Elastic Service Management in Computational
Clouds

Clovis Chapman*, Wolfgang Emmerich*,Fermin Galan Mérquez f,Stuart Clayman?, Alex Galis!
*Department of Computer Science, UCL, Malet Place, London, UK {c.chapman, w.emmerich}@cs.ucl.ac.uk
Telefénica I+D, Emilio Vargas 6, Madrid, Spain fermin@tid.es
iDepartment of Electrical Engineering, UCL, Gower Street, London, UK {s.clayman, a.galis} @ee.ucl.ac.uk

Abstract—

Cloud computing [1], [2] is rapidly changing the landscape of
traditional IT service provisioning. It presents service providers
with the potential to significantly reduce initial capital investment
into hardware by removing costs associated with the deployment
and management of hardware resources and enabling them to
lease infrastructure resources on demand from a virtually unlim-
ited pool. This introduces a great degree of flexibility, permitting
providers to pay only for the actual resources used per unit time
on a ‘“pay as you go” basis and enabling them to optimise their
IT investment whilst improving the overall availability and scale
of their services. In this manner, the need for overprovisioning of
services to meet potential peaks in demand can be considerably
reduced in favour of driving resource allocations dynamically
according to the overall application workload. This however
requires means of defining rules by which the service should
scale and mechanisms must be provided by the infrastructure to
monitor this state and enforce the rules accordingly.

We discuss in this paper an elastic service definition language
and service management that are developed in the context of the
RESERVOIR project to facilitate dynamic service provisioning in
clouds. This language builds on the Open Virtualisation Format,
a DMTF standard for the packaging and deployment of virtual
services, and introduces new abstractions to support service
elasticity. In addition, we detail the functional requirements
that the the cloud infrastructure must meet to handle these
abstractions.

I. INTRODUCTION

Cloud Computing has rapidly established itself as a paradigm
for the provisioning of IT services as utilities over the In-
ternet. With the boom of Web 2.0, and the development of
virtualisation technologies, a market opportunity has emerged
in de-coupling the provisioning of physical hardware from the
application level services they provide.

Companies supplying services over the Internet often need
to over-provision their servers by as much as 500 percent
to handle potential peaks in demand or cater for very high
growth rates [3]. In addition, the deployment of a service
is expensive and time consuming; machines must be set up
with an operating system, configured with network, storage
capabilities, and applications must be deployed. Entry costs
for a service provider can hence be very steep, often serving
as a barrier to the entrance of SMEs.

By harnessing virtualisation and grid technologies,
Infrastructure-as-a-service (IAAS) Clouds [1] remove such

This research has been partly funded by the RESERVOIR EU FP7 Project.
http://www.reservoir-fp7.eu/.

barriers by providing a foundation for the hosting and
deployment of web-based services, theoretically relieving
providers from the responsibility of provisioning the
computational resources needed to support these services.
Virtualisation technologies introduce a layer of abstraction
between physical hardware resources and virtualised operating
systems, enabling multiple systems to share single physical
servers, the suspension and resumption of execution of these
systems, and even their live migration from one physical
server to another.

Such capabilities enable the creation of a cost-effective
service-based online economy where resources and services
can be transparently and flexibly provisioned and managed as
utilities. Service providers can lease resources on a pay-as-
you-go basis and dynamically adjust their resource consump-
tion to accommodate increased loads.

But providing support for such activities requires a clear
understanding of the requirements of service providers to be
communicated to the cloud infrastructure. Indeed software
systems may be composed of numerous loosely coupled
components whose capacity requirements may need to evolve
individually to accommodate varying workloads. Further more
dependencies and constraints regarding deployment and place-
ment may exist, which must be taken into account when
migrating services from one host to another in a cloud. The
service provider must hence be given the tools to control
the provisioning process not just at deployment time, but
throughout the lifetime of a service. This requires specific
language abstractions that will be used to detail the provider’s
requirements in the form of a service manifest. In addition,
the underlying framework must present functional capabilities
that will enable these requirements to be enforced at run-time.

In this paper, we examine how we have handled the
problem of service definition in the RESERVOIR project, a
European Union FP7 funded project involving 13 academic
and commercial organisations in Europe to develop an Open
Cloud Computing Infrastructure building on open standards.
The principal contribution of this paper is a discussion of the
problem of dynamic resource allocation in clouds, and the
solutions we have proposed to expose application-level state
to service management components in order to ensure that
appropriate adjustment decisions are made in a timely manner
to meet service level objectives. The paper details the structure
of our service definition language and the syntactic elements
that we have adopted to support notions such as elasticity.

The paper is structured as follows: in Section II, we explore
the background to this research and give an overview of the
RESERVOIR architecture. In Section III, we examine key
requirements of a service definition language and detail our
proposed abstractions to handle service elasticity. In order to
demonstrate the usability of our approach we detail in Sec-
tion IV two use cases explored in the context of RESERVOIR,
an SAP Enterprise Resource Planning system and a grid based
computational chemistry application. Finally we conclude with
a discussion of related work in Section V and an overview of
future work.

