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Abstract

This thesis investigates the suitability of using functional programrfonguilding
parallel rule-based systems.

A functional version of the well known rule-based system OPS5 was implemented,
and there is a discussion on the suitability of functional languages for both building
compilers and manipulating statBunctional languages can be used to build compilers
that reflect the structure of the original grammar of a language and are, therefore, very
suitable. Particularattention is paid to thestate requirements and the state
manipulation structures of applications such as a rule-based system because,
traditionally, functional languages have been considered unable to manipulate state.

From the implementation work, issues have arisen that are important for functional
programming as a wholeThey are in the areas of algorithms and data structures and
development environmentsThere is a more general discussion of state and state
manipulation in functional programs and how theoretical work, such as monads, can be
used. Echniques for how descriptions of graph algorithms may be interpreted more
abstractly to build functional graph algorithms are presented. Beyond the scope of
programming, there are issues relating both to the functional language interaction with
the operating system and to tools, such as debugging and measurement tools, which
help programmers write fedient programs. In both of these areas functional systems
are lacking.

To address the complete lack of measurement tools for functional languages, a
profiling technique was designed which can accurately measure the number of calls to a
function , the time spent in a function, and the amount of heap space used by a function.
From this design, a profiler was developed for higitder lazy, functional languages
which allows the programmer to measure and verify the behaviour of a progras.
profiling technique is designed primarily for application programmers rather than
functional language implementors, and the results presented by the profiler directly
reflect the lexical scope of the original program rather than some run-time
representation.

Finally, there is a discussion of generally available techniques for parallelizing
functional programs in order that they may execute on a parallel machime.
techniques which are easier for the parallel systems builder to implement are shown to
be least suitable for large functional applicatiolhose techniques that best suit
functional programmers are not yet generally available and usable.
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Introduction

Current research indicates that there is a need for parallelism in rule-based systems
in order to increase their spe@@upta86], [Hillyer86],and [Miranker87].Functional
programming is considered a technique well-suited for harnessing parallelism because
functional programs decompose into independent tasks each of which can be evaluated
concurrently [Hudak85], [Cripps87], and[Watson88]. Giverthat there is a need for
parallelism and there is a tool that is well-suited for harnessing parallelism, it seems
pertinent to ask the question:

Can functional ppgramming be used for harnessing parallelism in rule-based

systems?

The need for extra resources in computer systems is being hampered by
conventional software and hardware techniq{iesrner80]. Thesoftware limitations
are known as thsoftwae aisis, where the size and complexity of software systems is
becoming unmanageabld’his is combined with a proportional increase in both the
number of bugs, and the cost of development and maintenance. One solution to the
software crisis is the use of functional programmteghniques which provide benefits
through good design, powerful abstraction mechanisms, the lack of deseand a

strong mathematical basis [Turner84].

On a par with the software crisis is thardware aisis in which the limits imposed
by both the speed and size of hardware have begun to force designers into new areas.
To overcome the hardware deficiencies, the use of parallelism is generally advocated.

Large scale parallelism can be derived from machines with hundreds or thousands of



processors all executing programs at the same [iilés85]. Eachprocessor does a
small amount of the work, but the whole homogeneous machine does enormous
amounts. Tharchitecture of these parallel machines is a deviation from conventional
machines, and the harnessing of the parallelism to the fullest capacity calls for novel
techniques in software. Functional programming provides a method for approaching
software design in a novel wayHughes89] and, as functional languages are
independent of any machine architect{ifenderson80] [Glaser84fhey are amenable

to execution on a wide range of machines.

A patrticular class of applications which imposes a heavy load on conventional
architectures and would benefit from parallelism are rule-based sy$&tefik81].
Rule-based systemfHayes-Roth85] are the use of artificial intelligence techniques
applied to human understanding and reasofidgston81], [Rich83], [Charniak85].

They are particularly appropriate for many tasks, including requirements analysis,
expert systems for analysis and synthesis, and for complex problems where the flow of

control is unknown or the definition of the model is incomplete.

In the past, rule-based systems, which provide a powerful paradigm for problem
solving, have been limited by their run-time performance. In an attempt to overcome
this, several parties have written parallel versions of rule-based syfBpsa84],
[Hillyer86], [Gupta86],and [Oflazer87].They all use specialized hardware for their
implementations and their work provides comprehensive data concerning these
specialized machines.Yet, although the behaviour of their algorithms are well

understood, little work in this area has been done for general purpose hardware.

There is a need to build a parallel implementation of a rule-based system that is
portable, flexible, and does not require specialized hardware. As a functional
programming environment provides a mechanism which enables programs to be
independent of any machine architecture, there is no need for the programmer to be
concerned with the partitioning, scheduling, and synchronizing of parallel tasks as this
can be done automatically by the compiler and the run-time sy$ack85],
[Clack86] (Although some researchers advocate the use of annotations or skeletons to

indicate parallelism and placement in addition to the automatic analysis provided by the



compiler [Hudak85], [Kelly87] ). In parallel functional programming environments,

the dynamic mapping of tasks onto machines occurs at run-time in contrast to some
specialized environments, in which a static mapping of tasks onto machines is done in
advance [May84].This feature enables functional environments to have dynamic load
balancing, which distributes work more everfijudak84]; in other words, no machine
need be idle if there is work to be dofteager86]. Thanost important aspect from a
programming viewpoint is that parallelism is implicit and no programmer intervention

IS needed to run the rule-based system on a selection of different parallel machines.

Goals of the research

The need for parallelism in rule-based systems has been ascerfaif{&dolfo86]
and [Rosenthal85hoth conclude that implicit parallelism, which is where the system
finds the parallelism rather than the programmer stating where it is, is a promising area
to investigate in order to obtain more parallelism in a rule-based syslais. is
because programmer specification of parallelism has reached its limits due to the
complexity of the taskAs a consequence of the findings of Stolfo and Rosenthal and
because one of the many proposed benefits of functional languages is that parallelism is
implicit, functionalprogramming techniques seem well-suited for obtaining parallelism
in a rule-based systenTherefore, functional programming was chosen as the vehicle

for the implementation of a parallel rule-based system in this research.
The original goals of the research were:

i) to use functional programming techniques to implement a rule-based

system.

i) to analyse the functional rule-based system forficieficies and then to
implement efficient new algorithms or to transform old algorithms into

more efficient ones.

iii) to create a version of the functional rule-based system that is amenable to

execution on a parallel machine.



iv) to analyse the functional parallel environment and gather data on the
performance of the parallel functional rule-based system in order to remove

any inefficiencies.

v) to compare the performance of the parallel functional rule-based system

with an existing parallel rule-based system.

Only when these 5 aims have been addressed will it be possible to determine if
functional programming techniques are suitable for harnessing parallelism in rule-based
systems.

There are three main research areas in this thesis, namely: functional programming,
rule-based systems, and parallelisnfihere has been previous research work in
combinations of two of the three areas, but this thesis is new in combining all three.

These main research areas are inter-related such that their combination can be viewed as

a three way relationship:

rule-based

systems

functional
parallelism

programming

There has been little work on large parallel functional applications as much of the
work in the functional programming arena has been either theoretical or focused on
implementing abstract machines and compilékkhough the many proposed benefits
of functional programming appear to render it a well-suited method to use for both
parallelism and rule-based systems, there is as yet no definitive answer indicating how

useful functional programming techniques are for harnessing parallelism in general and



rule-based systems in particular.

The functional programming environments available are not as mature as
imperative programming environments because practical functional programming
environments are relatively newhere are few sources of functional interpreters and
compilers, there are no known full development environments for functional languages,
and there are no books on the design and developmengef fanctional applications.
Furthermore, there are no design methodologies in general use for developing
functional programs as there are for imperative programs. The lack of development
environments and written material could limit the development of a functional

application; this thesis will investigate if this is the case.

Furthermore, the formalisms which constitute the basis of functional languages are
considered to be an advantage for functional programmidérsse formalisms provide a
rigid framework within which programs are builHowever this advantagecould also
be adisadvantagebecause operations that are simple to do in imperative languages
could be difficult in a functional language due to this rigid framew@ror example, it
is impossible to add a line of code to print the value of an object. In order to get this

value, the code must be explicitly designed).

Contributions
The contributions of this thesis are:

 a critical assessment of the suitability of functional programming
techniques for implementing large applications and rule-based systems in

particular.

» acritical assessment of practical state manipulation techniques in functional
programming.
* a large, working, application written in a lazhigherorder functional

programming language which does large amounts of state manipulation

» a critical assessment of the functional programming environment, with

suggestions for how the environment can improve.



» the design, implementation and analysis of a tool for profiling lagker-
order functional programsThe tool measures function call count, time

spent in a function, and the heap space used by a function.

* a critical assessment of techniques for parallelizinggdafunctional

programs.

Overview of the thesis

It is the aim of this research to investigate if functional programming techniques can
be used to develop and build rule-based systems that are of an acceptablafqbalty
are indeed beneficial for tasks that require parallelism, and if they can be used to
harness parallelism in a rule-based system such that the resulting rule-based system
executes at an acceptable speed. In addition, the available functional programming
development environments will be considered in relation to these aims, and in particular

to determine their suitability for writing a large application.

Chapter 1 provides a general background to the three main research areas, and the

advantages of functional programming are discussed in more detail.

Chapter 2 provides a more detailed discussion of rule-based systems, why certain
pattern matchers are more efficient than others, and discusses previous work in parallel

rule-based systems.

Chapter 3 considers the design and implementation of a rule-based system written
in a higherorder lazy functional language, and discusses hovemdiht aspects of
functional programming &cted the design and the implementation of separate

components of the rule-based system.

Chapter 4 discusses the issues arising from the implementation in chapter 3.
Particular attention is paid to programming aspects, namely algorithms and data
structures, and to thefeiency of programs. This chapter considers the functional

programming environment in more general terms than chapter 3.

Chapter 5 addresses one of the issues arising in chapter 4 — the lack of

measurement tools. The design and implementation of a profiler for tuglesrlazy



functional programs is described. This profiler measures the number of calls to a
function, the amount of time spent in a function, and the amount of heap space used by

a function.

Chapter 6 considers how parallelism can be harnessed in a functional program and
shows the results of using a real parallel machine. It can be seen that the techniques

advocated are not ready to be used for large functional programs.

In the final chapter the work is reviewed and conclusions dr&emters to where
further work needs to be done in order to develop functional programming into a more

useful tool for harnessing parallelism in rule-based systems are discussed.






Chapter 1

1. GeneralBackground

This chapter presents a general background to the three main research areas in this

thesis, namely functional programming, parallelism, and rule-based systems.

1.1. FunctionalProgramming

A functional program is a program that consists entirely of functidngrogram
has a main function, which calls other functions to do work for it, and they in turn call
yet more functions.The main function collects input from the user and prints the result
which is calculated by its bodyFunctional programs have a mathematical basis which

enforces a rigorous approach to the design and implementation of the program.

Functional programming is being investigated by many researchers because of its
theoretical basis, and because functional programs are amenable to automatic machine-
based reasoning. The areas being investigated include automatic program
transformation [Darlington80][Darlington90], automatic program provirfgurner82],
and formal semanticgStoy80] [Schmidt86]while others are investigating thdieient
implementation of functional programs on conventional architecturd@surfer79],
[Fairburn87], [Peyton-Jones87],[Peyton-Jones89] . The area this thesis investigates

Is the use of functional programming for large applications.
The benefits gained from writing an application in a functional language are:

» there are expressions onlgjo commands. Functiongbrograms express
what to do as opposed to conventional programs, which express how to do

it. This prevents programmers from worrying about small details, such as



incrementing a control variable of a loop, and leaves the programmer free

to solve larger problems.

there is no assignment to variables, just definitions; thus there can be no
side-efects and the ability to state formally what is happening in a program
is maintained. Obscure behaviour from variables being unexpectedly

updated is eliminated.

there is no explicit flow of control or sequencing due to there being no
variables to change in a loop statement and no concept of a program
counter to state where the next instruction is. Therefore, there are no
confusing gots. Theprogrammer does not have to define a total ordering
on operations; flow of control and sequencing is through function

application, recursion, and data dependencies.

there is no explicit memory managemeiithe memory or heap space is
managed transparenthyith heap space being allocated and deallocated on
demand. Thisavoids the problems of programs failing because of illegal

pointers.

there is no connection between the source language and the underlying
machine architectureTherefore, the code for the application need never be

changed when a different sequential or parallel machine is available.

potential parallelism in the code can be found by special compiler
techniques because there are no inter-procedural dependencies between
functions. Asthe parallelism is implicit, the programmer is saved from

stating where parallelism occurs.

functions are first class items within a functional language and are as
important as data. This results in the same treatment for functions as for
numbers and lists, thus presenting a level of uniformity not seen in

conventional languages.

higherorder functions are permittedlhis enables functions to be passed

or returned to or from other functions arbitragrithus allowing a high

10



degree of expressiveness.

» lazy evaluation is available in some run-time systems which allows infinite
data structures to be defined. This means general solutions to problems can
be defined rather than having a solution for an arbitrary number as is often
the case in imperative programs, whereby a programmer will chose to
evaluate a large number of solutions. This results in greater modularity
[Hughes89].

 there are very few syntactic rules, thus enabling programmers to
concentrate on the problem at hand and not on the syftamventional

languages often owdaurden the programmer with syntactic ru[&ay83].

» the notation used in functional languages is very close to that used in
formal methods, hence any system designed using these methods can be
implemented very rapidly Functional languages are often considered as

executable specification languages [Turner84].

These benefits allow the development of more expressive and modular programs
which are closer to the conceptual abstraction of a modleis contrasts with the
conventional approach which requires a sequence of commands to be specified to fit
with the traditional von-Neumann model of computati@ackus78]. Thidgs a major
benefit for functional programming because no time needs to be spent changing the
conceptual model into the von-Neumann model so that an algorithm can be expressed in

a conventional programming language.

With all these benefits forwarded to the functional programimeris fee to
concentrate on problem solving rather than fiddling with minor detéhe high-level
specification of functional languages means that program proving techniques and
automatic program transformation techniques can be used. This is a further benefit for
functional programmers. This is not the case for conventional languages where these

techniques are not available to programmers.
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1.1.1. Pogram proving

To determine if a function behaves correctly it is desirable to prove its correctness
rather than running numerous and contrived tests of the function which may not find
failure cases. Functional programs are amenable to program proving, which is much the
same concept as a mathematical proof. The approach used to prove functional
programs is based on equations and the properties of equdlitst of the facts one
may wish to prove about a program may be expressed as equdtmmexample we

may need to prove that:
map (f-g)=mapf map g
or that:

reverse (reverse k|

In [Bird88] there is a detailed presentation of proofs of both of these equations.

The attraction of this approach is that functional programs already consist of
equations, so that the nature of proving a program involves deriving a new set of
equations which have the same properties as the given set of equBRegas®ning with
equations is a well established mathematical activity and thus presents no new

undefined problems.

1.1.2. Pogram transformation

Program transformation is a technique for mapping an expression from one form to
another using techniques similar to algebraic manipulatior. examplen(x + 1) can
be transformed intox + n, and vice-versa.Different transformers take the expression
and rewrite the expression such that it is semantically equivalent but structurally
changed. Tansformation can be used to improveficedncy in programs by
manipulating the text of a program while maintaining correctness. The set of
transformations developed are [Burstall77]:

Definition — introduces a new definition.

12



Instantiation — introduces a substitution instance of another equation.

Unfolding — replaces a call of a function by its bodybstituting the formal
parameters.

Folding — replaces the body of a function by a call to the function with the
parameters

Abstraction — introduces sub-definitions.

Program transformation can be used to convert well designed code into a more
efficient form for execution.Table 1.1 shows the attributes of tbefore and after
code. Thebefore code is the style written by the programmer and has all of the
desirable properties of a program from a human perspediiveafter code is the code
actually executed on a machine and has the desirable property of executable code,
namely eficiency. Thus, program transformation does all the hard work of optimization
and allows the programmer to concentrate on the important issues of good quality

design and structured programming.

Before After

clean obscure
modular tangled

short long
simple complex

inefficient eficient

Table 1.1: Transforming functional programs for efficient execution
Program transformation techniques can also be used to generalize regularly used

expressions into new function definitions. The following is a step-by-step example of

how transformation is of benefit to functional programmers.

13



An Example of Program Transformation

This example relies on some proofs that are not shown here but are taken to be true.
As an example of program transformation, consider a function that takes two lists and
appends every element of the first list onto every element of the second list. This is

similar to the cross product function, which is traditionally defined as:
{(x,y) [ xOX, yOY}
This function will be callee¢p [1].

Thecp function can be used to create the cross product of multiple Tibs following

expression creates the cross product of 4 lists:
cp listl (cp list2 (cp list3 (cp list4 [[1]))) (A)

where the resulting list will have elements of the same length as the number of lists
passed to the calls op, in this case 4By using program transformation, it is possible
to convert multiple calls ofp into a function that will take any number of lists, and

produce their cross product. Step 1 uses the proof:

f(gx)=(f9g)x
such that equation A can be transformed into:

(cp listl - cp list2 - cp list3 - cp listd) [[]] (B)
Step 2 uses the proof:

(f.g) x =composd f, g] x
such that equation B can be transformed into:

composgcp listl , cp list2 , cp list3 , cp list4] [[]] (©)
Step 2 uses the proof:

map f[x; X ...]=[f Xg f X5 ...]

[1] A version of cross product which can be composed with other cross product functions can
be defined in Haskell as:

cp = [a]->[[a]]->[[a]]
cpxsys=[(Xy)|Xx<-xs,y<-ys]

14



such that equation C can be transformed into:
compos&map cp[listl , list2 , list3 , list4]) [[]] (D)

where brackets have been added aroundrthp expression for grouping. The final

step involves the introduction of a new definition:
multicp | = composdmap cpl) [[]] (E)
Using the new functiomulticp, equation A can be written as the expression:
multicp[list1 , list2 , list3 , list4]

However,multicp can be passed any number of lists to generate the lists’ cross product.
The importance of transformation in large functional programs is discussed in
[Kelly87]. Kelly’s FhD thesis has an extensive description of program transformations
used for a graphics processing system which takes a naive implementation and produces
a program which is more amenable to a distributed, parallel architecture. In the cross
product example, it took 5 transformation steps to go from a specific instance of

function calls to a general purpose function.

1.1.3. FunctionalApplications

There are few large functional applications, and the creation of one normally is of
enough interest to generate some research papers. Some examples of large functional
applications are shown in table 1.At the start of this research there was little
reference material for the functional applications buildgre current situation is that

many more have been written and reported in recent times, showing how functional

[2] A collection of applications is being made by Partain for his work on benchmarking
Haskell implementationgPartain92]. Thissuite of functional programs is intended to be a repre-
sentative workload for a Haskell compiler and run-time systéhe suite will be used for finding
good features of different Haskell compilers.
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applications are now coming to the fore [2].

Application Author Location Reference

YACC in SASL S. Peyton-Jones  UCL [Peyton-Jones85]
Lexical Analyser R. Jones UKC [Jones86]
Generator

Spreadsheet SVray Cambridge| [Wray86]

SML in SML compiler | A. Appel Princeton [Appel87]

Database Frinder Glasgow [Trinder89]

Process Animation K. Arya Oxford [Arya89]

Lazy ML in Lazy ML L. Augustsson Chalmers| [Augustsson89]

compiler

Solid Modelling D. Sinclair Glasgow [Sinclair90]
A terminal emulator C. Runciman York [Runciman91]
Text Compression P. Sanders BTLabs [Sanders92]
Quasi Linear J. Boyle Argonne [Boyle92]
Hyperbolic Partial National

Differential Equations Laboratory

Oil Reservoir Modelling| R. Page Amoco [3]

Table 1.2: Examples of functional applications

Much of the earlier implementation work for this thesis was done using the

functional language MirandafTurner85]. Itwas chosen at the beginning of the

[3] Personatommunication
T Miranda is a trademark of Research Software Ltd.
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research because it was the most effective, laherorder functional language
available. Ithad the latest features, it was commercially supported, and it was widely
used in the functional programming communit§ince that time Miranda has been
superseded in the functional programming community by Haskell, a public domain
language for which there are now many sources of compilers and interpreters
[Hudak88]. AsHaskell is the more modern and generally used functional language, and
because any Miranda functions can be easily converted to Haskell, all code examples
will be in Haskell even though they were originally implemented in Mirarldrief
introduction to Haskell is given in appendix B in order to clarify the features used in

this thesis.

1.2. Parallelism

The main aim of parallelism is to execute a program on more than one processor in
order to speed-up the execution time of that program. This technique is achieved by
splitting the program into separate tasks and evaluating the tasks concuaeigly
applying the same operation to many data items concurr@dtly87]. The former

approach is known as process parallelism and the latter is known as data parallelism.

Process parallelism consists of a number of independent threads of control engaged
in concurrent computation. Each task does a small amount of the whole computation.
Data dependencies between the tasks cause task synchroniZastan.parallelism
consists of multiple data structures which are processed at the same time by one

operation.

Attempts to design and write parallel languages resulted in parallel features being
added to existing languages. The method for programming in these languages relies on
the programmer knowing which parts of the program can be executed in parallel and
how data in different parts of the program interacts with the other dia. process
introduces another level of complexity in software creation. It is more difficult to write
a parallel program than to write a sequential program due to the complexity of parallel
algorithms, side-effects causing unexpected interactions, and the enormous amount of

time spent on finding the parallelism. When a program geland complex, the task of
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explicitly stating where the parallelism is can be difficult.

An alternative method is to use functional programming, in which the parallelism is
implicit and can be found by a clever compi[€lack85]. Thereare no side-éécts in
functional programming, so there are no obscure interactions and there is no global data
store and, thus, no need to synchronize on global data. In addition, the semantics of the
language are well defined and do not change when a parallel evaluation mechanism is
used [Peyton-Jones89af-urthermore, there is no burden for humans in learning

parallel features; they can involve themselves with expressing algorithms only.

