,

time shift, and pulse width, respectively.

The generation of parabolic pulses can be quantitatively characterized by the in-

tensity misfit parameter, εI , which provides a global measure of how close the pulse

profile is to a parabolic one; it is defined as [3. 15]:

ε2
I =

∫
[|u(t)|2 −|up(t)|2]2dt∫

|u(t)|4dt
. (3.6)

Figures 3.2(e) and 3.2(f) show that at both wavelengths there is a certain optimum

waveguide length at which ε2
I reaches a minimum value, i.e. ε2

I = 1.67× 10−3 (ε2
I =

1.57× 10−3) at λ = 2.2 µm (λ = 1.55 µm). The small values of ε2
I provide clear

evidence of the formation of parabolic pulses. The pulse becomes closer to a parabolic

pulse at λ = 1.55 µm because the effects that induce pulse asymmetry are smaller

at this wavelength. This can also be seen by comparing the dependence ε2
I (z) in the

case of the full model (3.1)-(3.5) and when higher-order effects are neglected (β3 = 0

and τ = 0). Thus, at λ = 1.55 µm, ε2
I (z) is almost unaffected if one neglects these

effects, whereas in the same conditions, at λ = 2.2 µm, the minimum of ε2
I (z) decreases

considerably to 0.41×10−3 (and is reached at z = 9.52 mm).

A fundamental characteristic of parabolic pulses is that across the pulse the fre-

quency chirp varies linearly with time. The pulses generated in our numerical exper-

iments clearly have this property, as illustrated in the top panels of Figs. 3.2(a) and
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3.2(b). These figures also show that, at both wavelengths, this linear time dependence

of the chirp is preserved even in the presence of higher-order effects, which demon-

strates the robustness against perturbations of the parabolic pulse generation.
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Figure 3.3: Dependence of ε2
I on pulse width and power.

The dependence of the similariton generation on the pulse parameters is partic-

ularly important when assessing the effectiveness of this optical process. In order to

study this dependence, we have determined ε2
I , at both wavelengths, as a function of

pulse parameters, TFWHM and P0. The results of our analysis, summarized in Fig. 3.3,

show that for a given waveguide length there is an optimum power at which ε2
I reaches

a minimum, which is explained by the fact that the similariton formation length in-

creases with P0. In the same context, TFWHM plays a critical role in similariton forma-

tion. As we can see in Fig. 3.3 (red curves) ε2
I presents a minimum at TFWHM = 140 fs

for telecom wavelength and at at TFWHM = 200 fs for mid-infrared wavelength. For

long pulse widths the induced effects of free carrier generation such as free carrier

absorption and induced free carrier chirp start to degradate the pulse shape. As it is

expected, shorter pulse widths in telecom regime affect more the similariton formation

than in mid-infrared since the nonlinear parameter γ is much stronger in telecom wave-

lengths than of this in mid-infrared. The relation between the input pulse parameters

and the similariton generation can be further explored by considering pulses with dif-

ferent shapes. Our results regarding this dependence are summarized in Fig. 3.4, where
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we plot the evolution of ε2
I (z), determined for varying P0. In order to gain a more com-

plete view of the self similaritons we study the effects of different input pulse shapes

in parabolic pulse generation. Although pulses emitted from many lasers can be ap-

proximated by a Gaussian shape, it is necessary to consider other pulse shapes such as

super-Gaussian (u(t) =
√

P0e−t2m/2T 2m
0 with m = 2 TFWHM = 1.824T0), and hyperbolic

secant (u(t) =
√

P0sech(t/T0), where TFWHM = 1.763T0). The main idea is to see how

the time dependence of the phase affects the generation of similaritons. At this point

we should remind that the time dependence of the phase (essentially the chirp) plays

a key role for the generation of parabolic pulses. In all of our propagation scenarios

TFWHM = 220 fs. There are several revealing conclusions that can be drawn from the

maps in Fig. 3.4. First, the Gaussian pulse leads to the lowest values of ε2
I (z), which

suggests that this pulse shape is the most efficient one for generating similaritons. Sec-

ond, in the case of Gaussian and sech pulses there is a band of low values of ε2
I (z),

which is narrower at λ = 1.55 µm as compared to its width at λ = 2.2 µm. One should
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physical λ = 1.55µm λ = 2.2µm
parameters
TFWHM [ f s] 220 220

P0 [W ] 7 7
αin[dB cm−1] 0 0

win [nm] 1500 1500
wout [nm] 1080 850

βT PA [cm/GW ] 1.31·10−11 1.5·10−13

n2 [cm2/W ] 5.37·10−18 1.04·10−17

β1(in) [ps/m] 1.26·104 1.216·104

β2(in) [ps2/m] 1.11 1.53
β3(in) [ps3/m] 0.5·10−3 -2.9·10−3

γ ′(in) [W−1m−1] 107.2 59.26
γ ′′(in) [W−1m−1] 32.63 0.3

τ ′(in) [ f s] 1.36 2.24
τ ′′(in) [ f s] 0.34 0.6

β1(out) [ps/m] 1.27·104 1.3·104

β2(out) [ps2/m] 0.79 463·10−2

β3(out) [ps3/m] 1.4·10−3 -6.8
γ ′(out) [W−1m−1] 179.76 89.43
γ ′′(out) [W−1m−1] 54.67 46.38·10−2

τ ′(out) [ f s] 1.51 2.825
τ ′′(out) [ f s] 338·10−3 0.576

L [mm] 15 15

Table 3.2: Input pulse parameters for the case of similariton generation for telecom and mid-
infrared wavelengths corresponding to the results presented in Fig. 3.5.

note that as P0 increases for the case of supergaussian pulses there are two bands of

low values of ε2
I (z) at λ = 2.2 µm whereas there is only one at λ = 1.55 µm. Finally,

pulses with a supergaussian shape evolve into a similariton over the shortest distance,

because of the three pulse profiles, the supergaussian one is closest to a parabolic pulse.

Due to its practical relevance, we also studied the generation of similaritons in

Si-PhNW tapers with different profiles. To this end, we considered a linear taper and

exponential ones with different z-variation rate, in all cases the (Gaussian) pulse param-

eters and win and wout being the same [see Fig. 3.5(a)]. All the input pulse parameters

are presented in the following Table-3.2.

The results of this analysis, which are presented in Fig. 3.5, show that although

similaritons are generated irrespective of the taper profile, the efficiency of this process

does depend on the shape of the taper. In particular, overall the linear taper is the

most effective for similariton generation, whereas in the case of exponential tapers
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the steeper their profile the more inefficient they are. These conclusions qualitatively

remain valid at both λ = 2.2 µm and λ = 1.55 µm, although the overall pulse dynamics

do depend on wavelength. In particular, ε2
I is smaller at λ = 2.2 µm and the pulse

preserves a parabolic shape for a longer distance, in agreement with the results in Fig.

3.4.

3.5 Conclusion
In conclusion, we have demonstrated that parabolic pulses can be generated in

millimeter-long tapered Si-PhNWs with engineered decreasing normal GVD. Our anal-

ysis showed that using this approach optical similaritons can be generated at both tele-

com and mid-IR wavelengths, irrespective of the pulse shape and taper profile. How-

ever, our investigations have revealed that the efficiency of the similariton generation is

strongly dependent on the wavelength at which the device operates, pulse parameters

and its temporal profile, as well as the particular shape of the Si-PhNW taper.

In order to gain a deeper insight in the particle-like behaviour of similaritons, we
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will present in the next chapter all the pulse dynamics that emerge when similaritons

collide with each other.
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Chapter 4

Similariton collision in silicon photonic

nanowires

4.1 Introduction
The rapid increase of data transmission rate in many optical communication systems

has led to an intense interest in generating pulses that do not suffer from distortion

and wave breaking phenomena upon propagation. An example of such type of pulses

that preserve their shape during propagation and show particle-like behaviour are local-

ized optical waves also known as solitons. They exist in the anomalous GVD regime,

namely when the second-order dispersion coefficient, β2 < 0. Similar types of pulses

that show particle-like properties and self-similar behaviour upon propagation are the

so-called similaritons[4. 1–5]. Unlike solitons, they form primarily in the normal dis-

persion regime (β2 > 0), although the existence of similaritons in the anomalous GVD

regime has been demonstrated as well.[4. 6] Similaritons preserve their overall pulse

energy and phase profiles, although specific pulse parameters, such as the pulse width,

amplitude, and frequency chirp vary during propagation. As a result, similaritons are

not affected by destructive effects, such as pulse distortion, radiative damping, and

wave breaking phenomena. More importantly, from a practical point of view, in or-

der to generate optical similaritions no specific constraints have to be imposed on the

physical parameters describing the initial pulse. The generation of optical similaritons

and their physical properties have already been studied and demonstrated in optical fi-

bre systems such as Yb-doped fibre amplifiers,[4. 2] using passive schemes based on

dispersion managed or tapered silica fibres,[4. 4] and high-power amplifiers[4. 7].
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The constant drive towards increased photonic systems integration makes it nec-

essary to develop innovative approaches to generate at chip-scale optical pulses that

are not distorted when propagated in subwavelength wave guiding photonic devices.

Recent studies[4. 8] in which it is demonstrated that similaritons can form in silicon

(Si) fibres with micrometer sized core represent an important step towards this goal.

However, device fabrication considerations suggest that the silicon-on-insulator (SOI)

material platform[4. 9, 10] provides a more flexible and cost-effective solution to fur-

ther decrease the device footprint. By scaling down the transverse device size to sub-

micrometer range, the enhanced optical field confinement not only leads to larger modal

frequency dispersion but also increases considerably the effective optical nonlinearity

of the waveguide. As such, significant pulse reshaping effects can be achieved over rel-

atively short propagation distance. For example, soliton generation in Si-PhNWs has

already been demonstrated experimentally in chip-scale devices.[4. 11] Other important

nonlinear optical effects that can be used efficiently to engineer the intensity and phase

profiles of optical pulses, such as supercontinuum generation,[4. 12–14] pulse self-

steepening,[4. 15] and modulational instability,[4. 16] have been demonstrated both at

telecom (λ = 1.55 µm) and mid-IR (λ & 2.2 µm) wavelengths (see Refs. [[4. 17–19]]

and references therein for more information on nonlinear optical effects in Si waveg-

uides). The latter spectral domain provides an additional advantage for using Si as

material platform for integrated nonlinear photonic devices, namely, the TPA of Si is

dramatically reduced.

4.2 Dispersion properties of silicon photonic wire

waveguides

The Si-PhNW considered in this study consists of a Si rectangular core with an adia-

batically varying width, w(z), which is buried in SiO2. The height of the waveguide

is assumed to be constant, h = 250 nm. In order to incorporate in our model the z-

dependence of the optical parameters of the waveguide we determine the fundamental

(TE-like) optical mode and its propagation constant following the same procedure that

was presented in Chapter 3. However, for convenience we will briefly present some

key characteristics of the dispersion properties of Si-PhNW.
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The width dependence of the spectra of the waveguide dispersion coefficients are

presented in Fig. 4.1. These plots show that the linear waveguide parameters depend

strongly on both w and λ , which provides increased flexibility in choosing the regime in

which the device operates. In particular, it can be seen that if w < 887 nm the Si-PhNW

has two zero GVD wavelengths, defined by the relation β2(λ ,w) = 0. In contrast, when

w > 887 nm the Si-PhNW has normal GVD in the entire spectral domain. However,

if λ > 2187 nm the waveguide has normal GVD for any width. Moreover, within the

range of the waveguide parameters investigated here, β2 decreases monotonically with

w if λ < 1.78 µm, whereas if λ > 1.78 µm the dependence β2(w) has a minimum point.

A strong dependence on the waveguide width is also shown by β1 = 1/vg, namely, β1

decreases as w increases.
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Pulse propagation in Si-PhNWs is not only determined by the waveguide disper-

sion coefficients but also by the nonlinear coefficients, which are plotted in Fig. 4.2.

Specifically, the magnitude of the real and imaginary parts of the waveguide nonlin-

earity coefficient, γ , which describe the SPM and TPA effects, respectively, increase as

w and λ decrease. As a result, it is expected that pulse reshaping phenomena induced

by optical nonlinear effects will be more intense at lower wavelengths in Si-PhNWs

with smaller w. On the other hand, the shock time parameter shows a different depen-

dence on the waveguide width. Specifically, whereas τ ′ increases as w decreases, τ ′′

varies only slightly with w. Note that τ ′ and τ ′′ are time scales associated with different

nonlinear effects, namely, SPM and TPA, respectively.

It is clear that an appropriate combination between the size of a silicon nanowire

and the operational wavelength of the propagating pulse can enhance efficiently dif-

ferent nonlinear phenomena. Such type of flexibility is of great importance nowadays

as long as there is urgent need for multi-tasking devices in the field of telecommuni-

cations. In particular, a silicon nanowire with width w < 887 nm does not have the

same influence on the pulse shape in the regime of λ ≈ 1.55 µm where the GVD is

negative as in the regime of λ ≈ 2.1 µm where the GVD is positive. That means that

we can take advantage of different nonlinear phenomena with the same device. One

such type of nonlinear phenomena is the parabolic pulse generation which was studied

extensively in the previous Chapter 3. This work will focus in an interesting aspect of

parabolic pulses which is their particle like behaviour when the collide between each

other. Interesting conclusions follow in the next section.

4.3 Collision of optical similaritons
The results presented in Chapter 3 revealed that parabolic similaritons can be easily

generated in tapered Si-PhNWs. However, one important physical property of such

pulses, which is particularly relevant to technological applications, is that similaritons

display particle-like behaviour during collision. It should be noted that one expects

that the knowledge pertaining to similaritons collision in regular or photonic crystal

fibres[4. 23, 24] cannot be simply translated to the context of Si-PhNWs, as the basic

optical properties of these optical guiding systems make them quite distinct from each

other. For example, the presence of FCs in Si-PhNWs means that optical similaritons
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collide in these waveguides in the presence of nonlinear loss emerging by the TPA,

whereas in the case of silica based optical fibres optical losses depend linearly on the

pulse amplitude.

In order to study the collision of optical similaritons in Si-PhNWs we use the

theoretical model described in Section 3.2. Accordingly we launch two similaritons

with different carrier frequencies, namely, Ω0 +∆Ω and Ω0 −∆Ω. This amounts to the

two pulses having different group-velocities. The pulses are temporally separated by

∆t, which can be arbitrarily chosen. We consider first the case of normal GVD, so that,

for simplicity, we assume that the width of the waveguide is constant, w = 900 nm. The

initial profile of the optical field is then given by:

up(t) = A01

√
1− (t − t)2

T 2
0

ei[ϕ(t−t)+∆Ω(t−t)]+A02

√
1− (t + t)2

T 2
0

ei[ϕ(t+t)−∆Ω(t+t)], (4.1)

where A01 and A02 are the amplitudes of the two similaritons and t = ∆t/2. In order to

calculate the parameters of the similaritons we assume that we have one propagating

similariton described by the following expression:

up(t) = A0

√
1− (t − t)2

T 2
0

ei[ϕ(t−t)+∆Ω(t−t)], (4.2)

where |t| ≤ T0 and A0 = 0 for |t| > T0. The input energy of the pulse is calculated by

taking the following integral

Ein =
∫ T0

−T0

|up(t)|2dt =
8
3

A2
0T0. (4.3)

According to previously published works [4. 2, 3], the input energy of a similariton is

equal to:

Ein =
8
√

γβ2/2A3
0

g
. (4.4)

If we replace in this equation the gain, g, with the nonlinear loss coefficient, αnl =

−2γ ′′A2
0, Eq. (4.4) can be adapted to a waveguide with TPA. One should note here that

the assumption of nonlinear losses is based on the fact that TPA is proportional to the

square power of the amplitude of the propagating pulse. Taking into account the latter
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assumption we combine Eqs. (4.3), (4.4) in order to derive the following expression:

8
3

A0T0 =
3
√

γβ2

2
√

2γ ′′
. (4.5)

By inserting Eq. (4.5) in Eq. (4.3), we can derive the expression for A0, Eq. (4.7b). In

order to calculate T0 we insert Eq. (4.7b) in the following equation [4. 2, 3]:

T0 =
6
√

γβ2/2
2γ ′′A0

. (4.6)

According to the previous manipulations one can have the related parameters for simi-

laritons of Eq. 4.2 as it follows:

ϕ(t) = ϕ0 −
3γ ′

4γ ′′
+

γ ′′A2
0

3β2
t2, (4.7a)

A0 =
γ ′′Ein

2
√

2γ ′β2
, (4.7b)

T0 =
6γ ′β2

γ ′′2Ein
, (4.7c)

where ϕ0 is a constant phase. To determine the initial values of the parameters of the

colliding similaritons we choose first the pulse width, T0, assumed to be the same for

the two similaritons, then using Eq. (4.7c) we calculate the initial pulse energy, Ein, and

from Eq. (4.7b) we find the amplitude of the similaritons, A0. Finally, the initial phase

profile is determined from Eq. (4.7a). Since β2 and γ are frequency dependent, the

two similaritons will be characterized by different sets of parameters. We should stress

here that the appropriate choice of input pulse wavelengths ensures that the pulses are

located either in high or low TPA wavelength regime.

We have applied this procedure to study the collision of two parabolic similaritons

with λ0 = 1.55 µm and frequency shift ∆Ω = 130.2 THz, which means that the wave-

lengths of the two similaritons are λ1 = 1400 nm and λ2 = 1736 nm. We should make

clear that the intrinsic losses have not been taken into account as the dominant loss

mechanism for the propagation distances studied in this work is the nonlinear losses

emerged from TPA and free carrier generation. All the input pulse parameters are

shown in the following Table-4.1.

This choice of the parameters of the input pulses ensures that the wavelengths of
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physical parameters λ = 1.400µm λ = 1.736µm

T0 [ f s] 600 600
P0 [mW ] 440.4 447.8

αin[dB cm−1] 0 0
w [nm] 900 900

βT PA [cm/GW ] 1.6·10−11 9.2·10−12

n2 [cm2/W ] 4.55·10−18 9.08·10−18

β1 [ps/m] 1.3·104 1.29·104

β2 [ps2/m] 7.78·10−1 2.64·10−1

β3 [ps3/m] 2.7·10−3 1.15·10−3

γ ′ [W−1m−1] 197.17 137.13
γ ′′ [W−1m−1] 65.99 31.8

τ ′ [ f s] 1.22 1.83
τ ′′ [ f s] 0.1 7.4·10−1

L [mm] 50 50

Table 4.1: Input pulse parameters corresponding to the case presented in Fig. 4.3.
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Figure 4.3: Collision of two parabolic similaritons propagating in the normal GVD regime
and in the presence of large TPA. a) Temporal and spectral pulse evolution along
propagation distance. b) Evolution of free-carrier density. c) Temporal pulse profile
at the input and output of the silicon nanowire. The pulse width and power are
normalized with respect to T0 = 600 f s and P0 = 447.8 mW .
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Figure 4.4: Collision of two parabolic similaritons propagating in the normal GVD regime
and in the presence of weak TPA. a) Temporal and spectral pulse evolution along
propagation distance. b) Evolution of free-carrier density. c) Temporal pulse profile
at the input and output of the silicon nanowire. The pulse width and power are
normalized with respect to T0 = 2500 f s and P0 = 2540 mW .

both similaritons lie in a region of large TPA. The results of our simulations, presented

in Fig. 4.3, clearly illustrate the particle-like behaviour of the similaritons upon the

pulse collision. Specifically, it can be seen that, except of some slight interference

effects observed in the overlap region, the similaritons pass through each other being

practically unaffected by the collision process. In addition, the strong TPA leads to

significant pulse absorption, which is also reflected in the dependence of the FC-density

on the propagation distance. In particular, one can observe a significant decrease with

z of the FC density, except, as expected, in the overlap region where a larger amount of

FCs is generated as shown in Fig. 4.3(b). In addition to the collision of the similaritons,

Fig. 4.3 also illustrates temporal compression This is clear from Fig. 4.3(c) which

presents the input and output pulse profile. Due to to strong TPA and nonlinear effects,

we can see that the pulse has been affected significantly after 50 mm of propagation

distance.