II. BACKGROUND

Virtualisation technology, such as Xen [4] and VMWare [5], is
a key enabler of cloud computing. Whereas operating systems
would traditionally be responsible for managing the allocation
of physical resources, such as CPU time, main memory, disk
space and network bandwidth to applications, virtualisation
allows a hypervisor to run on top of physical hardware and
allocate resources to isolated execution environments known
as virtual machines, which run their own individual virtualised
operating system. Hypervisors manage the execution of these
operating systems, booting, suspending or shutting down sys-
tems as required. Some hypervisors even support replication
and migration of virtual machines without interruption.

As the unit cost of operating a server in a large server farm is
lower than in small data centres, such technologies have been
exploited to form the basis of cloud computing. Commercial
services, such as Amazon’s Elastic Compute Cloud (EC2) [6]
or IBM’s Blue Cloud [7], have been built on aggregating
physical resources and providing management technologies
enabling the co-ordinated allocation of resources to virtual
machines across numerous hypervisors.

However single-provider proprietary clouds are by nature
limited in their flexibility and scale. As the number of users
and online services hosted increase considerably, it is not pos-
sible to provide a seemingly endless compute utility without
partnering with other infrastructure providers to achieve the
appropriate economy of scale.

The Resources and Services Virtualisation without Barriers
(RESERVOIR) project aims to address these issues by building
on open standards and existing virtualisation products to define
a reference model and architecture to support the federation
and interoperability of computational clouds. RESERVOIR
aims to satisfy the vision of service oriented computing by
distinguishing the needs of Service Providers and Infrastruc-
ture Providers. Service providers understand the operation of
particular businesses and will offer suitable Service applica-
tions, and will lease resources in order to host these services.
Infrastructure providers on the other hand will own these
resources and provide the mechanisms to deploy and manage
self contained services. They may themselves lease additional
resources from their peers to form a seemingly infinite pool.

The overall RESERVOIR architecture is illustrated in Fig-
ure 1. In the context of this architecture, a service is a set of
software components, each with it’s own software stack (OS,
middleware, application, configuration and data) in the form

Service Manager :

Service Service] |
~

|

|

|

Service Manager
Service Service]
78

|

|

|

|

\/ |

VEE Manager |
|

|

|

|

VEE Manag‘ér

33395
’ i

\/ | | £ \/

VEE Host N

VEE Host N

|
Infrastructure Provider |

Infrastructure Provider |

Fig. 1. RESERVOIR architecture

of one or more virtualised images. Each component executes
in a dedicated Virtual Execution Environment (VEE) and these
may present different requirements. Service providers deploy
applications by communicating these requirements to a single
infrastructure provider.

The layers of the RESERVOIR architecture are briefly
described as follows.

o The Virtual Execution Environment Host (VEEH)
is the lowest layer of the architecture. It represents a
virtualised resource that can host one or more VEEs.
It provides a standard interface to different hypervisors,
translating requests from upper layers into commands
specific to the virtualisation platform.

o The Virtual Execution Environment Manager
(VEEM) is responsible for distributing services amongst
a collection of VEE Hosts, controlling the creation,
activation and de-activation of VEEs, migration and
resizing. It will place VEEs generally according to
policies defined by the infrastructure provider, such as
security and cost. In addition it is this layer that is
responsible for the federation of remote sites, through
cross site interactions with different VEEMs.

o The Service Manager acts as the primary interface
of the service provider. It will be responsible for the
instantiation of the service application, managing the
overall collection of components on behalf of the service
provider and monitoring the execution of the application
in order to drive potential capacity adjustments. This may
require adding or removing new instances of service com-
ponents and/or changing the requirements of a service
dynamically. The Service Manager also performs other
service management tasks, such as accounting and billing.

A full implementation of the architecture is under devel-
opment (www.reservoir-fp7.eu), which includes the VEEM
open source component OpenNebula, available from Open-
Nebula.org.

It is the service manager layer that we are concerned with
in this paper. In order for the service manager to deploy
and monitor an application consisting of several components,
these must be bound by a description of the overall software
system architecture and the requirements of the underlying
components, that we refer to as the Service Manifest. The

manifest will describe issues such as grouping instructions,
topology, etc. in addition to the functional and capacity needs
of each component.

We aim in this paper to identify the abstractions that should
be provided by a language used to specify a manifest, particu-
larly with regards to elasticity, and define the language syntax
by building on existing standards. We will also examine how
these syntactic elements relate to the underlying infrastructure.

III. ELASTIC SERVICE DEFINITION
A. Requirements

In this section, we break down the core requirements that a
service provider must describe in order to ensure the correct
provisioning of a service on a cloud computing infrastructure.
This enables us to determine the essential syntactic elements
that the service definition language should present. In the
following sections we will then identify how these require-
ments are met by existing standards, in particular the Open
Virtualisation Format, the extensions required, and provide an
overview of our approach.