Although parallelism is a way to improve the performance of complex applications,
the parallelism harnessed has to be effective, i.e. a parallel version of a program must be
more eficient than the best sequential version. Furthermore, some algorithms need to
be rewritten and / or redesigned in order to work in parallel. (Experiments with old
Fortran programs have demonstrated tfd$). Effective parallelism is not about
keeping processors busy but about speed-up relative to the speed of the fastest

sequential version. Schultz warns [Schultz88]:

i) a parallel algorithm can be made to achieve optimal cpu usage by
increasing the complexity — that is, just because a parallel algorithm is

keeping many cpg’husy does not mean that the algorithm is effective.

i) a parallel algorithm can be made cpu bound either by making its

complexity sufficiently bad or by using slower cpu’s.

iii) a poor algorithm doing operations at a high rate does not necessarily finish

before a good algorithm doing operations at a slow rate.

The important factor is speed-up over the best sequential version of a préaymancan

define speed-up to be:

time of the bestsequential algorithm
time of the bestparallel algorithm

speed-up =

[4] The programs are known akisty deckprograms because they are so old they were origi-
nally entered into a computer vialack of punched cards. The cards have been stored for so long
that they have beconaisty.
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In [Padua87],which is predominantly about parallelism and Fortran, Padua
discusses how parallelism is harnessed in imperative languages such as Fortran and how
this may difer for functional languages. He observes that explicit parallelism, which
forces the programmer to use parallel language constructs in order to harness

parallelism, must be used. The constructs may be one of:
» fork/join
* microtasks
» parallel loops

and are needed due to the features of imperative languages, such as global store and

side-effects.

Converselyimplicit parallelism occurs when a compiler or interpreter automatically
extracts the parallelismDue to the absence of side-effects in functional languages,

Padua observes that there is no need for compile-time:
* inter-procedural analysis to compute dependencies
e array expansion
» variable renaming
which are all required for parallel versions of Fortran and other imperative languages.

Padua concludes that, although there aferéifices in parallel languages at present,
future parallel systems will comprise program manipulation components, meta
languages, and specification languagéke functional programming world is able to

address of all these now.

1.2.1. Parallelhardware

Designers of parallel hardware can make choices regarding the style of the machine

they build. The main issues affecting their decisions are:
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» general versus fixed communication

» fine versus coarse granularity

* multiple versus single instruction streams
» shared versus distributed memory

Although each issue can be characterized by extreme schools of thought,fech of
spectrum of choices rather than a yes/no deciskeach choice is independent of the

other thus allowing for many styles of architecture [Hillis85].

General Versus Fixed Communication

Some portion of the computation in all parallel machines involves communication
among the individual processor&eneral communication permits any processor to talk
to any other whereas fixed communication allows only a few specific patterns of

communication which are defined by the hardware.

The main advantage of fixed communication is simplicdigd for certain
applications this mechanism can be much fastéhe general communications
machines have the potential of being easier to program for a wider range of tasks, and
the connection pattern can change dynamically for particular dmaever depending
on how a general communications network is implemented, some pairs of processors
may be able to communicate more quickly than others due to attributes of the

underlying real architecture.

Fine Versus Coarse Granularity

In any parallel computer with multiple processors, there is a trddeetfeen the
number of processors and the size of each proce¥¥®rcan characterize machines
with a handful of processors as being coarse grained and machines with thousands to
millions of processors as fine grained. The conventional, single processor machine is an

extreme case of a coarse grained machine.

The fine grained processors have the potential to be faster because ofie¢he lar

degree of parallelism, but the potential speed-up may not always happen due to factors
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such as a large communication overhead. The processors in a fine grained system are
generally less powerful, so many small processors may be slower than onedast, lar

processor.

Multiple Versus Single Instruction Stream

A multiple instruction stream machine is a collection of autonomous computers,
each capable of executing different codg.single instruction stream machine is a
collection of identical computers, each executing the same code. As both types of
machine operate on different data, this leads to the commonly used synonyms for
parallel machines — MIMD (multiple instruction multiple data) and SIMD (single

instruction multiple data)

The most common type of SIMD machines are vector or array proceSswse
fall into two categories, either general purpose machines such as the Cray
supercomputeror gecial purpose machines such as CLDBuff83], which is used

specifically for image processing.

MIMD machines come in many d#rent forms due to the different methods of
design and construction used by the different research groups. Some of the better
known forms include dataflow machinefWatson79], Tansputers [Inmos85],
hypercubes [Intel85]the Connection machine [Hillis85], and the graph reduction
machine [Cripps87] [Clack86]. Graphreduction machines are commonly used for

executing parallel functional programs.

The choice as to whether SIMD or MIMD is better ididiflt to make as the SIMD
machine can simulate the MIMD machine and vice-versa. For well structured problems
with regular patterns of control, the SIMD machines have the edgapplications in
which the control flow required of each processor is complex and data dependent, the
MIMD architecture has the advantag&here are many arguments to consider when

choosing an architecture for a real application [Fox89].
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Shared Versus Distributed Memory

When processors have to access memory there are generally two configurations for
this memory (a) shared memoryvhere there is one memory and every processor has
access to that memomgnd (b) distributed memoyyhere there are many memorida.
the distributed memory case, either the memories are independent units whereby any
processor can access the memorythe memories are associated with one processor
and only that processor can access the memBach layout has advantages and
disadvantages for dédrent applications and, again, there are many arguments to

consider when choosing an architecture.

1.3. TheRule-Based System Approach

Rule-based techniques are appropriate for many tasks, including requirements
analysis, expert systems for analysis and synthesis, and complex problems where either
the flow of control is unknown or where there is an incomplete definition of the model
[Hayes-Roth85] [Vdterman86]. Becausef their modularity rules appear to be the

most natural representation for systems that are in constant flux [Hayes-Roth83].

One of the major reasons for choosing rule-based systems is that humans usually
find it intuitively appealing to express their knowledge in terms of condition / action
pairs (i.e. ifconditionthenaction). Also, because rule-based systems tend to be built
incrementally due to knowledge becoming available in a piecemeal fashion, it is not
necessary to know the entire model in advance, but rather to gradually build towards it
[Waterman86] [5]. The power of rule-based systems is most evident when they are
applied to large ill structured problems for which it isfidiflit to provide a detailed

specification, such as analysing complex laws and statutes.

[5] This process of acquiring knowledge in a piecemeal fashion is similar to the way a baby
learns. Itlearns a few rules and has a few facts but it is still able to exhibit intelligent behaviour
As it learns more rules and facts the baby is capable of doing rBalies are not born with a
head full of rules and facts. They gradually acquire these tla@e: is no pre-determined path as
to how the baby life will develop — it develops and is shaped as needs arlse same is true for
rule-based systems.
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A rule-based system is a tool which enables the builders of artificial intelligence
applications to represent their knowledge of a domain through rules (see
[McDermott78], [Hayes-Roth85]and [Waterman86] ). Consider an example rule
from a computer hardware configuration program givefiMeDermott82]. Thisrule

helps to assign power supplies to a bus of the computer:

IF the most current active context is assigning a power supply

and a bus module of any type has been put into the cabinet

and the position it occupies in the cabinet is already known

and space is available in the cabinet for a power supply at that position
and there is an available power supply

THEN put the power supply in the cabinet in the available space

This rule is part of a system that started with 300 rules, and grew over a period of 6
years to have approximately 3500 rules. As the rules were added, the program could
configure new computers as they were manufactured and could perform many new
tasks. Itis this kind of evolutionary growth to which rule-based systems are most
suited. Therules are specified in English by the rule-based system designer to be
expressive. Thewre then encoded by the rule-based system designer into a particular
rule-based system language when enough rules have been acquired to process the facts
of the domain.In an implementation of a rule-based system, rules are encoded in the

form of productions [6].

1.3.1. HowA Rule-Based System Works
A rule-based system has three main components:

e production memory which contains productions each in the form of

condition / action

[6] Becauseules are encoded in the form of productiange-based systemare also called
production systems
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» working memory which contains working memory elements, each one

being a fact about the domain
* aninference engine, whose task is to initiate the recognize-act cycle

In a rule-based system, production memory and working memory are independent
of one another Both production memory and working memory are unstructured and
elements within each are independent of the other elements. Only the recognize-act
cycle can combine the contents of production memory and working meanornon
each iteration of the cycle may update working memdrlgis process is shown in

figure 1.1.

productio working

memory memory

recognize-act cycle

Figure 1.1: The components of a rule-based system

Production memory contains productions which are similar to a single conditional
(if-then ) statement in a conventional programming language. All productions are
independent of one anothend there is no predefined order of production executfon.
production contains conditionsC; to C, and m actionsA; to A,,,. A production may
be executed when working memory is in a state such that all cond@iottsC,, are
simultaneously true When the production is executed, then all actidBpdo A,, are

evaluated in the order in which they are writgh). An action may add or delete an

[7] Somerule-based systems, such as SOAR [Rosenbloom85] have been modified to allow
actions to occur in parallel.
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object from the contents of working memory or do some input or outpgsially the
condition parts of a production are called the left hand side (LHS) and the action parts

are called the right hand side (RHS). This is because productions take the written form:
ClCZIHCn g Al Az"'Am
where the conditions are to the left of the arrow and the actions are to the right.

Working memory contains objects called working memory eleméftiese objects
represent either physical objects, relationships between objects, or statements about a
particular domain.Working memory contains the "state of the world" for each rule-
based system application, and its contents change continuously as the rule-based system
executes productions. Production memdny contrast, is stablg8]. Working memory
and production memory are independent, and both have to be initialized at the
beginning of exection for an application to woNlorking memory is initialized with
facts about the domain, that is, it contains the current "state of the world", and

production memory is initialized with the rules of the domain.

The inference engine is the executor in a rule-based systemetermines which
productions are appropriate to select by matching each production against contents of
working memory It then chooses one production to execute through conflict resolution.
The execution of the production causes the actions to be evaluated, which then causes
working memory to be updated, and hence the "state of the world" chahbess.
process of selection and execution is calledrdwegnize-actcycle. Becausef the
continuous operation of threcognize-actcycle and because of changes in the "state of
the world", new productions are selected on each iteration of this dyatebecomes

impossible to select a production for execution, then the inference engine stops.
Therecognize-actcycle takes the form:

1. match — evaluate the LHS of the all the productions in production

memory to determine which productions are satisfied given the current

[8] Someimplementations of rule-based systems allow new productions to be built at run-
time. Thisallows the rule-based application to display a learning behavidonwever the most
common implementation is for production memory to be static.
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contents of working memaryThe match process compares each condition

of a production with every element of working memory.

2. conflict resolution— choose one production with a satisfied LHSften,
more than one production is satisfied in the match phase; this is called a
conflict. Theconflict is resolved by selecting the best single productibn.

there are no satisfied productions, then the inference engine halts.

3. act — perform the actions specified in the RHS of the selected production.

The actions may update working memory or do input or output.
The cycle iterates again by going back to matching, i.e. step 1.

The control flow and data flow of a rule-based system are presented in figure 1.2.
Control flows from the matcheto conflict resolution, to act, and back to the matcher
again — this is the recognize-act cycle. Data flows from production memory and
working memory into the matcher for matching, and into working memory when a

production is acted upon.

Rule-based systems differ from conventional programs in two major resgées.
first is that rule-based systems use ded#int method of encoding the state of a
computation than conventional method&. conventional program encodes state by
updating values in variable# rule-based system encodes state by placing objects into
the systens working memory The second difference is the way the flow of control is
managed. Aconventional program uses ordered statements together with control
constructs such as loops and conditional branchigule-based system uses left hand
side satisfaction. That is, each productleft hand side is a description of the states
in which the production is applicable, such that the production is satisfied when objects
in working memory cause each condition on the left hand side of the production to be
true. Whernthe rule-based system performs a match it isfecetearching for the best
production to process the data in working memadnce a production is chosen, the

actions on the right hand side cause working memory to be updated.

The rule-based system model allows the programmer to concentrate on the essential
problem solving strategies of a domain expert rather than complex data structures or

control strategie§Brownston85]. Becausef the relatively independent nature of the
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production

working

memory memory

i )

conflict
matcher > _ > act
resolution
— data flow
— > control flow

Figure 1.2: The control and data flow in a rule-based system

rules and the reduced amount of control information, a rule-based system specification
does not prematurely determine the control strategy of the final sol&iounle-based
system has neither a declarative model nor an imperative mivdetjuires an entirely
different concept of program structure. The focus of attention using this technique is on
non-formal solution strategies where knowledge elicitation is used to incrementally
devise new rule sets to solve a small part of a problesnmore rule sets are created

the system is able to perform more taskke interaction between the rules relies on the
working memory elements that match the rules and the conflict resolution which choses
a rule to execute.Different conflict resolution strategies allow identical rule sets to
appear to behave thfently This often leads to unexpected behaviour as the flow of
control may jump into an unexpected rule set, but it is this seemingly non-deterministic
behaviour that makes rule-based systerappropriate for modeling intelligent

behaviour where no known algorithms exjistcDermott78]. AsBrownston observes,
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this approach often leads to the discovery of algorithms and solutions to problems

which may be missed when using conventional techniques.
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Chapter 2

2. State-Savingn Rule-Based Systems

In this chapter there is a brief description of OPS5, which is a widely used rule-
based system. There is a discussion and analysis of state-saving and non state-saving
matching algorithms used in rule-based systems. This will show the benefit of saving
state in a rule-based system matcHearticular attention is paid to the Rete matching
algorithm used in OPS5. This is arfigént algorithm for doing matching and is
effective in sequential and parallel implementations. Then followdiszussion on
research into parallelizing OPS5; this includes work done on the design of special
hardware for executing rule-based systems in parallel, in particular OPS5, and on why
the Rete matching algorithm is amenable to implementation on a parallel system.
Finally, the issues arising from this research which lead onto considering why functional

programming could be suitable for harnessing parallelism in OPS5 are reviewed.

2.1. ALanguage for Rule-Based Systems

The rule-based system chosen for further investigation in this thesis is OPS5
[Forgy81]. OPSSs a system which allows the encoding of rules as a set of independent
productions. Moreovelit is widely used and is the basis for some of thgdar and
best known expert systems (for example, a computer backplane configuration system
[McDermott82] and an expert mainframe operator [Griesner8&jue to its wide use,
OPS5 is sometimes called theRTRAN of artificial intelligence languagefStolfo86].
Because of its wide use, its simpligitiie availability of a working rule-based system

environment, and the availability of a formal grammpforgy81], OPS5 was
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considered the best system to analyse and to make comparisons with the rule-based

system devised in this thesis [9].

The representation of knowledge in OPS5 is contained in working menibey
representation is oriented towards objects and relations between objects. Each object
and its attributes are represented through the use of working memory elef@nts.
example, a working memory element may represent a block, which is roo&d, is
red, weighs 500 grammes, and measures 100 mm on each side. This block object can

be represented in OPS5 as:

(block
"name block1
“colour red
"mass 500
“length 100
“height 100
“width  100)

In this example, the namielock is the object class and is followed by a set of
attribute pairs. The name of the attribute is preceded with a caranhd followed by

the attribute value.

The specification of rules in OPS5 is simple yet sophisticated, allowing relatively
easy encoding of knowledge into rules. The left hand side (LHS) of a production
consists of one or more conditions. Each condition is a pattern that describes a working
memory element. During the match phase of the recognize-act cycle, each condition of
a production is compared with elements in working memory in order to determine if the
condition matches any working memory elemeritse condition is considered satisfied
if it matches at least one working memory element, and the whole production is satisfied

if every condition is satisfied.

[9] Full details of the syntax of OPS5 and how to program a rule-based system application can
be found in[Brownston85], and reasons for choosing OPS5 as a language to build expert systems
can be found in [Clayman87].
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The patterns of each condition are abstract representations of working memory
elements. Thespatterns may fully match every attribute pair of a working memory
element, or may partially match a working memory element by matching a few attribute
pairs. Apattern will match any working memory elements that contain the information

in the pattern. For example, the condition pattern:
(block “colour red)

would match any working memory element that described a red block, sbtitks.

However the pattern
(block “colour blue)

would not matchblockl because the colour attribute lobckl is red. Patterns may
contain variables which can match anything, but if the variable occurs again in the
production, the value of the variable must be the same as béfotieis way OPS5 is

able to the represent relationships between objects.

The right hand side (RHS) of a production consists of the actions. The actions can
add, delete, or modify working memory elements and perform input or oufput.
create a working memory element, OPS5 definesnth&e action. Thistakes a

description that looks like a pattern and creates a working memory element.

A production consists of a name, a set of conditions, and a set of aclioag.
symbol is used to denote a production and-the symbol is used to separate the LHS
and RHS. The following example production prints a message if it finds a coloured
block:

(p find-coloured-block
(goal “status active “type find “object block “colour <c>)
(block “colour <c> "name <n>)
>

(write stdout Found a <c> block called <n>))

In this rule, if the first condition matches a relevant working memory element and the
second condition matches the working memory elementidokl, then the message:
Found a red block called blockl
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would be produced.

2.2. Alternativesto OPS5

The OPS5 rule-based system is freely available software which is reliblerks
on various platforms, as the source code has been written in many dialects, @hdISP
there is detailed documentation and descriptions of how the inner parts of OPS5 work.
This allows a functional OPS5 to be written and compared with an existing version.
Furthermore, parallel versions of OPS5 have been built and documented. As OPS5 is
used widely for research into rule-based systems, it was chosen for this research rather
than any of the other option#n this section there is a brief overview of the alternative
rule-based systems to OPS5 which were considered at the beginning of this research.

The tools considered were large hybrid tools and small PC-based tools.

Large Hybrid Tools

The large hybrid tools that were considered were all commercial products; AR
sold by Inference Corporation, KEE sold by Intellicorp, and Knowledge Craft sold by
Carnegie Group. They are knowledge engineering environments rather than merely
rule-based system shells. This is due to the fact that they etehaotariety of
different ways to approach any given problem. They are complex systems with many
options and considerable flexibilityThe range of facilities these tools provide for

knowledge-based system developers are:
» different methods of representing knowledge within each system
* inheritance of values by entities in the system
» dternative worlds or viewpoints, which allow hypothetical reasoning

» the support of truth maintenance mechanisms

the selection of powerful inference and control mechanisms

The user interfaces of AR KEE, and Knowledge Craft employ advanced man-

machine interface techniquedAll three tools provide natural language interface

32



mechanisms and explanation facilities, and allow full access to the underlying system
and to other programming languages such as LISP ofHis enables developers to
write critical code in a more efficient mannefhese tools also allow access to
commercial database systems for storing large amounts of\Wta.all these facilities
available to the systems develgpamy one of the three tools considered would be
highly suitable to develop and implement a deliverable expert systemever this is

not the aim of this research.

The drawbacks of these development environments are the lack of a detailed
description of their inner workings which is needed in order to make comparisons with
the implementation in this thesis. There were no known parallel implementations of
these tools and they were too big and complicated to emulate given the scope of the
research. Furthermoréhey consume enormous amounts of computing powgquire
machines with huge amounts of resources in order to execute, and need graphics
hardware for their advanced user interfaces. In the light of these drawbacksgéhe lar

hybrid tools were not considered suitable for this research.

Small Tools

The small tools considered were taken from a collection of rule-based system tools
which have proliferated recently on desktop $2Clrheywere considered because of the
availability of the machinery for development and for end-users, and because the
software was generally availablélhese were also commercial products but much
smaller and cheaper than the hybrid systems. Those available were Expert Ease, Micro

Expert, Micro Synics, and ES/P Advisor.

The power and flexibility of these tools is quite limited because they are specifically
written for small machinesHowever they were adequate for an initial investigation
into rule-based systems. This investigation began by taking each tool individually and
attempting to execute the demonstration programs. All four tools failed to execute for
various reasons. Because of these execution failures and the lack of documentation, it
was decided that the PC-based tools and the PC operating systems were either too

unreliable or too unstable for this research.
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2.3. Different matching algorithms

A matching algorithm in a rule-based system computes the state of the match
between the whole of working memory and all the productidisstask is to select the
productions in which every condition of the production matches an element from
working memory From the selected productions, just one is chosen by conflict
resolution for further execution.There are two main techniques for doing this

matching; they are non state-saving and state-saving.

2.3.1. Nonstate-saving matching algorithms

The non state-saving algorithm is the simpl&very condition of every rule is
matched with every working memory element to generate the state of the match.
Conflict resolution chooses the one production for execution, and the state of the match
is then fogotten. Howeverevery iteration of the recognize-act cycle recomputes the
state of the match, but because very little changes on each iteration, it is nearly the
same state that gets recomputed andgfiiten. Dueo the matching behaviour of this
approach, the algorithm is sometimes called dobenb matcher As this algorithm

keeps recomputing the same state, it can clearly be improved.

2.3.2. State-saving

Matching algorithms for rule-based systems can save some of the match state on
each iteration of the recognize-act cyclgis is because each match state is similar to
previous match states. By saving some state, the cost of the match is retiness.
are different matching algorithms for OPS5 that store different amounts of Ftagg.

are:

i) the TREAT agorithm [Miranker87],developed for the DADO machine at
Columbia University [Stolfo83] [Gupta84]. TREAT saves working
memory elements that match each condition but does not save anything that
matches combinations of condition$he match for the combinations is

recomputed on each iteration of the recognize-act cycle.
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i) the Rete algorithm[Forgy82], developed at Carnegie-Mellon University
Rete saves working memory elements that match each condition and also
saves data for some fixed combinations of conditions. It stores data for the
combination of successive conditions in a rule. It stores the state of the
match for condition 1, and then the state of the match of condition 1
combined with condition 2, and then the state of the match for a
combination of condition 1 and condition 2 and condition 3, until all the

conditions have been matched.

iii) Oflazers agorithm [Oflazer87]. This algorithm saves working memory
elements that match each condition and it also saves the combinations of
matches for all conditions. It stores the state of the match for condition 1
and condition 2, for condition 1 and condition 2 and condition 3, etc. But it

also stores the state of the match for condition 1 and condition 3.