We also considered the collision of parabolic similaritons propagating at mid-IR
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wavelengths. Thus, we chose λ0 = 2.2 µm and ∆Ω = 57 THz, the corresponding

wavelengths of the two similaritons being λ1 = 2019 nm and λ2 = 2300 nm. All the

input pulse parameters are shown in the following Table-4.2:

physical λ = 2.019µm λ = 2.3µm
parameters

T0 [ps] 2.5 2.5
P0 [W ] 2.54 1.62

αin[dB cm−1] 0 0
w [nm] 530 530

βT PA [cm/GW ] 1.48·10−13 1·10−13

n2 [cm2/W ] 11.89·10−18 9.5·10−18

β1 [ps/m] 1.4·104 1.3·104

β2 [ps2/m] 3.0 20
β3 [ps3/m] -7.3·10−2 -2.3·10−1

γ ′ [W−1m−1] 126.85 68.36
γ ′′ [W−1m−1] 10.39 24.65

τ ′ [ f s] 4 6
τ ′′ [ f s] 1.06 5.4·10−1

L [mm] 20 20

Table 4.2: Input pulse parameters for the case presented in Fig. 4.4.

Figure 4.4 illustrates the dynamics of the similaritons collision in this case. While

the evolution of the optical field again shows that the similaritons are not destroyed as

a result of their collision (Fig. 4.4(a)), the dynamics of FCs are more complex as com-

pared to what we have observed in the previous case. Specifically, it can be seen that

an increased amount of FCs is generated while the two similaritons collide, whereas

the FC-density remains rather constant when the two pulses are temporally separated

as shown in Fig. 4.4(b). Interestingly enough, the similariton at λ1 = 2019 nm decays

faster than the one at λ2 = 2300 nm, although it probes a lower FC-density and thus

smaller FC absorption. This result, explained by the reduced TPA experienced by the

latter similariton, demonstrates that in this spectral regime and for pulse parameters

considered here the TPA is significantly larger than the FC absorption.

In order to complete our analysis of similariton interaction in Si-PhNWs we con-

sidered the collision of similaritons that propagate in the anomalous GVD regime.

Since in the mid-IR the waveguide has normal GVD for any width, in this case we

only study the similaritons collision at λ0 = 1.55 µm. Moreover, for the two pulses to

propagate in the anomalous GVD regime we set w = 510 nm. In the case of anomalous
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GVD, the similariton profile is described by a hyperbolic secant function, so that the

input pulse is written as:[4. 6]

up(t) =
1
T0

√
|β2(λ1)|
γ ′(λ1)

sech
(

t − t
T0

)
ei[ϕ(t−t)+∆Ω(t−t)] (4.8)

+
1
T0

√
|β2(λ2)|
γ ′(λ2)

sech
(

t + t
T0

)
ei[ϕ(t+t)−∆Ω(t+t)].

Here, ϕ(t) = ϕ0 − (γ ′′P0/β2) t2, ϕ0 being a constant phase. Note that in the case when

the quadratic chirp term in this relation vanishes the corresponding sech pulses are the

well-known solitons. They correspond to a case of a Si-PhNW with constant optical

parameters and no optical losses or gain. As it is well known, solitons would propagate

in such waveguides without any change in their shape or pulse parameters, whereas

similaritons only preserve their shape upon propagation.
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As in the case of normal GVD, we set the frequency shift ∆Ω = 130.2 THz, mean-

ing that λ1 = 1400 nm and λ2 = 1736 nm. All the input pulse parameters are shown in

the following Table-4.3:

physical λ = 1400µm λ = 1736µm
parameters

T0 [ f s] 200 200
P0 [mW ] 48 154

αin[dB cm−1] 0 0
w [nm] 510 510

βT PA [cm/GW ] 1.6·10−11 9.2·10−12

n2 [cm2/W ] 4.55·10−18 9.084·10−18

β1 [ps/m] 1.38·104 1.4·104

β2 [ps2/m] -5.8·10−1 -1.21
β3 [ps3/m] 5.5·10−3 6.7·10−3

γ ′ [W−1m−1] 303.5 165.44
γ ′′ [W−1m−1] 101.58 41.6

τ ′ [ f s] 1.42 2.28
τ ′′ [ f s] 0.1 7.4·10−1

L [mm] 15 15

Table 4.3: Input pulse parameters for the case presented in Fig. 4.5.

The collision of sech similaritons, presented in Fig. 4.5, has several features that

distinguish this case from that of parabolic similaritons. Before we continue with some

useful comments of Fig. 4.5, we should make clear that the left blue pulse profile of Fig.

4.5(c) is the output pulse profile of the right red pulse profile and vice versa. This occurs

because the pulses go through each other during the collision having as a result to swop

their positions in the time domain. Figure 4.5(a) shows that the dynamics of FCs is

chiefly determined by the propagation of just one of the two similaritons (Fig. 4.5(b)).

This result is easily explained by the quadratic dependence of the generated FCs on the

pulse power, combined with the fact that the optical power of one of the similaritons

is more than three times larger than the peak power of the other one. Despite these

differences, however, in this case too the sech similaritons show particle-like behaviour

during collision.

4.4 Conclusions
In conclusion, we have demonstrated the collision of optical similaritons propagating in

the normal and anomalous GVD regimes, in both cases the dynamics of the optical field
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and those of photo-generated FCs being investigated. This analysis has demonstrated

that although the optical similaritons are not destroyed in the collision process, the

similaritons interaction is strongly dependent on the particular conditions in which the

collision occurs, including the frequency dispersion regime, spectral domain, and pulse

parameters.

The characteristic of similaritons not to be destroyed after their collision is very

important for communication and computer systems. Based on this property one could

increase the amount of pulsed information in a communication channel without de-

grading it. According to this approach, the bandwidth of the communication and com-

puter channels could increase considerably. In the same context, the following chapter

presents optical pulse compression in Si-PhNWs which could enhance the effectiveness

of the currrent optical channels.
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Chapter 5

Pulse compression in silicon photonic

nanowires

5.1 Introduction
Optical pulse compression techniques provide an essential functionality on which a

broad array of optics and photonic applications rely, including broadband communica-

tion systems, nonlinear optics, optical coherence tomography for cross-sectional tissue

imaging, materials processing, and nonlinear microscopy. Several schemes for optical

pulse compression, based on either linear or nonlinear optical techniques, have been

proposed, among the most successful and widely adopted being pulse compressors em-

ploying diffraction grating pairs [5. 1–3], synthetic quasi-phase-matching gratings [5.

4], interferometric systems based on nonlinear optical loop mirrors [5. 5–7], SPM and

XPM induced pulse compression [5. 8–11], higher-order soliton pulse compression

[5. 12–16], and adiabatic soliton compression [5. 17, 18]. The efficiency of these tech-

niques can significantly be improved by tailoring the linear and nonlinear physical prop-

erties of the optical medium in which the pulse propagates, so that optical pulses with

specific temporal and spectral characteristics are achieved. In particular, efficient pulse

compression have been demonstrated in several types of optical fibres with dispersion

engineered characteristics, such as dispersion decreasing fibres [5. 14, 17, 18], tapered

holey fibres [5. 19, 20], and sub-micron tapered silicon and silica fibres [5. 16, 21–23].

Among all these alternative solutions, sub-wavelength waveguiding devices based on

silicon (Si) are at the centre of the current research efforts geared towards achieving

pulse compression at optical chip-scale.
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Tapered Si-PhNWs with subwavelength transverse size [5. 24, 25] are photonic

devices ideally suited for dispersion engineering. Thus, due to the combined effects of

the large difference between the index of refraction of the silicon core (nSi ≈ 3.4) and

that of the cladding (usually air, nair = 1) and the subwavelength nature of the cross-

sectional area of the waveguide, variations in the transverse size of the waveguide as

small as only a few percent of the operating wavelength can induce changes of the mode

propagation constant, β , which are large enough to significantly affect the temporal and

spectral characteristics of optical pulses that propagate in such wire waveguides. In

particular, by simply varying the waveguide width, one can readily design Si-PhNWs

whose frequency dispersion changes within certain spectral regions between normal

dispersion, where the second-order dispersion coefficient, β2(ω) = β ′′(ω) > 0, and

anomalous one (β2 < 0) and which possess multiple zero-dispersion points, defined by

β2(ω) = 0. Equally important, the large intrinsic third-order (Kerr) optical nonlinearity

of Si, in conjunction with the strong field confinement achievable in high-index contrast

waveguiding devices, makes it possible to attain strong nonlinear pulse interactions

at low optical power and over short propagations distance. To be more specific, the

dispersion length, LD, and the nonlinear length, Lnl, of Si-PhNWs can be more than

four orders of magnitude smaller than those of silica fibres [5. 26–28]. As a result,

linear and nonlinear optical effects that normally require kilometer-long optical fibres

to be observed can be achieved in milimetre-sized silicon devices, a few such examples

being soliton pulse compression [5. 29, 30], modulational instability [5. 31], parametric

amplification [5. 32, 33], supercontinuum generation [5. 34–36], pulse self-steepening

[5. 37], and four-wave mixing [5. 38–42].

This chapter is organized as follows. In Section 5.2 we introduce the physical

model we use to describe the coupled dynamics of the optical field and free carriers

(FCs) upon pulse propagation in tapered Si-PhNWs. In order to gain a deeper under-

standing of the main physics governing these dynamics we also introduce a simplified

semi-analytical model based on the method of moments, namely a model that describes

the pulse dynamics simply as the time evolution of a small set of physical parameters

defining the optical pulse. Then, in Section 5.3, we present the optical properties of the

tapered Si-PhNWs considered in this work. In Section 5.4 and Section 5.5 we analyze

the characteristics of optical pulse compression achieved via the soliton compression
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technique and by using waveguides with sign-changing dispersion, respectively. In or-

der to achieve the change of the dispersion sign we have used an hyperbolic tangent and

a linear taper profile. Besides, we compare the pulse compression efficiency between

the latter techniques. The main results and the conclusions of this work are summarized

in Section 5.6.

5.2 Theoretical models for pulse propagation in sub-

wavelength tapered silicon waveguides

In this section, we introduce a simplified semi-analytical mathematical model, based

on the method of moments, in which the pulse propagation is reduced to a particle-like

dynamics. One should note, here, that we will also use the general theoretical model

of ultrashort pulse propagation in silicon nanowires that described in Section 3.2. One

should note here, that although there are intrinsic losses of 0.1 dB/cm we have not

incorporated them into our theoretical model. However, the linear losses effect do not

have any influence in similariton generation as the attenuation parameter of 0.1 dB/cm

is 2.3025 m−1. That means that the characteristic length of the attenuation is 43 cm

which is much longer than the whole propagation distance of our simulations.

5.2.1 Semi-analytical model

While the system (3.1)-(3.5) can provide detailed information about the pulse evolu-

tion, it is often more convenient to use a simplified approach based on a particle-like

description of the pulse. In this approximation, also called the method of moments

[5. 46], the pulse is characterized by a relatively small number of parameters, which

are assumed to change adiabatically during pulse propagation. The physical quantities

used in our analysis are defined as follows:

E =
∫ ∞

−∞
|u|2dt, (5.1a)

τ2 =
δ
E

∫ ∞

−∞
(t −T )2|u|2dt, (5.1b)

C =
iδ
2E

∫ ∞

−∞
(t −T )(u∗ut −uu∗t )dt, (5.1c)

Ω =
i

2E

∫ ∞

−∞
(u∗ut −uu∗t )dt, (5.1d)
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T =
1
E

∫ ∞

−∞
t|u|2dt, (5.1e)

where E, τ , C, Ω, and T are the pulse energy, pulse width, chirp coefficient, shift of the

pulse carrier frequency, and temporal shift or the pulse, respectively. The parameter δ

depends on the specific shape of the pulse, being equal to 12/π2 and 2 for hyperbolic

secant and Gaussian pulses, respectively. These pulses are defined as:

us(t,z = 0) =

√
E
2τ

sech
(

t −T
τ

)
e−iΩ(t−T )−iC (t−T )2

2τ2 , (5.2a)

uG(t,z = 0) =

√
E√
2πτ

e−iΩ(t−T )−(1+iC)
(t−T )2

2τ2 . (5.2b)

The pulse width and its full-width at half-maximum, TFWHM, are related by TFWHM =

1.763τ and TFWHM = 1.665τ for hyperbolic secant and Gaussian pulses, respectively.

In order to determine the pulse dynamics one calculates the z-derivative of the

quantities in Eqs. (5.1a)-(5.1e) and use Eq. (3.1) to eliminate from the integrands the

partial derivatives wrt z of u(z, t). This leads to the following nonlinear system of

ordinary differential equations:

dF(z)
dz

= A(E,τ,C,Ω,T ), (5.3)

where F(z) = [E(z), τ(z), C(z), Ω(z), T (z)]t , t meaning the transpose operation, is a

column vector containing the z-dependent parameters that characterize the pulse and

A is a column vector that depends on the pulse parameters. The components of this

vector depend on the specific shape of the pulse, their expressions for the two particular

cases considered in this work being provided in the Appendix-A. The system (5.3) is

solved by using a standard Runge-Kutta method of 5th order. Note that in our deriva-

tion of the system (5.3) the influence of FCs on the pulse dynamics is accounted for

only through the TPA and nonlinear frequency dispersion terms in Eq. (3.1), that is, we

have neglected the first two terms on the RHS of this equation. This means that the con-

clusions derived by using this simplified model must be validated by a full numerical

integration of the rigorous theoretical model defined by Eqs. (3.1)-(3.5).
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5.3 Dispersion maps of linear and nonlinear parame-

ters of tapered silicon waveguides
In this work, we assume that optical pulses propagate in a silicon waveguide with rect-

angular core cross-section. The height of the waveguide is constant, h = 250 nm,

whereas its width, w, varies adiabatically along the waveguide. The silicon core is

placed on top of a SiO2 substrate, the cladding being air (see Fig. 5.1).
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Figure 5.1: a) Sketch of a Si-PhNW oriented along the 110 direction (red arrow). Dispersion
maps of b) second-order, β2, and c) third-order dispersion coefficient, β3. The
black contour corresponds to zero-GVD, β2 = 0.

The wavelength and width dependence of the waveguide parameters which are

illustrated in Fig. 5.1 have been presented earlier in Chapter 3. However, we will

emphasize some interesting features of the dispersion maps of the linear and nonlinear

optical coefficients of the tapered Si-PhNW. These maps reveal an important property

of the considered waveguide, namely in a broad range of frequencies the dispersion

regime can be switched between the normal and anomalous by simply varying the

waveguide width. These two regimes are separated by a zero-dispersion curve defined

by β2(λ ) = 0, depicted in Fig. 5.1(b) as a black contour. Note that in the soliton regime

the waveguide nonlinearity is relatively large, as per Fig. 5.2(a), because this regime is

achieved for small w, namely when the optical field is strongly confined in the silicon

core. This means that these silicon photonic wires readily provide the main ingredients

needed for soliton pulse compression in dispersion-varying optical guiding devices.

Moreover, since in this work we investigate the compression of pulses down to just
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a few hundreds of femtoseconds, the influence of third-order dispersion (TOD) and

frequency dispersion of the nonlinearity must be accounted for. The dispersion map of

the TOD coefficient, β3(λ ), is shown in Fig. 5.1(c), whereas the dispersive properties

of the nonlinearity dispersion are illustrated in Figs. 5.2(c) and 5.2(d).
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Figure 5.2: Dispersion maps of a) real and b) imaginary part of the nonlinear coefficient, γ , and
the dispersion maps of c) real and d) imaginary part of the shock time coefficient,
τs.

5.4 Soliton pulse compression in dispersion-varying ta-

pered silicon waveguides
Generally, there are two main methods used to compress pulses that propagate in the

soliton regime. The first one is based on the particle-like propagation of solitons,

namely single solitons are propagated in a medium whose dispersion and nonlinear-

ity changes adiabatically, leading to a slow decrease of the soliton width upon pulse

propagation. The drawback of this method is that optical losses can affect its effi-

ciency, which in the context of Si-PhNWs is an important aspect to be considered.

The second method relies on the fact that higher-order solitons evolve periodically as

they propagate, so that at certain distances their width is much smaller than the initial

one. By properly choosing the waveguide length, significant pulse compression can be



118

achieved. Because it is much more effective, we consider here only this latter method.

To begin with, we launch a hyperbolic secant pulse described by Eq. (5.2a) with

λ = 1.55 µm in a tapered Si-PhNW. The longitudinal z-variation of the width profile

of the waveguide is assumed to be w(z) = win+(wout−win) tanh(az)/ tanh(aL), where

win = 700 nm and wout = 660 nm, are the initial and final width of the waveguide,

respectively, L = 9 cm is the waveguide length, and a = 80 m−1. This dependence

ensures that the pulse propagates throughout into the soliton regime, β2 < 0. The width

of the input pulse is τ = 180 fs and the input peak power, P0 = 1.4 W, which means

that the initial value of the soliton number, Ns, defined as N2
s = LD/Lnl = γ ′P0τ2/|β2|,

is Ns = 10. All the input parameters used for the simulations are presented in the

following Table-5.1.

physical λ = 1.55µm λ = 2.1µm
parameters

τ [ f s] 180 180
P0 [W ] 1.4 2.07

αin[dB cm−1] 0 0
a[m−1] 80 80

win [nm] 700 850
wout [nm] 600 750

βT PA [cm/GW ] 1.31·10−11 3.5·10−12

n2 [cm2/W ] 5.37·10−18 11.46·10−18

β1(in) [ps/m] 1.32·104 1.29·104

β2(in) [ps2/m] -9.2·10−1 -8.1·10−2

β3(in) [ps3/m] 3.5·10−3 -2.7·10−3

γ ′(in) [W−1m−1] 202.4 97.7
γ ′′(in) [W−1m−1] 61.6 4.028

τ ′(in) [ f s] 1.57 2.5
τ ′′(in) [ f s] 0.34 0.917

β1(out) [ps/m] 1.36·104 1.32·104

β2(out) [ps2/m] -5.8·10−1 -3.2·10−1

β3(out) [ps3/m] 4.3·10−3 -7.4·10−3

γ ′(out) [W−1m−1] 225.3 104.5
γ ′′(out) [W−1m−1] 68.4 4.30

τ ′(out) [ f s] 1.65 2.68
τ ′′(out) [ f s] 3.4·10−1 9.12·10−1

L [mm] 90 30

Table 5.1: Input pulse parameters for the case of soliton compression at telecom and mid-
infrared wavelengths corresponding to the results presented in Fig. 5.3.

The temporal and spectral evolution of the pulse and FCs are presented in
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Figure 5.3: Temporal [a) and d)] and spectral [b) and e)] pulse evolution in a tapered Si-
PhNW (see text for taper and pulse parameters) and the corresponding free-carriers
dynamics [c) and f)]. Top and bottom panels correspond to λ = 1.55 µm and
λ = 2.1 µm, respectively. One should note here that a) and d) are normalized to
input power P0 = 1.4 W and P0 = 2.07, respectively. Further to that time is also
normalized to the input pulse width τ = 180 f s

Figs. 5.3(a)-5.3(c). These plots show that after an initial stage in which the pulse broad-

ens (z < 20 mm) a significant pulse compression is observed beyond z ≃ 20 mm. It can

be seen, however, that the pulse shape does not change periodically with z, which is

due to the influence of effects other than the group-velocity dispersion (GVD) and

SPM. Specifically, TPA induces strong pulse decay whereas the TOD leads to pulse

breakup. The effect of TPA on the pulse dynamics is particularly strong in the ini-

tial propagation stage during which, as Fig. 5.3(c) suggests, most of the pulse energy

is absorbed by photogenerated FCs. Nevertheless, a maximum of more than fivefold

pulse compression is achieved at z ≃ 60 mm, which corresponds to a pulse duration of

∼36 fs.

Before we continue to present some interesting characteristics of pulse compres-

sion in silicon nanowires, I should comment that, to the best of my knowledge, I

have not found some published work related to optical pulse compression in silicon

nanowires in order to compare the published results with mine.