1) Service Specification: A software application may be
composed of several loosely coupled components must to be
managed jointly. We can consider a standard 3 tier web appli-
cation, consisting of a single database, web servers and a load
balancer. Whilst independent, they present dependencies and
constraints that must be respected by the cloud infrastructure.
The service provider must hence be able to specify:

o SD1 Software architecture: The overall structure of the
service, and characteristics of each component.

o SD2 Hardware: The physical hardware requirements of
individual components (e.g. CPU, memory, etc.).

« SD3 Software environment: An explicit specification of
the software required to be run on the component, such
as the OS and kernel, or a reference to a pre-configured
virtual disk image with the appropriate application level
components.

o SD4 Network topology: The physical interconnections
of components and external interfaces required.

2) Elasticity Specification: In order to be able to automate
the scaling of applications to meet variations in workload, the
service provider must be able to describe the conditions within
which this scaling takes place. Referring to the web application
example, it may be necessary to increase the number of web
servers available, though the load balancer would continue to
serve as a single entry point.

o SDS Elasticity rules: The service provider can define
conditions related to the state and operation of the service,
and associated actions to follow should these conditions
be met. The actions may involve the resizing of a specific
service component (e.g. increase/decrease allocated mem-
ory) or the deployment/undeployment of specific service
instances.

e SD6 Key performance indicators: Providing support
for elasticity requires the definition of indicators of per-
formance that will be monitored to trigger adjustments
accordingly. These may be infrastructure level indicators

such as current disk use, but application level perfor-
mance indicators may prove necessary to maximise the
optimisation and response.

3) Virtualisation: The underlying use of virtualisation tech-
nologies requires a specification to be able to indicate con-
straints that may exist with regards to the deployment of
services on hypervisors. In particular:

« SD7 Migration constraints: The service provider must
specify which components can be moved from one host
to another in a transparent manner and the optimum
conditions that have to be met to minimise disruption
(e.g. maximum unavailability).

o SD8 Portability: The overall service may be tied to
specific hypervisor technology, or virtual machine im-
ages may require conversion to be migrated from one
host to another. Catering for a heterogeneous hosting
environment implies providing the means to specify such
constraints.

4) Component dependencies: The inter-relationships be-
tween components may not favour simultaneous deployment
of all components; some components may be required to
be available before others and configuration data may be
dependent on specific deployment instances. We identify the
following:

e SD9 Deployment: There may exist a need to specify
the order in which components are deployed (e.g. the
database before the web server). In addition some con-
figuration parameters may only be known at deployment
time, such as the IP address of a specific component
instance.

e SD10 Undeployment: Similarly, dependencies should
be taken into account when shutting down particular
components.

5) Component Customisation: The manifest should serve
as a template for easily provisioning instances of particular
components. Multiple instances of web servers for example
may be created from a same basic template and virtual image
and may require instance specific configuration data, such as
dynamically allocated IP addresses. The manifest language
must provide constructs to support the automatic generation
of instance specific values, and deployment time customisation
of images (SD11 Customisation).

6) Constraint Policy: Federation provides the ability to
seamlessly deploy services across multiple physical and ad-
ministrative domains, but doing so means allowing service
providers to control the spread of the application by defining
clear constraints on the distribution of services across sites
(SD12 Location constraints.). Placement constraints may
be of a technical nature (e.g. deploy certain components on
a same host to minimise latency) or administrative (avoid
untrusted locations).

7) Non-functional Requirements: In addition, we may take
into account several non-functional requirements. In particular,
the manifest should be specified in a language that is platform
independent (SD13), based on open standards (SD14) and
generally be supported by existing implementations to ease
development and adoption (SD15). It should also provide

abstractions to handle security and authentication (SD16).

B. Adopting open standards

In order to achieve the goal of interoperability for the feder-
ation of clouds it is important to examine existing standards
that may be supported by the virtualisation community. These
standards should enable the distribution of services across
clouds and meet the requirements detailed above. We are
not however solely concerned with interoperability but also
with addressing issues for IaaS clouds that are not completely
solved, in particular with regards to service elasticity.

Numerous software architecture description languages exist,
though the Open Virtualisation Format (OVF) [8], a DMTF
standard backed by VMWare and XenSource, is undoubtedly
the most suited as a building block for our manifest language.
OVF aims to offer a portable packaging mechanism for virtual
appliances in a platform neutral way.

In previous work [9], we have discussed a number of
extensions to the OVF syntax to support clouds, including
attribute and section changes to incorporate support for service
components IDs in elastics arrays, cross virtual machines ref-
erence, IP dynamic addresses and elasticity rules and bounds.
However, we must review the implications of these language
abstractions on the design of the RESERVOIR infrastructure,
and identify the level of support required to ensure the correct
provisioning of elastic services.