The amount of state saved isfdrent in each of these three algorithmREAT is
at the low end of the state-saving spectrum; howeweas to recompute some fixed
combinations on each cycle which increases its execution tDflezers dgorithm,
which is at the high end of the state-saving spectrum, spends a lot of time computing
state which may never be used and also stores huge amounts dtsttecution time
and memory usage are higher than both TRBAd Rete. Rete is in the middle of the

state-saving spectrum and is the algorithm used in the sequential version of OPS5.

2.4. Analysisof Matching Algorithms

This section provides an analysis of the cost of using either non state-saving or
state-saving algorithms. Data collected by GuptfGnpta86] shows the typical values
in a range of real rule-based system applications for the average size of working
memory the average number of productions, and the average number of conditions for
all productions. The data was collected from four OPS5 applications and two SOAR

applications [10] [Rosenbloom85], and is shown in table 2.1.

[10] SOARIs another rule-based system that is similar to OPS5.
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Attribute OPS5 | SOAR | Average

Average size of working memory 528 371 476
Average number of productions 955 191 700
Average number of conditions 3.39 9.29 5.36

Table 2.1: Data from Gupta PhD thesis

2.4.1. CostAnalysis of a Non State-Saving Matcher

The cost of using a non state-saving matcher for real systems can be evaluated by
using the data collected by Gupta in a set of equations which identifies the cost of the
non state-saving matcher.

Let:

w = average size of working memory
p = average number of productions

| = average number of conditions

The average cost of a match for one production during one iteration of the recognize-act
cycle involves choosing all the combinations of the size of the prodwtaft’hand

side from working memory and then matching them with the production. This equates
to:

w!

"G= 1M (w=1)!

The average cost of matching during one recognize-act cycle is the cost of one

production multiplied by the total number of productions:

px"C (A)

When using a non state-saving matchiee average number of matches per iteration of
the recognize-act cycle can be evaluated by instantiating the valuwesl ahd,p in

equation A. The values from table 2.1 for OPS5 systems are:
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w =528
| =3.39 (rounded to 3)
p =955
The average number of matches per recognize-act cycle equates to:

= 955x% °28C,

528x%x527x 526

= 955x 1x2x3

=2.33x 10

Therefore, when using a non state-saving matcher for a large OPS5 application, there

are 2. 33 10* matches performed avery cycle.

To calculate the algorithmic complexity of the non state-saving matcher some
approximations are made. One can use the approximation [11]:

528x527x 526 _

2
1x2x3 528

so that the average number of matches is approximately:

955x 528

Therefore, equation A can be approximated by:

pxw

The complexity of the match is approximately polynomial on the size of working

memory and is cubic ( = 3) for an average OPS5 program.

[11] It can be observed that:

"C, - wasw- oo, 1 -1
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2.4.2. CostAnalysis of the Rete State-Saving Matcher

The Rete algorithm uses a clever compiler which converts the left hand side of a
production into a graph representation of that production, called a Rete nethaat&s
in the graph are used either to test attribute pairs of working memory elements or to
save the state of previously computed matches. The test nodes match an individual
attribute value or test that variables are bound correctly across combinations of working
memory elements.The state-saving (or memory) nodes are used to save working
memory elements that have successfully matched tests in the network. When all the
conditions have been satisfied, the terminal node becomes active and the production is

put into the conflict set. Consider two example rules, such as:

(ppl
(C1 "attrl <x> "attr2 12)

(C27attrl 15 “attr2 <x>)
(C3 attrl <x>)
->

(remove 3))

and

(p p2
(C2 ~attrl 15 "attr2 <y>)

(C4 "attrl <y>)
-—>

(modify 1 "attrl 12))

These two productions have the Rete networks as presented in figure 2.1.

For extra diciency, Rete is able to share partial networks between productions.
This further enhances the speed of matching because it eliminates matches and reduces
the number of nodes in the network compared with the non-sharing netvRoks.

productiongpl andp2 have a clause that starts:
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ROOT of network ROOT of network
for production pl for production p2

class == C2

class == C1 class == C4

attr2 == 12

memory

memory
node

node

and node
test variable <x>

memory
node

and node
test variable <x>

and node
test variable <y>

terminal
node
for p1

terminal
node
for p2

Figure 2.1: Rete networks for productionsl and p2

(C2 attr1 15 ...)
which can be shared. The network with sharing is shown in figure 2.2.

Gupta states that the behaviour of Rete is independent of both the number of
productions in the rule-based system program and the size of working meH®ry
observes that the way production systems are currently written means that changes to
working memory only affect a small fraction of productions. Gupta has calculated that
each change to working memory will have an effect, on average, on 28 productions in
the next iteration of the recognize-act cycle. This highlights how ineffective a non
state-saving matching algorithm can be because if only 28 out of 955 productions are
affected, then the non state-saving matcher does needless matching on 927 productions.

That is, 97% of the matching work is unnecessary in a non state-saving matcher.
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ROOT of network
for all productions

class == C1 class == C3 class == C4

attr2 == 12

memory
node

memory

memory
node

node node

and node
test variable <x>

memory
node

and node
test variable <y>

and node
test variable <x>

terminal
node
for p1

terminal
node
for p2

Figure 2.2: A Rete network with sharing

By saving state, it is possible for a matcher to discriminate between productions that
need to be matched and those that do fibis means that the work done by a state-
saving matcher is reduced to just 3% of the work done by a non state-saving .matcher
However Rete is better than this; it does not even match the 3% of affected productions
but saves the state of the match from the previous recognize-act Datéefrom Gupta
indicates that there are, on average, 97 simple matches and 42 variable testing matches
per change to working memgorgnd that there are 3.1 working memory changes per

production firing. Therefore, there are:

3.1x (97+42)= 430
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matches per cycle of the production system. In the non state-saving matcher there are

2.33x 10'° matches per cycle, and with Rete there are 430. Therefore, the Rete state-

saving matcher is algorithmically superior to a non state-saving matcher.

2.5. ParallelRule-Based Systems

The desire for parallelism in rule-based systems is motivated by the observation
that, although rule-based systems have been used extensively to lygldelert
systems, they are computationally expensive because of the matching required and,
hence, run slowly This slow execution time limits the use of rule-based systems to
domains that are not time critical. For example, one study considered implementing an
algorithm for real-time speech recognition using a rule-based s\[btewel|78]; it was
found that present rule-based systems were between 5,000 and 20,000 times too slow
for such a task. Rete was considered a suitable candidate for a parallel implementation
of OPS5 because it is such a good algorithm for matching in sequential rule-based

systems.

2.5.1. Parallelismand Rete

In his PhD thesigGupta86], Gupta states that the expected speed-up available from
parallelism in Rete is between 100 and 1,000 tintéswever the actual amount of

speed-up is between 10 and 25 times. The main reasons for this are:

i) only a snall number of productions are affected on each change to working

memory (28 on average).

i) a large variation exists in the processing required for each production.
Furthermore, this variation can change on each cycle of the production

system.

iii) the number of changes made to working memory per cycle is minimal (3.1

on average)

The consequences (of these reasons) are:
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i) only a few processors would be busy even if there were a processor per
production. Thiss due to the small number of productions that aectdd

on each recognize-act cycle.

i) oneis less certain of any speed-up due to parallelism because the stage after
matching cannot begin until all productions have been matched. If the time
to process one production is large, then the variation of processing time is
large and the speed-up will be reduced. Figure 2.3 shows the time taken to
process some productions in parallel. Matching all productions takes the
same time as matching the most expensive production. Gupta states that it
iIs desirable to eliminate the variation (for example, by using load
balancing). Thesituation may change from cycle to cycle, but the
important aspect is the timg,,,, because this is the time taken for the
whole match phaseThe aim is to reducg,,, so that it is closer tb,,,.

This situation is shown in Figure 2.4.

iii) the speed-up from processing multiple changes to working memory in
parallel is minimal because only a small percentage of working memory is
changed on each cycle and the amount of processing required to deal with

these changes is also minimal.

The limited amount of speed-up available in OPS5 is mainly due to the way rule-
based system programmers write their rul€s. overcome this problem and to make
effective use of a parallel machine, it is necessary to decrease the variation in the cost of
processing each productionGuptas method for harnessing parallelism involved
designing a parallel version of Rete which exploits parallelism at a fine-grained level.
The parallel Rete algorithm processes each node of the Rete network as a parallel task.
However Gupta observes that 75% - 95% of execution time is spent processing state-

saving memory nodes and very little time is spent processing test nodes.
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tmax

t avg

Time to — —
process —

production -

1 2 3 456 7 8 910111213
Productions

Figure 2.3 Actual situation — variation in processing time

2.5.2. Parallellmplementations of OPS5

Practical attempts at harnessing parallelism in the OPS5 rule-based system have all
been successful to some degrémwever most can be characterized by three recurring
features: the use of special hardware for the parallel machine, the usdeodndif
partitioning algorithms for each of the different architectures, and the static placement
of tasks onto machines. For a detailed overview of much of this workagea86a]
or [Gupta89]. As an example of the differences, consider the hardware chosen by these

groups:

i) theProduction System Machine project at Carnegie-Mellon [Gupta86] has
32-64 processors with shared-memoBach processor has a hardware task

scheduler.
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tmax tavg

Time to
process

production

1 2 3 456 7 8 910111213
Productions

Figure 2.4 Ideal situation — no variation in processing time

i) the DADO machine from Columbia University [Stolfo83] was a binary

tree of 16,000 very small processors with distributed memory.

iii) the NON-VON machine, also from Columbia Universitgas between
16,000 and 1,000,000 very small processors connected to §er lar

processors [Hillyer86].This is also connected as a binary tree.

iv) Oflazefs machine [Oflazer87is a tree with 512 medium size processors at

the leaves of the tree. These are combined with very simple processors at

other nodes.
In order to drive these machines using conventional imperative techniques,
significant parts of the application need to be rewritten in order to get the required

parallelism. Thisthesis proposes that using functional programming techniques on a

parallel machine will result in a portable implementation of a rule-based system.
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2.6. Summary

A state-saving matching algorithm is far superior to the simple non state-saving
matching algorithm as it needs to do only 3% of the wofke Rete state-saving
matcher is very efficient, and for a typical OPS5 application with over 500 working

memory elements and over 900 productions, it does 430 matches compared with a non-

state-saving matcher which would do approximately X 33'° matches.

Parallel versions of rule-based systems do not display as much speed-up as
expected because of the way the programmers of rule-based systems write their rules.
To overcome these limits, Gupta built a parallel version of Rete which processes each

node of the Rete network as a separate task.

The challenge for functional programming is to emulate the efficiencies of Rete in
both sequential and parallel environments. Gupta stated that 75% to 95% of the
processing time is spent updating state-saving noflsdunctional languages have no
concept of updatable store, recreating these efficiencies couldibeltdifAs there are
no standard ways to manipulate state in a functional language,proposed that a
prototype rule-based system be built using a non state-saving matcher in order to
determine the effectiveness of manipulating state items such as production memory and
working memory before the manipulation of the extra state held by a state-saving
algorithm is undertaken.Some researchers concluded that implicit parallelism
techniques are the only way to improve the parallel performance of a rule-based system
beyond that achieved by human intervention (see [Stolfo86][Rodenthal85] ).By
implementing a rule-based system in a functional language, one can expect to gain an

efficient, automatically parallelized implementation.
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Chapter 3

3. The Design and Implementation of a Functional
Rule-Based System

This chapter describes the design and implementation of a version of functional
OPS5 that has been created for this thesis. OPS5 is interesting from a functional
programming viewpoint because it is an application that encompasses various
computing disciplines. It has a compjlatexical analyserand a pattern matcher and it
requires a large amount of state which is accessed and regularly updated and does input
and output from the environment. The literature has few reports of functional
applications and the problems that arise, and as such this application highlights some of

the issues that arise when building large applications.

This chapter contains a description of the design of each part of the functional rule-
based systemThen the issue of state is discussed as this is a problem area in any
functional application. This is followed by details of the actual implementation of the
rule-based system with each component of the system considered sepakatkly
finally, an analysis of the working functional rule-based system which highlights both

the problems and the solutions of using functional languages for large applications.

3.1. Desigrof a Functional Rule-Based System

One of the main investigations of this thesis was the analysis of the design and
implementation of a lge functional application. The process of buildinggéar
applications in imperative languages is well known, but has its own problems.

However the process for functional languages is not well documented.
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Early research indicated that there are problems which arise in functional programs
that are not evident in imperative programidiese problems are the issues of (i) the
manipulation of state and the related issue of store, and (ii) doing input and datput.
imperative systems there avariables that hold values of state and which may be
accessed or updated arbitrariiMany imperative languages use lexical scoping to limit
access to variables, but global variables are accessible every\Haete/ariable has a
position in the comput&r sore and may be accessed and updafeg@rocedure in an
imperative language may access and update the variables even if the variables have not
been passed as amament. Similarlyinput and output in imperative languages can be
done in arbitrary places. The input and output streams are part of a global environment

that can be easily accessed without explicit mention of them if used in a function.

The functional rule-based system was designed with five main parts: there are three
components that constitute the recognize-act cycle —mtteher, conflict resolution
andact; a compiler, which compiles the textual form into a form used by the matcher
and the act process; andum-time systemwhich provides the infra-structure to glue

the previous four parts together.

Initially there seems to be a problem with retaining and updating state for both
production memory and working memoryrunctional languages do not provide
updatable global variables, so how is it possible to implement a system which is
inherently state-saving? The matcher needs access to both production and working
memory conflict resolution needs access to a selected subset of both production and
working memoryand the act process needs to change the contents of working memory

An answer to this question will be seen in this chapter.

In the traditional imperative model, much of the global state is available in all parts
of the system. In addition, any part of the state can be updated at any time, regardless of
whether or not it is appropriate to that part of the syst&ims method of updating
allows bugs to be easily introduced, although object-oriented techniques provide a
discipline which reduces this problefBtroustrup86]. Becausenctional systems do
not have a global environment which can be accessed at any time, any items of state that

are needed in a function have to be passedexpiicitly. By contrast, the imperative
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system hagmplicit access to state.

In the functional implementation, the run-time system of the rule-based system
passes state explicitly from one part of the system to anotiheoving the need for any
global updatable statdBecause no part of the system needs access to everything held in
the state,the relevant items can be passed to any part of the system. For example, the
match phase of the main cycle only needs access to the production memory and the

working memory No ather items in the state are needed and no others are passed on.

Another aspect of passing explicit state in functional languages which is not seen in
imperative languages is the neegbomb in the state. State has to be passed explicitly
from function to function, just as water pipes are passed from room to room in a central

heating system. Consider the example:

work :: (a->b) -> [a] -> [b]

workfl=[fa|a<-1,testa]

Suppose we wish to count the number of tirhess applied to its @ument. Inan
imperative language, it would be possible to add a line of code which updated the state
of a global variable and the type of the function would not need to chdnga.
functional language this technique cannot be uddtwe state has to be made explicit,

thereby changing the type of the function to:

type State = Int

workS :: (a->b) -> ([a], State) -> ([b], State)
worksS f (I,s) = (list, s + sum statevals)
where

(list, statevals) =unzip[ (fa, 1) |Ja<-1,testa]
This explicit change of the type and the extra code has to be done by design; it cannot
be added as an afterthought. Thiplismbing.

Figure 3.1 shows how the five main parts of the system fit together run-time
system retains all the state and then passes the appropriate items to other parts of the

system. Thaletails of the items passed to each part are described in section 3.2, but
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only some state items are needed in each part of the systerdigure 3.1,pm

represents production memory amchrepresents working memory.

run-time system

pm h wm elems
filename productions match env production wm elems
conflict set .
wm production

. conflict
compiler match ] act
resolution

Figure 3.1: How the functional rule-based system fits together

The run-time system is the interface to the outside world, thus providing a
mechanism for doing input and outpwk. large part of the design was a compiler that
would recognize a language which specifies the rules for the rule-based skgteim.
to the compiler is in a textual form. Output from the compiler is in a form used by the
match process, namely a list of productions which are saved in production memory

This requires interaction with the state-saving mechanism.

The match function takes the current working memory and current production
memory and does an exhaustive match by matching every clause of every production
against every working memory element. The result of this function is a conflict set,
which is returned to the run-time systeifhe conflict set is passed through a conflict
resolution function which selects one production to execlitee selected production
together with the whole of working memory is passed to the act function, which
executes the production and updates the working memory by either adding and deleting
elements or doing input and output. The new working memory is passed back to the

run-time system for the next iteration of the recognize-act cycle.
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3.2. StateRequirements of a Rule-Based System

The state required for a rule-based system is relatively large, comprising hundreds
of productions and thousands of working memory elements. In the functional rule-
based system there are twelve items of state to pass around, none of which can be
avoided. Theapplication runs from cycle to cycle, saving and updating different state
items as it runs.The following sections will demonstrate how state handling need not
be a problem, for the amount of plumbing which is required can be reduced and the
access and update mechanisms can be streamlined, resulting in an elegant approach to

state access and state update.

3.2.1. Statdtems in the Functional Rule-Based System

This section describes what items of state are saved in the implementation of the
rule-based system. As previously stated, there are twelve items. These twelve items are

briefly explained below:
Production memory — where all the productions are kept.

Working memory — a mllection of independent data structur&his is the

data that is matched with the productions.

Conflict set — the set of all matched productions which could possibly be

acted on, together with their working memory instantiations.

Conflict resolution strategy — a function which takes the conflict set, and
resolves down to the one production to be used on the nexnadiPS5 there
is a choice of two conflict resolution function§he choice is made at the start

of execution of the rule-based system.

Conflict set history — a history of all productions and their working memory
instantiations which have previously firedlhis is kept because OPS5

disallows productions from firing twice with the same instantiation.

Current resolved poduction — the next production to fire, with full

instantiation of working memory elements and bound variables [Forgy81].
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Stream to file map— a map of stream name to file nam@&/hen OPS5 opens
a file, a stream name is returned. From then, OPS5 can write to the stream.

This is needed in order to output to the correct file.

Current firing cycle — a munt of how manyrecognize-actcycles have
occurred, in other words how many productions have been fired. Each cycle of

the system increments this.

Curr ent working memory timestamp— every working memory element has
a wique timestamp which is used in various places. This timestamp is
incremented every time an element is added to or deleted from working

memory.

Debug output level — OPS5 does different amounts of debugging output
depending on the value of the debug output le@eimeans none; 1 means
indicate which productions are firing; 2 means indicate all of 1 and also which

items are being added to or deleted from working memory.

System input— all input to the system is passed in the state. It is eaten by

some actions.

System output— the output is incremented in many places, such as in actions

and as part of debugging. Access to it is needed almost everywhere.

As previously stated, not all parts of the system need access to every item in the
state. Becausthe run-time system is the infra-structure which holds the entire system
togethey it seemed better to have one big state and many access functions rather than
having many small state structures which holded#nt parts of the stateTable 3.1
shows that different items in the state are used by many different parts of the system.
Splitting a state structure into many small ones would introduce unwanted complexity
Table 3.1 also shows that tifent parts of the system interact through values in the
state structure Different sub-parts of theecognize-actcycle access or set the items

within the state to be used for later processing.
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Item in state Set by Accessed by

production memory compiler matcher
compiler

run-time system

working memory run-time system | matcher
act act

run-time system

conflict set matcher conflict resolution

run-time system

conflict set history conflict resolution  conflict resolutipn
conflict resolution strategy SET ONCE conflict resolution
current resolved production conflict resolution  act
stream to file map act act
current firing cycle act act
current working memory timestamp act act
current debug output level value | SET ONCE compiler
act
system input SET ONCE act
system output ANYWHERE run-time system

Table 3.1: State items in the functional rule-based system

3.3. Implementationof the Functional Rule-Based System

The implementation of the rule-based system is discussed, with each main element

of the functional OPS5 considered separatélyst the compiler for the OPS5 language
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is discussed.From this it will be seen how suitable functional languages are for
building compilers. Then follows a discussion on the recognize-act cycle and the run-

time system for the functional OPS5.

3.3.1. TheOPS5 Compiler

Functional programming languages are particularly well suited to writing compilers
and compiler tools and have been used successfully to write compilers for functional
languages. Somexamples are the Lazy ML compiler written in Lazy ML
[Augustsson89], the Standard ML compiler written in Standard[Mhpel87], and the
Hope compiler written in Hope[Burstall80]. Compiler tools have also been
successfully written; for example, a Yacc parser generator in JR8yton-Jones85], a
lexical analyser generator [Jones86], and a mechanism devised for integrating parser
definitions into CAML [Mauny89]. Recentvork in this area includes the Chalmers
Haskell compiler built on top of their Lazy ML compilerand the Glasgow Haskell

compiler These programs form the largest body of working functional programs.

The compiler for the functional OPS5 has been designed with three main parts; a

lexical analysera parser and a back end translator.

lexical

|

input ——» parser » translator—— output

Y

analysis

Lexical analysis converts the input from a list of characters into a list of tokens
which the parser then uses. The lexical analyser was hand-coded and explicitly matches

fixed input sequences. No special lexical analyser generator tools were used.

The parser is a set diunctions that represent the formal grammar of the input

language as closely as possible, with one function for each grammar clause.

The translator converts the parsed data into the output form (in this case, a sequence
of productions). The translation is achieved by using an action for each grammar

clause.

54



The desire was to make the compiler as simple and easy to comprehend as possible.
The compilerbuilt is a recursive decent compiler [Aho86] which has rewrite rules for
each clause parsed. It is important to note that this style of compiler will not parse left-
recursive grammars (since the parser would recurse infinitely). For example, the

grammar clause:

expr::=expr op expr

is an example of a left-recursive clause. The source language for OPS5 has an LL(1)
grammar [Fogy81]. Thus,jt was not necessary to convert the grammar clauses from a

left-recursive form to a non left-recursive form.