A common feature of pulses compressed through this method, which can also be
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seen in our simulations for z & 60 mm, is the generation of pedestals at the edges of

the pulse. That means that the energy of the pulse does not remain in the main peak

of the pulse but it is lost to the pedestals. In order to gain a more complete view

about the energy that is wasted to the pedestals, we should mention that for the case

of λ = 1.55 µm the energy of the main peak is three times larger than that lost to the

pedestals at z ≃ 60 mm whereas z ≃ 90 mm the energy of the main peak is only 1.2

times larger than that wasted to the pedestals. However, for the case of λ = 2.1 µm

the energy of the main peak at z ≃ 20 mm is six times larger than that to the pedestals

whereas at z ≃ 30 mm is only 1.4 times larger than that to the pedestals.

In order to assess the degree to which the deleterious effects of TPA can be mit-

igated, we investigated the propagation of a hyperbolic secant pulse in the mid-IR

regime, namely at λ = 2.1 µm. The tapered wire considered in this case is defined

by win = 850 nm, wout = 750 nm, L = 3 cm, and a = 80 m−1, the pulse parameters

being τ = 180 fs and P0 = 2.07 W (Ns = 9). Unlike the telecom case, the pulse decay

is negligible at mid-IR wavelengths, its peak amplitude, in fact, increases considerably.

This substantial increase in the peak power, illustrated in Fig. 5.3(d), is explained by

the fact that although part of the pulse energy is absorbed via TPA, the pulse undergoes

significant compression as well. In particular, it is compressed by more than 10× at

z = 25 mm, which obviously results in large enhancement of the peak power. As in the

case of λ = 1.55 µm, pedestals are generated leading to the loss of energy from the

main peak for propagation distances longer than 25 mm.

Unlike the case of regular or microstructured optical fibres, photogenerated FCs

can affect, in a nontrivial way, the dynamics of optical pulses that propagate in sil-

icon wires. This idea is clearly illustrated by the plots in Figs. 5.3(c) and 5.3(f).

Thus, whereas at λ = 1.55 µm the FC density decreases monotonously with z, at

λ = 2.1 µm there is a certain propagation distance, z ≃ 20 mm, at which a maxi-

mum amount of FCs is generated. This distance is roughly equal to the distance at

which maximum pulse compression is observed. To understand this difference in pulse

dynamics, note that at a given z the peak FC density can be estimated from Eq. (3.5)

to be ∆N(z) ≃ P2(z)Γ′′(z)τ(z)/A2(z)v2
g(z). Then, since the parameters Γ′′, A, and vg

vary only slightly with z, the main contribution to ∆N(z) comes from the z-variation of

the factor P2(z)τ(z) ∼ P(z)E(z). At mid-IR the pulse energy loss is rather small and
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therefore the maximum amount of FCs is generated when the peak power reaches its

maximum, that is, when the pulse compression is maximum as well.

More insights into the pulse dynamics are provided by the semi-analytical model

described by the system (5.3). By integrating numerically this system of equations we

determined the dependence of the pulse parameters on the propagation distance, under

the assumption that the pulse propagates in a particle-like manner. In an alternative

approach, we computed the pulse parameters by fitting with a sech-function given by

Eq. (5.2a) the pulse obtained by direct integration of the rigorous model (3.1)-(3.5).

The results obtained by these two methods are represented in Fig. 5.4 by the black and

blue lines, respectively. For comparison, the pulse parameters were also calculated by

inserting in the definitions in Eqs. (5.1) the solution obtained by numerical integration

of the rigorous theoretical model (see the red curves in Fig. 5.4).
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The results summarized in Fig. 5.4 show that, generally, there is a good agree-

ment over a certain propagation distance between the predictions of the full theoretical

model and the semi-analytical model. This proves that indeed in the initial stage of

the propagation, the optical pulse can be viewed as a hyperbolic secant pulse undergo-
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ing particle-like dynamics. This approximation breaks down after a certain propagation

distance (z ≃ 30 mm at λ = 1.55 µm and z ≃ 10 mm at λ = 2.1 µm) as beyond this dis-

tance the optical pulse begins to split up. That means that our theoretical model is more

accurate than the semi-analytical model as it keeps up with the emerged nonlinear pulse

dynamics that occur along the propagation distance. One should mention here that the

semi-analytical model can not describe strong compression due to the fact that as the

pulse is compressed then its amplitude starts to increase enhancing the nonlinearities.

Thus the pulse starts to change its initial profile making the initial assumption of the

semi-analytical model that the pulse profile is constant along the propagation distance

not to be valid. An additional feature of Fig. 5.4 is that, at both wavelengths, the pulse

profile follows a similar evolution: initially the pulse broadens and then its width grad-

ually decreases. To quantify the pulse compression after it breaks up, we determined

its width by calculating the FWHM width of the main pulse, as per the green curves in

Fig. 5.4. It can be seen that, contrary to the predictions of the semi-analytical model,

the main pulse is compressed significantly, which proves the effectiveness of tapered

Si-PhNWs in pulse reshaping applications.
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To achieve a more complete understanding of of the pulse compression process,

we also determined the z-dependence of the chirp, C(z), centre frequency shift, Ω(z),
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and temporal shift, T (z), calculated as function of the input pulse peak power P0 and

width τ , the results being presented in Fig. 5.5 and Fig. 5.6, respectively. These figures

show that, except for relatively small peak power, the chirp is positive and increases

monotonously with z, that is the positive chirp generated by SPM is larger than the

negative one generated by the anomalous GVD. As a result, the initial propagation stage

in which the pulse broadens is followed by a monotonous pulse compression. This is

an expected behaviour of a pulse that propagates in the anomalous GVD regime, the

z-dependence of the pulse chirp explaining why the pulse compression is preceded by

an initial pulse broadening. Thus, initially the pulse broadens under the influence of the

GVD but as the positive chirp induced by the SPM increases, the GVD begins to have

an opposite effects, namely it compresses the pulse. As the pulse is compressed, the

GVD and the peak power increase, so that the SPM and, consequently, the rate at which

the chirp increases become larger, too. This leads to a further increase in the efficiency

of the pulse compression process. A similar monotonous increase with the propagation

distance, albeit extremely small (T ≃ 1 fs), is shown by the pulse temporal shift. This

effect, whose magnitude is comparable to τs, is due to the frequency dispersion of

the nonlinearity and the TOD. Finally, the centre frequency of the pulse is redshifted
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because of the nonlinear effect of τs, the magnitude of this redshift increasing with z.

As expected, the magnitude of the frequency shift increases with the peak power, P0

(the strength of the nonlinearity dispersion increases with P0) and decreases with the

pulse width, τ (TOD increases as τ decreases).
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Since this study is primarily concerned with the investigation of pulse compres-

sion mechanisms in tapered Si-PhNWs and the physical effects that determine their

efficiency, we focus now on a more detailed analysis of the dependence of the pulse

compression factor on the pulse power and width. This is a natural choice as the main

characteristic lengths that govern the pulse propagation are the linear and nonlinear

lengths, which depend on τ and P0, respectively. The results of this investigations are

summarized in Fig. 5.7. Thus, comparing the results presented in the top and bottom

panels in Fig. 5.7 one can see that the pulse compression is much more efficient at mid-

IR frequencies, namely a shorter propagation distance is needed to achieve a certain

compression factor. This can be easily explained using the characteristics of the pulse

evolution we just discussed: the TPA is much weaker at mid-IR, which means that the

positive SPM-induced chirp and hence the pulse compression is much larger in this

frequency domain. Moreover, the maps plotted in Fig. 5.7 show that the compression

factor increases with P0 but decreases with τ . This finding has a simple explanation,
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namely whereas the SPM is proportional to P0, the strength of GVD effects is inverse

proportional to τ2. Note, however, that if only waveguide tapering effects are consid-

ered both SPM and GVD increase with the propagation distance, as for the two tapers

considered in this section both γ and |β2| increase with z.
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Figure 5.8: Evolution of pulse width (left panels) and LD and Lnl (right panels) determined for
tapered Si-PhNWs with increasing (dotted line) and decreasing (solid line) disper-
sion.

This analysis suggests that, surprisingly, pulse compression can be achieved even

when the dispersion increases. To be more specific, previous studies that considered

adiabatic soliton compression in dispersion-managed optical fibres have demonstrated

that pulse compression in lossless fibres with constant nonlinearity can be achieved

only if the dispersion |β2| decreases. Indeed, under these circumstances, for the soli-

ton number N2
s = γP0τ2/|β2| to remain constant while the pulse duration, τ , decreases,

the GVD coefficient |β2| must decrease as well. In tapered Si-PhNWs, however, the

increase of the GVD coefficient can be offset by the increase of γ (γ increases as the

waveguide width decreases, as per Fig. 5.2), so that soliton pulse compression can

be achieved even in dispersion-increasing tapered waveguides. These ideas are illus-

trated in Fig. 5.8, where we show the dependence of the pulse width on the propagation

distance in tapers with increasing as well as decreasing dispersion. Thus, we launch

a pulse with P0 = 1.4 W (P0 = 2.07 W) in a tapered Si-PhNWs with win = 700 nm
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(win = 850 nm), wout = 660 nm (wout = 750 nm), and L = 90 mm (L = 30 mm), the

wavelength being λ = 1.55 µm (λ = 2.1 µm). In both cases τ = 180 fs and a= 80 m−1.

The z-dependence of the pulse width, as well as that of LD and Lnl, are depicted in

Fig. 5.8 with dotted lines. The solid lines in this figure correspond to the pulse propa-

gation in the inverted taper, namely to the case in which the roles of win and wout are

interchanged while the pulse parameters are kept unchanged. As a result, in the first

case the dispersion increases (in absolute value), whereas the latter one corresponds

to decreasing dispersion. Nevertheless, in both cases, the soliton is significantly com-

pressed, as per Figs. 5.8(a) and 5.8(c). A closer analysis of the interplay between the

two main characteristic lengths describing the soliton dynamics leads us to the same

conclusion. Thus, Figs. 5.8(b) and 5.8(d) show that for both tapers LD > Lnl, that is the

nonlinear effects are stronger. A consequence of this fact is that, as discussed above,

the total chirp is positive. As the pulse propagates in the anomalous GVD regime, this

results in pulse compression.
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From a practical point of view, it is important to understand to what degree the

taper profile affects the efficiency of the pulse compression process. While we did

not try to find the optimum taper profile that leads to maximum compression, we have

considered the pulse propagation in hyperbolically and linearly tapered Si-PhNWs, that

are, two of the commonly used taper profiles. The z-profile of the linear taper is defined

by w(z) = win − (win −wout)z/L. The input and output widths were the same in both
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cases: at λ = 1.55 µm, win = 700 nm, wout = 660 nm, and L = 90 mm, whereas at

λ = 2.1 µm, win = 850 nm, wout = 750 nm, and L = 30 mm. The pulse peak power

was P0 = 1.4 W (P0 = 2.07 W) at λ = 1.55 µm (λ = 2.1 µm), whereas in both cases

τ = 180 fs and a = 80 m−1. The results of our analysis, summarized in Fig. 5.9,

suggests that whereas the pulse width follows a similar evolution as it propagates in

the two tapers, specific differences imply that the hyperbolic taper is more efficient for

pulse compression. This finding can be explained by the fact that in the case of the

hyperbolic taper there is a more rapid transition to the waveguide region with large

nonlinearity, as compared to the case of linear taper, which means that the generated

positive chirp that induces pulse compression is larger in the former case.

5.5 Pulse compression below the soliton power thresh-

old

One of the conclusions of the preceding section was that large pulse compression can be

achieved when a pulse with positive chirp propagates in the anomalous GVD regime.

One drawback of this approach is that if β2 < 0, the chirp induced by the GVD is

negative, which reduces the chirp generated by the SPM. One possible solution to this

problem, which can be easily implemented by using tapered Si-PhNWs, is to propagate

first the pulse in a section with large normal GVD of a tapered waveguide until the pulse

accumulates a large positive chirp then propagate the chirped pulse in a waveguide

section with large anomalous GVD, where the pulse is compressed. In a practical

setting, this scheme can be implemented by simply using a tapered Si-PhNW whose

width is varied in such a way that the waveguide has normal and anomalous GVD

within its input and output sections, respectively [see Fig. 5.1(b)]. Importantly, this

pulse compression method can be applied to pulses with low peak power as well, as it

does not require that the pulse propagates in the soliton regime.

The semi-analytical model described by Eq. (5.3) provides an intuitive picture

of the pulse compression. Thus, if one considers a hyperbolic secant pulse given by

Eq. (5.2a) and neglects TPA effects and the higher-order terms in Eq. (3.1), that is,
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γ ′′ = 0, β3 = 0, and τs = 0, Eqs. (A2b)-(A2c) become [5. 46]:

dτ
dz

=
β2C

τ
, (5.4a)

dC
dz

=

(
4

π2 +C2
)

β2

τ2 +
2γ ′

π2
E
τ
, (5.4b)

where the pulse energy, E, is conserved upon propagation. This system shows that

when the pulse propagates in the waveguide section with normal GVD, β2 > 0, both

terms in the RHS of Eq. (5.4b) increase the chirp. When the pulse then propagates in

the waveguide section with anomalous GVD, β2 < 0, the RHS of Eq. (5.4a) is negative,

and therefore the pulse is compressed.
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Figure 5.10: Temporal [a) and d)] and spectral [b) and e)] pulse evolution in a tapered Si-
PhNWs whose dispersion changes from normal to anomalous (see text for taper
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Top and bottom panels correspond to λ = 1.55 µm and λ = 2.1 µm, respectively.

To illustrate these ideas, we consider the propagation of optical pulses in tapered

Si-PhNWs whose dispersion changes from normal to anomalous. For this, we consid-

ered two tapered Si-PhNWs defined by the following parameters: win = 850 nm and

wout = 610 nm, at λ = 1.55 µm, and win = 980 nm and wout = 735 nm, at λ = 2.1 µm.

In both cases a = 80 m−1, L = 90 mm, and τ = 180 fs, whereas the pulse power was

P0 = 90 mW at λ = 1.55 µm and P0 = 100 mW at λ = 2.1 µm. This choice of waveg-
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uide and pulse parameters ensured that at both wavelengths Ns(z = 0) = 0.9 < 1. All

the input pulse parameters used for the current simulation are presented in the following

Table-5.2.

physical λ = 1.55µm λ = 2.1µm
parameters

τ [ f s] 180 180
P0 [W ] 9·10−2 0.1

αin[dB cm−1] 0 0
a[m−1] 80 80

win [nm] 850 980
wout [nm] 610 735

βT PA [cm/GW ] 1.31·10−11 3.5·10−12

n2 [cm2/W ] 5.37·10−18 11.46·10−18

β1(in) [ps/m] 1.29·104 1.26·104

β2(in) [ps2/m] -3.9·10−1 -4.1·10−1

β3(in) [ps3/m] 2.4·10−3 -1.58·10−3

γ ′(in) [W−1m−1] 174.8 88.1
γ ′′(in) [W−1m−1] 53.25 3.63

τ ′(in) [ f s] 1.57 2.5
τ ′′(in) [ f s] 33.8·10−2 91.8·10−2

β1(out) [ps/m] 1.35·104 1.33·104

β2(out) [ps2/m] -53.8·10−2 -31.3·10−2

β3(out) [ps3/m] 4.2·10−3 -9.7·10−3

γ ′(out) [W−1m−1] 228.8 105.2
γ ′′(out) [W−1m−1] 67.8 4.37

τ ′(out) [ f s] 1.64 2.70
τ ′′(out) [ f s] 33.7·10−2 91.7·10−2

L [mm] 90 90

Table 5.2: Input pulse parameters for the case of pulse compression at telecom and mid-infrared
wavelengths of Fig. 5.10.

The evolution of the temporal and spectral profile of the pulse, as well as that of

FC-density, at both wavelengths, are presented in Fig. 5.10. This figure show that the

pulse is compressed at both wavelengths; however, the compression factor is signifi-

cantly smaller than in the case of soliton compression. In addition, as expected, TPA

has different impact on the pulse compression at the two wavelengths. At λ = 1.55 µm,

where the TPA is large, the pulse propagates in a lossy medium and therefore its

width initially increases, before undergoing compression in the waveguide section with

β2 < 0, namely beyond z ≃ 40 mm. By contrast, at λ = 2.1 µm the TPA is weak, so

that the width of the pulse remains approximately constant for z . 30 mm and then



130

begins to decrease. Since the peak power is relatively small in this case, the amount of

generated FCs is small as well (compare the FC-densities in Fig. 5.3 and Fig. 5.10) and

consequently the z-dependence of FCs is similar to that of the pulse power.
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Figure 5.11: Evolution of the pulse width upon propagation in a tapered Si-PhNWs whose
dispersion changes from normal to anomalous, determined for a), λ = 1.55 µm
and b), λ = 2.1 µm. Insets depict the evolution of the soliton number Ns as well
as the input and output pulse profiles.

A more quantitative description of the pulse compression is presented in Fig. 5.11,

where we show the evolution of the pulse width vs. the propagation distance. Thus, it

can be seen that the pulse broadens while it propagates in the section of the waveguide

with normal GVD (the zero-GVD point is located at z = 30 mm) and subsequently

undergoes significant compression. In particular, the pulse width decreases by 29% at

λ = 1.55 µm and by 27% at λ = 2.1 µm, after a total propagation distance of 90 mm.

The input pulse width is τ = 180 fs and the input power is P0 = 90 mW at λ = 1.55 µm

and P0 = 100 mW at λ = 2.1 µm, which ensures that Ns(z = 0)< 1, namely the input

pulse does not have enough energy to form a soliton. However, as the pulse approaches

the zero-GVD point, Ns increases considerably since β2 becomes very small. After the

pulse passes the zero-GVD point Ns begins to decrease and becomes again less than 1

in the final propagation stage.

The dependence of the compression factor on the pulse parameters, determined for

the same pair of tapers as that corresponding to Fig. 5.10, is summarized in Fig. 5.12.

Note that we chose the input power in these simulations such that the soliton number

remains smaller than 1 for the most part of the propagation. The main conclusion

illustrated by these plots is that pulse compression can be achieved for a broad spectrum
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of pulse widths and powers. For all values of the pulse parameters one requires a

certain propagation distance (waveguide length) in order to achieve pulse compression,

as initially the pulse broadens. It can also be seen that the compression factor depends

rather weakly on the pulse parameters or the operation wavelength. In particular, for a

given propagation distance, the compression factor increases with the pulse power and

decreases with the pulse width. This conclusion can be derived from the dependence on

the pulse parameters of the SPM and GVD chirps, namely, as suggested by Eq. (5.4b),

the SPM chirp increases with the pulse power whereas the GVD chirp increases when

the pulse width decreases.

5.6 Conclusion

Large pulse compression has been obtained in long millimetre SiPhNW. A rigorous

numerical and semi-analytical model have been developed in order to study in detail

the propagation of pulses either in soliton or normal regime. In order to gain a complete

physical insight of pulse compression, we focused on different parameters that have

influence on compression proccess such as input power and pulse width, taper profiles.
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In general, we showed that a generation of ultra short pulses is possible on chip scale

devices.