Indeed, there must exist a clear understanding of how we
derive from the language used to express the requirements of
the Service Provider a management cycle, which will consist of
several actions being taken throughout the lifetime of a service
to ensure a certain service quality being obtained. Using
the RESERVOIR framework as a reference, and examining
specifically issues related to dynamic capacity adjustment
and service deployment, we refine our OVF-based language
service definition language and syntax to incorporate these
abstractions, focusing specifically on elasticity and application
domain description.

We briefly describe OVF as follows: OVF allows multiple
virtual machines to be packaged as a single entity containing
an OVF descriptor, which will be in XML, any resources
which may be referred to in the descriptor, such as virtual
disk, ISO images, etc., and finally X.509 certificate files to
ensure integrity and authenticity. It is the OVF descriptor that
we will focus on here and will form the core syntax of the
manifest we have described.

It is an XML document composed of three main parts: a de-
scription of the files included in the overall architecture (disks,
ISO images, etc.), meta-data for all virtual machines included,
and a description of the different virtual machine systems.
The description is structured into various “Sections”. Focusing
primarily on the most relevant, the <pisksection> describes
virtual disks, <vetworksection> provides information regarding
logical networks, <virtualdardwaresection> describes hardware
resource requirements of components and <startupSection>
defines the virtual machine booting sequence.

In itself, OVF addresses requirements SDL1 to SDL4 by
providing means of specifying various loosely coupled com-
ponents, hardware and software requirements and network

topologies as a single logical entity. In addition, it addresses
SD9 and SD10 by providing means of describing the deploy-
ment and undeployment dependencies. The OVF specification
also addresses the issue of customisation (SDL11) by describ-
ing a communication protocol between host and guest (the
target virtual machine) that allows the deployment-time con-
figuration of a virtual machine instance. The <productsection>
of the descriptor allows various properties to be specified as
key-value pairs. Though various transport mechanisms may
be used to communicate these properties, the sole defined
approach at time of writing, the “iso” transport, consists of
dynamically generating CD/DVD images to be used as boot
disks during the start-up process.

As an open standard, it also addresses requirements SDL13
to SDL15, being supported by a number of currently available
tools to manipulate and create OVF packages, such as that
provided by VMWare. Finally, SDL16 is met through the
inclusion of X.509 certificates as previously described.

There are a number of requirements however that OVF
in itself does not meet. In particular it is focused solely on
initial deployment of fixed size services, and does not provide
measures to handle potential changes in requirements over
the lifetime of a service (SDL5 and SDL6). It also does not
provide measures to handle migration across hosts (SDL7 and
SDLS8) nor does it provide any measure to deal with federated
environments (SDL12).

Such language abstractions must hence be defined with
respect to the expected capabilities of cloud infrastructures.
This allows us to identify key functional characteristics that
the infrastructure should present. In the context of this paper,
we will focus on elasticity capabilities, refining and extending
the OVF descriptor to form a service manifest suited to a
dynamic cloud provisioning environment.

C. Abstract syntax of the Manifest Definition Language

We describe in this section the abstract syntax of the Manifest
Language and the relationship between syntactic elements of
the language and the underlying cloud infrastructure. The
abstract syntax covers the core elements of the language and
their accompanying attributes, and is modelled here using
the Essential Meta-Object Facility (EMOF), an OMG standard
part of the Model Driven Architecture initiative [10] for
describing the structure of meta-data. EMOF models are very
similar to UML class diagrams, in that they describe classes,
the data they contain and their relationships, but are at a higher
level of abstraction: they describe the constructs, rules and
constraints of a model. As such, EMOF is typically used to
define the syntax of languages. We describe this syntax with
respect to the domain elements that model the operation of
cloud infrastructure components.

Though outside of the scope of this paper, we can fur-
ther express the behavioural semantics of the language as
constraints between the abstract syntax and domain elements
in the model denotational style to define semantics that we
introduced in [11]. This provides a formalisation of these
semantics, ensuring that we limit ambiguities when it comes
to the interpretation of the manifest. This is crucial where

financial liabilities may exist; a formal understanding of the
nature of the service being provided is required in order to
ensure that the service is provisioned as expected by both
parties, and in a way that both can evaluate to be correct,
either through run-time monitoring capabilities or logs.

The core syntax relies upon, as previously stated, OVF. In-
corporating the OVF standard provides the manifest language
with a syntactic model for the expression of physical resource
requirements and hardware configuration issues. We introduce
new abstractions in the form of extensions to the standard
rather than create new independent specifications, as doing so
ensures continued compatibility with existing systems.

1) Application description language: The automated scal-
ing of service capacity to support potential variations in load
and demand can be implemented in numerous ways. Applica-
tion providers may implement such scaling at the application
level, relying on an exposed interface of the cloud computing
infrastructure to issue specific reconfiguration requests when
appropriate. Alternatively, they may have a desire to keep the
application design free of infrastructure specific operations
and opt instead to delegate such concerns to the infrastructure
itself. With a sufficient level of transparency at the application
level for workload conditions to be identified, and through the
specification of clear rules associating these conditions with
specific actions to undertake, the cloud can handle dynamic
capacity adjustment on behalf of the service provider.