A Framework to Represent a Formal Grammar

This section discusses a functional framework for building a parser for the OPS5
input language From this it can be shown why functional languages are so well suited
to the task of writing compilers. The grammar used will be a simple arithmetic
evaluator which is often used in the compiler literature as an example to highlight the
features of a compiler However in this case the grammar is a part of the OPS5

grammar The full grammar can be found in the OPS5 reference manual [Forgy81].
In the grammar:

expn = term+ term|
term- term|

term
term = factor* factor |
factor/ factor|

factor

factor = ( expn) |

number
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the concatenationof terms is implicit whilst thalternation of clauses is explicit using
the | symbol.The grammar can be made more explicit by represenbngatenation
with the AND symbol andalternation with the OR symbol. The more explicit

grammar looks like:

expn = termAND + AND termOR
termAND - AND termOR

term

term = factorAND * AND factorOR
factor AND / AND factor OR

factor

factor = ( AND expnAND ) OR

number

A framework for a parser is defined such that there are functions which represent the
notation of the formal grammaiThis enables the conversion of a formal grammar into

a working parser The framework for the parser has functions that represent the
grammar symbols OR and ANDhese, respectivelye calledpor andpand . Also
defined is aterminal function for parsing the terminals of the grammdihe
grammar can be converted to a functional form using these framework functions, and

will result in [12]:

[12] Theformf is Haskell syntax for the infix application fof
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expn = (term “pand’ plus “pandl term) “por’
(term “pand” minus “pandl” term) “por’

term

term = (factor "pand’ times “pandl factor) ‘por’
(factor “pand’ divide “pandlI” factor) “por

factor

factor = (Ipar “pand” expn “pandl’ rpar) ‘por’

get_num

This is only the outline of a parser and it cannot do any parsing yet. The addition of the

actions to enable it to work will be considered later.

When building a functional parseit is necessary to remember that functional
programming makes things more explicit. In particuthere is no global place from
which input can be collected, and, therefore, it must be passed into the parsing functions
as an agument. Inputlso has to be returned from the parsing functions, together with

any other data, as the parsing functions may take values from the input.

An algebraic data type is defined to represent values returned from a parsing
function. Thesdunctions may return a value of any type as well as the input, so the

data type is defined as:
data Parser_value ai=...

wherea is the type of the parsed value andis the type of the inputThe actual
constructors for this type are not of importance héearsing function which takes

some input and returns a parser value has the type signature:
parser_function :: [input] -> Parser_value a input

The main parsing functions are those defined in the framework of the functiona) parser
namely por , pand, and terminal . Both por and pand are highetorder

functions that apply parsing functions to some input.
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The functionpor takes, as guments, two parsing functions and some input and
returns a parser value. Each parsing function may return a result which has eaten some
input or failed to parse and eaten no input, (the mechanism for choosing a parsed value
Is discussed in Aho, Sethi, and Ullman [Aho86] ). In this comppler takes the first
successful parse, but it could easily be replaced by a function that selected the longest

parse or that returned every parse as iad85]. Thaype ofpor is:

por :: ([i] -> Parser_value a i) ->
([] -> Parser_value a i) ->
(il ->
Parser_value a i
The first two arguments are the same type as other parsing functions, anglowhisn

applied to its first two arguments it has type:
por fnl fn2 :: [i] -> Parser_value a i

This is the same type as other parsing functions, and therefore it is a-dridéer

function which can be passed to another parsing function.

The functionpand is similar topor except that it returns the result of both parses.

It has type:

pand :: ([i] -> Parser_value a i) ->
([i] -> Parser_value b i) ->
(il ->
Parser_value (a,b) i
When applied to its first two guments,pand can also be used as a higbeder

argument to other parsing functions, as in the grammar for the expressions.

Every parser needs a mechanism to collect terminals from the input, and one has
been defined.The parsing functiorterminal takes as an argument a terminal
symbol which it expects to find in the input stream. It then returns a parser Valee.

type of the terminal symbol and the input must be the same, dgmingnal the

type:
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terminal :: i -> [i] -> Parser_valueiii

When terminal IS given its first argument, it can be passed to other parsing

functions.

Once the input has been parsed, the compiler will take an appropriate action.
Within the functional compiler framework action  function has been definedhe
action function takes a higher-order parsing function which returns a parsed value, a
function to do some action on the parsed value, and some iApotodified parsed

value is then returned by thetion  function, which has type:

action :: ([i] -> Parser_value a i) ->
(Parser_value a i -> Parser_value b i) ->
(il >

Parser_value b i

A support function foraction is theas function. Itchecks to see whether a
parser returned a failed parse value. If it did, themreturns the failed parse, otherwise
it calls a function to process the successful parse. Using this mechanism, failed parse
values can be propagated through the compiler to parsing functions that wish to catch
errors and successful parse values can be processed in the place in which they are
collected. Theas function takes two arguments — a function to process the parsed

value and the parsed value — and then returns a new parsedaslhas type:

as :: (Parser_value a i -> Parser_value b i) ->
Parser_value a i ->

Parser_value b i

To complementas , the functionreturn is defined, which allows a new value to be
returned as a parsed valueturn  takes the new value and an existing parser value,

and it returns a new parser valueturn is used as the firstgument toas , and has

type:
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return :: v ->
Parser_value ai->

Parser_value v i

Further functions used in the processing of the actiordalfarO , dollarl
dollar2 , etc. whichpick then™ element from a parsed value. The parsing functions,
together withaction , as, return, and the dollar functions are usually

combined in the following way:

parsing_function
‘action’ (\p ->

return(f (dollarn p)) ‘as‘ p)

The parsing function does the parsing actlon  applies the actiof\p -> ...
) to the parsed value. The functias checks to see if p is a failed parse or not. If it
is, thenas returns the failed parse, otherwise it applies the funatarn (f

...)  tothe parsed value, which causes a new parser value to be returned

Using The Framework

The functional framework is used in the OPS5 compildrere each grammar
clause is represented with a unique algebraic tyfjgs is a benefit when writing a
compiler because each parser function and its associated action is stronglyTiyised.
enables the functional language type-checker to test the type of every function in the
parser for consistencyAs a esult, any errors that may have occurred in the writing of
each action can be found at compile time rather than at run tByeusing this
technique in the OPS5 compiler and other parsers it has been found to reduce run-time
errors in parsers quite substantiallfhe data types for the OPS5 grammwith the

arithmetic expression terms shown in particudee:
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data Production = Production PName LHS RHS

data LHS = LHS [Condition_elem]

data RHS = RHS [Action]

data Expn = PExpn Term Term |
MExpn Term Term |

SExpn Term
data Term = TTerm Factor Factor |
DTerm Factor Factor |

STerm Factor

data Factor = BktExpn Expn |

NFactor Int

The grammar of the OPS5 compiler is now presented, with particular attention paid to

the arithmetic expressions:
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prod :: [OPS5_tok] -> Parse_val Production OPS5_tok
prod = ((Ipar “pand” terminal "p" “pand” name “pand
Ihs “pand” terminal "-->" "pand’ rhs “pand’ rpar)
“action” (\p ->
return (Production (dollar3 p) (dollar4 p)
(dollar6 p)) "as’ p))

expn :: [OPS5_tok] -> Parse_val Expn OPS5_tok
expn = ((term “pand’ plus “pandl’ term)
‘action” (\p ->
return (PExpn (dollarl p) (dollar3 p)) "as™ p))
“por
((term “pand” minus “pandl” term)
“action” (\p ->
return (MExpn (dollarl p) (dollar3 p)) "as” p))
“por
term “action” (\p ->

return (SExpn (dollar0 p)) "as’ p)
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term :: [OPS5_tok] -> Parse_val Term OPS5_tok
term = ((factor “pand’ times ‘pandl’ factor)
“action” (\p ->
return (TTerm (dollarl p) (dollar3 p)) "as” p))
“por’
((factor “pand’ divide “pandl’ factor)
“action” (\p ->
return (DTerm (dollarl p) (dollar3 p)) “as” p))
“por’
factor “action™ (\p ->

return (STerm (dollarO p)) "as” p)

factor :: [OPS5_tok] -> Parse_val Factor OPS5_tok
factor = ((Ipar “pand” expn “pandl’ rpar)
“action” (\p ->
return (BktExpn (dollar2 p)) "as’ p))
“por
get_num “action” (\p ->

return (NFactor (picknum (dollarO p))) "as™ p)

The action for the parser function converts parsed values of one type into values of the
type returned by the parser functioBonsider the functioexpr , which returns the

type Expn . It will parse using the functioterm , which returns the typ&€erm. The
actions inexpr return results using the construct®&xpn, MExpn, or SExpn . If

any data given to one of these constructors were not of Tgp® , then the type
checker would complain. By having a new type for each grammar clause, the type
checker of the functional language compiler can determine errors in the gartser

parser had just one type throughout the code, it would be possible to introduce more

errors at run time.

Work similar to the parser presented in this thesis has been done by Hutton

[Hutton90]. Huttonuses the techniques devised bgdliér [Wadler85] to build parsers
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which also use higher order functions to represent the formal graniution’s use of
Wadler’s techniques have not been designed for large compilers, although Hutton
demonstrates that they can parse non-trivial grammars. In Hupensers, the tasks of
parsing and semantic action are gegf together That is, some of the semantic actions

are done as part of the parsing and some are done as a rewrite rule. Hutton represents
concatenationin the formal grammar as three functions, nantegn , xthen , and

thenx . Thethen function works in a similar way to theand function defined in

this thesis.However the functionscthen andthenx throw away the first or second
parse, respectivelyfter a parse has succeeded. This contrasts with the parser in this
thesis, which explicitly has aaction for each parse that is responsible for manipulating
parsed values. In this thesis, the two issues of parsing and rewriting have been
successfully separated. There is only one functiorcdéorcatenation namely pand .
Consequentlythe parser closely represents the specification of the formal grammar
having all the semantic actions in a separate rewrite rule. Furthermore, by maintaining
the discipline of using a separate algebraic type for each grammar clause, many errors
can be detected and identified at compile time (unlike Hutton, who may not detect these

errors until run time).

The combination of regular higher-order functions for the parser and the use of
strong typing provides a framework for building large parsérss simple to convert
the grammar into a parser and then to construct the rewrite ttildstton’s technique
is used, then the parser and the construction of the semantic actions need to be
considered at the same time. This increases the scope for errors, renderings Hutton’

technique less suitable for large parsers.

3.3.2. TheRecognize-Act Cycle

The recognize-actcycle of a rule-based system is usually said to occur in the

following order:

i) match — which evaluates the LHS©of the productions to determine which

are satisfied given the current contents of working memaory.
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i) conflict resolution — which selects one production with a satisfied LHS.

If no productions have satisfied LHS’s, then the system halts.

iii) act — which performs the actions specified in the RHS of the selected

production.

The following sections show how match, conflict resolution, and act have been
implemented in a functional languag&he section "The Run-Time System" presents

how each of these parts is used and called with the right arguments.

Match

During the match phase, the OPS5 interpreter determines every instantiation of
every production. Furthermore, if any of the productions can be instantiated by more
than one list of working memory elements, then the interpreter finds every valid list of

elements and puts these instantiations into the conflict set.

The functiondo_match matches all productions with all of working memoty
uses a list comprehension to do a cross product over production memory and working
memory For each production, tuples of working memory elements are generated which
have the same number of elements as the number of clauses in théefulend side
and are matched against that rslldauses. Everyule that has all its clauses matched
successfully will go into the conflict seThe working memory tuples are generated on

each loop of theecognize-actcycle:
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do_match::PM->WM->[Conflict]
do_match ps ws
= select_conflict_set [(match_rule wm_el a_prod) |
a_prod <- prod_list;

wm_el <-  wm_lists !! (index a_prod) ]

where -- Ilis the list index function
prod_list = pmget_as_list ps -- get PM as one list

wm_lists = wm_cross_product ws -- all WM tuples of all sizes

index prod = length (get_lhs prod) -- index is no of LHS clauses

Conflict Resolution

In the OPS5 user manufiforgy81], the conflict set is defined to be a set of pairs in
which each pair contains a production name together with a list of working memory
elements satisfying the productienLHS. Conflict resolution examines this set to
determine which instance dominates all others. The method for determining which is
dominant is called the resolution strateggd OPS5 has two of them — LEX and
MEA. Eachstrategy has an ordered list of rules to follamad is described in the OPS5
Users Manual [Fogy81].

The ability to create new types easily and to specify sequences of operations using
function composition renders functional languages suitable for converting an ordered
list of tasks into a functional definitionThe method for converting a list of ordered
rules into a function relies on a simple analysis of each rule. Consider the functions

defined for the OPS5 conflict resolution strategy:

» stageltakes the conflict set history and the conflict set and removes all the
instantiations from the conflict set that have fired already — this avoids
unintentional (and potentially infinite) loops between rules, however the

rule programmer is free to create his own explicit loops.
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* dtage2 sorts instantiations by the timestamps of the working memory
elements in the instantiation tuple so that later stages can choose the
instantiations with the newest timestamp#$ie process differs in the initial
sort depending on whether the LEX or MEA conflict resolution strategy is

being used and is split into 3 functions:

* lex_stage2_sortsorts instantiations by the timestamps of the
working memory element tuple, ordered with the newest timestamp

first

* mea_stage2 sorisorts instantiations by the timestamps of the
working memory element tuple, with the timestamp of the first
element of the tuple followed by the rest of the tuple which is

sorted and ordered newest first

» stage2_ordersorts on two values. First on timestamp list, then by

production name.

» stage2_selectselects only those instantiations whose timestamp

lists are the same as the first member of the timestamp list.

» for stage3 if stage2_selectreturned one instantiation, then this is the
selected item. |If there is more than one item, then it is necessary to check
the specificness of each production and choose the item which is most
specific in the current contextThe specificness of an instantiation is
evaluated by counting the number of simple matches and variable matches
in the original production. Instantiations are considered more specific if the

count is higher; that is the production had a higher number of matches.
* instage4 if there is still no obvious item, then an arbitrary item is chosen

The types for each function are given below:
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stagel " [(Pname,[Timestamp])] -> [Conflict] -> [(Pname,[Timestamp])]
lex_stage2_sort :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]

mea_stage2_sort :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]

stage2_order " [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]
stage2_select :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]
stage3 " [Conflict] -> [(Pname,[Timestamp])] -> [Conflict]
stage4 " [Conflict] -> Conflict_Resolution_State

These functions can be combined in a pipeline to generate the two functions needed for

conflict resolution.
The LEX conflict resolution strategy:

lex :: [(Pname,[Timestamp])] -> [Conflict] -> Conflict_Resolution_State
lex cs_hist cs
= (staged. stage3 cs.
stage2_select . stage2_order . lex_stage2_sort .

stagel cs_hist) cs

The MEA conflict resolution strategy:

mea :: [(Pname,[Timestamp])] -> [Conflict] -> Conflict_Resolution_State
mea cs_hist cs
= ( staged.(stage3 cs).
stage2_select.stage2_order.mea_stage2_sort.

stagel cs_hist) cs

Act

In the act phase of the cycle, the actions of the chosen production are executed one
at a time in the order that they are written. These actions may add or delete elements

from working memoryor they may do input and output.
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3.3.3. TheRun-Time System

The run-time system of the rule-based system is the infra-structure that binds the
application togetherFunctions within the run-time system manipulate the items in the
state, generating a new state after they are callbd.recognize-actycle is the main

operation of any rule-based system. The form of this cycle is:

match — conflict resolution— act

Although previous sections demonstrated that no part of the system needs access to
every item in the state, it is pertinent that the state be set correctly and in a
predetermined orderlt is necessary to represent the maacognize-actcycle in a
functional way while still retaining its same operation. This can achieved by updating

items of state as well as using the same ordering as in the original algorithm.

In the run-time system, equivalent functions are defined within the run-time system

with the following types:

match :: State -> State
conflict_resolve :: State -> State

act n State -> State

Each of the above is a function which does one part of the main cycle. When composed

togetherthe result is:

act.conflict_resolve.match

From this it is evident that the ordering of operations can be achieved through function
composition. Thecomposition is of typeState — State The functions in this
composition take the whole state, and then pass the relevant parts to a sub-function
which does the real work. The value returned by the sub-function is set into the state,

ready for when the next function begins.

By composingmatch , conflict_resolve , ahd act , each of which sets an
item in the state, the behaviour of the original algorithm can be achig&hedresult is a
functional implementation equivalent to the recognize-act state-saving algo&ihoe

the update of the state is hidden at this level, as opposed to having explicit manipulation
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of the state, the result is a function written in a higher-order style which is elegant and

hides the explicit plumbing.

The run-time system of the rule-based system has many other functions which are
all of type State - State This includes the compilewhich reads rules from a file,
compiles them, and then puts them into production membngre are many top-level
functions which are equivalent to those in the original OPS5 run-time sysgm.
having all the functions of the same type, new top level functions can be added easily
The problems of explicit plumbing are hidden through abstraction, enalshaig-
saving programs to be written in a functional styldere is no need for extra code for
state at the top-level since the manipulation is done irSthge - State functions.

When using higher-order functions, an abstraction for manipulating state is created.
This abstraction overcomes the issues of plumbing in the same wagothaand

pand , when used as higher-order functions, create an abstraction for building parsers.

An example of a state manipulation function is the functraich . This takes
production memory and working memoand then returns an environment of matches
for every production which could possibly fire next time. This environment is the
conflict set. The match function used in the run-time system encapsulates the
previously described matching function, calldo_match , within a State —» State

framework. ltcan be written as:

match :: State -> State
match s = let conflict_set = do_match (get pm s) (get wm s)
in
set_conflict_set conflict_set s
The functionsset_conflict_set , get_ pm , and get wm are defined in an
abstract data type for statdo_match is the function that actually does the match.

Whenmatch is completed, the state will have been updated with a new value for the

conflict set.
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Combining forms

For the functional OPS5 to interact with the yusemrapper function is defined
which retrieves the output of the system from the state for the user tolrBeeis
achieved by applying thget_output  function, which is of type&tate » Output, to
the state of the system. Many functions are declared ofStgie - State These are
composed in order to operate on the staie. get the output to the usethe

get output  function is applied to the state. The result is something like:

get_output ((fn. ... .f2.f1) empty_state)

In the wrapperfunctions are passed as a list in the order that they will be evaluated.
The wrapper arranges for them to be composed so that they will then give the correct

result. Thenrapper can be written as:

execute :: [(State -> State)] -> output

execute = get_output.(foldl applys empty_state)
where
applys st command = command st

applys :: State -> (State->State) -> State
The functionexecute composes all the functions in its argument list and gets the
output at the endA system can then be run with:

execute [load_productions "file",
conflict_resolution_strategy mea,
make "(make start)",

run]

This produces the desired effect of executing a rule-based system.

Input and Output

Input and output are also considered to be problematic in functional programming
because there are no sidéeefs and it is not obvious how to do both of them from the

middle of a large applicatiorBy having the input and the output streams held as items
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in the state, they both can be easy manipulated.

In a large application it may be necessary to do input or output at anyltiraeder
to do this, access to both the input and the output stream is required. The particular
functions required to do input and output may be buried deep in the application, so the
streams must be passed down theB@ce there is already a mechanism for passing
items around, the state-saving structure is ideal for input and output stré@ms.
alternative is to pass the streams around separaidlis can lead to complicated

control structures and to the loss of the previously seen functional cleanliness.

In the rule-based system output is produced in many pladasing the output
stream in the state combined with the abstract data type functions makes it simple to do
output. Anyfunction that needs to do output can affect the output item in the state.
Two functions for doing output are defineadd_output , which adds some new
output to the end of the existing output, aeget_output , Which sets the output to
nil. The function add_output is the most common and the safest to use. This is
because any function currently doing output is often unaware of the other output

previously done. The functiomeset_output is only used in the top-level wrapper

The section "Combining Forms" demonstrates how state update functions can be
composed to affect multiple state items. one of these state update functions is
add_output , then it seems to behave like a print statement in an imperative
language; for it is buried in a & expression and looks as though it is unrelated to the

output stream. Consider the example:

(set_item1 new . add_output "hello world" . set_item?2 val) state

in which theadd_output  expression is detached from any obvious plumbing (in fact,
the plumbing is implicit in the function compositionnput to the rule-based system is
handled in the same wayt is held in the state and manipulated by the abstract data
type functions.If the application needs any input, it can get it from the state. Input is
always eaten from the beginning of the input stream, and any input eaten is removed by

rewriting the input stream.

72



Problems with 1/0

As previously stated, input and output are considered problematic in functional
programming. Inthe application in this thesis there is a problem with outdite
observed behaviour is that no output is produced until the system 3iogs, once the
system stops, all the output appears. This can be perturbing, especially since the more
common result is for output to appear gradualjowever this behaviour can be
explained, and a solution found which gives the behaviour we desire. By analysing the

way the system was built, its operation can be predicted.

A solution to the problem of state being held up until the end of the program run
relies on onlyappendingnew output to old output, because if new output is prepended
anywhere, the results may be unpredictable (i.e. wrong). A top-level wrapper function
can be used to ensure that new output is only appended to old output. If functions are
not composed but, instead, the output from each of the fundtjdosf,, is collected as
each function is evaluated, then the result is the desired behaviour of output appearing

as it is generated.
An alternative approach to the wrapper function is:

new_execute :: [(State -> State)] -> State -> Output
new_execute [] st =]
new_execute (command:rest) st
= get_output this_run ++ new_execute rest new_state
where
new_state = reset_output this_run
this_run = command st

this_run :: State

The functionnew_execute could be started with an initial stateehpty_state

The output for each update function is collected and prepended to the rest of the
processing. Beforeontinuing, the output is reset to avoid outputting the same thing
twice. Thefunctional simplicity of the former case has gone. Although both cases are
semantically equivalent, they have afeliént run-time behaviour The temporal

behaviour of functional systems cannot be expressed as part of the program and can be

73



difficult to determine, especially in large programs. There have been undocumented

reports of other attempts at large functional programs which have similar problems.