An equally important nonlinear phenomenon that could also be employed in chip

scale optical applications is FWM. Such applications could be signal amplification,

signal regeneration and a multitude of other important applications in various fields of

optics. It is for this reason that we provide a detailed analysis of FWM in a periodically

width modulated Si-PhNW in the next chapter.
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Chapter 6

Quasi-phase matched four-wave

mixing in silicon photonic nanowires

6.1 Introduction

Frequency generation in optical systems is the main underlying process in a series

of key applications, including all-optical signal processing, optical amplification, and

wavelength multiplexing. One of the most facile approaches to achieve this function-

ality is via optical-wave interaction in nonlinear media. In the case of media with

cubic nonlinearity, the simplest such interaction is FWM, a nonlinear process in which

two photons combine and generate a pair of photons with different frequencies. Due

to its simplicity and effectiveness, FWM has been at the centre of intense research,

from the early days of nonlinear fibre optics [6. 1, 2] to the recent studies of FWM

in ultra-compact silicon (Si) devices [6. 3–16, 18–20]. Silicon photonic nanowires are

particularly suited to achieve highly efficient FWM, as silicon has extremely large cu-

bic nonlinearity over a broad frequency domain. Equally important in this context,

due to the deep-subwavelength size of the cross-section of Si-PhNWs, the parameters

quantifying their optical properties depend strongly on wavelength and waveguide size

[6. 19, 20]. As a result, one can easily control the strength and phase-matching of the

FWM. These ideas have inspired intense research in chip-scale devices based on FWM

in Si waveguides, with optical parametric amplifiers [6. 7, 8, 13], frequency converters

[6. 10–12, 14–16, 18], sources of quantum-correlated photon pairs [6. 21], and optical

signal regenerators [6. 22] being demonstrated.
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6.2 Geometry and dispersion properties of Si-PhNWs
One of the main properties of Si-PhNWs, which makes them particularly suitable to

achieve efficient FWM, is that by properly designing the waveguide geometry one can

easily engineer the dispersion to be either normal or anomalous within specific spectral

domains. More specifically, Si-PhNWs with relatively large cross-sections have nor-

mal dispersion, which precludes phase matching of the FWM. This drawback can be

circumvented by scaling down the waveguide size to a few hundred of nanometers as

then the dispersion becomes anomalous. The price one pays for this small crossection

is that the device operates at reduced optical power. An alternate promising approach

to achieve phase-matched FWM in the normal dispersion regime is to employ QPM

techniques, i.e. to cancel the linear and nonlinear phase mismatch of the interacting

waves by periodically varying the waveguide cross-section. This technique has been

recently used for cw optical beams [6. 18], yet in many cases of practical importance

it is desirable to achieve FWM in the pulsed regime. In addition, at large power cw

beams are strongly depleted by TPA, which results in the detuning of the FWM.

The optical waveguide considered here consists of a silicon core with constant

height, h = 250 nm, and periodically modulated width, w(z), buried in SiO2. We as-

sume a sinusoidal dependence, w(z) = w0 +∆wsin(2πz/Λ), where w0, ∆w, and Λ are

the average width, amplitude of the width modulation, and its period, respectively, but

more intricate profiles w(z) can be readily investigated by our method described in

Section 3.2. One should note that we have incorporated in Eq. (3.1) linear dispersion

terms up to the fourth order. It should be reminded that we use a slowly varying enve-

lope approximation which was described in detail in Section 2.2. However, there are

alternative semi-analytical techniques such as those introduced in [6. 17] where bound-

mode propagation is calculated by Fourier decomposition method. But for pulses with

pulse width much longer than optical cycles the slowly varying envelope approxima-

tion is more convenient method. Before we continue with the results of our work, we

have to mention that the intrinsic losses, αin, have not been included in our theoretical

model since their characteristic length is much shorter than our propagation distance.

That means that the intrinsic losses do not have influence in our results. In addition to

that, the nonlinear losses emerged from TPA and free carrier generation is the dominant

loss mechanism in the current work.
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Figure 6.1: (a) Schematics showing a periodically width-modulated Si-PhNW and the config-
uration of a pulsed seeded degenerate FWM set-up. Dispersion maps of dispersion
coefficients: (b) β1, (c) β2, and (d) β4.

6.3 Degenerate FWM in Si-PhNWs

As illustrated in Fig. 6.1(a), here we consider the case of degenerate FWM, in which

two photons at the pump frequency, ωp, interact with the nonlinear medium and gen-

erate a pair of photons at the signal and idler frequencies, i.e. ωs and ωi, respectively.

This FWM process is most effective when the following relation holds:

∣∣2(βp − γ ′Pp)−βs −βi
∣∣= Kg, (6.1)

where Kg = 2π/Λ is the Bragg wave vector, Pp is the pump peak power, and βp,s,i(ω)

are the mode propagation constants evaluated at the frequencies of the co-propagating

pulses. Note that in Eq. (6.1) all width-dependent quantities are evaluated at w = w0.

If ∆ω ≡ ωs −ωp = ωp −ωi ≪ ωp, Eq. (6.1) can be cast to a form that makes it

more suitable to find the wavelengths of the quasi-phase-matched pulses by expanding

in Taylor series the functions βp,s,i(ω), around ωp. Keeping the terms up to the fourth-
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order, Eq. (6.1) becomes:∣∣∣∣2γ ′Pp +β2,p∆ω2 +
1

12
β4,p∆ω4

∣∣∣∣= Kg. (6.2)

The dispersive properties of the Si-PhNW, summarized in Fig. 6.1, define the spec-

tral domain, in which efficient FWM can be achieved. The width dependence of the

dispersion coefficients and other relevant waveguide parameters, i.e. γ , κ , and τ , was

obtained by using a method described in detail in [6. 18, 25]. Importantly, with a

proper choice of the operating wavelength or waveguide width, the photonic wire can

have both normal and anomalous GVD. The wavelengths, for which the FWM is quasi-

phase-matched and determined from Eqs. (6.1) and (6.2), are plotted in Figs. 6.2(a) and

6.2(b), respectively. These results show that, as expected, for relatively small ∆ω ,

Eqs. (6.1) and (6.2) lead to similar predictions, whereas they disagree for large ∆ω .

Interestingly enough, Fig. 6.2(a) shows that for certain λp’s FWM can be achieved at

more than one pair of wavelengths, (λs,λi), a feature that suggests that optical bista-

bility could readily be observed in this system. The corresponding z-variation over
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one period of the effective modal refractive index, ∆neff, β2, and γ ′, is presented in

Figs. 6.2(c) and 6.2(d).

The wavelength conversion efficiency and parametric amplification gain are de-

termined from the pulse spectrum. Thus, we launch into the waveguide pulses whose

temporal profile, u(0, t) =
√

Pp[exp(−t2/2T 2
0 )+

√
ξ exp(−t2/2T 2

0 − i∆ωt)], is the su-

perposition of a pump pulse and a weak signal, whose frequency is shifted by ∆ω . The

ratio ξ = Ps/Pp is set to 10 % and 1 % in the cases of wavelength conversion and para-

metric amplification, respectively, so that in the latter case the signal is too weak to

affect the pump. We also assume that the signal and the pump have the same temporal

width, T0.

6.4 Results of degenerate FWM in Si-PhNWs
A generic example of pulse evolution in a uniform and Bragg Si-PhNW, where the latter

is designed such that condition (6.1) holds, is presented in Fig. 6.3. We considered a

pulse with T0 = 500 fs, Pp = 200 mW, Ps = 20 mW, λp = 1518 nm, and λs = 1623 nm,

so that one expects an idler pulse to form at λi = 1426 nm. The waveguide parameters

are w0 = 740 nm, ∆w = 30 nm, and Λ = 6 mm. All the input pulse parameters are

presented in the following Table-6.1.

physical λp = 1.518µm λs = 1.623µm λs = 1.426µm
parameters

T0 [ f s] 500 500 0
P0 [W ] 0.2 2·10−2 0

αin[dB cm−1] 0 0 0
w0 [nm] 740 740 740

βT PA [cm/GW ] 1.39·10−11 0.17·10−11 6.48·10−11

n2 [cm2/W ] 5.02·10−18 6.48·10−18 4.59·10−18

∆w [nm] 30 30 30
β1 [ps/m] 1.314·104 1.314·104 1.36·104

β2 [ps2/m] 1.5·10−1 -8.6·10−2 4.1·10−1

β3 [ps3/m] 3.02·10−3 3.079·10−3 3.0·10−3

β4 [ps4/m] -6.1·10−7 -1.2·10−5 -4.21·10−7

γ ′ [W−1m−1] 201.4 177.1 221.78
γ ′′ [W−1m−1] 62.25 49.7 73.48

τ ′ [ f s] 1.5 1.7 1.32
τ ′′ [ f s] 28·10−2 46.6·10−2 13.5·10−2

L [mm] 60 60 60

Table 6.1: Input pulse parameters for the case of degenerate FWM of Fig. 6.3.
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The evolution of the temporal pulse profile, shown in Figs. 6.3(a) and 6.3(b), sug-

gests that the pulse propagates with a group-velocity, vg, slightly larger than vg(ωp).

Indeed, the pulse propagates in the normal dispersion regime and its average frequency

is smaller than ωp, which means that vg > vg(ωp). In the case of the Bragg waveguide,

additional temporal oscillations of the pulse are observed. This effect is traced to the

periodic variation vg(z), which is due to the implicit dependence of vg on a periodically

varying width w(z).

Due to its particular nature, it is more suitable to study the FWM in the frequency

domain. In particular, the differences between the evolution of the pulse spectra in

uniform and Bragg waveguides, illustrated by Figs. 6.3(c) and 6.3(d), respectively, un-

derline the main physics of pulsed FWM in Si-PhNWs. Specifically, it can be seen that,

in the Bragg waveguide, the idler energy builds up at a much higher rate as compared

to the case of the uniform Si-PhNW, an indication of a much more efficient FWM in-

teraction [see also Fig. 6.3(g)]. In both cases, however, we observe a gradual decrease

of the pulse peak power, induced by the linear and nonlinear losses associated to the

generated FCs. For the Bragg waveguide one can also observe a series of oscillations

of the FC density with respect to z, which are due to the periodic variation with z of

γ ′′. Importantly, the power decay leads to the detuning of the FWM [see Eqs. (6.1) and

(6.2)] and, implicity, to the degradation of its efficiency.

A comparative study of the conversion efficiency (CE), η(z)= 10log[Ei(z)/Es(0)],

and FWM gain, G(z) = Es(z)/Es(0), in a Bragg vs. a uniform Si-PhNWs is summa-

rized in Fig. 6.4. The pulse energies of the idler, Ei, and signal, Es, were calculated by

integrating the power spectrum over a frequency domain containing the corresponding

pulse. These results clearly show that the Bragg grating induces a dramatic increase

of the CE. As expected, the CE enhancement increases with ∆w, reaching 15 dB for

∆w = 30 nm. Another key effect that can influence the CE is the quasi-periodic vari-

ation of N(z), plotted in Fig. 6.4(b). Specifically, the oscillatory z-variation of N(z)

results in a quasi-periodic variation of the effective modal index, neff(z), which adds to

the periodic variation of neff due to the waveguide-width modulation. Note, however,

that for the power values used in this analysis the former effect is an order of magnitude

weaker than the latter one [compare Fig. 6.2(c) with the inset in Fig. 6.4(b)]. The CE

also depends on T0, as per Fig. 6.4(c). Indeed, one expects that the CE increases with
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Figure 6.3: Left (right) panels show the evolution of an optical pulse in a uniform (quasi-phase-
matched Bragg) waveguide (see the text for the values of the pulse and waveguide
parameters). Top, middle, and bottom panels show the z-dependence of the tem-
poral pulse profile, its spectrum, and the FC density, respectively. (g) Input and
output pulse spectra corresponding to the two waveguides. (h) The log-plot of the
same spectra.

T0 since the Bragg waveguide is designed to phase-match the carrier frequencies of the

pulses, meaning that spectrally narrower pulses are better phase-matched.
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The dependence of the FWM gain on the width modulation is shown in Fig. 6.4(d).

One should note that we have chosen the signal to be in the mid-infrared wavelength

region in order to limit the deleterious effects of TPA. Thus, the pulse has T0 = 500 fs,

Pp = 200 mW, Ps = 2 mW, λp = 2215 nm, and λs = 2102 nm, meaning that the idler is

formed at λi = 2340 nm. The waveguide parameters were w0 = 720 nm, and Λ= 6 mm.

All the input pulse parameters used for this simulation are presented in the following

Table-6.2.

The increased FWM efficiency in Bragg Si-PhNWs is clearly demonstrated by

these numerical experiments namely, a transition from negative to positive net gain is

observed when ∆w increases from zero to 40 nm. However, the net gain is negative

throughout the propagation distance when ∆w ≥ 60nm. This is expected as for large

width modulations the width does not change adiabatically. That means that backward
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physical λp = 2.215µm λs = 2.102µm λs = 2.340µm
parameters

T0 [ f s] 500 500 0
P0 [W ] 0.2 2e-2 0

αin[dB cm−1] 0 0 0
w0 [nm] 720 720 720

βT PA [cm/GW ] 1.5·10−13 1.3·10−12 1·10−13

n2 [cm2/W ] 10·10−18 11.5·10−18 9.5·10−18

∆w [nm] 30 30 30
β1 [ps/m] 1.332·104 1.3329·104 1.33·104

β2 [ps2/m] 43·10−2 -27.8·10−2 1.306
β3 [ps3/m] -21·10−3 -1·10−2 -37·10−3

β4 [ps4/m] 3.4·10−4 1.8·10−4 7.9·10−4

γ ′ [W−1m−1] 92.8 92.67 83.53
γ ′′ [W−1m−1] 0.31 4.2 24.8

τ ′ [ f s] 3.1 2.1 3.4
τ ′′ [ f s] 71·10−2 91·10−2 64·10−2

L [mm] 60 60 60

Table 6.2: Input pulse parameters for the case of degenerate FWM of Fig. 6.3.

waves appear which our mathematical model can not take under consideration. Large

width modulation also means that the phase mismatch increases as β2 and β4 varries

significantly along a period.
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Figure 6.5: (a) Pulse evolution for λs = 2181 nm and λi = 2066 nm. (b) CE dependence on
z. Green and blue lines correspond to the pulse in (a) and λs = 2066 nm and
λi = 2181 nm, respectively. The other parameters in (a) and (b) are w0 = 600 nm,
Λ = 6 mm, λp = 2122 nm, T0 = 500 fs, Pp = 200 mW, and Ps = 20 mW.

In Fig. 6.5(a) this propagation section corresponds to the region where one can
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observe a series of intensity fringes, which are due to the frequency beating between

the two pulses. Also, the CE increases rapidly as Td decreases because for large Td the

pump decays more before it begins to interact with the signal, i.e. the FWM becomes

more detuned. This suggests that the CE should increase with δ as well, in agreement

with the results plotted in Fig. 6.5(b).

In our analysis so far we have designed the Si-PhNW so that the pump and sig-

nal have the same group-velocity, meaning that optimum FWM is then achieved. In

Fig. 6.5, which also considers mid-IR pulses (λ & 2 µm), we present the CE de-

termined in two cases when this condition is not satisfied, i.e. when the walk-off

δ = |1/vg,p − 1/vg,s| ≠ 0, and for two different values of the pump-signal time de-

lay, Td . The main conclusion that can be drawn from these results is that when δ ̸= 0

FWM occurs only over a certain distance, which is related to the time necessary for the

pump and signal pulses to pass through each other.

6.5 Conclusions
In conclusion, we showed that efficient FWM of pulses can be achieved in long-period

Bragg silicon waveguides, which can be used to enhance the wavelength-conversion

efficiency and pulse amplification, as compared to uniform waveguides. One of the

striking features of this work is the crucial role of the periodicity of the width mod-

ulation in phase matching condition. A periodic waveguide enables phase matched

wavelengths not only in anomalous dispersion regime, as this is the most usual case

in fibres, but also in normal dispersion regime. So, our analysis revealed key depen-

dencies between the pulse and waveguide parameters and the efficiency of the FWM,

results which can be instrumental in guiding a practical implementation of these ideas.

This worked also highlighted the influence of nonlinearity in the efficiency of

QPM FWM. This dependence on nonlinearity is the driving force to study the nonlin-

ear phenomenon of FWM in another silicon platform which is the well-known silicon

photonic crystal. According to this, we present, in the next chapter, the new mathemat-

ical formulation that is required for optical copropagating pulses in silicon photonic

crystals as well as we focus on the wavelength dependence of the linear and nonlinear

parameters that affect FWM.
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Chapter 7

Theory of pulsed four-wave mixing in

one-dimensional silicon photonic

crystal waveguides

7.1 Introduction
One of the most promising applications of photonics is the development of ultra-

compact optical interconnects for chip-to-chip and even intra-chip communications.

The driving forces behind research in this area are the perceived limitations at high

frequency of currently used copper interconnects [7. 1], combined with a rapidly in-

creasing demand to move huge amounts of data within increasingly more confined yet

increasingly intricate communication architectures. An approach showing great po-

tential towards developing optical interconnects at chip scale is based on high-index

contrast optical waveguides, such as silicon photonic waveguides (Si-PhWGs) imple-

mented on the silicon-on-insulator material platform [7. 2, 3]. Among key advantages

provided by this platform are the increased potential for device integration facilitated by

the enhanced confinement of the optical field achievable in high-index contrast photonic

structures, as well as the particularly large optical nonlinearity of silicon, which makes

it an ideal material for active photonic devices. Many of the basic device functionalities

required in networks-on-chip have in fact already been demonstrated using Si-PhWGs,

including parametric amplification [7. 4–8], optical modulation [7. 9–11], pulse com-

pression [7. 12, 13], supercontinuum generation [7. 14–16], pulse self-steepening [7.

17], modulational instability [7. 18], and four-wave mixing (FWM) [7. 19–24]; for a
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review of optical properties of Si-PhWGs see [7. 25, 26]. However, since the param-

eter space of Si-PhWGs is rather limited, there is little room to engineer their optical

properties.

A promising solution to this problem has its roots in the advent of photonic crys-

tals (PhCs) in the late 80’s [7. 27, 28]. Thus, by patterning an optical medium in a

periodic manner, with the spatial periods of the pattern being comparable to the operat-

ing optical wavelength, the optical properties of the resulting medium can be modified

and engineered to a remarkable extent. Following this approach, a series of photonic

devices have been demonstrated using PhCs, including optical waveguides and bends

[7. 29–33], optical micro-cavities [7. 34–39], and optical filters [7. 40–42]. One of the

most effective approaches to modify the optical properties of PhCs is to vary the group-

velocity (GV), vg, of the propagating modes. Unlike the case of waves propagating in

regular optical media, whose GV can hardly be altered, by varying the geometrical pa-

rameters of PhCs one can tune the corresponding GV over many orders of magnitude.

Perhaps the most noteworthy implication of the existence of optical modes with signifi-

cantly reduced GV, the so-called slow-light [7. 43–45], is that both linear and nonlinear

optical effects can be dramatically enhanced in the slow-light regime [7. 46–54].

One of the most important nonlinear optical process, as far as nonlinear optics

applications are concerned, is FWM [7. 55]. In the generic case, it consists of the

combination of two photons with frequencies, ω1 and ω2, belonging to two pump

continuous-waves (CWs) or pulses, followed by the generation of a pair of photons

with frequencies ω3 and ω4. The energy conservation requires that ω1+ω2 = ω3+ω4.

In practice, however, an easier to implement FWM configuration is usually employed,

namely degenerate FWM. In this case one uses just one pump with frequency, ωp,

the generated photons belonging to a signal (ωs) and an idler (ωi) beam; in this case

the conservation of the optical energy is expressed as: 2ωp = ωs +ωi. Among the

most important applications of degenerate FWM, it is noteworthy to mention optical

amplification, wavelength generation and conversion, phase conjugation, generation of

squeezed states, and supercontinuum generation. While FWM has been investigated

theoretically and experimentally in PhC waveguides [7. 56–61] and long-period Bragg

waveguides [7. 24, 62], a comprehensive theory of FWM in silicon PhC waveguides

(Si-PhCWGs), which rigorously incorporates in a unitary way all relevant linear and
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nonlinear optical effects as well as the influence of photogenerated free-carriers (FCs)

on the pulse dynamics is not available yet.

In this chapter we introduce a rigorous theoretical model that describes FWM in

Si-PhCWGs. Our model captures the influence on the FWM process of linear optical

effects, including waveguide loss, FC dispersion and FC absorption, nonlinear optical

effects such as self- and cross-phase modulation, two-photon absorption, and cross-

absorption modulation, as well as the mutual interaction between FCs and optical field.

Importantly, we present a first principles derivation of the formulae for the linear and

nonlinear optical coefficients of the waveguide, as well as the spatially averaged ex-

pressions of these waveguide optical coefficients. We also illustrate how our model

can be employed to investigate the characteristics of FWM in the slow- and fast-light

regimes, showing among other things that by incorporating the effects of FCs on the

optical pulse dynamics new physics emerge. One noteworthy example in this context

is that the well-known linear dependence of FCA on v−1
g is replaced in the slow-light

regime by a v−3
g power-law dependence.

