Software Architecture Definition for On-demand Cloud
Provisioning-

Clovis Chapman
Department of Computer

Wolfgang Emmerich

Department of Computer

Fermin Galan Marquez
Telefonica 1+D

Science, UCL Science, UCL Emilio Vargas 6
Gower Street Gower Street Madrid, Spain
London, UK London, UK fermin@tid.es

c.chapman@cs.ucl.ac.uk

Stuart Clayman
Department of Electrical
Engineering, UCL
Gower Street
London, UK

s.clayman@ee.ucl.ac.uk

ABSTRACT

Cloud computing [22] is a promising paradigm for the provisioning
of IT services. Cloud computing infrastructures, such as those of-
fered by the RESERVOIR project, aim to facilitate the deployment,
management and execution of services across multiple physical lo-
cations in a seamless manner. In order for service providers to meet
their quality of service objectives, it is important to examine how
software architectures can be described to take full advantage of
the capabilities introduced by such platforms. When dealing with
software systems involving numerous loosely coupled components,
architectural constraints need to be made explicit to ensure contin-
uous operation when allocating and migrating services from one
host in the Cloud to another. In addition, the need for optimis-
ing resources and minimising over-provisioning requires service
providers to control the dynamic adjustment of capacity throughout
the entire service lifecycle. We discuss the implications for soft-
ware architecture definitions of distributed applications that are to
be deployed on Clouds. In particular, we identify novel primitives
to support service elasticity, co-location and other requirements,
propose language abstractions for these primitives and define their
behavioural semantics precisely by establishing constraints on the
relationship between architecture definitions and Cloud manage-
ment infrastructures using a model denotational approach in order
to derive appropriate service management cycles.

1. INTRODUCTION

Until recently, operating systems managed the allocation of phys-
ical resources, such as CPU time, main memory, disk space and

*This research has been partly funded by the RESERVOIR EU FP7 Project through
Grant Number 215605.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPDC 2010 21-25 June, Chicago, USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

we@acm.org

Alex Galis
Department of Electrical
Engineering, UCL
Gower Street
London, UK
a.galis@ee.ucl.ac.uk

network bandwidth to applications. Virtualisation infrastructures,
such as Xen [7] and VMWare [19] are changing this by introducing
a layer of abstraction known as a hypervisor. A hypervisor runs
on top of physical hardware, allocating resources to isolated exe-
cution environments known as virtual machines, which run their
own individual virtualised operating system. Hypervisors manage
the execution of these operating systems, booting, suspending or
shutting down systems as required. Some hypervisors even support
replication and migration of virtual machines without stopping the
virtualised operating system.

It turns out that the separation between resource provision and
operating systems introduced by virtualisation technologies is a key
enabler for Cloud computing'. Compute Clouds provide the ability
to lease computational resources at short notice, on either a sub-
scription or pay-per-use model and without the need for any capital
expenditure into hardware. A further advantage is that the unit cost
of operating a server in a large server farm is lower than in small
data centres. Examples of compute Clouds are Amazon’s Elastic
Compute Cloud (EC2) [1] or IBM’s Blue Cloud [2]. Organisations
wishing to use computational resources provided by these Clouds
supply virtual machine images that are then executed by the hyper-
visors running in the Cloud, which allocate physical resources to
virtualised operating systems and control their execution.

With an increasing number of providers seeking to migrate ser-
vices to the cloud in order to save on deployment costs, cater for
rapid growth or generally relieve themselves from the responsibility
of provisioning the infrastructural resources needed to support the
service, whether related to power, bandwidth, software or hardware
[6], there is a crucial need to ensure that a same service quality can
be retained when relying upon clouds while generally delivering
on the promise of lowering costs by minimising overprovisioning
through efficient upscaling and downscaling of services.

In this paper we review the implications of the emergence of vir-
tualisation and compute Clouds for software engineers in general
and software architects in particular. We find that software architec-
tures need to be described differently if they are to be deployed into
a Cloud. The reason is that scalability, availability, reliability, ease
of deployment and total cost of ownership are quality attributes that

!Specifically, virtualisation is an enabler for Infrastructure-as-a-
Service (IaaS) Clouds, the type on which this paper is focused. For
a description of the different types of Cloud computing see [22]

need to be achieved by a software architecture and these are crit-
ically dependent upon how hardware resources are provided. Vir-
tualisation in general and compute Clouds in particular provide a
wealth of new primitives that software architects can exploit to im-
prove the way their architectures deliver these quality attributes.

The principal contribution of this paper is a discussion of archi-
tecture definition for distributed applications that are to be deployed
on compute Clouds. The key insight is that the architecture de-
scription needs to be reified at run-time so that it can be used by the
Cloud computing infrastructure in order to implement, monitor and
preserve architectural quality goals. This requires several advances
over the state of the art in software architecture. Architectural con-
straints need to be made explicit so that the Cloud infrastructure can
obey these when it allocates, activates, replicates, migrates and de-
activates virtual machines that host components of the architecture.
The architecture also needs to describe how and when it responds to
load variations and faults; we propose the concept of elasticity rules
for architecture definitions so that the Cloud computing infrastruc-
ture can replicate components and provide additional resources as
demand grows or components become unavailable. Finally, there
must be an understanding of how a management cycle for a service
deployed on a Cloud can be derived from a description of these con-
straints and we demonstrate how this can be achieved using a model
driven approach.

As such the overall contributions of the paper are as follows: we
identify a list of requirements and constraints that a provider must
describe when deploying and hosting a multi-component applica-
tion on a cloud. We present a language for the description of such
requirements that builds on existing standards and introduces new
abstractions such as the ability to specify on demand scaling. We
define an architecture for a cloud infrastructure to support these
abstractions and specify clear behavioural semantics for our lan-
guage with respect to this architecture using a model denotational
approach. Finally we evaluate our language primitives experimen-
tally with a distributed computational chemistry application.

This paper is further structured as follows: In Section 2, we
present the background to this research and in particular the prim-
itives that are now provided by modern virtualisation and Cloud
computing technologies in general and the infrastructure that has
been developed by the RESERVOIR project in particular. We then
use a motivating example in Section 3 to argue why architecture
definition for Cloud computing differs from more conventional de-
ployments. In Section 4, we describe our novel abstractions, such
as co-location constraints and elasticity rules for describing archi-
tectures that are to be deployed in a Cloud. In Section 5 we describe
the experimental evaluation of our approach by means of a compu-
tational chemistry application that we have deployed in a compu-
tational Cloud. We discuss related work in Section 6 and conclude
the paper in Section 7.

2. BACKGROUND

The Resources and Services Virtualization without Barriers
(RESERVOIR) project is a European Seventh Framework Pro-
gramme (FP7) project which aims to promote through standardisa-
tion an open architecture for federated Cloud computing. It defines
an open framework of modular components and APIs that enable a
wide range of configurations within the Cloud space, focusing on
Infrastructure as a Service (IaaS) Clouds [22].

The RESERVOIR architecture aims to satisfy the vision of ser-
vice oriented computing by distinguishing and addressing the needs
of Service Providers, who understand the operation of particular
businesses and offer suitable Service applications, and Infrastruc-
ture Providers, who lease computational resources in the form of

v
|| Service Manager
Service Service]
A

Service Manager :
Service Service] |
A
|
v I v
VEE Manager | VEE Manager

58 #9533,
S S

C \/) | £ \/)

|
I VEE Host W II VEE Host N

Infrastructure Provider |

Infrastructure Provider |

Figure 1: RESERVOIR architecture

a Cloud computing infrastructure. This infrastructure provides the
mechanisms to deploy and manage self contained services, consist-
ing of a set of software components, on behalf of a service provider.

The Cloud computing abstractions supported by this infrastruc-
ture and the architecture we have used to implement these abstrac-
tions are described in detail in [16]. The architecture is shown in
Figure 1. A partial implementation of the architecture (the VEEM
layer), which we have used in our experimental evaluation de-
scribed below is publicly available from OpenNebula.org. It is
also included from release 9.04 in the Ubuntu Linux distribution.