A second solution devised has a cleaner interfake.unction is defined which
generates a list of states that correspond to each state-update function which needs to be
executed. Fronthat list, the output can be collected and concatenated in order to
provide output as it is generatefirst, a function must be defined that generates a list
of states. This list is generated in the order in which the state-update functions are

called, thereby eliminating any hold-up of the output. This function is defined as:

statelist::[(State -> State)] -> State -> [State]
statelist [] st =]
statelist (command:rest) st
= newstate : (statelist rest newstate’)
where
newstate = command st

newstate’ = reset_output newstate

This function must also reset the output stream in order to avoid incorrect otkgut.

wrapper can now be defined as:

newer_execute::[(State -> State)] -> State -> output

newer_execute fns st = concat.(map get_output).(statelist fns st)

If a clean functional interface to state manipulation is created, thereficultif
with output. However this can be overcome, to a degree, by having a wrapper layer at
the highest level which collects output as early as possible. It is not yet clear how this
difficulty will manifest itself if output interleaves with input further into the bowels of
the system. It may be that the simplicity completely disappears. Further work can
investigate this issue. In particular the use of morfadadler90] and 1/0O combinators
[Dwelly89] can be evaluated, as both allow an abstract framework to be created within
the whole program structure. The curr&iate — State functions do not provide a
controllable method for collecting input from the input stream when input and output

are interleaved within a singi&tate - State function. Usingeither I/O combinators or
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some specially designed monads could allow a framework to be built which overcomes

the interleaving problem.

3.4. ExecutingOPS5

A working version of OPS5, written in Miranda, was built for this thedsy.
executing some test programs that are present in the LISP source of OPS5, the
functional OPS5 was evaluated. (Appendix C has an example of one of these
programs). Théunctional OPS5 executed the productions of the test programs corectly
However executing the functional OPS5 on a sequential machine was very slow
because a non state-saving matcher was u$edstate-saving matchesuch as Rete,
had been used one would expect to see a significafgreti€e in the run-time
performance, going from cubic on the size of working memory to independent of the
size of working memoryas was discussed in chapter b this section, a summary of

the performance of different versions of OPS5 is shown in table 3.2.

In this research it has been discovered that it fgedlif to run the functional OPS5

on a parallel machine due to problems such as:

i) availability — there are few machines built to execute parallel functional

programs and even fewer with accessibility.

i) different language — the only machine that was available was the GRIP
machine [Clack85ajvhich has been installed at Glasgow University for
general usgHammond91]. TheGRIP system uses either Lazy ML or a
Haskell subset. There were no translation tools to convert Miranda into
either Lazy ML or Haskell. Hand translation is possible but the need never
arose as the matching algorithm used was todicresit and the GRIP

system was found to be unsuitable for the task required.

iii) non-trivial to use — GRIP requires hand annotations to harness parallelism.
To do this for many thousands of lines of code is very time consuming and

unlikely to be optimum or correct.
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Imperative

Functional

Sequential

A version of OPS5 written in
Franz Lisp was executed in bot
interpreted and compiled form

It used the Rete matcher.

The Miranda version was ex
hcuted in interpreted form.It
. used a non state-saving matcl

and was therefore very slow.

Parallel

| have not personally tested ar
parallel versions of OPS5 due t
both the hardware and softwa
being unavailable. Some sc
called parallel versions of OPS
have only ever been tested (
simulators. Furtherdetails of
these parallel implementation
can be found in the reference

shown in chapter 2.

yThe functional version has n
obeen tested on any parallel
echine. Thereasons for this ar
- discussed in chapter 6.

5

N

2S

ner

DT

a-

These issues will be discussed more fully in chapter 6, in which parallel functional

Table 3.2: Summary of performance of OPS5

programming is considered and the problems encountered are discussed.

Furthermore, it was discovered that the measurement tools and techniques are
thoroughly inadequate for observing the behaviour of an executing functional program.
The number of graph reductions and the time in cpu seconds presented by functional
run-time systems is of little use because it indicates nothing about the behaviour of the
running program. Agraph reduction on one machine may do substantially more work
than a graph reduction on a different machine even though they are both required to do

identical tasks. Graph reductions can be considered a similar measurement to MIPS in

that they are not a reliable indication of real performance.
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3.5. Analysisof the Functional Rule-Based System

The design, implementation, and execution of the functional rule-based system is a
feasibility study of the practical use of functional programming from both a
programming and an execution viewpoint. The programming viewpoint is a test to see
if a large state-based application can be written effectively in a functional language.
The execution viewpoint is a test to see if the functional application can be used on a

day-to-day basis.

The functional rule-based system uses a simple non state-saving matching
algorithm which has polynomial behaviouFhis rule-based system consists of 5 main

components:
i) the compiler

writing this re-enforced the view that recursive compilers are easy to build
in functional languages.Much work has been done on functional
languages and compilation as seen in section 3.3. This compiler is a simple

recursive-decent compiler for a non-left recursive grammar.
i) the matcher

this is the core of a rule-based systelhis matcher uses a simple non
state-saving algorithm whereby every clause of every rule is matched
against every working memory element on every cyds. stated, its
behaviour is poor.

iii) the run-time system

this is the framework for the functional OPS5. It arranges for input and
output to the program and binds the compiler and matcher togdther
manipulates a large state object, which has all the data required by the

program, such as production memory and working memory.
iv) act

this updates working memory and does input and output
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v) conflict resolution
this uses a pipeline of functions to emulate an ordered list of instructions

There is a general misconception amongst imperative programmers that functional
languages are unable to deal with statkis thesis refutes this claim with the proof of a
working application. In this chapter a technique was demonstrated for writing
applications which manipulate stat&his technique combines using an abstract data
type to represent state with a set of higheter State » State functions. Byusing this
technique, 90%of the rule-based system OPS5, which is an inherently state-saving

application, has been successfully implemented.

Due to the desire to keep the compiler simple, the initial version of the compiler
does not include error reporting or error recoveftthough this is sufficient for a
prototype compilerfurther work would be the implementation of a second version in
which the lexical analyser and the parser support both error reporting and error

recovery.

The fact that a functional language is being used to implement OPS5 presents both
advantages and disadvantages. Depending on ones point of view the advantages for one
person may be the disadvantages of another and we see that they are th&hgame.
disadvantage is thatate must beepresented explicitly and theflore the code must be
redesigned As dl state is explicit, the program code can look messy and thus lose the
functional expressiveness that is expectbdperative programs look much the same
when state is added because state manipulation is imglicéd.advantage is thattate
must be epresented explicitly and thefiore the code must beedesigned There is
explicit control over which parts of the state are passed and accessed, therefore implict
state manipulation and generally accessible global store issues are overcome.
Furthermore, an imperative implementation allows error reporting to be added as an
afterthought. Thishas the disadvantage that error reporting and error recovery may
suffer from incoherent design. In a functional system, error reporting and error

recovery must be explicitly designed into the system.
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Limitations of the Functional OPS5

The rule-based system created for this thesis is limited in comparison to the LISP
version of OPS5. Only the main actions have been implemented, and the compiler is
somewhat limited, giving few error messages and being unforgiving when errors do
occur These limitations have not been a problem because the original LISP system
gives good error messages and can be used as a benchmark for any testing done.
group at Carnegie-Mellon University has implemented OPS5 in C. Their
implementation has limitations which are similar to those found in the functional OPS5.
This is because both Miranda and C treat programs and diseelify whereas LISP

treats them the same.
In the functional OPS5 there are problems with:
* doing I/O, as seen previously.

* bugs buried deep in the system which were hard to find, because of a lack

of debugging tools.

* measuring the performance of the system. Because neither the time spent
in functions nor the space used can be measured, it is impossible to

compare this system with other implementations of OPS5.

Benefits of Functional Programming

The features of strong typing, the creation of new data types, and -bigleer
functions in functional languagesiake applications such as compilers easier to write
than in imperative languages. Pipelining (via function composition) aids in the building

of algorithms, for example:

* in the compiler the data types used for the simple OPS5 matcher were
extended by adding new functions to convert the structure into a new form.

The code for the original compiler was untouched.

* inthe run-time system, numero8tate - Statefunctions were composed
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* in the conflict resolution, each section of the definition was converted to its
own function. These functions were given their own data type and then

combined in a pipeline to form a working algorithm.

In general the use of pipelining and abstract data types are an effective way to write
large programs. The terpipelining rather tharfunction compositioris used because
it is possible to impose an abstract framework on the program which looks like function
composition but is not. For example, monads may be used to pipeline functions, as will
be seen in chapter 4Expressions can be arbitrarily complex, and can be easily
combined with one anotherln imperative languages, there are commands and
expressions which cannot be easily combirextause expressions return values and
commands do operations. Functional languages present a uniformity to the

programmer.

3.6. Summary

The lessons learnt from writing a large application in a, lagherorder functional

language are:

* pipelining combined with well considered data types can be used to do an

ordered set of operations, e.g. conflict resolution.

» abstract data types can aid expressiveness, e.g. state manipulation or parser

values.

» higherorder functions and laziness aid modularitiyis possible to write a
general algorithm rather than selecting an arbitrgey large, number of
instances of an algorithm. This begs the question "why tatleere more

Haskell libraries around" ?

» functional programming is very good for writing compilers because the

formal grammers can be easily encoded into a functional form.

» using functional programming for state means that there is explicit control

over the state rather than implicit contrdlhis can be used to greafesit

by:

80



a) limiting access by passing around only the parts required.

b) creatingstructures from a stateStacks of state can be used for

undoing operations. e.gave-excursion in emacs.

one can get natural looking code for many applications, e.g. compilers and

graphics, as seen in [Henderson82] or [Arya89].

one can get a prototype of a program working quicKlgere is no fiddling

with little things such as pointers to pointers.

functional programming is easy to learn and easy to start building complex
applications. This observation was supported by comparing the
accomplishments of first year Unversity students learning Pascal with those
learning Miranda. The students that learnt Miranda were able to solve

much more complex problems than the students who learnt Pascal.

the conversion of some well known algorithms can biecdlf. Algorithms
are usually defined in an imperative waygowever by reinterpreting the

definition more abstractha functional implementation can be devised.

easy to extend existing code by pipelining and function compaosition.
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Chapter 4

4. IssuedArising in Functional Programming

One of the main aims of this thesis is to design and implement a rule-based system
in a functional language and then to compare its performance with an existing rule-
based system. This chapter discusses the software engineering issues that have arisen
whilst writing such a lagge application in a lazyfunctional programming language.

Many of the issues discussed go some way to dispell various negative viewpoints held
about functional programmingHowever some re-enforce these negative viewpoints,

and it is these issues which must be resolved if functional programming is to progress.

By writing a large functional program as part of this research some interesting

aspects of functional programming have been discovered. These aspects are related to:
e dgorithms and data structures
* development environments

This chapter discusses these two aspects and the issues that have arisen with respect to
them. First,the issue of state is considered as this is an essential aspect of all
programming systemsThis leads into a discussion on monads, a theoretical concept
that has been adapted as a possible way to deal with building a framework for state
manipulation in functional programs. Then follows a section on vectors, a common
data structure in imperative languages that is missing in functional languahes.

section on graphs highlights the difficulties of functional languages in implementing
certain algorithms that are easy to implement in imperative languages. The next section
discusses the limited interaction of functional languages with the operating system

which makes getting input and output into large applications non-triiaklly, there
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is a discussion on the lack of measurement and debugging tools for functional
programs, and how this hinders functional programmers from making their programs

more effective.

4.1. State

One of the most important aspects for any programming system is that of state.
Mechanisms for accessing, updating, and passing state are available in most languages.
In imperative languages these mechanisms are usually so transparent that many
programmers rarely give them much consideratiblowever state manipulation has
been a difficult issue in functional programmings functional programs must make
state explicit in all functions which need access to state, and because these functions
return updated state objects, we seem tplbebing in the state[13]. This plumbing
can make programs look unwieldy and inelegant because the main operation of
functions is obscured by the numerous details pertaining to state manipulation. This is
especially true when the number of state items gelaret plumbing is essential in
state-saving functional applications. It is not possible to write a set of functions and
then add an extra gument which holds state. Items in the state are manipulated and

the functions then return whole state objects.

Plumbing is not needed in imperative languages because the concept of state is
different. Theconcept of state in an imperative language is a combination of three

features — the value of the state, side-effect, and updatable store:

+ the value of the state is the current condition of some structure, either a
base type such as an integer or some composite type such as ahgle.

termstate will be used to mean this within this thesis

* updatable store is a location in an environment that may have its value

changed during the execution of a prograRunctional systems do not

[13] Thisprocess is callegdlumbing because the state has to be passed into every function ex-
plicitly, and then explicitly passed bacKhe extra work required is similar to fitting piping that
feeds water to different rooms in a house.
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have updatable store.

» aside-efect is a procedure that causes some operation to occur secondary
to the main operation of a function. This usually manifests itself as an
update to some store or as some input or outpumctional systems do not

have side-effects.

The combination of these three concepts allows imperative programmers to write
programs such that state manipulation is transparent and plumbing is not needed.
Although the above are sometimes considered to be related in imperative systems, in

functional systems they are different.

Programmers who use imperative languages often fail to see how state can be
represented in a functional languagkhis is because functional languages have single
definitions, and imperative programmers are used to a computational model which
encourages the use of updatable store through dieltsef Ofterwhat is overlooked is
that the run-time binding of values to the formal parameters of a function provides a
mechanism which is similar to the imperative modal.the functional model, state is
expressed explicitly as an extra parameter to a fundddh This differs from the
imperative model, in which state can be expressed implicitly by using a global variable.
Furthermore, inthe imperative model, names are associated with locations in the
updatable store, but in the functional model, names are associated with parameters to a

function.

The state required for a rule-based system is relativedg l@omprising hundreds
of rules and thousands of working memory elemehtghe rule-based system used in
this thesis there are twelve items of state to pass arolimel.rule-based system runs
from cycle to cycle, saving and updatingfeliént items of state as it executekhe
following sections present the techniques discovered which show how state
manipulation need not be a problem in functional languages. The amount of plumbing

which is required can be reduced and the access and the update mechanisms

[14] Theuse of higheorder functions and currying can make extra parameters seem to disap-
pear.
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streamlined. Thetechniques presented allow functional programmers an elegant

approach to state access and state update.

4.1.1. Manipulating State

Many functional programs contain small amounts of state and manipulate this state
effectively This can be demonstrated by considering a program which generates a set
of stars in a pyramid. The pyramid starts with a single star in the first\WWith each
consecutive row one more star than the previous row is geneftedorogram builds
rows of stars up to a given valug&he state items required here are 1) the number of

stars required per line and 2) the maximum number of stars required for the pyramid.
To oode this in ANSI C, one could write:

stars(int max)

{
int current;
for(current = 1; current <= max; current++)
generate_stars (current);
}

The variablecurrent  is state-saving.lts value is used to control a loop, and it is

updated on every iteration of that loop.
To code this in a functional language such as Haskell, one could write:

stars :: Int -> [Char]

starsm=stars’1 m

stars’ :: Int -> Int -> [Char]
stars’ current max = [], current > max
= generate_stars current

++ stars’ (current + 1) max, otherwise

86



Both the C and the Haskell programs produce the same résuhe C program the
variablecurrent  is updated in place, but in the Haske#rsioncurrent is passed

to a new instantiation ¢ftars’  with a new value, namelgurrent + 1)

To write code with a similar structure to the ANSI C, one could define a higher

order operator likéor , to get:

stars :: Int -> [Char]
stars max = concat
(for 1 (<=max) (+1)

generate_stars)

for ::a-> (a->Bool) -> (a->a)->(a->b) ->[b]
for value done next f

=[], if n ot(done value)

f v alue : for (next value) done next f , otherwise

In this example, the functiofor applies the gyument functiondone to a current
value in order to decide if the for loop has finishéok recurses with a new value
which is created by applying the functinext to the current value. The result is a list
of values. The explicit control variabtarrent  of the imperative program has been
eliminated from thestars function. Thefunctional "for loop" produces a list of

results which have to be concatenated to produce one list.

Another technique for manipulating state which is familiar to functional
programmers is that of accumulating parametéssing this technique, a parameter
which accumulates a value acts as an updatable variable (i.e. the 3tai®)is
highlighted by the following commonly used functi@v , which reverses a listThis

can be written in Haskell as:
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reverse::[a] -> [a]

reverse | = rev | []

rev::[a] -> [a] -> [a]
rev [] acc = acc

rev (h:t) acc = rev t (h:acc)

Here the first argument tiev changes on each instantiation. It has a new value

consed onto it, this being the accumulating parameter.

From the previous examples it can be seen that functional programs treat state by
passing it around explicitlyNo problems are encountered here because each state held
in the parametersurrent  (in thestars example) andicc (in therev example)
is local to the recursive computation. When a single state item is needed beyond the

scope of one function, or if more than one state item is required, new issues arise.

State-saving appears to be increasingly problematic when more than one value must
be rememberedThis is encountered, on a limited scale, with functions that take and
return tuples of state value3he lexical analyser is a pertinent example of this. In a
functional implementation one might have a function that takes some input, and then

returns an eaten token combined with the remaining input. For example :

lex :: [Char] -> (Token, [Char])
lex input = (tok, rest)
where
tok = get_a_token input

rest = drop_a_token input

The functionlex returns both the current state of the input and the current token.
Thus, state has to be manipulated by the function that ttls. Functional

programmers are usually happy with, and capable of, this sort of processing.

The state-saving that is considered to be more difficult is when multiple items of
state can be updated at any timEhis type of state-saving is described briefly in

[Hudak89]. Hudals example is rather limited in that his state object is a 2-tuple.
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defines two update and two access functions for his state object:

x ( xval,ival) xval’ = (xval',ival)
i ( xval,ival) ival’ = (xval,ival’)
X" (X,i) =X

P (%,0) =i

Hudak uses these functions as an example to dispell the myth that state-saving cannot
be done in a functional languagkle uses an abstraction for state access through the
functionsi’ andx’ , and an abstraction for state update through the functioasad

X.

More extensive use of state manipulation can be foun{Dimelly89]. Dwelly
defines dialogue combinators, which are higher order functions used for manipulating
I/O streams when defining user interfaces. This works successfully for the I/O streams,
but he uses small tuples with pattern matching for state manipulation. In his system,
state is just a 2-tuple containing a brush size and a coltamsider an example which

changes the colour of a pen:

ChangeColourRed (brush,colour) (input:rest_input)

= ([], (brush,Red), rest_input)

Note how this function takes two arguments and returns a 3-tuple containing some
output, the new state tuple, and the rest of the ingdthough this technique for
manipulating state is fine when dealing with two or three state items, it is impractical

when there are many more state items.

In the following sections the difference between pattern matching directly and using
an abstraction is presented. The effectiveness of each will be seen, particularly when

the number of state items is large.

Pattern-Matching

As previously shown, one can implement state manipulation as a tuple and use
pattern matching to access or set items. Dwelly uses this style of implementing state in

his work [Dwelly89] but, as previously mentioned, his state tuple is very srhiaitlak
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also uses a tuple and pattern matching, but he hides this in an abstrab&onse of
abstraction, which is important in functional programming, will be described in the next

section.

The use of pattern matching for state a technique that allows functional
programmers to express state manipulations on many state items at ldowever,
this technique is only effective for small tuples. Consider an example from the
functional rule-based system, described in chapter 3, which has 12 items ofstate.

access to one state item, such as the production meimogode would be:

get_pm :: OPS5_State -> Production_Memory
get_pm (pm,wm,cs,cs_hist,res_strat,instantiation,stfm,cycle,timestamp,debug,input,output)

To update an item of state such as the conflict set, which is generated by doing a match
on the production memory and working memoay function which uses pattern

matching and tuples can be written as:

match :; OPS5_State -> OPS5_State
match (pm,wm,cs,cs_hist,res_strat,instantiation,stfm,cycle, timestamp,debug,input,output)
= ( pm,wm,new_cs,cs_hist,res_strat,instantiation,stfm,cycle,timestamp,debug,input,output)
where

new_cs = do_match pm wm

The long names of patterns can be replabgdhorter names, however the significance

of these names would then be lost. When using pattern matching and tuples, functions
become messy and the lucidity of the code is lost as attention is drawn to the pattern
matching rather than to the body of the function. Therefore, this style is unreasonable

for large state objects.

Haskell wildcarding can overcome some of these problems by eliminating nhames
which do not appear in the body of the functifib]. Considerthe previous match

example, where the use of Haskell wildcarding would produce code such as:

[15] Thiscan also be eliminated in SML by using records
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match :; OPS5_State -> OPS5_State

where

new_cs = do_match pm wm

Although the code is neatehis style is still unsatisfactory because attention is still
drawn to the pattern matching rather than to the body of the fundfidhis style is

used in every function that manipulates the state, a program becomes difficult to
comprehend (See "Abstract Machine Specification in Functional Languages”
[Koopman90] as an example of this). Therefore, using pattern matching and tuples for

large state objects is unrealistic.

Abstract Data Types

If an abstraction is used through the use of an abstract data type, functions for
setting items and functions for accessing items in the state type can be dEfwcéd.
item within the state abstract data type has its own functions for setting and accessing its
value. Eachfunction that sets a state item takes the old state and a new item, then
returns the whole new state. Each function that accesses a state item takes the state,
then returns the single item. The empty state value must be defined because there will
be times when the state value has not been set and there must always be a valid state.
All items in the empty state must be valid for that type and should be reasonable

initializer values.

The implementation type of the state is any concrete data type that the programmer
feels is suitable.Yet this is hidden by using abstract data types, thus sparing the
programmer the burden of explicitly pattern-matching the concrete type in every
function that accesses stat&ccess to the state is only through the abstract data type

functions [16].

[16] Thistechnique is similar to classes in object-oriented languages, where components of a
class are accessed via accessor functions.
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An advantage of using abstract data types for state is that all the implementation
details are hidden beneath a layer of functions. These functions allow the access and
setting of the items in state to be done in a clean functional Mayeover if these
functions have meaningful names, then the code becomes readable andFhrcid.

example, to update one item in a state one could write:
set_iteml val state

This function would return a new state witieml changed toval . If pattern
matching were used instead, the lucidity of the code would be lost and the containing

functions would become mess$gng-winded, and difficult to comprehend.

A further advantage of sensibly implemented abstract data types is that update
functions can be composed in order to perform multiple updates. This composition can
be performed for any updates needéal.order for this to work, all update functions
with their aguments must be of the same type, sucBtate - State To update two

items, saytem1l anditem2 |, this could be expressed as:

(set_item2 new . set_item1 val) state

which will return a new state with boitem1 anditem2 updated.