Our theoretical model is based on several underlying assumptions, which hold in

commonly employed experimental configurations. Thus, we assume that the duration

of the optical cycle of pulses considered in our study is much smaller than the momen-

tum relaxation time of FCs and as such we can assume that the FCs follow practically

instantaneously the variations of the optical field. Moreover, we consider that the du-

ration of the optical pulses is much larger than the response time of the electronic

nonlinearity so that this (Kerr) nonlinear optical response is assumed to be instanta-

neous. In addition, the duration of the optical pulses and their spectral separation are

large enough so that they do not overlap spectrally, meaning that treating the optical

field as a superposition of optical pulses is a valid approximation. Finally, although in

the particular cases considered in our numerical simulations the width of the pulses is

much smaller than the FCs relaxation time, the theoretical model we derive in this work

is valid when the two characteristic times have comparable values as well.

The remaining of the paper is organized as follows. In the next Section we present

the optical properties of the PhC waveguide considered in this work. Then, in Sec-

tion 7.3, we develop the theory of pulsed FWM in Si-PhCWGs whereas the particular

case of degenerate FWM is analyzed in Section 7.4. Then, in Section 7.5, we apply
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these theoretical tools to explore the physical conditions in which efficient FWM can

be achieved. The results are subsequently used, in Section 7.6, to study via numerical

simulations the main properties of pulsed FWM in Si-PhCWGs. We conclude our pa-

per by summarizing in the last Section the main findings of our article and discussing

some of their implications to future developments in this research area. Finally, an

averaged model that can be used in the case of broad optical pulses is presented in an

Appendix-B.

7.2 Description of the photonic crystal waveguide
In this section we present the geometrical and material properties of the PhC waveguide

considered in this work, as well as the physical properties of its optical modes. Thus,

our Si-PhCW consists of a one-dimensional (1D) waveguide formed by introducing a

line defect in a two-dimensional (2D) honeycomb-type periodic lattice of air holes in

a homogeneous slab made of silicon (a so-called W1 PhC waveguide). The line defect

is oriented along the z-axis, which is chosen to coincide with one of the ΓK symmetry
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Figure 7.1: (a) Geometry of the 1D Si-PhC slab waveguide. The height of the slab is h = 0.6a
and the radius of the holes is r = 0.22a. The primed coordinate system shows the
principal axes of the Si crystal with the input facet of the waveguide in the (11̄0)
plane of the Si crystal lattice. (b) Projected band structure. Dark yellow and brown
areas correspond to slab leaky and guiding modes, respectively. The red and blue
curves represent the guiding modes of the 1D waveguides.
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axes of the crystal, and is created by filling in a row of holes [see Fig. 7.1(a)]. The slab

height is h = 0.6a and the radius of the holes is r = 0.22a, where a = 412nm is the

lattice constant, whereas the index of refraction of silicon is nSi ≡ n = 3.48.

The defect line breaks the discrete translational symmetry of the photonic sys-

tem along the y-axis, so that the optical modes of the waveguide are invariant only to

discrete translation along the z-axis [7. 63]. Moreover, based on experimental consider-

ations, we restrict our analysis to in-plane wave propagation, namely the wave vector,

k, lies in the x = 0 plane. The kz component, on the other hand, can be restricted to

the first Brillouin zone, kz ∈ [−π/a,π/a], which is an immediate consequence of the
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Figure 7.2: Left (right) panels show the amplitude of the normalized magnetic field Hx of the
y-odd (y-even) mode, calculated in the plane x = 0 for five different values of the
propagation constant, kz. From top to bottom, the panels correspond to the Bloch
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Bloch theorem. Under these circumstances, we determined numerically the photonic

band structure of the system and the guiding optical modes of the waveguide using

MPB, a freely available code based on the plane-wave expansion (PWE) method [7.

64]. To be more specific, we used a supercell with size of 6a×19
√

3/2a×a along the

x-, y-, and z-axis, respectively, the corresponding step size of the computational grid

being a/60, a
√

3/120, and a/60, respectively. Figure 7.1(b) summarizes the results of

these calculations. Thus, the waveguide has two fundamental TE-like optical guiding

modes located in the band-gap of the unperturbed PhC, one y-even and the other one

y-odd.

In order to better understand the physical properties of the optical guiding modes,

we plot in Fig. 7.2 the profile of the magnetic field Hx, which is its only nonzero compo-

nent in the x = 0 symmetry plane. These field profiles, calculated for several values of

kz, show that although the optical field is primarily confined at the location of the defect

(waveguide), for some values of kz it is rather delocalized in the transverse direction.

This field delocalization effect is particularly strong in the spectral domains where the

modal dispersion curves are relatively flat, namely in the so-called slow-light regime,

and increases when the group index of the mode, defined as ng = c/vg, increases.

The dispersion effects upon pulse propagation in the waveguide are characterized

by the waveguide dispersion coefficients, defined as βn = dnkz/dωn. In particular, the

first-order dispersion coefficient is related to the pulse GV via β1 = 1/vg, whereas the

second-order dispersion coefficient, β2, quantifies the GV dispersion (GVD) as well

as pulse broadening effects. The wavelength dependence of the first four dispersion

coefficients, determined for both guided modes, is presented in Fig. 7.3, the shaded

areas indicating the spectral regions of slow-light. For the sake of clarity, we set the

corresponding threshold to c/vg = 20, that is the slow-light regime is defined by ng >

20. As it can be seen in Fig. 7.3, the even mode possesses two slow-light regions,

one located at the band-edge (λ ≈ 1.6µm) and the other one at kz ≈ 0.3(2π/a), i.e.

λ ≈ 1.52µm, whereas the odd mode contains only one such spectral domain located

at the band-edge (λ ≈ 1.67µm). Moreover, the even mode can have both positive and

negative GVD, the zero-GVD point being at λ = 1.56µm, whereas the odd mode has

normal GVD (β2 > 0) throughout. Since usually efficient FWM can only be achieved

in the anomalous GVD regime (β2 < 0), we will assume that the interacting pulses
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propagate in the even mode unless otherwise is specified.

7.3 Derivation of the mathematical model
This section is devoted to the derivation of a system of coupled-mode equations describ-

ing the co-propagation of a set of mutually interacting optical pulses in a Si-PhCW, as

well the influence of photogenerated FCs on the pulse evolution. We will derive these
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coupled-mode equations in the most general setting, namely the nondegenerate FWM,

then show how they can be applied to a particular case most used in practice, the so-

called degenerate FWM configuration. Our derivation follows the general approach

used to develop a theoretical model for pulse propagation in silicon waveguides with

uniform cross-section [7. 65] and Si-PhCWs [7. 66].

7.3.1 Optical modes of photonic crystal waveguides

In the presence of an external perturbation described by the polarization, Ppert(r,ω), the

electromagnetic field of guiding modes with frequency, ω , is described by the Maxwell

equations, which in the frequency domain can be written in the following form:

∇×E(r,ω) = iωµH(r,ω), (7.1a)

∇×H(r,ω) =−iω [εc(r,ω)E(r,ω)+Ppert(r,ω)], (7.1b)

where µ is the magnetic permeability, which in the case of silicon and other nonmag-

netic materials can be set to µ = µ0, εc(r,ω) is the dielectric constant of the PhC, and

E and H are the electric and magnetic fields, respectively. In our case, Ppert is the sum

of polarizations describing the refraction index change induced by photogenerated FCs

and nonlinear (Kerr) effects.

In order to understand how the modes of the PhC waveguide are affected by exter-

nal perturbations, let us consider first the unperturbed system, that is Ppert = 0. Thus,

let us assume that, at the frequency ω , the unperturbed PhC waveguide has M guiding

modes. It follows then from the Bloch theorem that the fields of these modes can be

written as:

Emσ (r,ω) = emσ (r,ω)eiσβmz, m = 1,2, . . . ,M, (7.2a)

Hmσ (r,ω) = hmσ (r,ω)eiσβmz, m = 1,2, . . . ,M, (7.2b)

where βm is the mth mode propagation constant and σ = + (σ = −) denotes forward

(backward) propagating modes. Here, we consider that the harmonic time dependence

of the fields was chosen as e−iωt . The mode amplitudes emσ and hmσ are periodic along

the z-axis, with period a. Moreover, the forward and backward propagating modes obey
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the following symmetry relations:

em−(r,ω) = e∗m+(r,ω), (7.3a)

hm−(r,ω) =−h∗
m+(r,ω), (7.3b)

where the symbol “∗” denotes complex conjugation. As such, one only has to determine

either the forward or the backward propagating modes.

The guiding modes can be orthogonalized, the most commonly used normalization

convention being

1
4

∫
S
(emσ ×h∗

m′σ ′ + e∗m′σ ′ ×hmσ ) · ẑdS = σPmδσσ ′δmm′, (7.4)

where Pm is the power carried by the mth mode. This mode power is related to the mode

energy contained in one unit cell of the PhC waveguide, Wm, via the relation:

Pm =
W el

m +W mag
m

a
vg =

2W el
m

a
vg =

2W mag
m

a
vg, (7.5)

where

W el
m =

1
4

∫
Vcell

∂
∂ω

(ωεc)|emσ (r,ω)|2dV, (7.6a)

W mag
m =

1
4

∫
Vcell

µ0|hmσ (r,ω)|2dV, (7.6b)

are the electric and magnetic energy of the mode, respectively, and Vcell is the volume

of the unit cell. Note that in Eq. (7.5) we used the fact that the mode contains equal

amounts of electric and magnetic energy. In particular, in the case of PhC waveg-

uides the waveguide dispersion is much larger than the material dispersion so that in

Eq. (7.6a) we can neglect the frequency dispersion of εc.

It should be stressed that the waveguide modes defined by Eqs. (7.2) are exact

solutions of the Maxwell equations (7.1) with Ppert = 0, and thus they should not be

confused with the so-called local modes of the waveguide. The latter modes correspond

to waveguides whose optical properties vary adiabatically with z, on a scale comparable

to the wavelength and have been used to describe, e.g., wave propagation in tapered

waveguides [7. 69] or pulse propagation in 1D long-period Bragg gratings [7. 70].
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7.3.2 Perturbations of the photonic crystal waveguide

Due to the photogeneration of FCs and nonlinear optical effects, the dielectric con-

stant of Si-PhCWs undergoes a certain local variation, δε(r), upon the propagation of

optical pulses in the waveguide. The corresponding perturbation polarization, Ppert in

Eq. (7.1b), can be divided in two components according to the physical effects they

describe: the linear change of the dielectric constant via generation of FCs and the

nonlinearly induced variation of the index of refraction.

Assuming an instantaneous response of the medium, the linear contribution to

Ppert, δPlin(r, t), is written as:

δPlin(r, t) = [δεfc(r)+δεloss(r)]E(r, t), (7.7)

where [7. 65]:

δεfc(r) =
(

2ε0nδnfc + i
ε0cn

ω
αfc

)
Σ(r), (7.8a)

δεloss(r) = i
ε0cn

ω
αinΣ(r). (7.8b)

Here, αin is the intrinsic loss coefficient of the waveguide and Σ(r) is the characteris-

tic function of the domain where FCs can be generated, namely Σ = 1 in the domain

occupied by silicon and Σ = 0 otherwise. Based on the Drude model, the FC-induced

change of the index of refraction, δnfc, and FC losses, αfc, are given by [7. 71]:

δnfc =− e2

2ε0nω2

(
Ne

mce
+

N0.8
h

mch

)
, (7.9a)

αfc =
e3

ε0cnω2

(
Ne

µem2
ce
+

Nh

µhm2
ch

)
. (7.9b)

Here, e is the charge of the electron, µe (µh) is the electron (hole) mobility, mce =

0.26m0 (mch = 0.39m0) is the conductivity effective mass of the electrons (holes), with

m0 the mass of the electron, and Ne (Nh) is the induced variation of the electrons (holes)

density (in what follows, we assume that Ne = Nh ≡ N).

The nonlinear contribution to Ppert, δPnl(r, t), is described by a third-order non-
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linear susceptibility, χ̂(3)(r), and can be written as:

δPnl(r, t) = ε0χ̂(3)(r)
...E(r, t)E(r, t)E(r, t). (7.10)

The real part of the susceptibility χ̂(3) describes parametric optical processes such

as SPM, XPM, and FWM, while the imaginary part of χ̂(3) corresponds to TPA and

XAM. Note that in this study we neglect the stimulated Raman scattering effect as it

is assumed that the frequencies of the interacting pulses do not satisfy the condition

required for an efficient, resonant Raman interaction.

Since silicon belongs to the crystallographic point group m3m the susceptibility

tensor χ̂(3) has 21 nonzero elements, of which only 4 are independent, namely, χ1111,

χ1122, χ1212, and χ1221 [7. 72]. In addition, the frequency dispersion of the nonlinear

susceptibility can be neglected as we consider optical pulses with duration of just a

few picoseconds or larger. As a consequence, the Kleinman symmetry relations imply

that χ1122 = χ1212 = χ1221. Moreover, experimental studies have shown that χ̂(3)
1111 =

2.36χ̂(3)
1122 [7. 73] within a broad frequency range. Therefore, the nonlinear optical

effects considered here can be described by only one element of the tensor χ̂(3).

Because of fabrication considerations, in many instances the waveguide is not

aligned with any of the crystal principal axes and as such these axes are different from

the coordinate axes in which the optical modes are calculated. Therefore, one has to

transform the tensor χ̂(3) from the crystal principal axes into the coordinate system in

which the optical modes are calculated [7. 65],

χ̂(3)
i jkl = R̂iα R̂ jβ R̂kγ R̂lδ χ̂ ′(3)

αβγδ , (7.11)

where χ̂ ′(3) is the nonlinear susceptibility in the crystal principal axes and R̂ is the

rotation matrix that transforms one coordinate system into the other. In our case, R̂ is

the matrix describing a rotation with π/4 around the x-axis (see Fig. 7.1).

7.3.3 Coupled-mode equations for the optical field

In order to derive the system of coupled-mode equations describing pulsed FWM in

Si-PhCWs we employ the conjugated form of the Lorentz reciprocity theorem [7. 65–

67, 75, 76]. To this end, let us consider two solutions of the Maxwell equations (7.1),
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[Ea(r,ωa),Ha(r,ωa)] and [Eb(r,ωb),Hb(r,ωb)], which correspond to two different

spatial distribution of the dielectric constant, εa(r,ωa) and εb(r,ωb), respectively. If

we insert the vector F, defined as F = Eb ×H∗
a +E∗

a ×Hb, in the integral identity:

∫
S

∇ ·FdS =
∂
∂ z

∫
S

F · ẑdS+
∮

∂S
F ·ndl, (7.12)

where S is the transverse section at position, z, and ∂S is the boundary of S, and use the

Maxwell equations, we arrive at the following relation:

∂
∂ z

∫
S

F · ẑdS = iµ0(ωb −ωa)
∫

S
H∗

a ·HbdS

+ i
∫

S
(ωbεb −ωaεa)E∗

a ·EbdS−
∮

∂S
F ·ndl. (7.13)

Let us consider now a nondegenerate FWM process in which two pulses at carrier

frequencies ω̄1 and ω̄2 interact and generate two optical pulses at carrier frequencies

ω̄3 and ω̄4, with the energy conservation expressed as ω̄1 + ω̄2 = ω̄3 + ω̄4. Then, in

the Lorentz reciprocity theorem given by Eq. (7.13) we choose as the first set of fields

a mode of the unperturbed waveguide (Ppert = 0), which corresponds to the frequency

ωa = ω̄i, where ω̄i is one of the carrier frequencies ω̄1, ω̄2, ω̄3, or ω̄4:

Ea(r, ω̄i) =
eniρi(r, ω̄i)√

P̄ni

eiρiβ̄niz, (7.14a)

Ha(r, ω̄i) =
hniρi(r, ω̄i)√

P̄ni

eiρiβ̄niz, (7.14b)

where ρi = ±1 and ni is an integer, 1 ≤ ni ≤ Ni, i = 1, . . . ,4, with Ni being the num-

ber of guiding modes at the frequency ω̄i. In Eqs. (7.14), and in what follows, a bar

over a symbol means that the corresponding quantity is evaluated at one of the carrier

frequencies.

As the second set of fields we take those that propagate in the perturbed waveg-

uide, at the frequency ωb = ω . These fields are written as a series expansion of the

guiding modes at frequencies ω̄i, i = 1, . . . ,4, thus neglecting the frequency dispersion

of the guiding modes and the radiative modes that might exist at the frequency ω . This

approximation is valid as long as all interacting optical pulses have narrow spectra cen-

tered at the corresponding carrier frequencies, that is the physical situation considered
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in this work. In particular, this modal expansion becomes less accurate when any of the

pulses propagates in the slow-light regime, as generally the smaller the GV of a mode

is the larger its frequency dispersion is. Thus, the second set of fields are expanded as:

Eb(r,ω) =
4

∑
j=1

∑
m jσ j

a( j)
m jσ j(z,ω)

em jσ j(r, ω̄ j)√
P̄m j

eiσ jβ̄m j z, (7.15a)

Hb(r,ω) =
4

∑
j=1

∑
m jσ j

a( j)
m jσ j(z,ω)

hm jσ j(r, ω̄ j)√
P̄m j

eiσ jβ̄m j z. (7.15b)

With the fields normalization used in Eqs. (7.15), the mode amplitudes a(i)miσi(z,ω), i =

1, . . . ,4, are measured in units of
√

W. Note that since the optical pulses are assumed

to be spectrally narrow, the mode amplitudes a(i)miσi(z,ω) have negligible values except

when the frequency ω lies in a narrow spectral domain centered at the carrier frequency,

ω̄i.

The dielectric constant in the two cases is εa = ε̄c(r, ω̄i) and εb = εc(r,ω) +

δε(r,ω), where εc(r,ω) is the dielectric constant of the unperturbed PhC. If the mate-

rial dispersion is neglected, εc(r,ω) = εc(r, ω̄i) = ε̄c(r). Inserting the fields given by

Eqs. (7.14) and Eqs. (7.15) in Eq. (7.13), and neglecting the line integral in Eq. (7.13),

which cancels for exponentially decaying guiding modes, one obtains the following set

of coupled equations:

ρi
∂a(i)niρi(z)

∂ z
+

4

∑
j = 1

j ̸= i

∑
m jσ j

Ci j
niρi,m jσ j(z)×

[
∂a( j)

m jσ j(z)

∂ z
+ i(σ jβ̄m j −ρiβ̄ni)a

( j)
m jσ j(z)

]

= Bi
niρi

a(i)niρi(z)+ ∑
jm jσ j

′Di j
niρi,m jσ ja

( j)
m jσ j(z)+

iωe−iρiβ̄niz

4
√

P̄ni

∫
S

ē∗niρi
·Ppert(r,ω)dS,

i = 1, . . . ,4, (7.16)

where

Ci j
niρi,m jσ j(z) =

ei(σ jβ̄m j−ρiβ̄ni)z

4
√

P̄niP̄m j

×
∫

S

(
ēm jσ j × h̄∗

niρi
+ ē∗niρi

× h̄m jσ j

)
· ẑdS, (7.17a)

Bi
niρi

=
i

4P̄ni

∫
S

[
µ0(ω − ω̄i)|h̄niρi|

2 +(ωεc − ε̄cω̄i)|ēniρi|
2]dS, (7.17b)
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Di j
niρi,m jσ j(z) =

iei(σ jβ̄m j−ρiβ̄ni)z

4
√

P̄niP̄m j

∫
S
[µ0(ω − ω̄i) ×h̄m jσ j · h̄

∗
niρi

]
dS

+
iei(σ jβ̄m j−ρiβ̄ni)z

4
√

P̄niP̄m j

∫
S

[
(ωεc − ε̄cω̄i)ēm jσ j · ē

∗
niρi

]
dS. (7.17c)

In Eq. (7.16) and what follows a prime symbol to a sum means that the summation is

taken over all modes, except that with j = i, m j = ni, and σ j = ρi. Moreover, in deriving

the l.h.s. of Eq. (7.16) we used the orthogonality relation given by Eq. (7.4). As it will

become more apparent later on, the coefficient Ci j
niρi,m jσ j describes the linear coupling

between the modes characterized by parameters {niρi} and {m jσ j}, the coefficient

Bi
niρi

is related to the frequency dispersion the mode {niρi}, whereas the coefficient

Di j
niρi,m jσ j describes the frequency dispersion of the optical coupling between the modes

characterized by parameters {niρi} and {m jσ j}.