RESERVOIR relies on generally available virtualisation prod-
ucts, such as Xen [7] or VMWare [19] . The lowest layer of
the RESERVOIR architecture is the Virtual Execution Environment
Host (VEER). It provides plugins for different hypervisors and en-
ables the upper layers of the architecture to interact with heteroge-
neous virtualisation products. The layer above is the Virtual Exe-
cution Environment Manager (VEEM), which implements the key
abstractions needed for Cloud computing. A VEEM controls the
activation of virtualised operating systems, migration, replication
and de-activation. A VEEM typically controls multiple VEEHs
within one site. The key differentiator from other Cloud computing
infrastructure is RESERVOIR’s ability to federate across different
sites, which might be implementing different virtualisation prod-
ucts. This is achieved by cross-site interactions between multiple
different VEEMs operating on behalf of different Cloud computing
providers. This supports replication of virtual machines to other lo-
cations for example for business continuity purposes. The highest
level of abstraction in the RESERVOIR architecture is the Service
Manager. While the VEEM allocates services according to a given
placement policy, it is the Service Manager that interfaces with the
Service Provider and ensures that requirements (e.g. resource allo-
cation requested) are correctly enforced. The Service Manager also
performs other service management tasks, such as accounting and
billing of service usage.

3. MOTIVATION

How is a software development project now going to use Cloud
computing infrastructures, such as the one provided by RESER-
VOIR? We aim to answer this question and then derive the main
research questions for this paper using a running example, an enter-
prise resource planning system, such as those provided by SAP [3].
A high-level architecture of an SAP system is illustrated in Fig-
ure 2. SAP ERP systems have a multi-tiered software architecture
with a relational database layer. On top of the database is an appli-

cation layer that has a Central Instance, which provides a number
of centralised services, such as synchronisation, registration and
spooling capabilities, and generally serves as a database gateway.
Moreover SAP applications have a number of Dialog Instances,
which are application servers responsible for handling business
logic and generating HTTP-based dialogues that are shown in a
browser. A Web Dispatcher may be used to balance workloads be-
tween multiple dialog instances. To date SAP systems are hosted in
substantial data centres, but organisations (playing the role of Ser-
vice Provider) in the future might wish to deploy it in a compute
Cloud in order to avoid the significant capital investment associ-
ated with the construction of a data centre.

Browser Presentation
Layer
Web Dispatcher
1 1
| Message K
Dialog Server Dialog Application
Instance Enqueue Instance Layer
J Server
ava Wi
ork
Stored Central
Procedure Instance process
T
. | | -
atabase
DBMS | o

Figure 2: SAP three-tiered architecture

If the SAP system is handed over to a Cloud computing provider
that uses an infrastructure based on the RESERVOIR architecture,
a number of architectural constraints of the SAP system will need
to be obeyed by the Cloud. For example, the Central Instance
will frequently make queries to the database and in a typical SAP
configuration the Central Instance and the database need to be co-
located on the same LAN subnet. When the VEEM allocates the
virtual machines for the Central Instance and the DBMS to partic-
ular VEEHE, it will have to respect this co-location constraint. An-
other architectural constraint is that the Central Instance can not be
replicated in any SAP system. Dialog Instances, on the other hand
are replicated to accommodate growing demand. Therefore these
architectural constraints have to be expressed by the SAP provider
and made available to the Service Manager so that they can obey
these constraints at run-time.

This requires the software architecture to be expressed in terms
of services, their relationship and their resource requirements.
While a traditional SAP deployment would require that spare ca-
pacity is retained to deal with peaks in demand, Cloud comput-
ing introduces the ability to minimise overprovisioning by tying
resource provision directly to the needs of the application. Re-
source requirements, in this case dictated by the number of Dialog
Instances required to handle the current load, can be scaled dynam-
ically and adjusted to maximise cost savings. This requires a means
of describing the state of the system and rules for adjustments.

4. ARCHITECTURE DEFINITION

4.1 Requirements

Based on an understanding of the underlying hosting infrastructure
described in Section 2, and the example provided in Section 3, we
can break down the core issues that must be defined when deploy-
ing and running software systems on a Cloud computing infrastruc-

ture into the following high-level requirements, in order to provide
a suitable definition for the terminology employed in later sections:

MDL1 Software composition: A software system may be com-
posed of one or more loosely coupled components, which may
have differing resource (e.g. CPU, memory) and software (e.g.
operating system, libraries, disk image) requirements.

The components of the multi-layered SAP system, the Web
Dispatcher, Central Instance, Dialog Instance and DBMS, will
have varying hardware and software requirements, but will nev-
ertheless be required to be managed jointly. We can expect for
example the DBMS service to be very /O and memory inten-
sive and with large storage requirements. In contrast, the Dia-
log Instances may be more processor intensive, and hardware
requirements may be adjusted accordingly.

MDL2 Network topology: The system may require a specific
network topology both to interconnect components of the sys-
tem and communicate with external systems.

With respect to the SAP system, the Web Dispatcher should
provide an external interface and internal components should
be at the very least interconnected, though external access may
not necessarily be required.

MDL3 Capacity adjustment: Hardware requirements may
evolve during the lifetime of the system according to workload,
time or other application-level variables.

In order to deal with potential increases in requests, it may
be necessary to deploy additional Dialog Instances in order to
facilitate load balancing and ensure a certain level of perfor-
mance.

MDL4 Dependencies: Deployment and un-deployment depen-
dencies may exist between components.

The order in which components of an SAP system are started
or stopped may affect the overall operation of the system. The
DBMS and Central Instance components, serving as the back-
bone of the system, should be active before individual Dialog
Instances.

MDLS5 Location constraints: Constraints on the distribution of
service components across physical locations may exist.

Federation of Clouds is key to enabling scalable provisioning of
services. However along with the ability to seamlessly deploy
services across multiple physical and administrative domains
comes a need to allow service providers to control the “spread”
of the application by defining clear constraints on the distribu-
tion of services across sites. These constraints can be of a tech-
nical nature (e.g. deploy certain components on a same host)
or administrative (e.g. avoid un-trusted locations). Though
we have, for example, established that the Central Instance and
DBMS should be located on a same (virtual) network, a service
provider may wish to minimise latency by ensuring proximity.

MDL6 Customisation: Components may be dependent on con-
figuration parameters not known until deployment.

When deploying multiple instances of a same component, cer-
tain application-level parameters may be instance specific. As
such it may be necessary to customise individual instances upon
their creation and deployment. Dialog Instances may for ex-
ample require the IP addresses of the Central Instance and
DBMS to be provided, if this information is not know at pre-
deployment time (e.g. dynamic IP allocation via DHCP).

In order to automate the management of a software system on a
Cloud infrastructure it is necessary for a service provider to com-

municate both the software system stack (OS, middleware, appli-
cation, configuration, and data) providing self contained services in
the form of an virtualised image (addressing requirement MDL1)
and a description of these requirements in the form of a Service
Definition Manifest (addressing requirements MDL2-MDL6). The
manifest therefore serves as a contract between service and infras-
tructure providers regarding the correct provisioning of a service. It
hence reifies key architectural constraints and invariants at run-time
so that they can be used by the Cloud.

To define manifests, we require a declarative language whose
syntax should be sufficiently flexible to cater for a general purpose
service provisioning environment, and provide the necessary ab-
stractions to describe capacity and operational requirements of the
software architecture both at deployment time and throughout the
entire lifecycle.

We rely in our implementation on the Open Virtualisation For-
mat (OVF) [5], a DMTF standard backed by VMWare and Xen-
Source which aims to offer a portable packaging mechanism in
a portable and platform neutral way. Building on open standards
facilitates interoperability particularly in the context of federation
and eases compatibility with existing services and tools. In addi-
tion it ensures that as cloud technology matures, continued compli-
ance with the standard avoids vendor lock-in and potential deploy-
ment on newer platforms. OVF hence serves as a building block for
our manifest, and provides the syntax for the description of virtual
disks, networks, resource requirements and other issues related to
dependencies or customisation. However, OVF (as other service
description languages for existing virtualisation technologies) pri-
marily caters for the initial distribution and deployment of fixed
size services [5], which does not by itself fully realise the vision of
Cloud computing.