If more items are added to the state object, then the underlying implementation type
must change but the functions that access the state may stay thelsatis, only the
functions which need access to the new items require change and any changes to the
program will probably be minor This is very important when developing lae
applications; having the correct interface to state can avoid wasted timeand By
contrast, the pattern-matching mechanism is particularly painfuinother item of
state is added, then one must extend both the argument pattern and the resulting pattern.
This must be done for all patterns in every function which pattern matches on the state,

even though the added item may not be part of the funstiperation.

As stated, multiple updates to the state can be performed by composing updates to
an original state. Although this is clean and readable, it introduces some new and

undesirable features.
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First, when reasoning about updates one might surmise from the composition of the
updates that their ordering is important; it rarely is. The order of composed updates is
usually of no significanceThe emphasis is on the resulting state, which remains the

same even if the ordering of updates ifedént. Forexample:
(set_item2 new . set_item1 val) state

which gives the same result as:
(set_iteml val . set_item2 new) state

can be interchanged freghven though they may appear to bdatiént. Thisapparent

difference may reduce the lucidity of any code.

Second, one may get the impression that state update is a divisible operation which
can be broken down into its component parts, aee item of state is updated, then
another item of state, and so on until the updating is completed. If this is the case, one
might assume that it is possible to examine the state between each update of the items.
However state update is not usually meant to be a divisible operation. The desire is to
update all the items at once. Therefore, it must be clear that updates are neither ordered

nor divisible.

Third, the state update is sequentialized on the update funcédineferences to
the state go through these update functions. This could cause problems if there are
many composed updates. This is particularly important in a parallel system where

sequentialization reduces the available parallelism.

One solution to these problems is to avoid abstract data types and revert to using
explicit pattern matching. If pattern matching is used, direct access to multiple items
can be achieved and updating multiple items can be accomplished in one operation.
Furthermore, using pattern matching with multiple updates appears to be an indivisible
operation, thus obliterating any concept of ordering, sequentialization, and divisible
updates. Theprogrammer has to decide which technique is most suitable for his

program.

An alternate solution is to devise a set of highreler operators which make it

explicit that there is no ordering, no divisibilitend that state access may be
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parallelised.

4.2. Monads

After much of this research had been undertaken, a new concept from the
theoretical side of functional programming was presenfBde concept is that of
monads and was presented by Wadler in his paper "Comprehending Monads"
[Wadler90]. Monadswere originated by Moggi [Moggi89] to provide a way of
structuring denotational specifications of imperative programming language features
such as state, exceptions, and continuatidiadler has adapted Moggiwork into a
technique for structuring functional programs. This section has an extensive description
of how monads can be specified in functional languages and then shows some examples
of using monads to clarify theiability. Following this is a description of how monads

can be used to build a framework for state manipulation in a functional program.

In his paper Wadler shows how monads may be used for manipulating state,
exception handling, non-determinism, and representing continuations within a
functional languageThe state manipulation functions he describes are for fetching and
assigning values to a state value bound up within a state monad. He shows some simple
example applications of the fetch and assign functidine paper was very effective as
many in the functional programming arena persuaded themselves that the issue of state
manipulation had been solved and that monads wereotihe way to do state
manipulation. Thigs not the case. The discussion on monads will show that monads
are good for structuring functional programs, and particularly good for abstracting this
structure, regardless of the concrete types being passed and returned by fuietions.
there is nothing obligatory in using monads for state, although it could be useful to use

them for programs that have some state manipulation components.

Monads can be used to create an abstract structure within which small changes can
be made to the functionality of a program without fundamental structural chheges
made to the code. Imperative programmers can already do this as imperative languages
have features which allow and encourage such changtsvever functional

programmers often need to rewrite major parts of their code when some small changes
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are introduced.Two common examples are the addition of a single state variable or the

desire to add debugging output.

To demonstrate the power of monads, a simple arithmetic evaluator is examined. It
uses monads to create structure within the program. From this initial example two
further demonstrations will be derived. One will add some error handling to the
program and the other will add limited state manipulation. From these examples it will
be seen how the use of monads in a program can make seemingly complex changes
simple. Theseexamples are used to clarify the practical uses of monatisse
practical uses were unclear to many asd&rs paper dthough impressive, is rather
theoretical. Theseorked examples will provide a basis for the discussion on monads

for state manipulation.

A monad is a triple that consists of a type construdtassed to create the monadic

type, plus the two operations:

unit:: a -~ M a

bind :: M a > (a - Mb - Mb

unit creates a monadic version of a value when passed that value, and constitutes a
monad creating identity functiorbind applies a function to a monadic value; it is the

monadic version of postfix function application.

All monadic functions also have to satisfy 3 laws which are discussed in
[Wadler91]. Thdaws can be summarised as:
unit ;; f =f
f;; unit =f

f 5 (g5; h) (f 5. 9 5. h

The symbol;; is a function that represents monad composition suchf thatg
doesf followed byg, wheref andg are bothmonadic functions. The functign

can be defined as:
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G):@->Mb)->(b->Mc)->(a->Mc)
f;;0=\a->1 etmb=fa

in bind mb g

An example arithmetic evaluator has the grammar:

eXpr::=expr op expr

| number

op:=+|-[*]/

This can be represented with the following data types:

data Expr = Expn Op Expr Expr |
Constant Int

data Op = Add | Sub | Mul | Div

The evaluator takes an expression and evaluateA fiunction to do this could be

written as:

eval :: Expr -> Int
eval (Constantc) =c

eval (Expn op el e2) =do_op op (eval el) (eval e2)

Now consider a version of the evaluator written using monads. As the structure of
the evaluator is bound with monads, the evalimttype reflects this. Instead of it
being of typeExpr - Int, as in hie previous evaluatoit is of type Expr - M Int. The
evaluation of a constant involves taking its value and returning it as a unit mbinad.
evaluation of an expression involves applying monadic expressions in a specific order
using thebind function. Thesecond clause adval can be read as: evaluaté ;
bind vl to the result; evaluate2 ; bind v2 to the result; apply the operator to both
vl andv2 ; and finally end. The operator is applied in the functionop , which also

returns a monadic result type. The code for the monadic evaluator is:
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eval :: Expr -> M Int
eval (Constant ¢) = unit c
eval (Expn op el e2) =evalel ‘bind' (\v1 ->
eval e2 ‘bind' (\v2 ->
do_op op v1 v2 ‘bind*
end))

A monadic version oflo_op can be defined as:

do_op :: Op ->Int->Int-> M Int
do_op Add a b = unit (a+b)
do_op Sub a b = unit (a-b)
do_op Mul a b = unit (a*b)
do_op Div a b = unit (a/b)

where all returned values are monadic.

The first version of the monadic evaluator uses the simplest definitions for the

monad triple. They are:

typeMa=a

unit::a->Ma

unita=a

bind:Ma->(@->Mhb)->Mb
a ‘bind'k=ka

The mondic typeM a is a synonym for the original type, thmit function is the
identity function, andbind applies its second gument to its first. Two support
functions are also defined. They are #&m&l function, which returns the unit monad,

and thedisplay  function, which prints a monadic value:
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end::a->Ma

end = unit

display :: M a -> String

display a = show a

Notice the diference in clarity between the two versionewl . This highlights
one of the drawbacks of monads, namely that clarity of expression is lost and that
expressions are sequentialized by bwed function. Themonadic version of the
evaluator seems unnecessarily complex, but this can be beneficial as will be seen later

To test the operation of the monadic evaluator some test expressions are defined:

text_expr0 = Constant 666

test_exprl = Expn Div (Constant 123) (Constant 7)
test_expr2 = Expn Mul (Constant 123) (Constant 7)
test_expr3 = Expn Sub test_expr2 test_exprl

test_exprd = Expn Div (Constant 1) (Constant 0)

The evaluator can be tested with an expression such as:

(display.eval) test_exprl

The results of the 5 test expressions are displayed in table 4.1.

Expression Result

test_exprO 666

test_exprl 17

test_expr2 861

test_expr3 844

test_exprd Program error: Division by 0

Table 4.1: Results of first monadic evaluator

98



This evaluator fails badly with the expression:

Expn Div (Constant 1) (Constant 0)

because of a division by zero and results in the program terminating in an uncontrolled

manner This is a common fault in many programming languages.

One can see how the problem of dealing with the division by zero can be dealt with

easily when using monads. The traditional approach to solving this problem in

functional programming is to define a new data type for results and then to rewrite all

the functions that use the new data typé].

Whenusing monads, a new monadic data

type is defined and the monadic functiomét andbind are redefinedA change is

also made to the evaluator in tiwide clause of thelo_op function. Thenew type

definition is:

data Result a = Failed String | Success a

type M a = Result a

and the new definitions famit andbind

unit::a->Ma

unit a = Success a

bind:Ma->(@->Mb)->Mb
a ‘ bind' k = case a of
Failed s -> Failed s

Success v -> kv

The divide clause ado_op is changed to:

are:

[17] Inimperative languages a global variable is used to raise an exception which is processed
later This cannot be done in side-effect free functional languages.
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do_op Divab =case b of
0 -> f ail "cant divide by zero"

_ > u nit (a/b)

The display function has to be changed, and a function to return a failure, as used in

do_op , is defined:

display a = case a of
Failed s -> s

Success v -> show v

fail::String -> M a

fail s = Failed s

These changes are all that is required to add a safety mechanism into the monadic
evaluator The test expressions can be re-evaluated to give the results in table 4.2, with

the evaluation of 1/0 being processed in a controlled manner.

Expression Result

test_exprO 666

test_exprl 17

test_expr2 861

test_expr3 844

test_expr4d cant divide by zerg

Table 4.2: Results of second monadic evaluator

One of the reasons monads were devised was to allow the specification of state
manipulation within programs. In the next example, it will be seen how a state monad
can be added to the arithmetic evaluator with the use of a single state object to hold a
count of the number of operations performed by é¢wal function. Again,the

differences to the original monadic evaluator will be presented in order to clarify how
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little has to be changed when using monaflsiew definition for the monadic type is
created, together with definitions fonit andbind . The definitions used are those
described by Wadler in the section on state transfornmef€omprehending Monads".

A state transformer is a function which takes a state object and a value and returns a
tuple with the value and the statdject. Forthe following example, the state object is

a count and the monad type is the state transforifiee type definitions are:

type Transformer a = Count -> (a, Count)

type Count = Int

type M a = Transformer a

and the definitions faunit andbind are:

unit:a->Ma

unita = (\s -> (a,9))

bind::Ma->(@->Mb)->Mb
a ‘ bind' k=\s0 ->let (vl,s1) =as0
inkvlsl

Other changes required are to theplay  function and to thend function. Inthe
two previous examples thend function has been the monadic identity functidrhe
end function is now redefined to be the function that increments the number of

operations undertaken:

101



display :: M a -> Count -> String
display f =\s -> let (v1,s1) =fsin
("Value: " ++ show v1 ++

Operations: " ++ show s1)

end::a->Ma

end = incr_ops
incr ops::a->Ma
incr_ops a = (\s -> (a,s+1))

The test expressions can be re-evaluated using the revised evaluator to give the results
in table 4.3

Expression Result

test_exprO Value: 666 Operations:0
test_exprl Value: 17 Operations:1
test_expr2 Value: 861 Operations:1
test_expr3 Value: 844 Operations:3
test_exprd Program error: Division by 0

Table 4.3: Results of third monadic evaluator

The values presented in table 4.3 show that the state holding object has been added
to the program without the problems of plumbing that are usually associated with
adding state values to functional programs. The results returned have both the required
value and the number of operations, however the problem of division by zero is still
present. Theombination of both state manipulation and error handling could be put
into a monadic version of the arithmetic evaluator if desired. The changes to make to
the original monadic evaluator would also be smalkechniques for doing the

combination of monads can be found[iKing92]. Thestructuring that monads provide
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is powerful and flexible, but the code produced when using monads lacks the lucidity

and elegance of code which does not use them.

4.2.1. Sequencingvith monads

Having seen monads being used for a state value in a small program, this section
reconsiders how state manipulation functions are combined using function composition
(as seen in chapter 3) to form an ordered set of commands, as used in the rule-based

system, and then considers if there is an equivalence with monadic functions.

Observe that there is a relationship between the imperative style of statement
ordering and ordering through state manipulation functions in functional programs.

Given some imperative code such as:

{
one;
two;
three;
}

where one , two , and three represent statements in the program, this can be

expressed in the functional style as:

do [
one,
two,
three

] © S tate - State

Thedo function is a function which allows this state manipulation to be expressed in a
familiar style, namely that of an imperative, block structured language. Eamteqf

two , andthree are of typeState - State, and the functiondo has type[State —

State] - State - State. The functiondo is passed a list dbtate » State functions,
which are applied in the order giveiihis provides the familiar syntax and layout seen

in imperative languagesAlternatively, the list of State — State functions can be
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composed together as:
three - two - one
which produces a composed function [18] of t@tate . State

When using monads, state manipulation functions cannot be composed together as
each of the monadic functions are of ty§iate» M State. Therefore, a function has to
be defined to allovitate -~ M Sate functions to be combinedlhe function defined by
Wadler, which is not solely for state manipulation, is the function. Remembethat it

has type:
G (a - MbH - (b - Mg - a-Mc

where(f ;; g) doesf followed byg .

Note that; has a type that is similar to the normal compose function, which has type:
()=(Ca-"0b -( -2a - ( - b

and wherdg - f) doesf followed byg.

Given the monadic compose functign and some monadic state manipulation
functionsoneM, twoM, andthreeM , where each are of typggtate -~ M Sate, then

one can express a state manipulation as:
oneM ;; twoM ;; threeM

This produces a combined function of typmte - M Sate. Wadler observes that to
access the state from within the state monad, one needs to define a state reader function

which has type:

state_reader :: M State - State

Using the state manipulation monads, one can now expreSidiee. State function

as:

[18] It is not possible to do higher-order function composition in an imperative language as
many statements work by side-effect and not as a functional form.

104



state_reader - (oneM ;; twoM ;; threeM)

This shows that there is a structural equivalence between the composiSteteof.

State functions and the use of monadic state manipulation functions, as both express an
ordering of functions within aState — State framework. Both forms are
interchangeable within a program, and therefore monads model this kind of

computation well.

One of the problems that arose in the state manipulation functions in the functional
OPS5 was that of misunderstanding what constitut8thte — State computation. It
may be assumed that a composed s&tafe —» State functions worked in a specific
order or that the state betweeS8tate —» State functions could be analysed for
meaningful data, even though this was not meant to be the 84w using function
composition, this misunderstanding could not be solved. When using the mgnadic

function, this problem could also arise. As an example consider:
oneM ;; twoM

This reads as doneM then dotwoM. As stated, it is sometimes desirable that no
order is implied in these state manipulation functiomfe abstraction that monads
provide allows a function to be defined to alleviate the problem of implied ordering in

state manipulationsA function could be defined as:
(any_order) :: (a - Mad - a - Ma - a-> Ma
which, when used in the following way:
oneM ‘any_order' twoM

would express that there is no particular order in whitdM andtwoM are combined.
This is not possible with function composition using tRg operator Hereg - f
always means dé followed by g, dthough the functionany_order  could be

defined in such a way to abstract function composition.

The problem of analysing state between function compositions is also alleviated
when using monads because the value returned by each monadic state manipulation

function is of typeM State rather than of typestate This is persuasive enough to
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prevent anyone assuming intermediate states are meant to be analysed.

It is important to remember that monads do not address the issue of accessing and
updating many items in a large state, such as that seen in the functional rule-based
system in this thesis. These techniques are still needed even if the state manipulation

framework is to be built using monads.

4.2.2. Reviewof monads

The important thing to note is that the technique used in this thesis for state

manipulation and that of monads ammplementary
* monads address the structure of a problem with state manipulation

» the technique used in this thesis addresses the issue of accessing and

updating multiple state items

It is also important to note that both techniques can be combined in the same state
manipulation parts of a program. State monads give a framework within which state
can be passed aroundesfively by making it obvious that there is statdonads

would be just as cumbersome with 12 state items.

Wadler has stated that it is tedious to use monads, but it is easy to modify programs
which have them when needing to change the behaviour of that program. This has been
demonstrated in the arithmetic evaluator examplEable 4.4 summarizes &dlers

view of using monads.
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Good points Bad points

More flexible than impure &fcts Lessfficient than impure effect

(7]

Makes obvious where effects occur ~ Makgsaiinfully obvious

Facilitates sequential style May hinder parallelism

Pretty theory Ugly syntax

Table 4.4: \Wadler’s view of monads

4.3. \kctors

In this section an argument is made for having vector manipulation as primitives
within the functional languageA vector is a fixed-sized, same-type structure with fast
access and fixed space usayectors are present as arrays in imperative languages and
have O(1) access time and O(n) space us&y®e of the main reasons for having
vectors in functional languages is that without them many applications will not achieve
the speed required to match imperative programs and, therefore, functional languages
will not be used for general-purpose programming. There is no need for this situation to
persist. Thedefinition of Haskell mentionmonolithic arrays— these structures look
like arrays but there is no guarantee that they have O(1) access or are of a fixed size.
Haskell arrays can be generated lazdgd some of the array elements can have
undefined valuesTherefore, the name vectors is chosen to differentiate these structures

from Haskell arrays.

Most functional systems implement data structures using cells. All compound
types (such as TUPLES and\®K’s in FLIC) can be implemented in this wayt
provides a convenient and easy implementation technique such that allocating and
garbage collecting cells becomes eadieerefore simplifying memory management.
However this simplicity can lead to inkfiencies with certain data structures or
algorithms. Althoughsmall data structures can be pattern matchéettefely, for

example:
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f (ahb,c)
or
g (Algebraicab c)

large data structures are not effective to use if pattern matching is needed. Consider an

example with a 26-tuple, which may look like:

f(abcdefghijklmmnonpaqrstuvwxXy,z)

and is unwieldy Now consider the need to usel000-tuple, where the effort required

to manage these sorts of structures in a large program would be enormous.

If the elements are of the same type, then the data structure could be implemented
as a list.If access is needed to any element, then the item can be accessed using the list

index operatot! , such that:
list!! n

gets then™ element of the list. This process involves O(n) pointer traversals which, if
done continually on the same list, can be very inefficient compared to accessing O(1)

structures.

In many cases, the overhead of building arbitrary length dynamic structures is not
needed. Therds often a case for fixed-sized, same-type data structures within
programs. Theower and flexibility of lists is not needed, it is the efficiency of vectors
that is required. This is pertinent for this thesis as this requirement arises in the
implementation of OPS5Imperative languages have vectors in the form of arrays,
which have O(1) access and O(n) space usage. Considaetakze construct,
which declares a data structure within working memditye followingliteralize

statement:
(literalize Class attrl attr2 attr3)

asks OPS5 for a data structure willass as the class name and 3 attribute pairs.
These data structures are generated once, accessed many times, and nevertgdated.

desirable to have a data structure with a fixed size and O(1) access time available from
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the functional implementation. This thesigaes that vectors are an essential data

structure for functional languages.

Vector primitives are essential in functional languages for efficiency reasons.
Without vector primitives, a functional version of any algorithm that requires O(1)
access to fixed-type data structures can never match the speed of the imperative version
using arrays.In particular a functional OPS5 will always be slower than an imperative

version regardless of any parallelism present.

There is little previous work in the area of lakgherorder functional languages
and vectors. Many LISP systems have equivalent structures, but none occur regularly in
lazy, higherorder functional languages. Recent work by Hartel and Vree analysed some
case studies where vectors were added to their functional landidagel92]. They
observed that lists accessed in order can be as efficient as accessing an array in the index
order 0,1,... Howeveif the order of accessing the array is non-sequential, then arrays
are more dicient. Theydeduce that this restricts the class of problems for which arrays

arebetter suitedthan lists, namely to where the access order of the array is not 0,1,...

Hartel and Vree analyse some 1-dimensional fast fourier transform functions, some

which use lists and others which use arrays. They conclude that:

« efficient implementation of arrays contributes significantly to the

performance of functional languages
» the overhead of array construction can be too large in certain algorithms
» there is a distinction between array construction and array subscription

The last two points raise questions regarding the specification syntax of arrays. In their

system, a Haskell-like notation is used which is clearly expensive at run-time.

Other work on vectors has been associated with parallel functional systems, but the
main thread of this work has been the parallel systems themselves, and the vectors have
been secondaryA notable exception is Jourgetwork on data parallel functional
programming [Jouret91]An example where the vectors are secondary is the work by
Robertson on evaluating some Hope+ test programs on the Flagship machine

[Robertson89]. Robertsomentions that the Flagship instruction-set supports vectors.
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After comparing programs which are written in both Hope+ and the Flagship assembler
he states that the Hope+ versions are much faster to write and mbdifyever he

observes that the assembler programs using vectors have the following benefits:

» they give impressive speed increases. nqueens is 10 times faster and a
“"triangle game"”, devised by Gabriel [Gabriel85], is 30 times faster with

vectors than without vectors.
* there is fast access to data items
» they are more efficient than lists [19].

» the number of graph reductions was reduced, which in turn caused a small

speed-up.

On evaluating a transaction processing benchmark, Robertson concluded that
improvements in ditiency would have been possible if vector primitives had been

available from Hope+.

Much work has been done in the parallel programming world using vectorizing
compilers. Fortrarcompilers have been used in the numerical processing world and
vector based hardware is often used to run vectorized Fortran pro¢2@msThis
work seems to have been ignored in the functional world, perhaps because few
researchers currently use functional programming systems for real work on parallel
machines. Anexception is Boyle and Harmer who use a functional language for
vectorizing an application on a CrgBoyle92]. In "Structured Parallel Functional

Programming” [Darlington91yarious points about vectors are presented:

* the Intel i860 is a parallel vector procesdmit there is no suggestion that
vectors be a built-in type which can be operated on in parallel by vector

primitives.

[19] Thiswas especially so when parallelism occurred, as the indivisible structure of vectors
aided the locality of computatiorLinked lists split across many machines can degrade perfor
mance significantly.