It is the latter approach that we have chosen to adopt in the
context of RESERVOIR. By providing a syntax and framework
for the definition and support of elasticity rules, we can ensure
the dynamic management of a wide range of services with little
to no modification for execution on a cloud. With respect to
the syntax, we can identify the two following subsets of the
language that would be required to describe such elasticity:
service providers must first be able to describe the application
state as a collection of Key Performance Indicators (KPIs),
and the means via which they are obtained in the manifest.
These will then serve as a basis for the formulation of the
rules themselves, described in the following subsection.

Though it is possible to build elasticity rules purely based
on infrastructure level performance indicators, this may prove
limiting as will be detailed in the use cases. Indeed, the disk
space, memory or CPU load may not accurately reflect the
current needs of the application, nor suitably allow scaling to
be anticipated.

Because we do not want the manifest language to be tied
to any specific service architecture or design, it is necessary
to decouple the KPI descriptions from the application domain
via the use of an Application Description Language (ADL).
This language will allow the description of services in terms
of components, parameters and their monitoring requirements.

Alongside the syntactic requirements, a suitable monitor-
ing framework must exist. A service provider is expected
to expose parameters of interest through local Monitoring
Agents, responsible for gathering suitable application level
measurements and communicating these to the service man-
agement infrastructure. Though communication protocols with
the underlying framework are outside the scope of the model,
there must exist a correlation between the events generated by

the monitors and the KPIs described in the manifest. This is
modelled in Figure 2.

Service Management
Infrastructure

Application Domain

'
'

'

MonitoringAgent !

"

1 '

'

'

LoadBalancer

1 Application Description Language
'
MonitoringEvent

'
'
H ApplicationDescription |
+ID:String '
0..*

+name: QualifiedName |
Component

+type: Category
+value:String
+timestamp: Date

+name: QualifiedName

To..-
KPI

+category: Category
+name: QualifiedName
+unit: Unit

i +frequency: double

il <

\v4 H Subscriber OVFEnvelope
i +files: FileReference[]
LocalProcess |} V| +disks: Disk[]
* H v |+networks: Network[]
H * +virtualSystems:VirtualSys[]
v VirtualMachine [€—
'
'

DBMS

HTTPGet(..)
HTTPPost(..)
Connect(..)

ApplicationMonitor

'
i [subscribe(kpr) :
addEventType(Category)|:
publish(Event) H

notify(Event)

Fig. 2. Application Description Language

Using as an example a basic 3-tier web architecture, with
load balancer, web server and database management system,
the figure exemplifies the relationship between the ADL, the
RESERVOIR application-level monitoring infrastructure, and
the application domain. The syntax of the ADL consists
of one or more named components, with a number of as-
sociated KPIs. These KPIs are identified using appropriate
qualified names (e.g. com.sap.webdispatcher.kpis—
.sessions), that will allow the underlying infrastructure
to identify corresponding events obtained from an application
level monitor and forward these to subscribers responsible for
enforcing elasticity rules.

We are concerned in this example with the number of
simultaneous web sessions managed by the LoadBalancer
component. We can conceive that this parameter may be used
as a general indicator of load, and used to increase the number
of deployed instances of web servers.

Our actual implementation of the RESERVOIR monitoring
framework itself is fully described in [12]. Data sources, such
as application level monitoring agents, encapsulate one or
more probes responsible for the collection and publication
of specific attributes and values. Communication between
producers and consumers of data is divided between multiple
communication planes: the control plane, to manage the exe-
cution of infrastructure level probes, such as turning them on
and off and reconfiguration, the information plane, to facilitate
the exchange of related meta-data, and the data plane, for
the actual communication of KPI measurements. In order to
minimise the number of connections established between end
points a number of solutions are in place, including the use
of IP multicasting, and intermediate data aggregation points,
which will be responsible for collecting data packets and
processing these if necessary to produce new performance
indicators. This framework is well suited to the approach
adopted here, providing means of retrieving KPIs published
on the network from multiple sources including monitoring
agents.

2) Elasticity Rules: With respect to the rule syntax, we
adopt an Event-Condition-Action approach to rule specifica-

tion. Based on monitoring events obtained from the infras-
tructure, particular actions from the VEEM are to be requested
when certain conditions relating to these events hold true. This
requires the rules to be expressed with respect to the interface
of the underlying VEEM and monitoring events.