Indeed, Clouds differ from traditional software deployment
in many ways. Beyond the impact of virtualisation on multi-
component architectures, existing deployment mechanisms are typ-
ically one-way “channels” where a service is configured and de-
ployed according to an initial deployment descriptor. There is no
feedback mechanism to communicate specific state, parameters and
other information from a deployed service back to the infrastruc-
ture to adapt the execution environment dynamically. The mani-
fest should enable the automation of provisioning and management
through template based provisioning, where the service manifest is
used as a template for easily provisioning instances of the applica-
tion, and support for resource consumption control.

We hence need to add a number of abstractions to OVF, the pri-

mary being elasticity specification in the form of rules allowing
conditions related to the state and operation of the service, such as
application level workload, and associated actions to follow should
these conditions be met, application domain description, which
allow the state of the application to be described in the form of
monitorable application level parameters and placement and co-
location constraints, which identify sites that should be favoured
or avoided when selecting a location for a service.
In previous work [11], we have discussed a number of additional
extensions to the OVF syntax to support Clouds, including attribute
and section changes to incorporate support for service components
IDs in elastics arrays, cross virtual machines reference, IP dynamic
addresses and elasticity rules and bounds. However, a syntactic
definition of a deployment descriptor only forms part of what is
necessary to ensure these requirements are met with respect to the
underlying Cloud computing infrastructure.

Indeed, there must exist a clear understanding of how we derive
from the language used to express the requirements of the Service
Provider a management cycle, which will consist of several actions

being taken throughout the lifetime of a service to ensure a certain
service quality being obtained. Using the RESERVOIR framework
as areference, and examining specifically issues related to dynamic
capacity adjustment and service deployment, we now describe how
the behavioural semantics for our manifest language are described
and how they guide the operation of underlying Cloud components.

Focusing specifically on elasticity and application domain de-
scription, as well as service deployment, we refine and extend in
this paper our OVF based service definition language syntax to in-
corporate these abstractions.

4.2 Manifest Language Definition

In this section, we describe the overall approach undertaken to
define and provide support for the Manifest Language. This is
achieved through the specification of three complementary facets
of the language: the abstract syntax, the well-formedness rules,
and the behavioural semantics. The abstract syntax of the mani-
fest language is modelled using the Essential Meta-Object Facility
(EMOF), an OMG standard part of the Model Driven Architecture
initiative [14] for describing the structure of meta-data, and embed-
ded within an object-oriented model of the RESERVOIR architec-
ture. Because the manifest describes the way in which a RESER-
VOIR based infrastructure should provision a service application,
the semantics of the language can be expressed in the model de-
notational style to define semantics that we introduced in [18] as
constraints between the abstract syntax and domain elements that
model the operation of Cloud infrastructure components. These
constraints are formally defined using the Object Constraint Lan-
guage (OCL) [15], a language for describing consistency proper-
ties, providing the static and behavioural semantics of the language.
In this manner the language serves to constrain the behaviour of the
underlying infrastructure, ensuring the correct provisioning of the
software system services.

The motivations for this approach are two-fold: firstly by mod-
elling the syntax of the manifest language as an EMOF model, we
seek to express the language in a way that is independent of any
specific implementation platform. Components of a cloud infras-
tructure such as RESERVOIR may rely on a number of different
concrete languages, whether implementation languages (Java, C++,
etc.), higher-level “meta” languages (HUTN, XML, etc.), or even
differing standards (WS-Agreement, OVF, etc.). A higher level
of abstraction ensures that we free ourselves from implementation
specific concerns, and allows seamless and automated transitions
between platform specific models as required by components.

Secondly, providing a clear semantic definition of the manifest
using OCL allows us to identify functional characteristics that ser-
vice management components should present in order to support
capabilities such as application based service elasticity, again irre-
spective of the implementation platform. As such the definitions
presented in this paper extend beyond the scope of RESERVOIR
or any specific cloud infrastructure, instead providing a clear un-
derstanding of expected provisioning behaviours, with respect to
identified and required component interfaces.

Finally, we may also consider that clear semantics ensure that we
limit ambiguities when it comes to interpretation of the manifest.
This is of crucial importance where financial liabilities may exist;
a formal understanding of the nature of the service being provided
is required in order to ensure that the service is provisioned as ex-
pected by both parties, and in a way that both can evaluate to be
correct, either through run-time monitoring capabilities or histori-
cal logs. We achieve this by tying the specification of the manifest
to the underlying model of the Cloud infrastructure.

4.2.1 Abstract syntax

The abstract syntax of the manifest describes the core elements of
the language and their accompanying attributes. The core syntax
relies upon, as previously stated, OVF [5]. The OVF descriptor
is an XML-based document composed of three main parts: de-
scription of the files included in the overall architecture (disks,
ISO images, etc.), meta-data for all virtual machines included,
and a description of the different virtual machine systems. The
description is structured into various “Sections”. Focusing pri-
marily on the most relevant, the <piskSection> describes vir-
tual disks, <Networksection> provides information regarding log-
ical networks, <virtualHardwaresection> describes hardware re-
source requirements of service components and <StartupSection>
defines the virtual machine booting sequence.

Incorporating the OVF standard ensures that we tackle several
of the requirements identified in Section 4.1, providing the mani-
fest language with a syntactic model for the expression of physical
resource requirements and hardware configuration issues. We in-
troduce new abstractions in the form of extensions to the standard
rather than create new independent specifications. OVF is exten-
sible by design and doing so ensures continued compatibility with
existing OVF-based systems.

We model these extensions using EMOF. EMOF models are very
similar to UML class diagrams, in that they describe classes, the
data they contain and their relationships, but are at a higher level of
abstraction: they describe the constructs, rules and constraints of
a model. As such, EMOF is typically used to define the syntax of
languages.

Application description language.

Reliance on Cloud computing introduces the opportunity to min-
imise overprovisioning through run-time reconfiguration of a ser-
vice, effectively limiting resource consumption to only what is cur-
rently required by the application. However, when dealing with
rapid changes in service context and load, timely adjustments may
be necessary to meet service level obligations which cannot be met
by human administrators. In such a case, it may be necessary to au-
tomate the process of requesting additional resources or releasing
existing resources to minimise costs.

This automated scaling of service capacity to support potential
variations in load and demand can be implemented in numerous
ways. Application providers may implement such scaling at the
application level, relying on an exposed interface of the Cloud com-
puting infrastructure to issue specific reconfiguration requests when
appropriate. Alternatively, they may have a desire to keep the ap-
plication design free of infrastructure specific constraints and opt
instead to delegate such concerns to the infrastructure itself. With
a sufficient level of transparency at the application level for work-
load conditions to be identified, and through the specification of
clear rules associating these conditions with specific actions to un-
dertake, the Cloud computing infrastructure can handle dynamic
capacity adjustment on behalf of the service provider.

It is the latter approach that we have chosen to adopt in the con-
text of RESERVOIR. By providing a syntax and framework for the
definition and support of elasticity rules, we can ensure the dynamic
management of a wide range of services with little to no modifica-
tion for execution on a Cloud. With respect to the syntax, we can
identify the two following subsets of the language that would be
required to describe such elasticity: service providers must first be
able to describe the application state as a collection of Key Per-
formance Indicators (KPIs), and the means via which they are ob-
tained in the manifest. These will serve as a basis for the formula-
tion of the rules themselves, described in the following subsection.

Because we do not want the manifest language to be tied to any
specific service architecture or design, it is necessary to decouple
the KPI descriptions from the application domain via the use of
an Application Description Language (ADL). Though it is possible
to build elasticity conditions based purely on infrastructure level
performance indicators, this may prove limiting. Indeed, the disk
space, memory or CPU load may not accurately reflect the current
needs of the application, as will be seen in the evaluation. This
language will allow the description of services in terms of compo-
nents, parameters of interest and their monitoring requirements.