The time-dependent fields are obtained by integrating over all frequency compo-

nents contained in the spectra of the system of interacting optical pulses:

E(r, t) =
1
2

∫ ∞

0

4

∑
j=1

∑
m jσ j

a( j)
m jσ j(z,ω)

em jσ j(r, ω̄ j)√
P̄m j

× ei(σ jβ̄m j z−ωt)dω + c.c.≡ 1
2

[
E(+)(r, t)+E(−)(r, t)

]
, (7.18a)

H(r, t) =
1
2

∫ ∞

0

4

∑
j=1

∑
m jσ j

a( j)
m jσ j(z,ω)

hm jσ j(r, ω̄ j)√
P̄m j

× ei(σ jβ̄m j z−ωt)dω + c.c.≡ 1
2

[
H(+)(r, t)+H(−)(r, t)

]
, (7.18b)

where E(+)(r, t), H(+)(r, t) and E(−)(r, t), H(−)(r, t) are the positive and negative fre-

quency parts of the spectrum, respectively.

Let us now introduce the envelopes of the interacting pulses in the time domain,

A(i)
niρi(z, t), defined as the integral of the mode amplitudes taken over the part of the

spectrum that contains only positive frequencies,

A(i)
niρi(z, t) =

∫ ∞

0
a(i)niρi(z,ω)e−i(ω−ω̄i)tdω . (7.19)
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With this definition, the time-dependent fields given in Eqs. (7.18) become:

E(r, t) =
1
2

4

∑
j=1

∑
m jσ j

A( j)
m jσ j(z, t)×

ēm jσ j(r, ω̄ j)√
P̄m j

ei(σ jβ̄m j z−ω̄ jt)+ c.c., (7.20a)

H(r, t) =
1
2

4

∑
j=1

∑
m jσ j

A( j)
m jσ j(z, t)×

h̄m jσ j(r, ω̄ j)√
P̄m j

ei(σ jβ̄m j z−ω̄ jt)+ c.c.. (7.20b)

Following the same approach, the time-dependent polarization, too, can be decomposed

in two components, which contain positive and negative frequencies, that is, it can be

written as:

Ppert(r, t) =
1
2

∫ ∞

0
Ppert(r,ω)e−iωtdω + c.c.≡ 1

2

[
P(+)

pert(r, t)+P(−)
pert(r, t)

]
. (7.21)

The next step of our derivation is to Fourier transform Eq. (7.16) in the time do-

main. To this end, we first expand the coefficients Bi
niρi

and Di j
niρi,m jσ j in Taylor series,

around the carrier frequency ω̄i [note that according to Eq. (7.17a), Ci j
niρi,m jσ j is fre-

quency independent]:

Bi
niρi

= ∑
q≥1

(∆ωi)
q

q!
∂ qBi

niρi

∂ωq

∣∣∣∣∣
ω=ω̄i

≡ ∑
q≥1

iβ (q)i
niρi

q!
(∆ωi)

q, (7.22a)

Di j
niρi,m jσ j = ∑

q≥1

(∆ωi)
q

q!
∂ qDi j

niρi,m jσ j

∂ωq

∣∣∣∣∣
ω=ω̄i

≡ ∑
q≥1

iβ (q)i j
niρi,m jσ j

q!
(∆ωi)

q, (7.22b)

where ∆ωi = ω − ω̄i, i = 1, . . . ,4. Combining Eqs. (7.22a), (7.17b), (7.5), and (7.6)

leads to the following expression for the dispersion coefficients, β (q)i
niρi :

β (1)i
niρi (z) =

δ i
ni
(z)

vi
g,ni

, (7.23a)

β (n)i
niρi (z) = δ i

ni
(z)

∂ n−1

∂ωn−1

(
1

vi
g,ni

)
, n ≥ 2, (7.23b)

where

δ i
ni
(z) =

a
4Wmi

∫
S

[
µ0|hniρi(r, ω̄i)|2 +

∂
∂ω

(ωεc)|eniρi(r, ω̄i)|2
]

dS. (7.24)

It can be easily seen from this equation that the average of δ i
ni
(z) over one lattice
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cell of the PhC waveguide is equal to 1, i.e.,

δ̃ i
ni
≡ 1

a

∫ z+a

z
δ i

ni
(z′)dz′ = 1. (7.25)

Here and in what follows the tilde symbol indicates that the corresponding physical

quantity has been averaged over a lattice cell of the waveguide. With this notation,

Eqs. (7.23) become:

β̃ (1)i
niρi ≡ β i

1,ni
=

1
vi

g,ni

, (7.26a)

β̃ (n)i
niρi ≡ β i

n,ni
=

∂ n−1β i
1,ni

∂ωn−1 , n ≥ 2. (7.26b)

These relations show that β̃ (n)i
niρi = β i

n,ni
is the nth order dispersion coefficient of the

waveguide mode characterized by the parameters {ni,ρi}, evaluated at ω = ω̄i.

We now multiply Eq. (7.16) by e−i(ω−ω̄i)t and integrate over the positive-frequency

domain. These simple calculations lead to the time-domain coupled-mode equations

for the field envelopes, A(i)
niρi(z, t):

ρi
∂A(i)

niρi

∂ z
+

4

∑
j = 1

j ̸= i

∑
m jσ j

Ci j
niρi,m jσ je

−i(ω̄ j−ω̄i)t

[
∂A( j)

m jσ j

∂ z
+i(σ jβ̄m j −ρiβ̄ni)A

( j)
m jσ j

]

= i ∑
q≥1

β (q)i
niρi

q!

(
i

∂
∂ t

)q

A(i)
niρi + i ∑

q≥1
∑

jm jσ j

′β
(q)i j
niρi,m jσ j

q!
e−i(ω̄ j−ω̄i)t

(
i

∂
∂ t

)q

A( j)
n jρ j

+
iω̄ie−i(ρiβ̄niz−ω̄it)

4
√

P̄ni

∫
S

ē∗niρi
·P(+)

pert(r, t)dS, i = 1, . . . ,4, (7.27)

The temporal width of the pulses considered in this analysis is much smaller as

compared to the nonlinear electronic response time of silicon and therefore the latter

can be approximated to be instantaneous. In addition, we assume that the spectra of

the interacting pulses are narrow and do not overlap. Under these circumstances, the

optical pulses can be viewed as quasi-monochromatic waves and their nonlinear inter-

actions can be treated in the adiabatic limit. Separating the nonlinear optical effects

contributing to the nonlinear polarization, one can express in the time domain this po-
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larization as [7. 74]:

δPnl,ω̄i(r, t) =
3
4 ∑

miσi

ε0χ̂(3)(ω̄i,−ω̄i, ω̄i)
...ēmiσi(r, ω̄ j)ē∗miσi

(r, ω̄ j)ēmiσi(r, ω̄ j)

|A(i)
miσi|

2A(i)
miσi

eiσiβ̄miz

P̄mi

√
P̄mi

+
3
2 ∑

miσi

∑
(piρi) ̸= (miσi)

pi > mi

ε0χ̂(3)(ω̄i,−ω̄i, ω̄i)
...ēpiρi(r, ω̄i)ē∗piρi

(r, ω̄i)ēmiσi(r, ω̄i)

|A(i)
piρi|

2A(i)
miσi

eiσiβ̄miz

P̄pi

√
P̄mi

+
3
2

4

∑
j = 1

j ̸= i

∑
miσi

p jρ j

ε0χ̂(3)(ω̄ j,−ω̄ j, ω̄i)
...ēp jρ j(r, ω̄ j)ē∗p jρ j

(r, ω̄ j)ēmiσi(r, ω̄i)

|A( j)
p jρ j |

2A(i)
miσi

eiσiβ̄miz

P̄p j

√
P̄mi

+
3
2 ∑

p jqkml

ρ jτkσl

ε0χ̂(3)(ω̄ j,−ω̄k, ω̄l)
...ēp jρ j(r, ω̄ j)ē∗qkτk

(r, ω̄k)ēmlσl(r, ω̄l)

A( j)
p jρ jA

(k)∗
qkτkA(l)

mlσl ×
ei
[
(ρ jβ̄p j−τkβ̄qk+σl β̄ml )z−(ω̄ j−ω̄k+ω̄l)t

]
√

P̄p j P̄qk P̄ml

∣∣∣∣∣∣ j ̸= k ̸= l ̸= i

ω̄ j − ω̄k + ω̄l = ω̄i

. (7.28)

This expression for the nonlinear polarization accounts for the fact that the non-

linear susceptibility is invariant to frequency permutations. The first term in Eq. (7.28)

represents SPM effects of the pulse envelopes, the second and third terms describe the

XPM between modes with the same frequency and XPM between pulses propagating

at different frequencies, respectively, whereas the last term describes FWM processes.

If one inserts in Eq. (7.27) the linear and nonlinear polarizations given by Eq. (7.7)

and Eq. (7.28), respectively, then discards the fast time-varying terms, one obtains

the following system of coupled equations that governs the dynamics of the mode en-

velopes:

ρi
∂A(i)

niρi

∂ z
= i ∑

q≥1

β (q)i
niρi

q!

(
i

∂
∂ t

)q

A(i)
niρi + i ∑

q≥1
∑

(miσi)̸=(niρi)

β (q)ii
niρi,miσi

q!

(
i

∂
∂ t

)q

A(i)
miσi
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+ i
ϑ i

niρi
(z)

vi
g,ni

A(i)
niρi + i ∑

(miσi)̸=(niρi)

ϑ i
niρi,miσi

(z)√
vi

g,ni
vi

g,mi

A(i)
miσi +

3iω̄i

16ε0a2×{
∑
miσi

[
Γi

niρi,miσi
(z)

vi
g,mi

√
vi

g,mi
vi

g,ni

|A(i)
miσi|

2A(i)
miσi + ∑

(piρi) ̸= (miσi)

pi > mi

2Γi
niρi,miσi piρi

(z)

vi
g,pi

√
vi

g,mi
vi

g,ni

|A(i)
piρi|

2A(i)
miσi+

4

∑
j = 1

j ̸= i

∑
p jρ j

2Γi j
niρi,miσi p jρ j(z)

v j
g,p j

√
vi

g,mi
vi

g,ni

|A( j)
p jρ j |

2A(i)
miσi

]
+ ∑

p jqkml

ρ jτkσl

ei∆β̄ni p jqkml z 2Γ jkl
niρi,p jρ jqkτkmlσl(z)√
v j

g,p jvk
g,qk

vl
g,ml

vi
g,ni

×A( j)
p jρ jA

(k)∗
qkτkA(l)

mlσl

∣∣∣
j ̸=k ̸=l ̸=i

}
, i = 1, . . . ,4, (7.29)

where ∆β̄ni p jqkml = ρ jβ̄p j − τkβ̄qk +σlβ̄ml −ρiβ̄ni is the wavevector mismatch.

The coefficients ϑ i
niρi

and ϑ i
niρi,miσi

represent the wavevector shift of the optical

mode (ni,ρi) and the linear coupling constant between modes (ni,ρi) and (mi,σi), in-

duced by the linear perturbations, respectively, Γi
niρi,miσi

and Γi
niρi,miσi piρi

describe SPM

and XPM-induced coupling between modes with the same frequency, ω̄i, respectively,

Γi j
niρi,miσi p jρ j represents the XPM-induced coupling between modes with frequencies ω̄i

and ω̄ j, and Γ jkl
niρi,p jρ jqkτkmlσl is related to the FWM interaction among the pulses. All

these nonlinear coefficients have the meaning of z-dependent effective cubic suscepti-

bilities. The linear and nonlinear coefficients in Eqs. (7.29) are given by the following

relations:

ϑ i
niρi

(z) =
ω̄ia
4W̄ i

ni

∫
S
[δεfc(r)+δεloss(r)]|eniρi(ω̄i)|2dS, (7.30a)
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niρi,miσi
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ω̄iei(σiβ̄mi−ρiβ̄ni)z
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√
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×
∫
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(ω̄i) · emiσi(ω̄i)dS, (7.30b)

Γi
niρi,miσi

(z) =
ε2

0 a4ei(σiβ̄mi−ρiβ̄ni)z

W̄ i
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√
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W̄ i
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∫
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(ω̄i)

· χ̂(3)(ω̄i,−ω̄i, ω̄i)
...emiσi(ω̄i)e∗miσi

(ω̄i)emiσi(ω̄i)dS, (7.30c)
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niρi,miσi piρi

(z) =
ε2

0 a4ei(σiβ̄mi−ρiβ̄ni)z

W̄ i
pi

√
W̄ i
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W̄ i
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∫
S

e∗niρi
(ω̄i)
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· χ̂(3)(ω̄i,−ω̄i, ω̄i)
...epiρi(ω̄i)e∗piρi

(ω̄i)emiσi(ω̄i)dS, (7.30d)

Γi j
niρi,miσi p jρ j(z) =

ε2
0 a4ei(σiβ̄mi−ρiβ̄ni)z

W̄ j
p j

√
W̄ i

mi
W̄ i

ni

∫
S

e∗niρi
(ω̄i)

· χ̂(3)(ω̄ j,−ω̄ j, ω̄i)
...ep jρ j(ω̄ j)e∗p jρ j

(ω̄ j)emiσi(ω̄i)dS, (7.30e)

Γ jkl
niρi,p jρ jqkτkmlσl(z) =

ε2
0 a4√

W̄ j
p jW̄ k

qk
W̄ l

ml
W̄ i

ni

∫
S

e∗niρi
(ω̄i)

· χ̂(3)(ω̄ j,−ω̄k, ω̄l)
...ep jρ j(ω̄ j)e∗qkτk

(ω̄k)emlσl(ω̄l)dS. (7.30f)

While Eqs. (7.29) seem complicated, in cases of practical interest they can be con-

siderably simplified. To be more specific, these equations describe a multitude of op-

tical effects pertaining to both linear and nonlinear gratings, including linear coupling

between modes with the same frequency, nonlinear coupling between modes with the

same frequency, due to SPM and XPM effects, XPM-induced coupling between modes

with different frequency, and FWM interactions. In most experimental set-ups, how-

ever, not all these linear and nonlinear effects occur simultaneously as in a generic case

not all of them lead to efficient pulse interactions.

These ideas becomes clear if one inspects the exponential factors in Eqs. (7.30b)-

(7.30e). Thus, they vary over a characteristic length comparable to the lattice constant

of the PhC, namely much more rapidly as compared to the spatial variation rate of the

pulse envelopes. As a result, except for the mode (ni,ρi), these linear and nonlinear co-

efficients cancel. There are, however, particular cases when some of these interactions

are phase-matched and consequently are resonantly enhanced. To be more specific, the

integrals in Eqs. (7.30b)-(7.30e) are periodic functions of z, with period a, so that it is

possible that a Fourier component of these integrals phase-matches a specific linear or

nonlinear interaction between modes (e.g., the linear coupling between two modes with

the same frequency and SPM- or XPM-induced nonlinear coupling between modes).

In this study, we do not consider such accidental phase-matching of mode interactions.

With this in mind, we discard all terms in Eqs. (7.29) that average to zero to obtain the

final form of the coupled-mode equations for the pulse envelopes:

i
[

ρi
∂A(i)

niρi

∂ z
+

δ i
ni
(z)

vi
g,ni

∂A(i)
niρi

∂ t
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(z)β̄2,ni

2
∂ 2A(i)

niρi

∂ t2 +
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(z)

nvi
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A(i)
niρi
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+
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niρi + ∑
(piρi) ̸= (niρi)

pi > ni

2γ i
niρi,piρi

(z)

×|A(i)
piρi|

2A(i)
niρi +

4

∑
j = 1

j ̸= i

∑
p jρ j

2γ i j
niρi,p jρ j(z)|A

( j)
p jρ j |

2A(i)
niρi + ∑

p jqkml

ρ jτkσl

2ei∆β̄ni p jqkml z

γ jkl
niρi,p jρ jqkτkmlσl(z)×A( j)

p jρ jA
(k)∗
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= 0, i = 1, . . . ,4, (7.31)

where the new parameters introduced in this equation are defined as:

κ̄ i
ni
(z) =

ε0an2

2W̄ i
ni

∫
Snl

|eniρi(ω̄i)|2dS, (7.32a)
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16vi2
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1
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16vi
g,ni

vi
g,pi

1
W̄ i

ni
W̄ i

pi

∫
Snl

e∗niρi
(ω̄i)
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γ jkl
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3ω̄iε0a2
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g,p jvk

g,qk
vl

g,ml
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g,ni
)

1
2

1

(W̄ j
p jW̄ k

qk
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W̄ i
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)

1
2

∫
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e∗niρi
(ω̄i) · χ̂(3)(ω̄ j,−ω̄k, ω̄l)

...ep jρ j(ω̄ j)e∗qkτk
(ω̄k)emlσl(ω̄l)dS. (7.32e)

In these equations, Snl(z) is the transverse surface of the region filled with nonlin-

ear material. Note that the exponential factor in the term describing the FWM does not

average to zero because the FWM interaction is assumed to be nearly phase-matched

and therefore the exponential factor varies over a characteristic length that is much

larger than the lattice constant, a. Importantly, the linear and nonlinear effects in

Eq. (7.31) appear as being inverse proportional to the vg and v2
g, respectively. In other

words, one does not need to rely on any phenomenological considerations to describe
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slow-light effects, as they are naturally captured by our model.

7.3.4 Carriers dynamics

The last step in our derivation of the theoretical model describing FWM in Si-PhCWs

is to determine the influence of photogenerated FCs on pulse dynamics. To this end,

we first find the rate at which electron-hole pairs are generated optically, via degenerate

and nondegenerate TPA, and as a result of FWM. More specifically, we first multiply

Eqs. (7.29), after all linear terms have been discarded, by A(i)∗
niρi , then multiply the com-

plex conjugate of Eqs. (7.29) by A(i)
niρi , and sum the results over all carrier frequencies

and modes. The outcome of these simple manipulations can be cast as:

∂
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. (7.33)

The sum in the l.h.s. of this equation represents the rate at which optical power

is transferred to FCs. This power is absorbed by carriers generated in the silicon slab,

in the infinitesimal volume dV (z) = Anl(z)dz, where Anl(z) is an effective area. This

area is defined in terms of the Poynting vector of the field propagating inside the silicon

slab,

Anl(z) =

[∫
Snl

|⟨E(r, t)×H(r, t)⟩t |dS
]2∫

Snl
|⟨E(r, t)×H(r, t)⟩t |2dS

. (7.34)

In this equation, ⟨ f ⟩t means the time average of f . Using Eq. (7.20), and taking into

account the fact that A(i)
niρi varies in time much slower than e−iω̄it , one can express
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Eq. (7.34) in the following form:
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. (7.35)

In spite of the fact that it might seem difficult to use this formula to calculate the

effective area, we will show in the next section that in cases of practical interest it can

be simplified considerably. We also stress that Eq. (7.35) gives the effective transverse

area of the region in which FCs are generated, so that it should not be confused with the

modal effective area. In fact, since in the FWM process there are several co-propagating

beams, a single effective modal area is not well defined.

The energy transferred to FCs when an electron-hole pair is generated via absorp-

tion of two photons with frequencies ω̄i and ω̄ j is equal to h̄(ω̄i+ ω̄ j). Using this result

and neglecting again all terms in Eq. (7.33) that average to zero, it can be easily shown

that the carriers dynamics are governed by the following rate equation:
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]}
, (7.36)

where τc ≈ 500ps [7. 77] is the FC recombination time in Si-PhCWs and ζ ′ (ζ ′′) means

the real (imaginary) part of the complex number, ζ .