A representation of the elasticity rules based on a general
rule-base model and their relationship to monitoring events
and the cloud infrastructure is illustrated in Figure 3. The
syntax specifies conditions, based on monitoring events at the
application layer or otherwise, which would lead to specified
actions, based on a set of operations presented by the VEEM.
The operations, modelled on the OpenNebula framework ca-
pabilities will involve the submission, shutdown, migration,
reconfiguration, etc. of VMs and should be invoked within
a particular time frame. The conditions are expressed using
a collection of nested expressions and may involve numeri-
cal values, arithmetic and boolean operations, and values of
monitoring elements obtained. The relationship between KPIs
specified in the manifest and these events has been described
in the previous section. The elasticity rules will be supervised
by the cloud infrastructure at the Service Manager layer during
the running of the software system and it is expected that a
rule interpreter will receive events from the infrastructure or
application monitors and trigger such operations accordingly.
An example of a concrete OVF-based specification of an
elasticity rule will be provided in Section IV.

It is worth briefly discussing the subject of time man-
agement. The service provider controls the timeliness of the
response in multiple ways. Firstly the rate at which mon-
itoring events are sent by the application level monitor is
entirely dictated by the application and this should be carefully
balanced against deployment or adjustment time to avoid
duplicate responses. Secondly service providers can specify a
time frame within which particular actions should take place,
as described above. Finally, the current time can be introduced
as a monitorable parameter if necessary.

Elasticity rules can be a powerful tool to express capacity
constraints. This may be combined with predictive approaches
for the underlying infrastructure to anticipate future alloca-
tion changes but in itself, an Event Condition Action model
is highly intuitive and sufficiently expressive to handle the
majority of service applications as will be seen in Section IV.

Our prototype implementation relies on an XML parser
component to parse the rules and supply these to a rule engine
component, which will check the rules periodically against
monitoring records obtained from the network. Should the
conditions hold, actions will be triggered accordingly.

IV. USE CASES

In this section, we delineate the use cases relied upon to
identify the requirements specified in the previous section
and whose scalability objectives we have used as a basis for
the definition of elasticity rules. We present these scalability
objectives and demonstrate how these would be formulated
and met using the RESERVOIR framework.

We have relied on two cases, an enterprise grade system, the
SAP Enterprise Resource Planning system, and an academic

scientific grid application currently deployed at University
College London. In both instances, manifests describing the
overall architecture of the system were produced and these
were deployed on the RESERVOIR infrastructure.

A. SAP ERP systems

SAP systems are used for a variety of business applications,
such as Customer Relationship Management and Enterprise
Resource Planning. They will typically consist of generic
components customised by configuration used in combination
with custom-coded elements. A high-level architecture of an
SAP system is illustrated in Figure 4. SAP systems have a
traditional multi-tiered software architecture with a relational
database layer:

o SAP Web dispatcher The web dispatcher is responsible
for the handling of requests and session management, and
balancing workloads between multiple dialog instances.

« Dialog Instance (DI): The dialog instance is an appli-
cation server responsible for handling business logic and
generating HTTP-based dialogues that are shown in a
browser. Several instances of the DI may be deployed to
adapt to load.

o Central Instance (CI): The central instance provides
central services such as application level locking, mes-
saging and registration of DIs. Only a single instance of
a CI will be deployed.

« Database Management System: A single DBMS will
serve the SAP system.

Browser Presentation

Layer

Web Dispatcher

Server
Server
Central
Instance

Dialog
Instance

Dialog

Application
Instance

Layer

Java
Stored
Procedure

I | I

DBMS

Work
process

Database
Layer

Fig. 4. SAP three-tiered architecture

To date SAP systems are hosted in substantial data centres,
but organisations in the future might wish to deploy these
in a compute cloud in order to avoid the significant capital
investment. This however requires a number of architectural
constraints to be obeyed by the cloud.

Though a complete manifest was produced to describe an
SAP deployment on the RESERVOIR infrastructure, we can
only briefly cover essential requirements. The manifest will
specify a single template for each component alongside file
references to disk images which will contain the appropri-
ate software and configuration data. Components will have
strongly differing hardware requirements with the DBMS hav-
ing significantly higher storage requirements while the dialog
instances will be more processor intensive. In addition, the

ElasticityRule

+name: String | elasticityRules

VEEM

Rulelnterpreter
+veem:VEEM

1

+name: String Expression

+evaluateRules()

ElementSimpleValue |

Set | | QualifiedElement Iqq_

1

+invoke(Operation)

.

Trigger +evaluate()

+value

v

Subscriber

Parameter
+name: String
+type: String
+value

* yactions

opyl

Formula

Operation
+name: String

req
——

V

el | <<interface>>
1..2 |_FormulaElement

notify(Event)

monitoringRecords
*

NumericalODeration|<]—| BasicArithmeticOperation

MonitoringEvent

+ID:String

ForAll
+setid

+name: QualifiedName

+type: Category

Multiplication

+declaredvariable +value:String

+timestamp: Date

Division

'
'
'
' 1
'
| LessThan |——| Equal |
I addHost | suspend |E TimeConstraint
o ' [Tvalue |Greater0rEquaIThan|——| NotEqual |
listHosts shutdownVM E | Tmplies l——l o |
: | Iff |——| GreaterThan |
Csupmievm | :
:

Subtraction

'
Virtual Execution Environment ' Elasticity Rule Model

Fig. 3. Elasticity Rules Syntax

central instance will frequently make queries to the database
and the Central Instance should be located on the same LAN
subnet as the DBMS to minimise latency. Deployment depen-
dencies exist, with the DBMS and central instance required to
be active before other components.