[20] Examplesuppliers of vectorizing compilers and hardware are: Alliant, IBM, Fujitsu,
NEC, and other smaller niche manufacturers.
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» there is some recognition that vectors are import&ume functions are
presented using arrays and it is stated that the CM2 computer has built-in
operations for arraysHowever these ideas are not elaborated into the

functional programming arena.

e array operators are introducedhese are defined for moving data around
the array of processorsHowever array operators are not vectors as |

propose, but are arrays of SIMD processors.

However because no amount of parallelism can attain the speed-up lost by not having
vectors, it is essential that vectors be included as a primitive within a functional

language.

4.3.1. AVector Data Type

Having considered why vectors are essential for functional languages, this section
proposes a data type for these vectors and the next section proposes some primitive

functions for vector manipulation.
The vectors proposed have type:
Vector «a

wherea is the type of the elements in the vectbinlike Haskell arrays, the number of
elements in the vector is not part of the data type. For vectors, the structure required has

the following attributes:
i) itis of a fixed size, which is determined at run time
i) thecontents are created once, they are never updated
ii) fastaccess is guaranteed to all elements, namely O(1) access

This differs from arrays in imperative languages which have updatable store and allow

the contents to be changed.

There are some alternatives to having vectors built in as primitives, but each one

presents problems. The alternatives are:

111



a) Memoizedfunctions. Theseare not so suitable because nothing is known
about the structure of the memoised function at run time, this is up to the
functional language implementatiofthere are no guarantees regarding the

access time or space usage.

b) Mectored lists. The Miranda system will automatically and silently convert
lists of a known size at compile time into a vectohis is a useful compile
time enhancement, but if the size is unknown at compile time then this

feature does not work.

c) Tuples. Thisis ineffective as one would need a new set of definitions for

each size of a vectdfor example:

type Vector_n = (eleml, elem2, ..., elemn)

getn1 ...
getni (eleml, elem2, ..., elemi, ..., elemn) = elemi
getn j (eleml, elem2, ..., elemj, ..., elemn) = elemj
getnn ...

Therefore there would b®(n?) access functionsThese functions have to
be written for all instances of i, from 0 to n. Furthermore, for each size of

vector the same set of functions must be written.

4.3.2. Primitivesfor Vectors

This section describes the proposed set of primitives for manipulegoigrs The
primitives have been designed to present a simple, yet flexible, interface to vectors.
They should be easy to program with and easy to implement. The primitive functions

have type:
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vectorBuild  :: [a] -> Vector a
vectorGetElem :: Vector a->Int-> a

vectorSize :: Vector a -> Int

A vector is created using\eectorBuild primitive. Theuser does not supply the
size of the vectoits size is determined from the size of the input list. The size is not an
argument of the type constructor but is accessible through a primitive, namely
vectorSize . To access an element of a vegtthre vectorGetElem  primitive is

used.

The issue of changing a cell in a vector is addressed by having a vector copy

primitive, which has the type:
vectorChange :: Int -> a -> Vector a -> Vector a

This creates a copy of the vector with one cell changdds technique was chosen

because:

(i) it can be executed quickly at run-time by doing a block copy plus an in-

place update of one cell.

(i) it saves converting the vector to a list, changing elements, and then

revectorizing

(i) it makes it possible to do the update of the one cell without doing a copy

when suitable compilation and run-time techniques become available

Consider some simple uses of the vector primitives by worked examples. First, a

vector can be created:
v = vectorBuild ['h’, e, I, I, '0"] :: Vector Char

which is a vector of characters. As stated, access to individual elements of the vector

can be achieved with:
vectorGetElem v 1 =>'e’ :: Char

which returns the 1 element of the vectorThe size of the vector can be requested
with:
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vectorSize v =>5:Int

which returns the number of elements in the veclar make a copy of a vector with

one element changed, tlvectorChange primitive is used which creates a new
vector The issues relating to in-place update are current research in the functional
programming world and, although they are not addressed directly by these primitives,

they may be addressed in the future. An example of creating a new vector is:

vectorChange 0 'H’v  :: Vector Char

which creates a new vector whos8 8lement is the character 'H'Multiple new
vectors with multiple updated cells can be created by composamrChange

functions. Forexample:
(vectorChange 0 'H’ . vectorChange 1 'E’ . vectorChange 2'L’) v :: Vector Char
creates a vector with the characters 'H’, 'E’, 'L, ’I', and ‘0.

As stated, the primitives need to be simple yet flexibleerefore, it is necessary to
create useful functions using the primitives, such as a vector to list fundts does

not need to be a primitive itself and can be written as:

vecTolist :: Vector a -> [a]

vecToList v = map (vectorGetElem v) [0..(vectorSize v - 1)]

Another well known vector manipulation function is that of selecting part of a vector to

generate a sub-vectorhis can easily be expressed as:
subVec :: Int -> Int -> Vector a -> Vector a

subVec min max v = vectorBuild (map (vectorGetElem v) [min..max])

Once a functional language has primitive vectors, it is possible to have the run-time
efficiencies required by an application such as OPS5. Again, consider the scenario in

OPS5 where a working memory element is declared as:
(literalize Class attrl attr2 attr3)

This could be represented as a vector of length 4, each element being some pre-defined

OPS5 type, so that a working memory element could have type:
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Vector OPS5cell

For this scenario, imagine that there also exists specific working memory elements

within working memory expressed as:
(Class "attrl 5 "attr3 10)
This can be encoded using the vector primitives:

wme = vectorBuild [WMEstr "Class",
WMEnum 5,
WMEnil,

WMEnum 10] :: Vector OPSb5cell
Furthermore, if there were a production condition such as:
(Class attrl = 5)

this could be converted into a matching function that uses veddocede segment to
do this could be:

match_prod_clause wme = vectorGetElem wme 0 == WMEstr "Class" &&

vectorGetElem wme 1 == WMEnum 5

By using vectors, each match would execute more rapidly as each call of
vectorGetElem  has O(1) time complexityas gpposed to O(n) when using lists.

This would speed up a functional implementation of OPS5 dramatically.

4.3.3. Otheruses of vectors

Vectors can be used for other purposes in functional programs WEraccess is
important. Oneobvious example is hash tableraditionally hash tables are used in
order to speed up access togtardata spaces by using both a table of values and a
hashing function that converts a value into a hash table indash tables are generally
faster to access than lists or trees, but in a functional programming system without
vectors this may not be the casea access the™ element of a hash table in a language
without vectors would require the use of some other data type together with that data

type’s accessor functions. For example, a hash table built using lists would ré&fojre
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time to access the" bucket. Wherusing vectors this can be reducedd).

When updating a hash table it is usual for one bucket to be updated at & hiene.
vectorChange primitive is ideal for the situation in which a new copy of the vector
is created with one item updated.bucket can be represented using a list of vallies.
the Rete pattern matcher the memory nodes of the Rete network use lists to store
working memory elements that have matched nodes in the net@anta [Gupta86]
observed that by replacing the list by a hash table the Rete algorithm became more
efficient. Without the ability to implement efficient hash tables in a functional language

the speed of an imperative rule-based system could not be matched.

There are undoubtedly many other situations where vectors would be essential for

an algorithm. The quicker they appear in functional languages the better.

4.4. Graphs

It has been found that there is little experience in using functional languages to
solve a large set of well known algorithmBhere are many books, journals, and papers
on algorithms and data structures which express solutions to problems in an imperative
style ratherthan a declarative style (for example Horowitz and Sahni [Horowitz76] ).
As a consequence of this, and because most functional programming research is either
theoretical or focussed on abstract machine implementation, there are drawbacks for

functional programming as a whole. They are that:
a) theres little well known experience to draw on
b) thereare few well known solutions to problems
c) thereare large gaps in the whole solution space

Although there are numeroudooks on the subject of graphs and their
implementation in imperative languages, few documented solutions for building and
manipulating real graphs in functional languages were found during this resé&arsh.
is a prime example of the stated drawbadkstially, it ssemed impossible to create a
real cyclic graph in a lazyhigherorder functional language. Once this problem was

solved and a cyclic graph was created, it then seemed impossible to visit this cyclic
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structure in a controlled manner because functions that visited the cyclic structure
executed infinitely when a cycle was reachétie solution to both of these problems
highlighted that:

i) a new technique had been discovered which had not been documented

before

i) this technique required an interpretation of the standard definition which

was more abstract than that stated in Horowitz & Sahni.

The differences in the approach to programming graphs are presented in the following
sections. Fronthis description it is possible to see why some algorithms, such as graph

building, are relatively difficult in functional languages.

Traditionally, functional programmers build and manipuléisés of objects and
often write polymorphic functions which perform generic operations on lists that are
independent of the type of objects stored within them. Lists are simple data structures
and arbitrary lists can be readily described using algebraic data types. Graphs, however
are more complex structures and, in their most general form, may contain choes.
static construction of a graph is relatively straightforward, but it is the construction of
arbitrary cyclic graphs "on the fly" that is more problematic. Figure 4.1 is a directed,

cyclic graph which has a cycle between nodésd 'C’.

Figure 4.1: A small directed, cyclic graph

It is possible to represent a graph either by some form of adjacency nistri,

function which will return a list of the successors of a given node, or by a form of
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virtual heap using a list of nodesdowever none of these representations actually
produce a real graph (that is, a truly cyclic data structure which has direct references
between nodes along the arcd)he ability to build a truly cyclic data structure is
important for reasons of fefiency If a graph data structure has direct reference from
node to node, the arcs can simply be followed to reach another node. By contrast, if a
non-cyclic representation of the graph is used, then there is an interpretive overhead
every time the program follows an arc. For many applications, truly cyclic structures

are more concise, more expressive, and more elegant than representations of graphs.

Traditional functional programming solutions to the problem of creating graph data
structures has involved the construction ofepresentationof a graph rather than

building a truly cyclic structure. For example:

* agraph may be represented by a list of nodes and a separate list of arcs,

thus circumventing the problem of physically connecting arcs to nodes.

* agraph may be represented as a function which maps from a given node to

a list of the successors of that node

* agraph may be represented agréual heap, which uses a list as the heap,
with list indexing being used to access individual nodes within the heap
(successor nodes are identified by their indéil)e termvirtual heap is
used because the location of each a@efthe list is used as a virtual address

within the heap.

None of the above methods have arcs with direct access to nodes in the graph, all are
subject to time and/or space overheads, and none are as elegant as a truly cyclic

structure [21].

It is possible to create real cyclic graphs in a functional language by giving a name

to each node and then referencing the node names explicitly from other Addes.

[21] A vector representation has the potential to be the nfagest. If speed is the main re-
quirement then it may be preferable to use a vector rather than a truly cyclic structhie.case
each graph node is an element of the vector and references to nodes in the graph are represented as
indexes into the vectorAccess to successor nodes can be achieved with O(1) lookup. At present,
very few lazy functional languages currently provide vectors with guaranteed fast access.
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cyclic graph of figure 4.1 can be represented as:

data Graph a = Node a [Graph a]

nodeA, nodeB, nodeC, nodeD :: Graph Char
nodeA = Node 'A’ [nodeC, nodeB]

nodeB = Node 'B’ [nodeD]

nodeC = Node 'C’ [nodeA, nodeD]

nodeD = Node 'D’ []

graph = nodeA

An alternate approach is to explicitly place the list indexing opetatomto a virtual
heap representation in order to create a cyclic graph strudibeearcs of the graph are
represented by direct references to nodes. The cyclic graph of figure 4.1 can now be

represented as:

data Grapha= Node a [Graph a]

nodes :: [Graph [Char]]

nodes = [ Node 'A’ [nodes !! 2, nodes !! 1],
Node 'B’ [nodes !! 3],
Node 'C’ [nodes !! 0, nodes !! 3],
Node 'D’ []
]

graph = nodes !! 0

Both of these representations build static graphs. If it is required to construct an
arbitrary graphical structure to be specified at run-time by a textual description, then
the construction of a truly cyclic structure is by no means as obvikhes first solution

relies on the fact that one can name the nodes of the graph and refer directly to the
names in the source codenfortunately the static names that are bound to data objects

at compile time are no longer available at run-time and it is certainly not possible to

introduce new names to label new graph nodes as they are encouhtevesizer the
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method of representing graphs using the virtual heap can be extended to be more

general.

By representing a graph as an adjacency list and then converting this to a virtual
heap, it is possible to create a truly cyclic data structure which has arcs with direct
access to nodes of the graph and which can be built "on theTtys.approach makes
heavy use of laziness (specifically lazy constructors) to achieve the desire@®gtial.

the adjacency list and virtual heap are intermediate tools for constructing the real graph.

The arcs of the resulting graph ad@ect references to the nodes, and the resulting

data structure will be that shown in figure 4.2.

(nodes :: [Graph Char]
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Figure 4.2: Representing a simple graph using embedded virtual addressing

Initially it appears that the space overhead of the top-levehdéides and the time
overhead of thé! operator prevent a cyclic graph from being constructéowever,

as the!! operator is embedded in the representation of the graph, when an arc is
followed, the index expression is re-written by the functional run-time system to point
directly at the relevant element of the ligEigure 4.3shows the re-written data
structure after the two arcs of the initial node have been viditelligure 4.3, there are
fewer references tnodes than there are in Figure 4.2Vhenall of the references to
nodes have been evaluated, then the list structure is no longer required and is garbage

collected. Atthis point only the required data items are left, arranged as a graph with
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nodes :: [Gaph Char]
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Figure 4.3: The list structure turning into a cyclic graph

direct access to nodes along the arfsis is illustrated in Figure 4.4, in which the final
data structure compares favourably with the original graph of Figure 4.1. The space
overhead of the enclosing list has been eliminated, and future traversals of the graph

are efficient in time because the pointers representing the arcs are followed directly.

When graphs are constructed in imperative programs, it is common to include with
each node a bit that is set when the node is visitdiks bit is used by graph traversal
functions in order to ensure that nodes are not visited more than once; this avoids

infinite loops due to cyclic pointers in the graph.

However the functional paradigm prevents the in-place update of a visited dit.
overcome this problem each node of the graph is augmented with a uniqW&heg.
visiting the graph, a list of tags is constructed to record the nodes that have already been
visited. Priorto visiting a node, the list of tags is checked to see if it already contains
the tag of the node to be visited; if it does, then the node is not revisitédrtunately,
the list-of-tags technique introduces a searching overhead ré) @fie-complexity
wheren is the number of nodes to be visitethis is expensive in comparison to the

constant overhead of checking a single Ibibwever more efficient structures than a
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(nmygraph!!0) :: Gaph [Char]

Node | " A" ’

T

Figure 4.4: The adjacency list turned into a cyclic graph

list could be used if required.

The resulting graph structure generated by the functional program is immutable and
this provides some advantages over mutable graphs generated using imperative

techniques. Thadvantages are:

i) thesame copy of the graph can be traversed multiple times without danger

of unwelcome interaction
i) thereis no need to unmark the "visited" bits
iii) a single graph can be traversed by concurrent tasks

To facilitate use of these functional graphs, an abstract data type was designed and
used in various case studieShe graphs can have both nodes and arcs labelled with
separate types. This allows the implementation of doubly linked lists, rings, and solving
the shortest path problem using a cyclic graptull description of the implementation

details can be found in [Clayman93].

By taking a well known data structure and creating a functional form, and by taking

its associated algorithms and reinterpreting the definitions of those algorithms in a more
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declarative wayit is possible to implement the algorithms. The creation of the cyclic
graph data structure was a non-trivial exercise, and a similar situation is likely to occur
again for another data structure and its algorithihs issues such as this which hinder

the general acceptibility of functional programming. Many programmers want to take
well known data structures and algorithms and implement them directly in the language
they know Although this is not always possible with functional languages, the benefit
of finding an implementation technique can bring many unforeseen advanidges.
functional programming world needs a book on data structures, just as the imperative

programming world has had for many years.

4.5. Interaction With The Operating System

This section discusses the two main mechanisms which enable a program to interact

with the operating system.

4.5.1. Inputand Output

As seen in chapter 3, input and output to functional programs is not as easy as in
imperative programs. This is because the imperative model does input and output by
side-efect, allowing both to occur anywhere in a progrdins not clear to imperative

programmers howo do input and output if these side-effect procedures are removed.

The Miranda system and other functional interpreters provide a very simple model
for doing input and output. The technique presented in Miranda allows a function of
type [Char] -> [Char] to be applied to the input of the program rather than applying
the function to some arbitrary string. The value returned by that function becomes the
output of the programThis stream based model of 1/0 does work, but it is too simple

to provide the flexibility required in a large application.

At the start of this research, the literature search and discussions with other
researchers in the field of functional programming revealed little in the way of concrete
experience for doing input and output in a large, functional application. There were

some suggestions for how it may be done and of particular note is the work by
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Thompson [Thompson86]Thompson defines control structures, in which the operators
allow the flow of control to be reflected in the syntactic form of a functidowever,

even in simple examples there are problems with the large number of types and support
functions required. In a lge application, such as a rule-based system, having such a

large number of types and support functions would be problematic.

The approach chosen in this thesis has both input and output passed around the
program as part of the state object. Both the input and output have to be plumbed into
the program in order for there to be access to both streams anywhere in the program.
As seen in chapter 3, having both input and output held in the state object can prevent
input and output from behaving in a way the user would expect. This occurs when the
state manipulation functions for I/O are not written with the operational behaviour of
input and output in mind. The result is that all output is held up until the end of the
program execution, then it all appears. This is perturbing, since the more usual
behaviour is for output to appear graduallhis turns out to be a run-time issue rather
than a semantic one, as the output is correct. By rewriting the state I/O functions, again

seen in chapter 3, this odd run-time behaviour can be eliminated.

This work has highlighted the need for 1/O control structures for use within
functional applications. This is an important area of research for functional
programming because input and output can be accessed anywhere in a program and
because they have a run-time temporal behaviour as well as a semanticTatue.
temporal behaviour cannot be expressed as part of the program and, as discovered, can

be difficult to determine, especially in a large application.

A newer model for manipulating input and output to functional programs is the
continuation model. Thismodel is used in the Haskell programming languaglee
Haskell 1/0 system allows for interactions with the environment provided for the
program by the functional run-time system. In this environment, a program has a
special type whereby the topmost function produces a lisRexfuest . These
requestsfor input and output are taken by the environment and, after execution, each
one returns &kesponse . The Haskell I/O continuation system is layered on top of a

stream based model of 1/0, and both models can be mixed within the same program.
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Unfortunately the continuation model does not address the issue of building 1/0 control
structures for use within a program althouglallows the top level interactions to the

run-time environment to be expressed with clarity and flexibility.

To address the need for 1/0O control structures, Dwelly suggests the dsdagfue
combinators in his paper "Functions and Dynamic Interface®welly89]. He
observes that their use is not well known, but then goes on to show how they can be
used for systems with graphical interfaces. An area for further research would be to
write a range of |lare applications using the dialogue combinators and to evaluate how

they perform.

There is still much work to do in addressing input and output in functional
programs. Asn other areas, one can expect that the functional model will eventually be
as expressive as the imperative mod@lrther work can be directed at building control
structures for large application§ome work was undertaken by Runciman to address
the problem of input and output being held up. [Runciman89],a gecial form of
strictness analysis combined with some special transformation rules for a compiler are
suggested. Howeveuntil these features are available in every functional language

compiler the run-time behaviour problems will persist.

4.5.2. Envionment Interaction

The functional run-time system provides a mechanism which enables the functional
program to interact with the operating system environment, such as doing input and
output. InHaskell this mechanism is tli®equest / Response system, where each
Request to the Haskell run-time system has a corresponditegponse . Full
details of theRequest / Response system can be found in the Haskell report
[Hudak88]. Theadvantage of this mechanism is that non-determinism is confined to the
operating system and referential transparency is maintained within the Haskell program.
The disadvantage is that all interactions to the operating system must come through the
main function, thus limiting these interactions to one place. The prograweraction
with the Haskell run-time system and the operating system environment can be viewed

in Figure 4.5.
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Figure 4.5 The interaction of a Haskell program and the operating system

Currently the number of interactions with the operating system is very sifdle
Lazy ML system [Augustsson92] provides a few more interactions than Haskell, but
still not an extensive number)lThose Haskell provides deal with file access and 1/0
stream access. The small number of operating system interactions limits the use of
functional programming to either simple test programs or applications with a very
limited form of input and outpuf22]. More complex applications cannot be written as

there is no way to harness the operating system calls required.

As an example, consider tHecho request. Itis a request to the functional
language run-time system to turn on or to tufmreohoing on the standard input stream
to the program.The run-time system will make a call to the operating system to initiate
this request, and finally a response is returned to the prograenproblem in this case
Is that the facility to turn on or to turnfaéchoing is a single option in one operating
system call. The other options of this operating system call are unavailable to the
functional programmereven though the programmer may deem them esseritia.
solution to this problem is for the functional language to provide an interface to each

system call for the functional programmer to use at will [23].

[22] A former coBoL programmer who is now a Haskell programmenforms me that
Haskell provides more operating system interactions clo@oL.

[23] This is a problem of having a limited manifesto, i.e. the design of, lamctional
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The lack of operating system interactions is a major obstacle for functional
programming and hinders its general use. Until this issue has been addressed and
resolved, functional programming is likely to remain in the realms of either a teaching
language or a prototyping language. This is unfortunate because the compilers and run-
time systems of functional languages are now of commercial quadylarge groups

of programmers are not getting access to these functional programming environments.

4.6. Measuement

The techniques and tools available for observing and measuring the behaviour of
functional programs are thoroughly inadequa&ven that one cannot measure the
execution behaviour of a functional progranieefively, it is impossible to make
comparisons between programs, verify that algorithms display the expected behaviour

or observe degenerate behaviour.