7.4 Degenerate four-wave mixing
The system of coupled nonlinear partial differential equations, Eqs. (7.31) and

Eq. (7.36), fully describes the FWM of optical pulses and FCs dynamics and repre-

sents the main result derived in this study. In practical experimental set-ups, however,

the most used pulse configuration is that of degenerate FWM. In this particular case, the



173

optical frequencies of the two pump pulses are the same, ω̄1 = ω̄2 ≡ ωp, whereas the

two generated pulses, the signal and the idler, have frequencies ω̄3 ≡ ωs and ω̄4 ≡ ωi,

respectively. Moreover, we assume that all modes are forward-propagating modes and

that at each carrier frequency there is only one guided mode in which the optical pulses

that enter in the FWM process can propagate – others, should they exist, would not

be phase-matched – so that we set Ni = 1, i = 1, . . . ,4. Under these circumstances,

Eqs. (7.31) and Eq. (7.36) can be simplified to:
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where ∆β̄ = βs + βi − 2βp. The coefficients of the linear and nonlinear terms in

Eqs. (7.37) and Eq. (7.38) are:
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Figure 7.4: Energy diagrams representing the nonlinear optical processes included in
Eqs. (7.37). (a) SPM and degenerate TPA corresponding to γ ′µ and γ ′′µ , respectively.
(b) XPM and XAM corresponding to γ ′µν and γ ′′µν , respectively. Two possible ways
of energy transfer that can occur during a degenerate FWM process: (c) two pump
photons generate a signal and an idler photon, a process described by γpsi; (d) the
reverse process, described by γips and γspi, in which a signal and an idler photon
generate two pump photons.
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where µ and ν ̸= µ take one of the values p, s, and i and the frequency degeneracy at

the pump frequency has been taken into account.

Note that, as expected, when the nonlinear coefficients γ’s are real quantities,

namely when nonlinear optical absorption effects can be neglected, the optical pump-

ing term in Eq. (7.38) vanishes. More specifically, if the frequencies of the interacting

waves are far from the transition frequencies of the medium, a condition that is satis-

fied in our case, the time-reversal and overall permutation symmetry properties of the

nonlinear susceptibility hold [7. 74], so that one can easily demonstrate that:

γ∗psi(z) = γspi(z) = γips(z). (7.40)

This relation, which can be proven to be equivalent to the Manley-Rowe relations as-

sociated to the FWM process, shows that in these circumstances the FWM interaction

does not contribute to generation of FCs and consequently the last term in Eq. (7.38)

can be dropped.

Moreover, since in experiments usually Pp ≫ Ps,Pi, the effective area given by

Eq. (7.35) can be reduced to the following simplified form:

Anl(z) =

(∫
Snl

∣∣Re
[
ep(ωp)×h∗

p(ωp)
]∣∣dS

)2

∫
Snl

∣∣Re
[
ep(ωp)×h∗

p(ωp)
]∣∣2dS

. (7.41)

The types of nonlinear interactions incorporated in our theoretical model described

by Eqs. (7.37) are summarized in Fig. 7.4 via the energy diagrams defined by the fre-

quencies of the specific pairs of interacting photons. Thus, as per Fig. 7.4(a), the terms

proportional to the γ ′µ and γ ′′µ coefficients describe SPM and degenerate TPA effects,

respectively, whereas Fig. 7.4(b) illustrates XPM and XAM (also called nondegen-

erate TPA) interactions whose strength is proportional to γ ′µν and γ ′′µν , respectively.

Finally, there are two distinct types of FWM processes, represented in Fig. 7.4(c) and

Fig. 7.4(d). In the first case two pump photons combine and generate a pair of photons,

one at the signal frequency and the other one at the idler, a process described by the

term proportional to γpsi. The reverse process, represented by the γips and γspi terms,

corresponds to the case in which a signal and an idler photon combine to generate a



176

pair of photons at the pump frequency.

As Eqs. (7.39) show, the linear and nonlinear optical coefficients of the waveguide

depend on the index of refraction of silicon, both explicitly and implicitly via the optical

modes of the waveguide. In our calculations the implicit modal frequency dispersion

is not taken into account because it cannot be incorporated in the PWE method used to

compute the modes. On the other hand, the explicit material dispersion is accounted for

via the following Sellmeier equation describing the frequency dependence of the index

of refraction of silicon [7. 78]:

n2(λ ) = ε +
A
λ 2 +

Bλ 2
1

λ 2
1 −λ 2 , (7.42)

where λ1 = 1.1071µm, ε = 11.6858, A = 0.939816µm2, and B = 8.10461×10−3.

The system of coupled equations, Eqs. (7.37) and Eq. (7.38), form the basis for

our analysis of degenerate FWM in silicon PhC waveguides. In our simulations, based

on numerical integration of this system of equations using a standard split-step Fourier

method combined with a fifth-order Runge-Kutta method for the integration of the

linear, carriers dependent terms, the z-dependence of the coefficients in these equations

is rigorously taken into account. However, one can significantly decrease the simulation

time by averaging these fast-varying coefficients over a lattice constant, as this way the

integration step for the resulting, averaged system can be increased considerably. The

derivation of this averaged model is presented in the Appendix-B.

One of the key differences between our theoretical description of FWM processes

in Si-PhCWs and the widely used models for FWM in waveguides with uniform cross-

section, such as optical fibres or silicon photonic wires, is that the linear and nonlinear

waveguide coefficients are periodic functions of the distance along the waveguide. In

what follows, we discuss this feature of the FWM in more detail, starting with the ef-

fective area, Anl, defined by Eq. (7.41). The dependence of this area on the longitudinal

distance, z, is presented in Fig. 7.5(a), where z spans the length of a unit cell. As we

have discussed, a physical characteristic of slow-light modes is their increased spatial

extent. This property is clearly illustrated in Fig. 7.5(a), which shows that in the case

of the even and odd modes the effective area increases by almost a factor of two when

the group index varies from 14 to 120 and from 8.6 to 65, respectively. This property
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Figure 7.5: (a) Dependence of Anl on z, determined for the odd (solid line) and even (dashed
line) modes for several values of the group-index, ng. (b) Frequency dispersion of
Ãnl calculated for the two modes, in the spectral domain where they are guiding
modes.

is also illustrated by the frequency dispersion of the effective area, averaged over a unit

cell, as per Fig. 7.5(b). Thus, it can be seen in this figure that the effective area has a

maximum at kz ≈ 0.3(2π/a) for the even mode and at the edge of the Brillouin zone

for both modes, namely in the regions of slow light indeed.

The z-dependence of the spatial mode overlap, κ , and the frequency dispersion of

its spatial average over a unit cell, κ̃ , are plotted in Figs. 7.6(a) and 7.6(b), respectively.

These figures show that the mode overlap varies more strongly with z in the case of the
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even mode, whereas in both cases the mode overlap variation increases as the group-

index, ng, increases. Interestingly enough, the averaged overlap coefficient of the even

mode has a maximum at kz ≈ 0.3(2π/a), i.e. λ ≈ 1.52µm, which coincides with a

minimum of its vg. Note also that whereas κ(z) can be larger than unity within the unit

cell, its average, κ̃ < 1. This result is expected because κ̃ quantifies the mode overlap

with the slab waveguide.

In Fig. 7.7 we present the dependence on z of another physical quantity that char-
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acterizes the linear optical properties of the PhC waveguide, namely its dispersive prop-

erties. This parameter, δ , quantifies the extent to which the z-dependent dispersion co-

efficients differ from their averaged values. Similarly to the mode overlap coefficient κ ,

δ (z) shows a more substantial changes with z in the case of the even mode as compared

to the odd one and an increase of the amplitude of these oscillations with the increase

of ng. Moreover, as it has been demonstrated in the preceding section, the average of

δ (z) over a unit cell is equal to unity.

The z-dependence of the nonlinear waveguide coefficient that characterizes the

strength of SPM and TPA effects and the wavelength dependence of its average over a

unit cell are plotted in the top and bottom panels of Fig. 7.8, respectively. One relevant

result illustrated by these plots is that the nonlinear waveguide coefficient increases

considerably as the GV of the optical mode is tuned to the slow-light regime. Indeed,

for the case presented in Figs. 7.8(a) and 7.8(b) the group-index of the odd and even

modes are ng = 6.4 and ng = 11.5, respectively. This phenomenon is better illustrated

by the wavelength dependence of the spatially averaged values of γ ′(z) and γ ′′(z), which

are shown in Figs. 7.8(c) and 7.8(d), respectively. Thus, these plots indicate that the

nonlinear waveguide coefficient increases by more than an order of magnitude as the

wavelength is tuned from the fast-light to the slow-light regime, the nonlinear interac-

tions being enhanced correspondingly.
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7.5 Phase-matching condition

Before we use the theoretical model we developed to investigate the properties of FWM

in Si-PhCWs, we derive and discuss the conditions in which optimum nonlinear pulse

interaction can be achieved. In particular, efficient FWM is achieved when the interact-

ing pulses are phase-matched, namely when the total (linear plus nonlinear) wavevector

mismatch is equal to zero. In the most general case this phase-matching condition de-

pends in an intricate way on the peak power of the pump, Pp, signal, Ps, and idler, Pi,

as well as on the linear and nonlinear coefficients of the waveguide [7. 79]. This com-

plicated relation takes a very simple form when one considers an experimental set-up

most used in practice, namely when the pump is much stronger than the signal and idler,

Pp ≫ Ps,Pi. Under these circumstances, the phase-matching condition can be expressed
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as:

2γ ′pPp −2βp +βs +βi = 0. (7.43)

In order to determine the corresponding wavelengths of the optical pulses, this

relation must be used in conjunction with the energy conservation relation, that is

2ωp = ωs +ωi.

An alternative phase-matching condition, less accurate but easier to use in practice,

can be derived by expanding the propagation constants, βs,i(ω), in Taylor series around

the pump frequency, ωp:

βs,i(ω) = ∑
n≥0

(ω −ωp)
n

n!
dnβs,i

dωn

∣∣∣∣
ω=ωp

. (7.44)

Inserting these expressions in Eq. (7.43) and neglecting all terms beyond the fourth-

order, one arrives to the following relation:

2γ ′pPp +β2p(∆ω)2 +
1

12
β4p(∆ω)4 = 0, (7.45)

where ∆ω ≡ |ωp −ωs|= |ωp −ωi|.

The wavelength diagrams presented in Figs. 7.9(a) and 7.9(b) display the triplets

of wavelengths for which the phase-matching conditions expressed by Eq. (7.43) and

Eq. (7.45), respectively, are satisfied. These wavelength diagrams were calculated only

for the even mode because only this mode possesses spectral regions with anoma-

lous dispersion [cf. Fig. 7.3(b)], which is a prerequisite condition for phase-matching

the FWM. More specifically, efficient FWM can be achieved if the pump wavelength

ranges from λp = 1.52 µm to 1.56 µm. Moreover, the diagrams in Fig. 7.9 show that

the predictions based on Eq. (7.43) and Eq. (7.45) are in good agreement, especially

when ∆ω is small. They start to agree less as ∆ω increases because the contribution of

the terms discarded when the series expansion of βs,i(ω) is truncated increases as ∆ω

increases.

Figure 7.9 also suggests that the spectral domain in which efficient FWM is

achieved depends on the pump power, Pp. To be more specific, it can be seen that

for Pp . 0.7W, a spectral gap opens where the phase-matching condition cannot be



182

1.52 1.53 1.54 1.55 1.56
1.52

1.54

1.56

1.58

1.6

1.52 1.53 1.54 1.55 1.56
1.52

1.54

1.56

1.58

1.6

λ
p
 [μm]

λ
s
 &

 λ
i [

μ
m

]
λ

s
 &

 λ
i [

μ
m

]

λ
p
 [μm]

P
p
=3 W

P
p
=1.5 W

P
p
=0.5 W

P
p
=3 W

P
p
=1.5 W

P
p
=0.5 W

(a)

(b)

Figure 7.9: (a), (b) Wavelength diagrams defined by Eq. (7.43) and Eq. (7.45), respectively. In
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satisfied. The spectral width of this gap increases when Pp decreases as the the waveg-

uide was not designed to possess phase-matched modes in the linear regime. Moreover,

the diagrams presented in Fig. 7.9 show that in the fast-light regime the wavelengths

defined by the phase-matching condition depend only slightly on Pp, whereas a much

stronger dependence is observed when the wavelengths of the signal and idler lie in

slow-light spectral domains.
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7.6 Results and discussion
In this section we illustrate how our theoretical model can be used to investigate various

phenomena related to FWM in Si-PhCWs. In particular, we will compare the pulse

interaction in slow- and fast-light regimes, calculate the FWM gain, and investigate the

influence of various waveguide parameters on the FWM process. The choice of the

values of physical parameters of the co-propagating pulses and that of the input pump

power has been guided by the exact phase-matching condition given by Eq. (7.43). In

all our calculations we assumed that the pulses propagate in the even mode and, unless

otherwise specified, the following values for the pulse and waveguide parameters have

been used in all our simulations: the input peak pump power, Pp = 102Ps = 5W, the

input pulse width, Tp = Ts = 7ps, and the intrinsic waveguide loss coefficient, αin =

50dBcm−1[7. 58].

Let us consider first the evolution of the envelopes of the pulses in the time do-

main, both in the slow- and fast-light regimes, as illustrated in Fig. 7.10. The triplet

of wavelengths for which the phase-matching condition is satisfied is λp = 1554nm,

λs = 1536nm, and λi = 1571nm in the fast-light regime, whereas in the slow-light

regime the wavelengths are λp = 1559nm, λs = 1524nm, and λi = 1597nm. We stress

that in both cases the pump pulse propagates in the fast-light regime, whereas the sig-

nal and idler are both generated either in the fast- or slow-light regime. All the input

pulse parameters used for the fast light and slow light simulations are presented in the

following Table-7.1 and Table-7.2, respectively.

Under these circumstances, one expects that the pump evolution in the time

domain is similar in the two cases, a conclusion validated by the plots shown in

Figs. 7.10(c) and 7.10(d). However, the dynamics of the signal and idler are strik-

ingly different when they propagate in the slow-light or fast-light regimes. There are

several reasons that account for these differences. First, whereas the FCA coefficient,

αfc, has similar values in the two cases, the FCA and intrinsic losses are much larger

in the slow-light regime because the strength of both these effects is inverse propor-

tional to vg. This is reflected in Fig. 7.10 as a much more rapid decay in the slow-light

regime of the signal and idler pulses. Second, it can be seen that in the slow-light

regime the idler pulse grows at a faster rate. This is again a manifestation of slow-light

effects. In particular, the nonlinear coefficient γips, which determines the FWM gain, is
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Figure 7.10: Pulse evolution in the time domain. Left (right) panels correspond to fast-light
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ng,p = 8.64 (ng,p = 8.69), ng,s = 10.37 (ng,s = 23.3).

inverse proportional to (vg,ivg,s)
1/2 [see Eq. (7.39f)]. As a consequence, the FWM gain

is strongly enhanced when both the signal and idler propagate in the slow-light regime.

The slow-light effects are reflected not only in the characteristics of the time-

domain propagation of the pulses but they also affect the evolution of the pulse spectra.

In order to illustrate this idea, we plot in Fig. 7.11 the z-dependence of the spectra of the

pulses. Similarly to the time-domain dynamics, the spectra of the pump are almost the

same in the slow- and fast-light regimes as its GV does not differ much between the two

cases. The most noteworthy differences between the slow- and fast-light scenarios can

again be observed in the case of the idler and signal. Thus, in the slow-light regime the

idler decays faster due to increased losses and grows and broadens more significantly

because of enhanced FWM gain and FCD effects, respectively. The influence of FCD
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physical λp = 1.554µm λs = 1.536µm λs = 1.571µm
parameters

T0 [ps] 7 7 7
P0 [W ] 5 5e-2 0

αin [dB cm−1] 50 50 50
β1 [ps/m] 2.88·104 3.04·104 2.97·104

β2 [ps2/m] -20.47 -4.2·104 2.55
β3 [ps3/m] -35.51 -7.02·105 -36
β4 [ps4/m] -1.277 9.826 1.326

βT PA [cm/GW ] 1.3·10−11 1.35·10−11 1.28·10−11

n2 [cm2/W ] 5.4·10−18 5.39·10−18 5.42·10−18

γ ′p,s,i [W−1m−1] 748.56 793.97 840.87
γ ′′p,s,i [W−1m−1] 228.11 241.94 256.24

γ ′ps,sp,ip [W
−1m−1] 765.11 814.158 803.48

γ ′′ps,sp,ip [W
−1m−1] 233.33 248.098 244.84

γ ′pi,si,is [W
−1m−1] 164.07 160.21 789.36

γ ′′pi,si,is [W
−1m−1] 49.99 48.82 240.54

γ ′psi,spi,ips [W
−1m−1] 800.66 781.95 771.69

γ ′psi,spi,ips [W
−1m−1] 238.77 243.29 240.1

L [µm] 412 412 412

Table 7.1: Input pulse parameters for the fast light case of degenerate FWM of Fig. 7.10.

physical λp = 1.559µm λs = 1.524µm λs = 1.597µm
parameters

T0 [ps] 7 7 7
P0 [W ] 5 0.05 0

αin [dB cm−1] 50 50 50
β1 [ps/m] 2.88·104 7.04·104 9.31·104

β2 [ps2/m] -57 -77.18·103 7.58·103

β3 [ps3/m] -38.49 -4.41·105 -2.24·103

β4 [ps4/m] -2.43 -2·107 9.63
βT PA [cm/GW ] 1.29·10−11 1.42·10−11 1.22·10−11

n2 [cm2/W ] 5.4·10−18 4.9·10−18 6.19·10−18

γ ′p,s,i [W−1m−1] 778.56 4.66·103 5.65·103

γ ′′p,s,i [W−1m−1] 237 1.42·103 1.72·103

γ ′ps,sp,ip [W
−1m−1] 1.75·103 4.49·103 4.29·103

γ ′′ps,sp,ip [W
−1m−1] 532.6 1.37·103 1.31·103

γ ′pi,si,is [W
−1m−1] 2.05·103 1.79·103 2.0·103

γ ′′pi,si,is [W
−1m−1] 626 545.12 611

γ ′psi,spi,ips [W
−1m−1] 937.6 -531.3 -506.93

γ ′′psi,spi,ips [W
−1m−1] -2.92·103 1.84·103 1.76·103

L [µm] 412 412 412

Table 7.2: Input pulse parameters for the slow light case of degenerate FWM of Fig. 7.10.
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Figure 7.11: From top to bottom, the left (right) panels show the evolution of the spectra of
the idler, pump, and signal in the case of fast-light (slow-light) regimes. The
waveguide and pulse parameters are the same as in Fig. 7.10.

on the spectral features of the pulses can also be seen in the case of the signal and,

to a smaller extent, the pump. More specifically, Eq. (7.9a) shows that the index of

refraction of the waveguide decreases due to the generation of FCs. This in turn leads to

a phase-shift and, consequently, a blue-shift of the pulse [7. 14]. Interestingly enough,

one can also see in Fig. 7.11 that as the frequency of the pulses shifts during their

propagation new spectral peaks are forming at the initial wavelengths for which the

phase-matching condition was satisfied.

In order to gain a deeper insight into the influence of slow-light effects on the

FWM process, we computed the z-dependence of the pulse energies when the frequen-

cies of the signal and idler were tuned in the slow-light regions of the even mode of
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the waveguide. We considered two scenarios, namely these energies were calculated

by including FWM terms in Eqs. (7.37) and Eq. (7.38) and, in the other case, by setting

them to zero, that is γpsi = γspi = γips = 0. In the former case, the FWM terms are

responsible for transferring energy from the pump pulse to the signal and idler. There-

fore, a suitable quantity to characterize the efficiency of this energy transfer is what

we call the FWM enhancement factor, η , which in the case of the signal is defined as

ηs = 10log[(ESXF −ESX)/Es,in]. Here, ESXF and ESX are the signal energies calculated
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by taking into account, in one case, SPM, XPM, and FWM effects, and only SPM and

XPM terms in the other case (i.e. FWM terms are neglected in the latter case), and Es,in

is the input energy of the signal.