Alongside the syntactic requirements, a suitable monitoring
framework must exist. A service provider is expected to expose pa-
rameters of interest through local Monitoring Agents, responsible
for gathering suitable application level measurements and commu-
nicating these to the service management infrastructure. Though
communication protocols with the underlying framework are out-
side the scope of the manifest language, there must exist a corre-
lation between the events generated by the monitors and the KPIs
described in the manifest. This is modelled in Figure 3.

Service Management 1 Application Description Language

'

'

! Infrastructure

'

H ApplicationDescription ||
0..*

Component

Application Domain

MonitoringEvent

+ID:String

+name: QualifiedName
+type: Category
+value:String
+timestamp: Date

MonitoringAgent

+name: QualifiedName

Yo

KPI
+category: Category
+name: QualifiedName
+unit: Unit
+frequency: double

T+ |
' OVFEnvelope

'
AvA :
' +files: FileReference[]
i |+disks: Disk[]
1
'
.

ApplicationServer SAPWebDispatcher

HTTPGet(..)

HTTPPost(..)

DialogInstance Connect(..)
subscribe(KPI)

H
H
H
H
H
H
h
H
H
H
:

CentralInstance | |addEventType(Category)
H
H
H
H
H
H
H
H
H
H
h
H

ApplicationMonitor

publish(Event)

register
(:DialogInstance)

Subscriber

LocalProcess
DBMS
* +networks: Network[]
* +virtualSystems:VirtualSys[]
0 VirtualMachine |<—

I

notify(Event)

Figure 3: Application Description Language

Based on our running example, the figure exemplifies the re-
lationship between the ADL, the RESERVOIR application-level
monitoring infrastructure, and the application domain. The syn-
tax of the ADL consists of one or more named components, with
a number of associated KPIs. These KPIs are identified using ap-
propriate qualified names (e.g. com.sap.webdispatcher.—
kpis.sessions), that will allow the underlying infrastructure
to identify corresponding events obtained from an application level
monitor and forward these to subscribers responsible for the en-
forcement of elasticity rules.

We are concerned in this example with the number of simulta-
neous web sessions managed by the web dispatcher, as there is a
proportional relationship between resource requirements and ses-
sions. The number of simultaneous sessions will be used as a ba-
sis for scaling the number of Dialog Instances.However, directly
monitoring the traffic to and from the web dispatcher would be im-
possible, as SAP uses proprietary protocols. The SAP system can
nonetheless report the number of sessions provided an appropriate
query is formulated. The monitoring agent would be responsible
for such queries and forwarding obtained responses, bridging the
gap between application and monitoring infrastructure.

KPI qualified names would be considered global within the
scope of a service. If there exists a need to distinguish the KPI
measurements produced by multiple instances of a same compo-
nent, this is achieved by using distinct qualified names. Monitoring
agents can, for example, include instance IDs in the qualified name.

The structure of the qualified name itself would not fall within the
scope of the manifest specification. Instances of an application
service as a whole however would be considered distinct. At the
implementation level, KPIs published within a network are tagged
with a particular service identifier, and rules, covered below, will
also be associated with this same identifier. Multiple instances of
an application service would hence operate independently.

Elasticity Rules.

With respect to the rule syntax, we adopt an Event-Condition-
Action approach to rule specification. This is a widely adopted
model for rule definition, adopted for example in active databases
and rule engines, and suited in this instance. Based on monitoring
events obtained from the infrastructure, particular actions from the
VEEM are to be requested when certain conditions relating to these
events hold true. This requires rules to be expressed with respect to
the interface of the underlying VEEM and monitoring events.

A representation of the elasticity rules based on a general rule-
base model and their relationship to monitoring events and the
Cloud infrastructure is illustrated in Figure 4. The syntax speci-
fies conditions, based on monitoring events at the application layer
or otherwise, which would lead to specified actions, based on a set
of operations presented by the VEEM. The operations, modelled
on the OpenNebula framework capabilities will involve the submis-
sion, shutdown, migration, reconfiguration, etc. of VMs and should
be invoked within a particular time frame. The conditions are ex-
pressed using a collection of nested expressions and may involve
numerical values, arithmetic and boolean operations, and values
of monitoring elements obtained. The relationship between KPIs
specified in the manifest and these events has been described in
the previous section. The elasticity rules will be supervised by the
Cloud infrastructure at the Service Manager layer during the run-
ning of the software system and it is expected that a rule interpreter
will receive events from the infrastructure or application monitors
and trigger such operations accordingly.

With respect to the example, this language enables us to express
that virtual machines with new Dialog Instances should be created
as the number of user sessions maintained by the SAP web dis-
patcher grows in order to handle the increased load. A concrete
example of an elasticity rule will be provided in Section 5.

It is worth briefly discussing the subject of time management.
The service provider controls the timeliness of the response in mul-
tiple ways. Firstly the rate at which monitoring events are sent by
the application level monitor is entirely dictated by the applica-
tion and this should be balanced against expected response time to
avoid duplicate responses. Secondly service providers can specify
a time frame within which particular actions should take place, as
described above. Finally, the current time can be introduced as a
monitorable parameter if necessary.

Additionally service providers may prefer expressing conditions
regarding a series of measurements within a time frame rather than
focusing on single events. We may be concerned here with the av-
erage number of active sessions in a window in order to limit the
impact of strong fluctuations. While the language is extensible and
presents the opportunity to provide such functionality, and we are
currently working on the ability to specify a time series and opera-
tions related to that time series (mean, minimum, maximum, etc.),
this can be achieved by aggregating measurements at the applica-
tion level, with the monitoring agent performing such tasks.

Elasticity rules can be a powerful tool to express capacity con-
straints. The structure is kept purposely simple: not intended as
a substitute for a programming language, elasticity rules only aim
to inform the Cloud infrastructure of the corrective process to be

undertaken. Auto-scaling is not a form of capacity planning but it
aids in introducing a certain degree of flexibility in resource allo-
cation which ensures that strong and often unexpected variations
in demand can be met. In general, more complex relationships be-
tween performance indicators can be computed at the application
level, before being forwarded to the service manager.

4.2.2 Semantic Definition

We examine in this section the dynamic semantics of the manifest
language as OCL constraints on the relationship between the syn-
tactic model of the manifest and the infrastructure and application
domains. Dynamic semantics are concerned with deployment and
run-time operation. These will specify behavioural constraints that
the system should adhere to during its execution.

The question of how and when we verify that these constraints
hold true during the provisioning of a service should be discussed
briefly. Defined invariants should be true at any moment in time,
however it is not feasible in practice to continuously check for this.
Instead it is preferable to tie the verification to monitoring events
or specific actions, such as a new deployment. Another question
to be posed is what should be done when an evaluation of the state
system does not fit the specified constraints. This will depend on
the context: an exception may occur, or an operation should be
invoked to trigger some corrective action, as would be the case with
elasticity rules.

Service Deployment.

As the manifest is processed by the various independent compo-
nents of the Service Manager to generate a deployment descriptor
for submission to the VEEM, it becomes important to ensure that
the final product, which may be expressed using a different syntax,
is still in line with the requirements of the service provider. In the
case of RESERVOIR, the VEEM would introduce it’s own deploy-
ment template. Using OpenNebula as a reference implementation
of a VEEM, the deployment template relied upon by the system is
roughly based on a Xen configuration file. The association between
manifest and deployment template is illustrated in Figure 5.