In addition because we are generating potentially multiple
instances of a component from a single disk image, replicas of
the image must be customised to include both instance specific
information and data obtained only at deployment time, such
as the host name and IP of the CIL.

With respect to service elasticity, there exists a direct
proportional relationship between resource requirements and
sessions. The number of simultaneous sessions will be used
as a basis for scaling the number of dialog instances using
elasticity rules. However, directly monitoring the traffic to
and from the web dispatcher would be impossible as SAP
uses proprietary protocols. The SAP system can nonetheless
report the number of sessions provided an appropriate query is
formulated. As such it is necessary to implement a monitoring
agent to formulate that query and publish the answer onto the
network. This may then be picked up by the service manager
for the enforcement of elasticity rules.

An example of elasticity rule specified in XML as part of
an OVF descriptor is as follows. Here we describe that a new
dialog instance should be deployed for every 200 users up
to a maximum of 5. A definition of the kpis.totalUsers
should be described using the ADL, and the infrastructure will
define a number of predefined KPIs such as the number of
replicas of named components.
<elr:ElasticityRule name=‘‘DI_Increase’ ">
<elr:Trigger>

<TimeConstraint unit=""ms’ ">5000</TimeConstraint>

<elr:Expression>

kpis.totalUsers / components.DI.replicas.amount > 200
&& components.DI.replicas.amount < 5

</Expression>

</Trigger>

<elr:Action run=‘‘deployVM (components.DI)’ />
<elr:ElasticityRule>

B. Scientific Grid Computing

Another use case we have tackled is the deployment on
the RESERVOIR infrastructure of a grid based application

1 Service Management
1 Infrastructure

responsible for the prediction of organic crystal structures
from the chemical diagram [13]. The application operates
according to a predefined workflow involving multiple web
based services and Fortran programs. Up to 7200 executions of
these programs may be required to run, as batch jobs, in both
sequential and parallel form, to compute various subsets of
the prediction. Web services are used to collect inputs from a
user, coordinate the execution of the jobs, process and display
results, and generally orchestrate the overall workflow. The
actual execution of batch jobs is handled by Condor [14],
a job scheduling and resource management system, which
maintains a queue of jobs and manages their parallel execution
on multiple nodes of a cluster. This is illustrated in Figure 5.

Orchestration Service
Tomeat Grid Mgmt. Service
Tomeat o
Bpel Engine [Axis | Dynamic scaling
[Polymorph Wi] [GridSAM |
Mr—] Condor Manager Condor Exec. Service
Req Polymorph GUI icondor_schedd Congorm
—>
— i [Trigger page] =
’ [condor_neg])
Service
Manager
Ty Tl S e e e v
7 (7 e
T {} ””””” {} 77777 VEE Host
Host Al Host B| HostC| | HostD| | HostE| | HostF
Fig. 5. Scientific grid application structure

The elasticity requirements are tied to the number of jobs
currently in queue. Indeed, as jobs are created, the number
of cluster nodes required to execute them will vary. Our goal
in relying upon a cloud computing infrastructure will be to
create a virtualised cluster, enabling the size of the cluster to
dynamically grow and contract according to the needs of the
application. This requires a monitoring agent to actively query
the condor scheduler to obtain the size of the queue, which is
deployed alongside the grid management node. The rules in
use are similar to the example provided above.

The overall management process can hence be described
as follows: upon submission of the manifest, the Service
Manager will parse and validate the document, generating
suitable individual deployment descriptors to be submitted to

the VEEM beginning with the Orchestration and Grid Man-
agement components. The VEEM will use these deployment
descriptors to select a suitable host from the pool of known
resources. These resources are running appropriate hypervisor
technology, in this case Xen, from which the creation of
new virtual machines can be requested. Upon deployment,
the disk image is replicated and the guest operating system
is booted with the appropriate virtual hardware and network
configuration. When the Grid Management component is
operational, a monitoring agent will begin the process of
monitoring the queue length and broadcast the number of
jobs in the queue on a regular basis (every 30 seconds)
under the selected qualified name (gridservice.queuelength).
These monitoring events, combined with appropriate service
identifier information, will be recorded by the rule interpreter
component of the Service Manager to enforce elasticity rules.
When conditions regarding the queue length are met (i.e. there
are more than 4 idle jobs in the queue), the Service Manager
will request the deployment of an additional Condor Execution
component instance. Similarly, when the number of jobs in
queue falls below the selected threshold, it will request the
deallocation of new virtual instances.