The results of these calculations are summarized in Fig. 7.12. In particular, it

can be clearly seen in Fig. 7.12(a) that the FWM enhancement factor is strongly de-

pendent on pulse propagation regime. To be more specific, as the signal and idler are

shifting in the slow-light regime a smaller amount of energy is transferred from the

pump pulse to the signal. There are two effects whose combined influence leads to

this behaviour. First, as we discussed, the pulses experience larger optical losses in the

slow-light regime and therefore the signal losses energy at higher rate. Equally impor-

tant, as the pulses are tuned in the slow-light regime the walk-off parameter, ∆, defined

as ∆ = 1/vg,s−1/vg,p, increases, meaning that the pulses interact for a shorter time and

consequently less energy is transferred to the signal. These conclusions are clearly val-

idated by the results summarized in Fig. 7.12(b), where we plot the energy of the signal

vs. the propagation distance, determined for several values of the walk-off parameter.

In addition, this figure somewhat surprisingly suggests that the FWM process is more

efficient in the fast-light regime, which is again due to the fact that the pump and signal

overlap over longer time.

It is well known that in the slow-light regime linear optical effects are enhanced by

a factor of c/vg, whereas cubic nonlinear interactions increase by a factor of (c/vg)
2.

For example, FCA and TPA are proportional to v−1
g and v−2

g , respectively. Our theo-

retical model predicts, however, that when the mutual interaction between FCs and the

optical field is taken into account these scaling laws can significantly change. This can

be understood as follows: the amount of FCs generated via TPA, N, is proportional to

v−2
g and since FCA is proportional to the product v−1

g N, it scales with the GV as v−3
g .

In order to validate this argument we have determined the optical total loss experi-

enced by a pulse when it propagates in the presence of TPA and FCA or, in a different

scenario, when only TPA is present [the latter case is realized by simply setting αfc = 0

in Eqs. (7.37)]. Moreover, to simplify our analysis, we consider the propagation of

only one pulse by setting all parameters describing XPM and FWM interactions to

zero. Finally, we also reduced the input power to 100 mW in order to avoid strong

SPM-induced pulse reshaping. Under these conditions, the effect of the FCA on the
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pulse dynamics can be conveniently characterized by introducing a loss factor, Λ, de-

fined as Λ = 10log[(ET −ET F)/Ein], where ET F and ET are the pulse energies in the

case when both TPA and FCA terms are included in the model and when only TPA

is present, respectively, and Ein is the input energy of the pulse. The results of these

calculations are presented in Fig. 7.13.

The variation of the loss factor, Λ, with the propagation distance, determined for

several values of the GV is presented in Fig. 7.13(a). As one would have expected, the

loss factor increases with the group-index, ng, which is a reflection of the fact that the

FC-induced losses increase with the decrease of the GV. One can observe, however,

that when the propagation distance is larger than about 139a the loss factor begins to
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decrease when the GV decreases. This behaviour is a direct manifestation of slow-light

effects, namely as the frequency is tuned to the slow-light regime the optical losses

increase significantly irrespective of the fact that only TPA is considered or both TPA

and FCA effects are incorporated in the numerical simulations.

This subtle dependence of FC-induced losses on vg is perhaps better reflected by

the plots presented in Fig. 7.13(b). Thus, for several values of the propagation distance,

we have determined the variation of Λ with the group-index, ng. Then, by calculating

the slope of the function Λ(ng) represented on a logarithmic scale one can determine

how FC-induced losses scale with vg [cf. the inset in Fig. 7.13(b)]. The results of this

analysis clearly demonstrate that FC losses are proportional to v−3
g , which agrees with

the predictions of our qualitative evaluation of this dependence. We stress that for large

ng (i.e., small vg) the v−3
g dependence no longer holds at large propagation distance,

chiefly because the pulse is strongly reshaped in the slow-light regime due to enhanced

nonlinear optical effects, and thus its peak power is no longer exclusively determined

by optical losses.

In order to gain more information about the influence of FCs on optical losses, we

launch a new set of simulations where the pulse and waveguide parameters used for the

slow light case of this simulation have already been presented in Table 7.2 (except that

the input pump power is Pp = 3 W and Ps = 0.03 W ) while for the case of fast light

regime are summarized in Table 7.3.

According to Fig. 7.14(a) it can be seen that αfc is slightly larger at the idler, which

is due to the smaller frequency, and that no significant difference is observed between

the slow- and fast light regimes, mainly due to the fact that FCs are mostly generated by

the pump. Importantly, however, since the FCA is proportional to αfc/vg, it is about two

times larger in the slow-light regime as compared to its value in the fast-light regime.

As the signal is tuned into the slow-light regime ∆ increases, which results in the

degradation of the FWM conversion efficiency, CE = 10log(Ei(z)/Es,in), the maximum

CE being reached at shorter distance [see Fig. 7.14(b)]. This scenario can be understood

as follows: as ∆ increases the pump and signal pass through each other in a shorter time,

which results in weaker FWM, while at large distance increased losses in the slow-light

regime lead to smaller CE.

Thus, as per Fig. 7.15(a), our analysis shows that the CE only slightly depends
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on the dispersion coefficients and although the (approximate) Eq. (7.45) predicts that it

must depend only on even-order coefficients it can be seen that β3 affects to some extent

the CE. Moreover, it can be seen in Fig. 7.15(b) that, as expected, the CE increases

with the pump power, and that the larger Pp the more FCs affect the CE. Note that for

power values considered here the phase-matching condition Eq. (7.43) depends weakly

on Pp. Our study also suggests that a maximum CE can be achieved for Tp = 7.1ps

and z = 285a, as per Fig. 7.15(c). Finally, Fig. 7.15(d) shows that irrespective of the

waveguide loss, αin, there is a certain distance, zmax, at which CE reaches a maximum

value, whereas for fixed z the CE monotonously decreases with αin.
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Input pulse λp = 1.555µm λs = 1.533µm λs = 1.578µm
parameters

T0 [ps] 7 7 0
P0 [W ] 3 0.03 0

αin [dB cm−1] 50 50 50
c/vg 8.64 11.3 10.4

β2 [ps2/m] 170 2.2·103 576
β3 [ps3/m] -46.48 -659.86 -54.35
β4 [ps4/m] -4.59 -372.55 3.98

βT PA [cm/GW ] 1.3·10−11 1.35·10−11 1.28·10−11

n2 [cm2/W ] 5.4·10−18 5.39·10−18 5.42·10−18

γ ′p,s,i [W−1m−1] 753.9 1.17·103 1.25·103

γ ′′p,s,i [W−1m−1] 229.7 356.2 381.1
γ ′ps,sp,pi [W

−1m−1] 917 1.17·103 967
γ ′′ps,sp,pi [W

−1m−1] 279i 355i 295i
γ ′ip,si,is [W

−1m−1] 1.13·103 929 953
γ ′′ip,si,is [W

−1m−1] 346 283 291
γ ′psi,spi,ips [W

−1m−1] 323.6 -286.9 -279
γ ′′psi,spi,ips [W

−1m−1] -1.06·103 941.4 915.4
L [µm] 412 412 412

Table 7.3: Input pulse parameters for the fast light case of degenerate FWM of Figs. 7.14 and
7.15.

7.7 Conclusion

In conclusion, we have derived a rigorous theoretical model, which describes pulsed

four-wave-mixing in one-dimensional photonic crystal slab waveguides made of sili-

con. Our theoretical model rigorously incorporate all key linear and nonlinear optical

effects affecting the optical pulse dynamics, including modal dispersion, free-carrier

dispersion, free-carrier absorption, self- and cross-phase modulation, two-photon ab-

sorption, cross-absorption modulation, and four-wave mixing. In addition, the mutual

interaction between photogenerated free-carriers and optical field is incorporated in our

theoretical analysis in a natural way by imposing the conservation the total energy of

the optical field and free-carriers. Importantly, our theoretical formalism allows one to

derive rigorous formulae for the optical coefficients characterizing the linear and non-

linear optical properties of the photonic crystal waveguides, avoiding thus any of the

approximations that are commonly used in the investigation of nonlinear pulse dynam-

ics in semiconductor waveguides based on photonic crystals.

As a practical application of the theoretical results developed in this study, we
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have used our theoretical model to investigate the properties of degenerate four-wave-

mixing of optical pulses propagating in photonic crystal waveguides made of silicon,

with a special focus being on highlighting the differences between the pulse dynam-

ics in the slow- and fast light regimes. This analysis has revealed not only that linear

and nonlinear effects are enhanced in the slow-light regime by a factor of ng and n2
g,

respectively, but also that these scaling laws are markedly affected in the presence of

free-carriers. Moreover, since our study has been performed in a very general frame-

work, i.e. generic optical properties of the waveguides (multi-mode waveguides) and

pulse configuration (multi-frequency optical field), our findings can also be used to de-

scribe many phenomena not considered in this work. For example, important nonlinear

effects, including stimulated and spontaneous Raman scattering, coherent anti-Stokes

Raman scattering, and third-harmonic generation, can be included in our model by

simply adding the proper nonlinear polarizations.

The present chapter has revealed the dependence of the optical properties of silicon

photonic crystal waveguides on the group velocity of the copropagating pulses. It has

also briefly demonstrated that the efficiency of degenerate FWM is strongly enhanced in

Si-PhCWs. However a more solid and detailed analysis of FWM is required in order to

gain a complete insight of this nonlinear process. To this end, we present a comparative

analysis of FWM in slow and fast light regime in the next chapter.
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Chapter 8

Conclusions and future work

The field of silicon photonics has attracted great attention during the recent years. The

striking linear and nonlinear features of silicon have inspired many researchers to elab-

orate on a large range of applications in optical telecommunications, computer systems

or even in medicine for therapeutic purposes. Further to that, silicon photonics provide

a unique ability to fabricate novel devices with properties and functionalities which are

dynamic and can tailored in a very convenient way. This work has totally focused on

exploring and exhibiting interesting nonlinear effects emerged from optical pulse prop-

agation in silicon nanopatterned waveguides. To this end, theoretical semi-analytic and

analytic models have been developed in this work in order to describe rigorously and

accurately nonlinear pulse dynamics that occur either in silicon wires or silicon pho-

tonic crystal slab waveguides.

Unlike the majority of the already published work in the field of photonics, the ob-

jective of the current project focused on the study and analysis of nonlinear phenomena

which occur when one or more pulses propagate in silicon waveguide media. The driv-

ing force for launching pulses and not continuous waves comes from the fact that the

real contemporary applications in computer and telecommunication systems formulate

the circulating information as bits which represent essentially a pulse shape. Therefore,

the evolution of the pulse shape along the propagation distance constitutes the corner-

stone of current communication systems. It is worth mentioning that the current work

has not only developed the mathematical software for simulating optical pulse propaga-

tion but also has studied efficient ways to eliminate significant pulse degradation which

is the most common limit in many optical applications.

By developing mathematical models for the description of nonlinear optical pulse
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propagation in silicon waveguides, we have tried to overcome some serious problems

emerged in optical applications which are mainly related to their physical size and

efficient operational bandwidth. Based on that, I will discuss how our work has directly

contributed either to improve or push the limits of these research challenges and how

it has managed to achieve its intended objectives. In what it follows, I will present the

contributions of the current work as well as the next potential step for the solution of

the remaining problems.

8.1 Contribution of this work to the field of silicon pho-

tonics
In this thesis I have presented theoretical analysis and numerical simulations for dif-

ferent nonlinear phenomena in silicon photonics related to nonlinear optical pulse co-

propagation in silicon nanowires and silicon photonic crystal slab waveguides. Re-

garding the silicon nanowires, similariton generation and collision, degenerate FWM

as well as pulse compression has been described and compared with the corresponding

nonlinear phenomena in silica fibres. At the same time, a detailed mathematical anal-

ysis of nonlinear pulse dynamics in silicon photonic crystal slab waveguides has been

demonstrated focusing on degenerate FWM. Interesting scientific conclusions have

been drawn from the latter nonlinear phenomena enforcing researchers to design and

fabricate novel optical applications. One should note here that our theoretical model

incorporates all relevant linear optical effects, including waveguide loss, free-carrier

(FC) dispersion and FC absorption, nonlinear optical effects such as SPM, XPM, TPA

and XAM, as well as the coupled dynamics of FCs and optical field.

In order to make clear the novelty of this work, I present in the following bulleted

list the main contribution of the current PhD project to the field of silicon photonics.

• This work has proved that parabolic pulses (similaritons) or similariton collision

can be achieved in millimeter-long tapered silicon nanowires with engineered

decreasing normal GVD. One should note here that similar phenomenon in silica

fibres requires much longer propagation distances as the linear and nonlinear

dispersive properties of silica fibres are much weaker than of these in silicon

nanowires.
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• The efficiency of similariton generation process is strongly dependent on the ge-

ometry of the silicon nanowires. This property implies that silicon nanowires

provide an additional degree of freedom for tailoring such nonlinear phenomena

as the non flexible geometry of fibres pose a limit on such kind of manipulations

and improvements.

• We showed that significant pulse compression can be obtained in just few mil-

limeters of optical pulse propagation unlike the case of silica fibres where the

neccessary distance is much longer. The current analysis also revealed that sig-

nificant pulse compression can be achieved not only when the dispersion param-

eter (|β2|, β2 < 0) decreases, as it occurs in the case of soliton compression in

fibres, but also when |β2| increases. Our investigation suggested a new scheme

for obtaining pulse compression by launching, initially, an optical pulse in nor-

mal dispersion regime (GV D > 0) and after a specific propagation distance in

anomalous dispersion regime (GV D < 0).

• A novel scheme was suggested in this work related to quasi phase-matched

FWM. In particular a periodically width modulated nanowire was proposed in

order to achieve an efficient FWM. In particular, the phase-matching condition

can be attained at more than one pair of wavelengths, which can be used to im-

plement optical stability. In the same context, FWM can be achieved not only

in anomalous dispersion regime but also in normal dispersion. This is a striking

feature which is not usually exhibited in silica fibres.

• A very general mathematical framework was developed which incorporates not

only all the linear and nonlinear pulse dynamics that occur in silicon photonic

crystals but also is able to describe the interaction of many co-propagating optical

pulses which are of the same or different electromagnetic mode.

• Regarding the theoretical model of ultrashort pulse propagation in silicon

nanowires, we have developed a parallel C++ OpenMP code (OpenMP stands for

open multi-processing) in order to be able to simulate multiple independent prop-

agation scenarios at the same time. This code like this could be easily embedded

in a commercial software after some improvements of the data input interface.
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8.2 Future prospects
As it has been stated many times in this work, the silicon photonics technology is

oriented to the design and fabrication of chips capable of optically transmitting and re-

ceiving information at large data rates such 100 gigabits of data per second. Essentially

silicon photonics technology will allow silicon chips to rely on pulses of light, rather

than electrical signals. Such chips could construct systems that will store information

in the cloud, analyze enormous amounts of data, and think more like a brain than a

standard computer. A development like this may be an important step toward com-

mercializing the next generation of computing technology. Further to this step is the

integration of silicon photonic chips with the computer processor in the same package,

avoiding the need for transceiver assemblies. This allows for faster, cheaper and lower

energy solution for computing, cloud and data centres. This design would improve the

performance and power efficiency of the optical interconnects while reducing the cost

of assembly. A vision of an optically connected 3-D supercomputer chip is shown in

the scheme of Fig.8.1.

Figure 8.1: Optically connected 3-D supercomputer chip

This design shows that silicon photonics layer will be integrated with high perfor-

mance logic and memory layers. Note here that photonic layer not only connects the

multiple cores, but also routes the traffic of the data. In such schemes challenges arise

because alignment tolerances are critical, typically in the sub-micron range, and optical

interfaces are sensitive to debris and imperfections, thus requiring the best in packaging

technology.
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Based on the mentioned future chip scale applications our work can be extended to

the study of more complicated optical schemes such as optical interconnects, receivers

and transmitters. An interesting aspect of this work would be to study the bit-error rate

of multiple pulse propagation in multiple optical channels. Such study can manifest

the optimum parameters that determine an efficient pulse propagation in a wide range

of applications such as super-computing, data centres etc. As the current work has

revealed the optical properties and the potential pulse dynamics of silicon nanowires

and silicon photonic crystals, it is more convenient for researchers to employ our recent

developed theoretical model to novel applications.

A more technical alternative extension of this work is the formulation of a more

compact C++ code which will be able to be embedded in commercial software in the

field of photonics. In addition to that, it would be important to reform the current

developed source code into a parallel code compatible with a message passing interface

(MPI) system. This would facilitate the study and design of more complicated optical

schemes such one shown in Fig.8.1. The interaction of optical pulses in advanced

optical structures may reveals new optical phenomena which will have crucial influence

in the forthcoming era of optical computer technology.
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Mathematical formulation of the semi-analytical model

By taking the z-derivatives in Eqs. (5.1a)-(5.1e) and inserting Eq. (3.1), in which

the first two terms in the RHS are neglected, into the resulting integrals, one obtain

after some mathematical manipulations the following system of ordinary differential

equations for the pulse parameters:
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=−2(γ)′′
∫ ∞
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This nonlinear system of equations depends on the specific pulse shape, u(z, t).

For hyperbolic secant pulses given by Eq. (5.2a) δ = 12/π2, so that this system reads,
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whereas δ = 2 in the case of Gaussian pulses given by Eq. (5.2b), so that (A1)

becomes,
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Derivation of the averaged model

The spatial scale over which the envelope of picosecond pulses varies is much larger

than the lattice constant of the PhC and therefore for such optical pulses one can sim-

plify the system of equations governing the pulse interaction, i.e. Eqs. (7.37) and

Eq. (7.38), by taking the average over one lattice constant. Under these conditions,

the corresponding system of coupled equations can be cast in the following form:
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The coefficients of the linear and nonlinear terms in these equations are given by the

following formulae:
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where Vnl is the volume occupied by silicon in a unit cell of the PhC waveguide and z0

an arbitrary distance. Finally, Anl(z) in Eq. (B3g) is given by Eq. (7.41), whereas the

index ϖ takes any of the following values: p, s, i, ps, si, ip, psi, spi, or ips.whereas

the index ϖ takes any of the following values: p, s, i, ps, si, ip, psi, spi, and ips. Note

that in deriving the averaged equations governing the pulse and FC dynamics, Eqs. (B1)

and Eq. (B2), we have assumed that the FWM process is nearly phase-matched, namely

∆β̄ ≪ 1/a. In other words, the phase of the exponential factors in these equations vary

much slower with the distance, z, as compared to the variation of the dielectric constant

of the PhC waveguide.

A comparison between the predictions of the full and averaged models is illus-

trated in Fig. B.2. Thus, we have considered the slow-light pulse dynamics presented

in Fig. 7.10 and determined the pulse evolution using both the full and averaged mod-

els. As it can be seen, both models predict a similar pulse dynamics for the entire

propagation length, z = 1000a. This result is expected as the envelope of picosecond

pulses, as are those chosen in our simulations, spans a large number of unit cells and

therefore the pulse amplitude is only slightly affected by the local inhomogeneity of

the index of refraction.

The fast variation with z of the pulse envelope is shown in Fig. B.2(g), where we
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Figure B.2: Comparison between pulse evolution as described by the full and averaged model
is presented in the left and right panels, respectively. The group-index of the pulses
are ng,i = 20.3, ng,p = 8.69, and ng,s = 23.3 and correspond to the slow-light prop-
agation scenario presented in Fig. 7.10. The bottom panel shows the z-dependence
of the normalized pulse amplitude, Ψµ(z) = Aµ(z0 + z)/Aµ(z0), µ = p,s, i, calcu-
lated for the unit cell starting at z0 = 200a.

plot the z-dependence of the normalized pulse amplitude, Ψµ(z) = Aµ(z0 + z)/Aµ(z0),

µ = p,s, i, calculated for the unit cell starting at z0 = 200a. It can be seen in this figure



that the pulse envelope varies at a spatial scale commensurable with the lattice constant

yet the amplitude of these variations is much smaller than the pulse peak amplitude.

The magnitude of these variations, however, would comparatively become more signif-

icant should the pulse duration would be brought to the femtosecond range.
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