OSDescriptor OVFEnvelope

+kernel: String +name: String
+initdr: String +CPU: double
+kernel_cmd: String [—1—# +memory: double

VirtualMachineDescriptor

+refs:Reference[]
+disks:Disk[]
+nets:Network[]

+root: String +Rank: String +vm:VirtualSystem([]
+boot: String +Requirements: String
+input: Input y
+graphics: Graphics manifest
DiskDescriptor
p . [ApplicationDescription
+type: String

+comp:Components[]

5 ElasticityRule

+source: String
+target: String
+bus: String .
+readOnly: boolean

depDescriptor

Association
ManifestProcessor

ServiceConfigDesigner

NIC

+mac: String
+bridge: String -
+target: String
+script: String

Figure 5: Service Manifest and deployment descriptor

It is presumed that the ManifestProcessor will be responsible
for parsing the manifest and generating one or more deployment
templates accordingly. The serviceConfiganalyzer may be used
to further optimise the placement with regards to the multiple sites
at which it may be deployed, though the manifest specification is
not concerned with this. It is only necessary to ensure that the opti-
misation process respects certain constraints regarding resource re-
quirements. This is a design by contract approach [23]. We are not

*

ElasticityRule

+name: String elasticityRules

VEEM

RuleInterpreter
+veem:VEEM

1

+name: String Expression

+evaluateRules()

1
+invoke(Operation)

Trigger +evaluate()

ElementSimplevalue | Set | | QualifiedElement |<1~—

+value

v

Subscriber

T

R
Parameter Operation req
+name: String -
. + :
+type: String 5| £name: String
+value

op gyl
Formatienen
1..2 |_FormulaElement

V

notify(Event)

'
'
'
'
'
'
'
'
'
'
H
1 \ monitoringRecords
' *
| LessThan Equal I NumericalOperation <J—{ BasicArithmeticOperation H
TimeConstraint B MonitoringEvent
|Greater0rEqualThanI——| NotEqual I | "
+unit: String [LessorEqualThan And] ' [+name: QualifiedName
listHosts Fsetia) Moltpication |1 |Ftype: Category
' N
| Implies I——I or I +declaredvariable N +value:String
topHosts Division H +timestamp: Date
| Iff l——| GreaterThan I !
- '
H Not Subtraction !

'
Virtual Execution Environment ! Elasticity Rule Model

1 Service Management
1 Infrastructure

Figure 4: Elasticity Rules Syntax

concerned with the actual transformation process, but rather that
the final product, i.e. the deployment descriptor, respects certain
constraints. These can be expressed in OCL as follows:

context Association
inv:
manifest.vm —> forAll (v |
depdescriptor.exists(d |
d.name = v.id &&
d.memory = v.virtualhardware .memory &&
d.disk.source =
(manifest.refs.file —>asSet()—>
select(id = v.id))—>first (). href

This OCL description is a sample of what is required to establish
a relationship between manifest and deployment descriptor. Here,
we describe that there should be at least one deployment descriptor
generated for every virtual system described in the manifest defi-
nition that has the same identifier and memory requirements. The
full OCL specification contains a full mapping of attributes of our
manifest language to that of a VEEM deployment descriptor.

Service Elasticity.

Similarly, we can specify the expected outcome of elasticity rule
enforcement with respect to both the syntax of the manifest and the
underlying RESERVOIR components. OCL operations are side ef-
fect free, as in they do not alter the state of the system. Nevertheless
they can be used to verify that the dynamic capacity adjustments
have indeed taken place when elasticity rule conditions have been
met, using the post context.

This is described in OCL as follows:

— Collect monitoring records upon notification
context Rulelnterpreter:: notify(e: Event)
post: monitoringRecords =
monitoringRecords@pre —append (e)
— Evaluate elasticity rules and check adjustment
context Rulelnterpreter::evaluateRules ()
post: elasticityRules —>forAll (er |
if self.evaluate(er.expr) > 0 then
er.actions —>forAll(a | veem”invoke(a.req))
else true
endif)
— Query simple type value
context Rulelnterpreter::evaluate(el:
ElementSimpleType): Real
post: result = el.value
— Obtain latest value for monitoring record
— with specific qualified name
context Rulelnterpreter::evaluate(qel:
QualifiedElement): Real
post:

if monitoringRecords —>select (name=qe.name)
—>last()—>exists () then
result = monitoringRecords
—>select (name=qe .name)
—>last (). value
else result = qel.default
endif
— Evaluate expressions
— Defined as post in order to use recursion
context Rulelnterpreter::evaluate (expr:
Expression): Real
post:
if expr.op.ocllIsTypeOf(GreaterThan) then
if self.evaluate ((op.el—>first()) >
self.evaluate ((op.el—last()) then
result =1
else result = 0
end if
else

endif

This OCL pseudo-code is only a subset of the complete OCL spec-
ification that aims to illustrate how we can specify the correct exe-
cution of elasticity rules with respect to the rule syntax. The code
is split into a number of individual segments. The first simply
states that monitoring events obtained are expected to be collected
as records for the purpose of later evaluation. The second element
states that if the conditional element of one of the elasticity rules
is found to be true, then particular actions should have been in-
voked. To reiterate, the operations are side effect free, implying
that no processing of any kind will take place in an OCL statement.
Instead we only check that there has been communication with the
VEEM to invoke certain operations if the conditions described hold
true. How it is implemented is then left to developers.

The final segments relate to the evaluation of the conditions
themselves. The RuleInterpreter: evaluate(gel:
QualifiedElement) describes that upon evaluation of the
rules, values for key performance indicators described in the docu-
ment are obtained from the monitoring records, by examining the
latest monitoring event with matching qualified name. This defines
the relationship between KPIs and monitoring events. This asyn-
chronous model is chosen because the Cloud infrastructure does not
control application level monitoring agents. As there is no guaran-
tee over how often monitoring information is provided, and rules
may involve measurements from several services, it is for the im-
plementation to determine when the rules should be checked to fit
within particular timing constraints rather than tying checks to the
reception of any specific monitoring event. Finally the last segment
illustrates the recursive evaluation of expressions based on the type

of formula selected by the service provider.

4.2.3 Concrete syntax

While the specification of our manifest language is kept free of im-
plementation concerns, the model-denotational approach adopted
here provides a basis for automatically deriving concrete human
or machine readable representations of the language that can be
manipulated by the end-user or processed directly by the RESER-
VOIR based infrastructure. Moreover, beyond creating and editing
the manifest itself, the syntax and accompanying semantics can be
used as input for a generative programming tool to automate the
generation of applications to control the service provisioning pro-
cess.

In practice, the RESERVOIR architecture may be implemented
using a wide range of programming languages and existing tech-
nologies. The semantic definition described in this paper will gen-
erally serve as an important software engineering artefact, guiding
the design and development of components. However, the potential
for errors to occur during the provisioning process always exists,
due to implementation or a failure to correctly interpret the spec-
ification of our language. We can assist in identifying and flag-
ging such errors by programatically generating monitoring instru-
ments which will validate run-time constraints previously described
in Section 4.2.2.

+ Syntax model Semantic model
Constraints
l Code generator
Service
Definition OCL interpreter Application/

Domain
monitors

Manifest

Java/XML/
Hutn ...

Figure 6: Programatic generation of monitoring instruments

The process by which this is achieved is illustrated in Figure 6.
In previous work, we have developed the UCL-MDA tools [17],
a graphical framework for the manipulation of EMOF and OCL
implemented as a plug-in for the Eclipse IDE. The framework relies
on existing standards for the transformation of EMOF models and
OCL into code, such as the Java Metadata Interface (JMI) standard
and OCL interpreters, and is available at uclmda.sourceforge.net.

We have extended the framework for the purpose of this work.
Our extensions introduce the ability to create, edit and validate
manifests describing services to be deployed on a RESERVOIR
based infrastructure. Element attribute values are input via the
graphical interface in accordance with the structure of the language.
Infrastructure related attributes and configuration values may be in-
cluded in order to verify that OCL constraints are correctly main-
tained. This may be used amongst other things to verify that de-
ployment descriptors generated by the infrastructure fit within the
requirements specified by the manifest as covered.

Via the interface, users can additionally request the creation of
stand-alone monitoring instruments in Java capable of interaction
with our implementation of the RESERVOIR framework. These
are currently of two forms. The first is simply responsible for
gathering and reporting the values of specific KPIs described in
the manifest. The second will validate the correct enforcement of
elasticity rules by evaluating incoming monitoring events and ver-

ifying where appropriate that suitable adjustment operations were
invoked by matching entries and time frames in infrastructural logs.
The framework also allows the generation of custom stubs which
the service provider may used as a basis for the development by
the service provider of monitoring agents, handling issues such as
communication protocols, measurement labelling and packaging,
and providing a control interface to manage frequency and opera-
tion. This would have to be supplemented with appropriate probes
responsible for the application level collection of measurements.