V. RELATED WORK

It is worth briefly examining research developments related to
service virtualisation, grid computing and component based
software architecture description languages. There exists a
number of software architecture description languages which
serve as the run-time configuration and deployment of com-
ponent based software systems. The CDDLM Component
Model [15], for example, outlines the requirements for creating
a deployment object responsible for the lifecycle of a deployed
resource with focus on grid services. Each deployment object
is defined using the CDL language. The model also defines
the rules for managing the interaction of objects with the
CDDML deployment API. However, with the focus being on
the application level services provided, the type of deployment
object is not suited to a virtual machine management, which
is at a much lower level of abstraction.

With respect to current developments in production level
cloud environments, auto-scaling has been introduced in Ama-
zon EC2 to allow allocated capacity to be automatically scaled
according to conditions defined by a service provider. These
conditions are defined based on observed resource utilisation,
such as CPU utilisation, network activity or disk utilisation.
Whilst the approach laid out in this paper can be used to define
elasticity rules based on such metrics, this can prove limiting.
With respect to the use cases, scaling could only take place
with respect to application level parameters.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the problem of service
definition and dynamic provisioning of services in computa-
tional clouds. We have proposed a syntax and approach for a
service manifest language which builds on the OVF standard
and allows the management of service elasticity. Moreover,
we have examined how our approach enables service elasticity

to be expressed and handled with respect to two production
level use cases. We believe the overall manifest language to
be sufficiently expressive to tackle production level cases with
appropriate support from the infrastructure.

The implications of such a capability are clear. Because
the elasticity rules enable the service provider to flexibly
expand and shrink their resource demands, these will only
need to pay for the resources that they need. This provides an
opportunity for service and infrastructure provider to optimise
investment in hardware as well as the allocation process. This
does however call to attention the strong need for service
level guarantees that take elasticity into account. Indeed, an
infrastructure provider must be able to accommodate future
potential capacity adjustments when planning allocations in
order to ensure that it can actually meet demand. Federation
does provide the potential to mitigate this problem, and we
will investigate these issues in future work.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” SIGCOMM Comput. Commun.
Rev., vol. 39, no. 1, pp. 50-55, 2009.

[2] B. Rochwerger, A.Galis, D. Breitgand, E. Levy, J. Caceres, I. Llorente,
R. Montero, Y. Wolfsthal, M. Wusthof, S. Clayman, C. Chapman,
'W. Emmerich, E. Elmroth, and R. S. Montero, “Design for future internet
service infrastructures,” in Towards the Future Internet - A European
Research Perspective. 10S Press, Apr. 2009, p. 350.

[31 J. Meattle, “YouTube vs. MySpace growth,” [Online]
http://blog.compete.com/2006/10/18/youtube-vs-myspace-growth-
google-charts-metrics/, Oct. 2006.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles. New York, NY, USA: ACM Press, 2003, pp. 164—
177.

[5] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing 10/De-
vices on VMware Workstation’s Hosted Virtual Machine Monitor,” in
Proc. of the 2001 USENIX Annual Technical Conference. Boston, Mass:
Usenix, Jun. 2001.

[6] “Amazon Elastic Compute Cloud (Amazon EC2),” [Online]
http://aws.amazon.com/ec2.
[71 “IBM blue cloud,” [Online] http://www-

03.ibm.com/press/us/en/pressrelease/22613.wss.
[8] “Open Virtualization Format Specification,” Distributed Management
Task Force, Specification DSP0243 v1.0.0, 2009.
[9] F. Galdn, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, L. M. Vaquero,
and M. Wusthoff, “Service specification in cloud environments based
on extensions to open standards,” in Fourth International Conference
on COMmunication System softWAre and middlewaRE (COMSWARE
2009), Jun. 2009.
Object Management Group, “Meta Object Facility Core Specification
2.0, OMG Document, formal/2006-01-01,” 2006.
J. Skene, D. D. Lamanna, and W. Emmerich, “Precise service level
agreements,” in ICSE '04: Proceedings of the 26th International Confer-
ence on Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 179-188.
B. Rochwerger, A. Galis, E. Levy, J. C4ceres, D. Breitgand, Y. Wolfsthal,
I. Llorente, M. Wusthoff, R. Montero, and E. Elmroth, “RESERVOIR:
Management Technologies and Requirements for Next Generation Ser-
vice Oriented Infrastructures,” in The 11th IFIP/IEEE International
Symposium on Integrated Management,(New York, USA), 2009, pp. 1-5.
‘W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price,
“Grid Service Orchestration using the Business Process Execution
Language (BPEL),” Journal of Grid Computing, vol. 3, no. 3-4, pp.
283-304, 2005. [Online]. Available: http://dx.doi.org/10.1007/s10723-
005-9015-3
D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,” in
Grid Computing: Making the Global Infrastructure a Reality, F. Berman,
G. Fox, and T. Hey, Eds. John Wiley & Sons Inc., December 2002.
J. Tatemura, “CDDLM Configuration Description Language Specifica-
tion 1.0,” Open Grid Forum, Tech. Rep., 2006.

[10]

(11]

[12]

[13]

[14]

[15]