Java code is generated from a combination of data obtained from
the specification, element values input by the user and Java tem-
plates, the latter being used to bridge the gap between the abstract
model of the infrastructure and the actual implementation. As pre-
viously discussed, issues such as communication channels for the
distribution of monitoring events fall outside the scope of the man-
ifest language specification. Templates provide the necessary code
to gather KPI measurements or parse infrastructure logs and pass
this information to OCL interpreters.

Our implementation of the RESERVOIR monitoring framework
itself is described in [16]. Data sources, such as application level
monitoring agents, encapsulate one or more probes responsible
for the collection and publication of specific attributes and values.
Communication between producers and consumers of data is di-
vided between multiple communication planes: the control plane,
to manage the execution of infrastructure level probes, such as turn-
ing them on and off and reconfiguration, the information plane, to
facilitate the exchange of related meta-data, and the data plane, for
the actual communication of KPI measurements. Multiple trans-
port mechanisms may be plugged in. In order to minimise the
number of connections established between end points a number
of solutions are in place, including the potential use of IP multicas-
ting as a transport mechanism, and intermediate data aggregation
points, which will be responsible for collecting data packets and
processing these if needed to produce new performance indicators.

The tool hence serves the following purposes: firstly, it allows
users to specify and manipulate manifests. Secondly it allows the
generation of code allowing the service provider to verify the cor-
rect provisioning of a service at run-time according to the seman-
tics of the language. Finally it provides the means of interfacing a
service with the RESERVOIR monitoring architecture.

5. EXPERIMENTAL EVALUATION

In the evaluation of our work we aim to prove the following hy-
pothesis: provided that an architecture definition correctly specifies
requirements and elasticity rules, and that the Cloud computing in-
frastructure obeys the constraints identified in the semantic defini-
tion, then the quality of service that can be obtained from a Cloud
computing infrastructure should be equivalent to that obtained were
the application hosted on dedicated resources. In addition, through
the specification of elasticity rules, providers can considerably re-
duce expenditure by minimising over-provisioning.

We will demonstrate this hypothesis by deploying a production
level service on an infrastructure consisting of the RESERVOIR
stack and a custom implementation of the Service Manager. This
Service Manager incorporates monitors that validate the specified
constraints. The selected service is a grid based application respon-
sible for the computational prediction of organic crystal structures
from the chemical diagram [10].

The application operates according to a predefined workflow in-
volving multiple web based services and Fortran programs. Up to
7200 executions of these programs may be required to run, as batch
jobs, in both sequential and parallel form, to compute various sub-
sets of the prediction. Web services are used to collect inputs from

a user, coordinate the execution of the jobs, process and display
results, and generally orchestrate the overall workflow. The actual
execution of batch jobs is handled by Condor [21], a job scheduling
and resource management system, which maintains a queue of jobs
and manages their parallel execution on multiple nodes of a cluster.

This case study provides many interesting challenges when de-
ployed on a Cloud computing infrastructure such as RESERVOIR.
Firstly, the application consists of a number of different compo-
nents with very different resource requirements, which are to be
managed jointly. Secondly, the resource requirements of the ser-
vices will vary during the lifetime of the application. Indeed, as
jobs are created, the number of cluster nodes required to execute
them will vary. Our goal in relying upon a Cloud computing infras-
tructure will be to create a virtualised cluster, enabling the size of
the cluster to dynamically grow and contract according to load.

For this evaluation, we will compare the quality of service, i.e.
the duration required to complete the prediction) when executing
this workflow on a dedicated cluster, compared to a Cloud comput-
ing infrastructure that provides support for our abstractions. We are
not concerned here with the overhead of hypervisors such as Xen,
which are well documented [8]. Instead we are concerned with
evaluating the costs of dynamically adjusting the resource provi-
sioning during the application lifecycle and determining whether
an appropriate level of service can still be obtained.

5.1 Testbed Architecture

5.1.1 Service components

Orchestration Service
Tomeat Grid Mgmt. Service
e o
Bpel Engine [Axis 1] Dynamic scaling
Polymorph Wil] || | Wli=raeam
Condor Manager Condor Exec. Service
Condor
hedd
R |[PIMORSU || | e i
= W Troger page condor stand
[condor_neg] i
Service
Manager
__________________________ VEE
7 7 e
T _<> _________ {} _______ VEE Host

Host A| Host B Host C| | HostD| | HostE| | HostF

Figure 7: Testbed architecture

The testbed we use is illustrated in Figure 7. Three main types of
service components can be distinguished. The Orchestration Ser-
vice is a web based server responsible for managing the overall
execution of the application. It presents an HTTP front end en-
abling users to trigger predictions from a web page, with various
input parameters of their choice. The Business Process Execution
Language (BPEL) [13], is used to coordinate the overall execution
of the polymorph search, relying on external services to generate
batch jobs, submit the jobs for execution, process the results and
trigger new computations if required.

The Grid Management Service is responsible for coordinating
the execution of batch jobs. It presents a web service based inter-
face for the submission of jobs. Requests are authenticated, pro-
cessed and delegated to a Condor scheduler, which will maintain a
queue of jobs and manage their execution on a collection of avail-
able remote execution nodes. It will match jobs to execution nodes
according to workload and other characteristics (CPU, memory,
etc.). Once a target node has been selected it will transfer binary
and input files over and remotely monitor the execution of the job.

The last type of component is the Condor Execution Service,
which runs the necessary daemons to act as a Condor execution
node. These daemons will advertise the node as an available re-
source on which jobs can be run, receive job details from the sched-
uler and run the jobs as local processes. Each node runs only a sin-
gle job at a time and upon completion of the job transfers the output
back to the scheduler, and advertises itself as available.

5.1.2 Deployment

Packaged as individual virtual machines encapsulating operating
system and other necessary software components, the three compo-
nents are deployed on the RESERVOIR-based infrastructure. The
associated manifest describes the capacity requirements of each
component, including CPU and memory requirements, references
to the image files, starting order (based on service components de-
pendencies), elasticity rules and customisation parameters. For the
purpose of the experiment, the Orchestration and Grid Manage-
ment Services will be allocated a fixed set of resources, with only a
single instance of each being required. The Condor execution ser-
vice however will be replicated as necessary, in order to provide an
appropriate cluster size for the parallel execution of multiple jobs.
The elasticity rules will tie the number of required Condor execu-
tion service instances to the number of jobs in queue as presented
by the Condor scheduler. This enables us to dynamically deploy
new execution service instances as the number of jobs awaiting ex-
ecution increases. Similarly as the number of jobs in the queue
decreases it is no longer necessary to use the resources to maintain
a large collection of execution nodes, and hosts in the Cloud can
be released accordingly. This is expressed as follows in the mani-
fest using an XML concrete syntax, which conforms to the abstract
syntax described in Section 4.2.1. We use a similar elasticity rule
for downsizing allocated capacity as the queue size shrinks.
<ElasticityRule name="AdjustClusterSizeUp">
<Trigger>
<TimeConstraint unit="ms">5000</TimeConstraint>
<Expression>
(@uk.ucl.condor.schedd.queuesize /
(@uk.ucl.condor.exec.instances.size +1) > 4) &&
(@uk.ucl.condor.exec.instances.size < 16)
</Expression>
</Trigger>
<Action run=
"deployVM (uk . ucl.condor.exec.ref"/>
<ElasticityRule>
The elasticity rules will refer to key performance indicators that
would have to be declared within the context of the application
structure. This will be expressed as follows:
<ApplicationDescription
name="polymorphGridApp">
<Component name="GridMgmtService" ovf:id="GM">
<KeyPerformanceIndicator category="Agent" type="int">

mem

<Frequency unit="s">30</Frequency>
<QName>uk . ucl.condor.schedd. queuesize</QName>
</KeyPerformancelndicator>
</Component>

</ ApplicationDescription>

All components and KPIs will need to be declared in this man-
ner. This enables the infrastructure to monitor KPI measurements
being published by specific components and associate them to the
declared rules according to the previously stated semantics. In this
particular instance we are specifying that a monitoring agent as-
sociated with the Grid Management Service will publish measure-
ments under the uk.ucl.condor.schedd. queuesize qualified name
every 30 seconds as integers.

The overall management process can hence be described as fol-
lows: upon submission of the manifest, the Service Manager, which

is responsible for managing the joint allocation of service compo-
nents and service elasticity, will parse and validate the document,
generating suitable individual deployment descriptors to be sub-
mitted to the VEEM beginning with the Orchestration and Grid
Management components. The VEEM will use these deployment
descriptors to select a suitable physical host from the pool of known
resources. These resources are running appropriate hypervisor
technology, in this case the Xen virtualisation system, to provide
a virtualised hardware layer from which the creation of new virtual
machines can be requested. Upon deployment, the disk image is
replicated and the guest operating system is booted with the appro-
priate virtual hardware and network configuration.

When the Grid Management component is operational, a moni-
toring agent, as described in Section 4.2.1, will begin the process
of monitoring the queue length and broadcast the number of jobs
in the queue on a regular basis (every 30 seconds) under the se-
lected qualified name (uk.ucl.condor.schedd.queuesize). These
monitoring events, combined with appropriate service identifier in-
formation, will be recorded by the rule interpreter component of
the Service Manager to enforce elasticity rules. When conditions
regarding the queue length are met (i.e. there are more than 4
idle jobs in the queue), the Service Manager will request the de-
ployment of an additional Condor Execution component instances.
Similarly, when the number of jobs in queue falls below the se-
lected threshold, it will request the deallocation of new virtual in-
stances.

The actual physical resources which are managed by the
RESERVOIR infrastructure used in this experiment consist of a
collection of six servers, each of them presenting a Quad-Core
AMD Opteron(tm) Processor 2347 HE CPU and 8 GBs of RAM
and with shared storage via NFS. OpenNebula v1.2, as the VEEM
implementation, is used to manage the deployment of virtual ma-
chines on these resources according to the requirements specified
by a Service Manager.

Both the Orchestration and Grid Management components will
be allocated the equivalent of a single physical host each, due to
heavy memory requirements, and up to 4 Condor Execution com-
ponents may be deployed on a single physical host, limiting the
maximum cluster size to 16 nodes. This mapping however is trans-
parent to the Service Manager, Service Provider and application.

5.1.3 Metrics

Itis also important to briefly describe the characteristics of the over-
all application workflow, in order to determine appropriate metrics
for the experiment. Our primary indicator of quality of service is
the overall turn around time of a prediction. The turn around time
can be defined as the amount of time elapsed between the moment a
client user requests a search to the moment results are displayed on
the web page. As previously stated, the overall process combines
functionality from a number of different Fortran programs into a
larger workflow. Based on our selected input, two long running
jobs will first be submitted, followed by an additional set of 200
jobs being spawned with each completion to further refine the in-
put. We must also take into account the additional processing time
involved in orchestrating the service and gathering outputs.

Another important metric to consider is that of resource usage.
The goal of service elasticity is to reduce expenditures by allowing
Service Providers to minimise overprovisioning. While the actual
financial costs will be dependent on the business models employed
by Cloud infrastructure providers, we can at the very least rely upon
resource usage as an indicator of cost.

5.1.4 Experiment results

Dedicated Cloud
Environment | Infrastructure
Search turn around time (s) 8605 9220
Complete shutdown time (s) N/A 9574
Average execution nodes
for run 16 10.49
until shutdown N/A 10.42
Percentage differences
Resource usage saving 34.46%
Extra run time (jobs) 7.15%

Table 1: Experiment Results

We compare turn-around time and resource usage obtained on our
Cloud infrastructure with elasticity support with that obtained in an
environment with dedicated physical resources. The objective is
to to verify that there are no strong variations in turn around time,
but a significant reduction in resource usage. The results are illus-
trated in Figure 8. The number of queued jobs is plotted against the
number of Condor execution instances deployed. Both charts show
large increases in queued jobs as the first long running jobs com-
plete and the larger sets are submitted. In addition, the first chart
represents the execution of the application in a dedicated environ-
ment and shows a set of 16 continuously allocated execution nodes.
The second chart represents the execution of the application with
elasticity support, shows the increase in the number of allocated
nodes as jobs in queue increases, and a complete deallocation as
these jobs complete. The overall turn around time and resource
usage obtained is described in Table 1.

As we can see from the results, a 7.15% increase in turn around
time occurs. As there is little difference in execution times in the
individual batches of jobs on either the dedicated or virtual cluster,
the increase in turn around time comes primarily from the addi-
tional time that is taken to create and deploy new instances of the
Condor execution service as jobs are added in the queue. This can
be verified in Figure 8, where a small delay can be observed be-
tween increases in the number of jobs in queue, and the increase
in Condor execution services. The overhead incurred is due to the
deployment process, which will involve duplicating the disk im-
age of the service, deploying it on a local hypervisor, and booting
the virtual machine, and the registration process, which is the addi-
tional time required for the service to become fully operational as
the running daemons register themselves with the grid management
service. There exists ways of reducing this overhead independently
of the Cloud computing infrastructure, at the expense of resource
usage, such as relying on pre-existing images to avoid replication.

A 10 minute increase of time in can however be constituted as
reasonable considering the overall time frame of a search, which is
well over 2 hours. This is particularly true as we consider the over-
all resource usage savings. Indeed as can be seen in the table, with
respect to execution nodes, the overall resource usage decreases by
34.46% by relying on service elasticity. This is because the totality
of the execution nodes are not required for the initial bulk of the
run, where only 2 jobs are to be run. It is only in the second stage
that more nodes are required to handle the additional jobs.

Of course the savings here are only considered in the context of
the run itself. If we consider the overall use of the application over
the course of a randomly selected week on a fully dedicated en-
vironment where resources are continuously available, even more
significant cost savings will exist. Examining logs of searches con-
ducted during this period, and based on cost savings obtained here,
we have estimated that overall resource consumption would drop
by 69.18%, due to the fact that searches are not run continuously;
no searches were run on two days of the week, and searches, though
of varying size, were run only over a portion of the day, leaving re-

Execution with dedicated service
1000

100

. |

1 L
o o o 9 0O Q9 0 9 © Q9
- & @ n © KR ® & O

Jobs/Resources

o o o o
< — N ™
- - -

140

Time (mn)

—Jobs in Queue Running Nodes

o o
n O
- -

Execution with dynamic service deployment
1000

100

10 \
1
o
n
—

O O O O © O O O O O O o
HNO’IQ‘LHLDI\OOO\SH

Jobs/Resources

Time (mn)

—Jobs in Queue Running VMs

Figure 8: Job Submission and Resource Availability

sources unused for considerable amounts of time.

6. RELATED WORK

Much of this work builds on the foundation previously estab-
lished with SLAs, where we used a model denotational approach
to specify service level agreements for web-based application ser-
vices [18]. In this paper, we have aimed to broaden the approach
to encapsulate Cloud computing primitives and environment, pro-
viding a specification for a manifest language describing software
architecture, physical requirements, constraints and elasticity rules.

In addition, it is worth examining research developments related
to service virtualisation, grid computing and component based soft-
ware architecture description languages. With respect to virtual
environment deployment descriptions, the manifest language pro-
posed here builds upon the Open Virtualisation Format (OVF) [5],
whose limitations have already been discussed.

There exists a number of software architecture description lan-
guages which serve as the run-time configuration and deployment
of component based software systems. xArch [9], for example, is
a standard, extensible XML-based representation for software ar-
chitectures. It does not in itself provide the support for physical
resource requirement descriptions that may be relevant in a vir-
tualised environment. Moreover, at the application level, we are
primarily concerned with observable parameters of interest.

The CDDLM Component Model [20] outlines the requirements
for creating a deployment object responsible for the lifecycle of
a deployed resource with focus on grid services. Each deploy-
ment object is defined using the CDL language. The model also
defines the rules for managing the interaction of objects with the
CDDML deployment API. Though the type of deployment object
is not suited to virtual machine management, the relationship be-
tween objects and the deployment API can be compared to our ap-
proach we have undertaken here, providing a semantic definition
for the CDL language. However in our case the relationship be-
tween domain and syntactic models is performed at a higher level
of abstraction, relying on OCL to provide behavioural constraints.
Our specification is hence free of implementation specific concerns.

The general approach to dynamic and automated provisioning
may also be compared to the self-managing computing systems
associated with autonomic computing research [12]. While our
approach to elasticity is explicit, in that providers define appro-
priate scaling rules based on an event condition action model, we

have laid a foundation for further methods to be developed relying
on predictive and autonomic mechanisms to anticipate future allo-
cation changes and further minimise over-provisioning, providing
monitoring channels and a rule based framework for the dynamic
management of services.

Finally it is important to examine current developments in pro-
duction level Cloud environments, such as Amazon’s EC2 offering.
In particular, auto-scaling has been introduced by Amazon to allow
allocated capacity to be automatically scaled according to condi-
tions defined by a service provider. These conditions are defined
based on observed resource utilisation, such as CPU utilisation,
network activity or disk utilisation. Whilst the approach laid out
in this paper can be used to define elasticity rules based on such
metrics, this can prove limiting. With respect to the evaluation, the
need to increase the cluster size cannot be identified through these
metrics as we require an understanding of the scheduling process.
The ability to describe and monitor application state is crucial if we
wish to correctly anticipate demand.

In addition, the focus of our paper has primarily been on
Infrastructure-as-a-Service Clouds. Nevertheless it is still impor-
tant to briefly discuss the relevance of this work with respect to
Platform-as-a-Service (PaaS) clouds such as Windows Azure [4].
PaaS clouds provide an additional level of abstraction over IaaS
clouds, providing a runtime environment for the execution of ap-
plication code and a set of additional software services, such as
communication protocols, access control, persistence, etc. Win-
dows Azure allows services to be described as distributed entities:
clients can specify the interfaces exposed by services, communica-
tion end points, channels and roles (web or worker) and different
hardware requirements may be allocated. However a need to con-
trol the management, distribution and lifecycle of multi-component
systems still exists, though with the added benefit of application
specific operations being more readily exposed to the infrastruc-
ture. How this is implemented will be tied to the specifics of the
platform itself but we do believe there is potential to adapt many as-
pects of our approach to the platform specific interfaces and tools.

7. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an abstract syntax and semantic
definition for a service manifest language which builds on the OVF
standard and enables service requirements, deployment constraints
(placement, co-location and startup/stopping order) and elasticity

rules to be expressed. We believe that clear behavioural seman-
tics are of paramount importance to meet quality goals of both the
Service and Infrastructure provider. Our model-driven approach
aims to strengthen the design of the RESERVOIR stack, identify-
ing functional capabilities that should be present and constraints
the system should observe. It has also served to drive the imple-
mentation of the RESERVOIR monitoring framework.

We have shown experimentally that the implementation of these
concepts is feasible and that a complete architecture definition that
uses our manifest syntax can enable Cloud computing infrastruc-
ture to realise significant savings in resource usage, with little im-
pact on overall quality of service. Given that a Cloud can deliver a
near similar quality of service as a dedicated computing resource,
Clouds then have a substantial number of advantages. Firstly appli-
cation providers do not need to embark on capital expenditure and
instead can lease the infrastructure when they need it. Secondly,
because the elasticity rules enables the application provider to flex-
ibly expand and shrink their resource demands so they only pay
the resources that they actually need. Finally, the Cloud provider
can plan its capacity more accurately because it knows the resource
demands of the applications it provides.

While Cloud computing is still a relatively new paradigm, and
as such changes in standards, infrastructural capabilities and com-
ponent APIs are inevitable, defining the software architecture of
services hosted on a cloud with respect to the capabilities of the
underlying infrastructure is key to optimizing resource usage. This
allows us to bridge the gap between application and infrastructure
and provides the means for providers to retain some control over
the management process.

Our work paves the way towards quality of service aware ser-
vice provisioning. In future work, we aim to develop appropriate
syntax and semantics for resource provisioning service level agree-
ments. Building upon the approach laid out here, we aim to pro-
vide a framework for the automated monitoring and protection of
service level obligations based on defined semantic constraints.

8. REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2). [Online]
http://aws.amazon.com/ec2.

[2] IBM blue cloud. [Online]
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss.

[3] SAP Enterprise Resource Planning. [Online]
http://www.sap.com/solutions/business-suite/erp/index.epx.

[4] Windows Azure Platform. [Online]
http://www.microsoft.com/windowsazure/.

[5] Open Virtualization Format Specification. Specification
DSP0243 v1.0.0, Distributed Management Task Force, 2009.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
164-177, New York, NY, USA, 2003. ACM Press.

[8] L. Cherkasova and R. Gardner. Measuring CPU overhead for
I/O processing in the Xen virtual machine monitor. In
Proceedings of the USENIX annual technical conference,
pages 387-390, 2005.

[9] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

infrastructure for the rapid development of xml-based
architecture description languages. In ICSE ’02: Proceedings
of the 24th International Conference on Software
Engineering, pages 266-276, New York, NY, USA, 2002.
ACM.

'W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and
S. L. Price. Grid Service Orchestration using the Business
Process Execution Language (BPEL). Journal of Grid
Computing, 3(3-4):283-304, 2005.

F. Galan, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil,

L. M. Vaquero, and M. Wusthoff. Service specification in
cloud environments based on extensions to open standards.
In Fourth International Conference on COMmunication
System softWAre and middlewaRE (COMSWARE 2009),
June 2009.

A. Ganek and T. Corbi. The dawning of the autonomic
computing era. IBM Systems Journal, 42(1):5-18, 2003.
OASIS. Web Service Business Process Execution Language
Version 2.0 Specification, april 2007. OASIS standard.
Object Management Group. Meta Object Facility Core
Specification 2.0, OMG Document, formal/2006-01-01,
2006.

Object Management Group. Object Constraint Language
(OCL) 2.0, OMG Document, formal/2006-05-01, 2006.

B. Rochwerger, A. Galis, E. Levy, J. Céceres, D. Breitgand,
Y. Wolfsthal, I. Llorente, M. Wusthoff, R. Montero, and

E. Elmroth. RESERVOIR: Management Technologies and
Requirements for Next Generation Service Oriented
Infrastructures. In The 11th IFIP/IEEE International
Symposium on Integrated Management,(New York, USA),
pages 1-5, 2009.

J. Skene and W. Emmerich. Engineering runtime
requirements-monitoring systems using MDA technologies.
Lecture notes in computer science, 3705:319, 2005.

J. Skene, D. D. Lamanna, and W. Emmerich. Precise service
level agreements. In ICSE '04: Proceedings of the 26th
International Conference on Software Engineering, pages
179-188, Washington, DC, USA, 2004. IEEE Computer
Society.

J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing
10/Devices on VMware Workstation’s Hosted Virtual
Machine Monitor. In Proc. of the 2001 USENIX Annual
Technical Conference, Boston, Mass, June 2001. Usenix.

J. Tatemura. CDDLM Configuration Description Language
Specification 1.0. Technical report, Open Grid Forum, 2006.
D. Thain, T. Tannenbaum, and M. Livny. Condor and the
Grid. In F. Berman, G. Fox, and T. Hey, editors, Grid
Computing: Making the Global Infrastructure a Reality.
John Wiley & Sons Inc., December 2002.

L. M. Vaquero, L. Rodero-Merino, J. Ciceres, and

M. Lindner. A break in the clouds: towards a cloud
definition. SIGCOMM Comput. Commun. Rev., 39(1):50-55,
20009.

J. Warmer and A. Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