At present there are no tools to help a programmer find a problem function and then
to rewrite the function to make the program fas#&rsimple re-write of a function can
make all the difference to a slow progravith well-defined measurement techniques,
one can find these problem functions and also find where laziness has an effect on the
program. VWith this knowledge, a better understanding of how functional programs
actually work can be obtained, which in turn helps the programmer to write better
programs. Atpresent the measurement tools available to the functional programmer

are:
a) countinghe number of graph reductions performed
b) countingthe number of cells used

These measurements are neither detailed enough nor do they express anything about the
behaviour of the programFurthermore, the information they provide is different in

each functional run-time system.

languages rather than the design of lafunctional programmingnvironments
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Three diferent simple test programs were executed on two different abstract
machines, namely Miranda and Geoferorder to gather figures for the number of graph

reductions performed and cells used. The programs are:
1. fac , apogram to generate one factorial:

facn=1,n==0

= n * f ac (n-1), otherwise

testn=facn

2. facs , apogram to generate a list of factorials:

facs=1:fact1l
where

fact n = n* facs !! (n-1) : fact (n+1)

test n = take n facs

3. sfib , apogram that generates the fibonacci of a number together with the number

of calls to sfib and the number of recursions from the original call to sfib:

empty:: (Int,Int)

empty = (0,0)

test n = sfib (n,empty)

sfib::(Int,(Int,Int)) -> (Int,(Int,Int))
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sfib (0,(fc,pl)) = (1, (fc+1, pl+1))
sfib (1,(fc,pl)) = (1, (fc+1, pl+1))
sfib (n,(fc,pl)) = (fibm1+fibm2,
(1+fcml+fem2, max (pim1+1) (plm2+1) ))
where
(fibm1,(fcm1,plm1)) = sfib (n-1, (fc, pl))
(fibm2,(fcm2,pIm2)) = sfib (n-2, (fc, pl))

Table 4.5 displays the number of graph reductions and table 4.6 displays the heap cells

used for the expressiaest n

program fac facs sfib

n 10 15 10 15 10 15

mira 124 | 184 | 223 | 363| 11552 128590
gofer 45 | 63 ne | 127 | 2120 23672

Table 4.5: Graph reductions for expressidast n

The table for the number of cells used is:

program fac facs sfib

n 10 15 10 15 10 15

mira 241 | 344 | 321 | 592| 12774 141836
gofer 73 | 109 | 250 | 317| 5846 6516

Table 4.6: Heap cells used for expressitast n

For the programfac , facs , andsfib , the values returned by the functions are

the same on both the Miranda and the Gofer run-time system, but the number of graph
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reductions and the number of cells used for each machineféesedif Dueto the
different kinds of reductions used within each abstract machine, the grain size of a
reduction is different in all of the abstract machines. These figures, which are easy for

the run-time system implementor to produce, are of little benefit to the programmer.

Given that these measurement techniques and tools are inadequate, it is not possible
to make any decisions as to the quality of a progréhis is one of the reasons why the
development of the functional OPS5 was limitedithout tools to compare its
performance with exisiting versions of OPS5, it is impossible to state any concrete facts
regarding its behaviour; for example, one cannot determine if the functional version of
the matcher is faster than the imperative versida.overcome this problem, some

measurement tools and techniques were designed and implemented for this PhD.

Examples of strange behaviour in functional programs are:

i) Wadler points out that some functions which are expected @(i¢ may

be less than this due to lazy evaluation.

i) Simon Peyton-Jones describes functions in his SASL paper which seem to
be cyclic functions.He observes that when these functions are written
incorrectly they do not become cyclic and their space usage increases
dramatically [Peyton-Jones85Hughes makes a similar point in his paper
"Why Functional Programming Matters" [Hughes89].

With a measurement tool the strange behaviour of both (i) and (ii) can be verified.

The measurement tools and techniques will be fully explained in Chapter 5, where
the design and implementation of a profiling tool for Jaagherorder functional

languages is presented.

4.7. Debugging

Another problem facing functional programmers is the lackdebugging tools.
Debugging functional programs is much moreficliit than imperative programs
because referential transparency has to be maintairedhermore, as there are no

side-efects and no ordering of statements, it is impossible to insert extrapeous
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statements into a functional progradll output must be produced by the main function

of the program. For any debugging output to appéanust be returned as an extra
value from the function that needs to be debugged in additialh tbe functions up to

the main function. The design and programming effort required to make these changes
is non-trivial, especially in a large application. Most of this effort is wasted because the
extra debugging code is thrown awashen the debugging is finished. If monads were
used inevery function, then only the monadic type and the definitionsufot and

bind need to be changedHowever the resulting code, particularly in a dar

application, would be inelegant.

During the development of the functional OPS5, no debugging tools for functional
languages were discovered. In an attempt to address this issue, a simple debugging
utility was designed by myself and Parrott as an extension to the FLIC language
[Parrott90]. Thisextension is a function which prints some debug output by sidetef
to a special output stream which is invisible to the program yet behaves in a
referentially transparent way within the prograithe function, calledliebug , takes as
arguments a printing function and a value. The printing function is applied to the value
and the returned string is sent to the special output strddma.value returned by
debug itself is the value given; therefodebug behaves like the identity function

within a program.A definition for debug could be:

debug :: (a->[Char]) ->a->a

debug show fna=a

The expressioshow_fna was to be automatically inititiated by the run-time system.

This technique was discovered to have serious drawbé&aist, the value passed to
thedebug function may not have been evaluated at the teteug was called.To
produce a result on the special output stream would require fully evaluating this value in
order to apply the printing function to itHowever the debug function was meant to
be invisible to the rest of the program and to behave like the identity fundfion.
debug were to evaluate arbitary expressions, then the behaviour of the whole program
might change. It was found that tdebug function was strict in both arguments and,

therefore, did not behave as desired. Second, the nature of lazy evaluation means that
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the output produced by a program usdebug would not necessarily be in the order
that the programmer expects to seedtven that the debug function was meant to be an
aid to the programmethis behaviour is not beneficial. The special debugging function

was rejected as a debugging tool.

Recent attempts to define what constitutes debugging of a functional program have
been addressed in "An Algorithmic and Semantic Approach to Debugging" by Hall et.
al [Hall90]. The design and implementation of tools for doing debugging of functional
programs using the algorithmic approach to debugging has been undertaken by Nilsson
and Fritzson[Nilsson92]. Althoughalgorithmic debugging is only one approach to
solving the problem of debugging functional programs, the fact that someone is now

addressing this issue is promising for all functional programmers.
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Chapter 5

5. Profiling

One of the original aims of this thesis was to compare the performance of an
existing rule-based system with a functional version, but this is impractical due to the
present lack of measurement tools. Chapters 3 and 4 highlight that one of the major
problems in developing applications in lazynctional languages is the lack of tools
which aid the programmer in debugging and analysing the run-time behaviour of the
application. Thischapter addresses the issue of analysing the run-time behaviour by

describing the design and implementation of a profiler for, famgtional languages.

The major issue when profiling programs is to enable the programmer to use the
resulting information to determine whether parts of the program consume a
disproportionate amount of resources. For many real-world applications it is not just
desirable but essential for a programmer to be able to monitor and subsequently alter the
time and space behaviour of the prograwiithout profiling information, it may be

impossible to rectify a program which exhibits degenerate behaviour.

Lazy, higherorder functional languages provide a programming framework which
is far removed from the details of instructing computer hardwaids high-level
framework enables a programmer to express problem solutions in a way that closely
resembles the problem specifications and which may exploit new software-engineering
techniqgues [Hughes89]Unfortunately this high level of abstraction means that the
executable form of a functional program is unrepresentative of the original source code.

This poses two problems:

1. Thesource code is an unreliable indicator of a progsarentual run-time

behaviour It is therefore dificult for a programmer to use static analysis
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techniques to reason about the time and space complexity of a functional
program. Thisdirectly contrasts with imperative languages, in which the
source code is a key factor in estimating a progsamhaviour prior to

execution.

2. It may be difficult for a programmer to interpret information on the run-
time behaviour in order to reason about sections of the program which may

need to be modified.
Most profilers address the second of these two problems.

In order to address the issues that have been highlighted in this thesis concerning
the lack of measurement tools for functional languages, a profiler is proposed that is
designed primarily for use by application programmers rather than functional language
implementors. Thiprofiler provides information that is related to the way the program
is written rather than to how it is evaluated; this enables programmers to relate results
back to the source program easilyhe results directly reflect tHexical scoping of the
source program, thus overcoming problems caused by compile-time program
transformation, lazy evaluation, and higher order functidresll this techniquéexical

profiling.

Using the lexical profiling technique,lexical profiler was constructed, by Parrott
and myself, to monitor programs as they run and to build detailed trace information for
post-mortem analysis and debuggii@ayman91], [Clayman92]This lexical profiler
uses a mechanism which accurately profiles the call-count, time, and heap space used by
lazy, higherorder functional programs. The results are similar in nature to, but more

accurate than, theNIX [24] imperative language profilgprof [Graham82].

This chapter presents four different methods of profiling functional programs,
followed by a discussion on two styles of profiling — inheritance and statislibain
five existing profilers are reviewed in relation to how they each affected the design
decisions for the lexical profileNMarious design issues of lexical profiling are presented

followed by a discussion on the actual implementation techniques that were used to

[24] UNIX is a trademark of Bell Laboratories.
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construct the lexical profilerFinally, there is an analysis of the working lexical profiler

with profiling data obtained from worked examples.

5.1. Different Kinds Of Profiling

There are four diérent kinds of profiling that can be undertaken in functional

programming environments:

i) Program profiling. Measurements relate to the progmsiehaviour and
are reported with respect to functions in the source code. Tlhegicsl

profiling .

i) Expression/Closue profiling. This is similar to the earlier cost
experiment at UCL [Parrott90] and the old Glasgow Cost Centres
[Sansom92]. Irexpression/closure profiling, measurements are based on
how the program executes and the results are reported when an expression

is evaluated. This is dynamic profiling.

iii) Abstract machine profiling. This measures how effective an abstract
machine is by examining the overheads of function calls, function returns,

heap management, garbage collection, etc [Hammond91la].

iv) Task profiling. This is particularly relevant in parallel environments where
programs are divided into tasks which execute on separate machmes.

number and size of the tasks are reported [Parrott92].

In [Runciman90],Runciman and Wakeling provide a good overview of the problems
associated with profiling functional programs. They make several suggestions
regarding the sorts of information that would be useful to a programmer and provide a
more detailed analysis of how such information might be colledtater in the chapter
there is a summary of the issues listed in [Runciman90] faow the lexical profiler

addresses these issues.

The research in this thesis has indicated that it is not clear to everyone in the field of
functional programming that these different kinds of profiling can be usefully measured

separately Many people in functional programming who are doing measurement are
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implementors interested in low level detailBhey wish to measunehen work is done

and at what point an expression is evaluated and to observe féoe tbat lazy
evaluation has had on a program. This gives very different results from lexical
profiling, which is dissociated frorwhen work happens. Lexical profiling measures
whether work happens and how much happens, with results being presented with
respect to the source code. Thdat#nce is mainly in the way in which lazy evaluation
has an observable effect on the program.

The following examples show the f@ifence in the results between dynamic and

lexical profiling. Consider thdollowing programs:

Program 1

f = (gx)/18

where x = expression

gx=(hx*1 0
hx=x+32

Program 2

f = (g10)/18
gy=(thx*y

where x = expression

hx=x+32

Program 3

f = (gx)/18

where x = expression

gx=x%*(h1 0

hy=y+32
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Although these three programs are similtuey differ where the expression is
declared and evaluatedable 5.1 shows the number of primitive operations counted for
the functions in each program using both lexical profiling and dynamic profilihg.
term p, equates to the number of primitive operations required to evatuat€éhe
results of the lexical profiler always show the costxobeing associated with the
function in whichx is lexically contained.The results of the dynamic profiler highlight
the presence and effect of laziness, and the costi®fssociated with the function that

required the value of .

Number of primitive operations
Function in which x is
Program lexical profile dynamic profile
declared reduced f g g h
1 f h 1+ p, 1 1 1+ p,
g h 1 1+ py 1 1+ py
3 f g 1+ p, 1 1+ py 1

px is the number of primitive operations

Table 5.1: How the cost of primitives is attributed by lexical and dynamic profiling

Although most profilers do not count primitive operations as a statistic, these examples
highlight the differences in the two styleBloreover they indicate that in order to fully
appreciate how a program is evaluatingth profilers can be used together to provide a

comprehensive view.

Consider another example in which dynamic profiling may giverdify results but

lexical profiling will give a consistent result. In the program:
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fo=(@9x+((hx

where x = expression
gx=hx*10
hx=x+ 32

the evaluation order of the primitive is important. If the evaluation order #fis left

to right, then a dynamic profiler will credg with the evaluation ok, but if the
evaluation order of is right to left, therh will be credited with the evaluation af.

In a parallel system where the load balance and evaluation order are non-deterministic,
a dynamic profiler may return different results on different occasions. Lexical profilers
do not suffer from either of these problems as results are associated with lexical scope.

This provides a static relationship between the source code and the run-time results.

A further advantage of lexical profiling is that because the results are dependent on
the source code, it is possible to change the underlying evaluation mechanism and
ALWAYS have meaningful results. As there is not a strong relationship between the
source code of a functional program and its evaluation mechanism, one could, for
example, replace a graph reducer with eanT Rewriting SystemGlauert90]. The
results of the lexical profiler would still be associated with the source @odgnamic
profiler for a Brm Rewriting System may give very different results and may not fit the
model of evaluation that the programmer hd$erefore, with lexical profiling the
programmer getmeaningful profiling data for his program regardless of the evaluation
mechanism, but data from dynamic profiling is always dependent on the evaluation

mechanism.

5.2. Stylesof Profiling

This section describes two styles of profilirggatistical and inheritance, which
provide complementary views of the execution of the progr@&mtechnique for
profiling lazy higherorder functional programs is presented which uses both of these
profiling styles. This technique is based on the lexical structure of the source code and

therefore produces information that is meaningful to a programmer.
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To be fully (100%) accurate a profiler needs to reconstruct the entire call-path for all
function calls; howeverin practice this is too costlyTherefore, the run-time log is
restricted to information concerning the calls made by a function to its immediate
children [Graham82]Traditionally this causes problems because profilers are forced to
estimate the execution time of more remote generations. Consider the call-graph
segment shown in figure 5.1. Here the functios called only fromh, but h is called

from bothf andg.

Figure 5.1: A typical call-graph segment

The following code outline represents this scenario:

fa=ha+1

gb=hb-1
hx=1ix+1ix
I X =x+1

The functioni is only called by the functioh. The total time spent in or belofvis
uncertain because it includes the timings ifofwhich is called fromh), of which
unknown amounts are due to calls originating fgmThe profiler will keep a log of

callsf toh, andg toh, andh toi, but notf directly through ta, or g through ta .

One solution to this problem is to divids time according to the ratio of calls from
f to h and fromg to h; this isstatistical profiling (e.g., if there are 6 calls frofmto h
and 4 calls frong to h, thenf will get 60% of the time in andg will get 40% of the
time ini). However datistical profiling is blatantly inaccurate as there need not be a

linear correlation between the number of calls and the execution time; in fact, calls
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originating at eithef or g may not invoke at all; this depends on the value of the
parameters passed ln Nevertheless, the information about the calls to immediate

children is accurate.

An alternative solution is to allow the code foto be subsumed by the code For
(i.e. as far as profiling is concerneds then an integral part @f). Thisis inheritance
profiling. Underinheritance profiling, the sub-functianis just an extension of its
parent, and the total amount of time spent in or betowlue to eitherf or g is
determined absolutelyAlthough accurate over many generations, this style does not
report a separate timing forand it appears that profiled sub-functions afre called
directly fromh — this may be confusing for the programmer as the functseems to
have no data relating to itWith inheritance profiling the code outline would be

profiled as though it had been written as:

fa=ha+1

gb=hb-1

hx=1ix+1ix
where
Ix=x+1

To provide comprehensive profiling, this PhD advocates the use of both statistical

and inheritance profiling modes within the same profiler.

5.3. ExistingProfilers

This Section describes existing profilers for both imperative and functional
languages and considers how they motivated and affected the design decisions for the

lexical profiler.

5.3.1. gpof - an existing imperative profiler

The uNIX profiling tool gprof [Graham82] produces a profile of a program based
on the call graph of the programs executiétesults are presented with an entry for

each function, together with its call graph parents and call graph children. The data for
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child functions is propagated up the call graph to incorporate a measure of the expense
of subchildren.Thegprof mechanism is a great improvement over the simpler flat style

of profiling which just reports how many times a function is called, the amount of time
spent in that function, and the percentage of total running time spent in that function.

As a resultgprof has been used successfully with imperative programs for many years.

The implementation ofjprof is based on the assumption that code is statically
placed in consecutive memory locations at load time. The execution time of each
function is not measured exagthyut approximated by monitoring the location of the
program counter every 1/60th of a secodhistogram of program counter values is
constructed and the amount of time spent in each function is estimated by post-
processing the histogram in conjunction with a map of code locations. One problem
with gprof is that it does not monitor space utilisation and so cannot provide full
information for programs which make extensive use of dynamic memory allocation
(however themprof profiler [Zorn88]does provide this facility). In additiorgprof
does not provide useful information for mutually recursive functions because it

collapses each strongly-connected component in the syntax graph to a single point.

Despite the faults and inaccuracies mentioned abgmef has proved to be a
useful tool for imperative programmer$his provides a motivation to develop similar

profiling tools for functional languages.

5.3.2. TheNew Jersey SML Profiler

Most current implementations of functional programming languages provide only
rudimentary profiling statistics, with information restricted to (for example) the number
of garbage collections performed, the total number of reductions performed, and the
total number of memory cells used. The New Jersey version of Standard ML is
remarkable for the fact that it is supplied with a profiler which gives more extensive

information related to function names.

The New Jersey SML profiler described[#ppel88] uses an inheritance profiling
style but does not try to address the inaccuracies that are introduced (other than

directing the programmer to experiment by using multiple profiles, choositegedif
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groups of functions each time in an attempt to get a more accurate picture of what really
happened). Its limited to strict evaluation and neither profiles heap space usage nor

provides a statistical profiling option.

The SML profiler is also inaccurate when profiling higher-order functions because it
attributes execution times of higher-order arguments to special identifiers instead of to
the real functions. The example in [Appel88] argues that the ambiguous results are of
little consequence in short programs where a higher-order function is called just once
and suggests that the programmer should be able to guess to which real function the
special name refersHowever guessing is not so simple for large programs where
higherorder functions, such amap, are called repeatedly with different higharder
arguments each time. The SML profiler coalesces all applications of a single-higher
order parameter into a single timing, thus losing vital information. If timings are kept
separate by inventing a new name for each call, the programmer will be swamped with

too much information to decipher it sensibly.

5.3.3. UCLinline cost primitive

An early profiling technique investigated at UCL for measuring the cost of
evaluating an expression was the use of inline cost funct[@asrott90]. This
technique uses a cost function which has the equivalent semantic behaviour to the
identity function. The cost of the evaluation is written to a special output stream which

cannot be accessed by the program. For example:
g x =cost(fx)+1

would report the cost of evaluatiigx . There is no data for space usage or function
call-counts. Dudo problems with lazy evaluation and unevaluated arguments, the use
of inline cost functions relies on evaluation transform@@sirn87] to enable the
function to measure the cost of evaluating itgiarent by forcing the correct amount of
evaluation to occur inside the cost function (i.e. the cost function evaluateguitsesut

as far as the surrounding context demands and returns the result).
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However the use of inline cost functions has drawbacks because the information
provided by a cost function is dependent upon its context at run-kinseimpossible to
interpret the results without thoroughly understanding tlectsf of laziness on the
evaluation of a programwWhen evaluation transformers are used, the results presented
are for a program which is slightly different to the one the programmer widzece,
the results are not very useful. Inparallel implementation, the order in which
expressions are evaluated cannot be determined and the timings retuowsd byill
change from one program run to anoth@rfundamental problem with this profiling
technique is that it takes a microscopic view of the program, whereas a macroscopic
view would report its results at a level of abstraction understood by the functional

programmer.

5.3.4. GlasgowCost Centres

In [Sansom92],a pofiler with a primitive similar to the UCL cost primitive is
presented. Sansoamd Peyton Jones introduce the named cost centre, which associates
the cost of evaluating an expression with a given nahhés concept is the same as the
UCL cost primitive but has been extended to allow nested cost cefitiesproblems
of lazy evaluation and unevaluated arguments also afisewvercome some of these
problems, Sansom and Peyton Jones suggest that code should be rewritten in certain
instances in order to calculate the cost correcllyis may be a reasonable task for a

short 10 line test program but is unsuitable for a 4000 line application.

As with the early UCL cost primitive, this solution to profiling requires the
programmer to understand how a run-time system evaluates a functional program so

that the programmer can then place the cost-centre primitives in the correct place.

5.3.5. Runcimanand Wakeling Heap Profiler

In [Runciman92],Runciman and Wakeling describe a profiler that monitors heap
usage of lazyfunctional programs but does not measure call-counts or the time spent in
functions. Theirsystem relies on the user understanding how a run-time system works.

This view of execution may be normal to a system implementor but is often alien to
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applications programmers. In a worked example, data graphs are presented which show
the producers of heap cells and the data types that are associated with tho3éeells.
graphs are then analysed to determine the behaviour of the program with an aim to
reduce heap usage. Although a significant reduction in heap usage was achieved, the
authors were required to display a wider knowledge of the underlying implementation

than would be expected of a typical applications programmer.

On two out of four occasions, Runciman andkéling observed problems with
their compiler and run-time system; they then modified their compiler and run-time
system in order to bring about the performance gain. For the ordinary applications
programmer with neither access to the source code nor knowledge of the internal
workings of these systems, the changes made by Runciman and Wakeling would be

infeasible.

The Runciman and Wakeling profiler measures heap space by visiting the whole
graph at pre-determined intervals. For large heaps (as in their example), the pauses
caused by these visits will be long. Thus, for practical reasons, an upper bound is

imposed on the sample frequency but this can cause the presented data to be inaccurate.

5.4. LexicalProfiling

In this section the main aspects associated with the design decisions for lexical

profiling are discussed.

5.4.1. DesigrObjectives

When an applications programmer uses a functional language to implement a
system and then uses the lexical profiler to help him analyse the run-time behsrsour
expected that he knows certain attributes of the languages he is using, the compiler and

how it works, and the underlying abstract machine.
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Language

On the language side, the programmer needs to know the basics of functional
programming. Howeverin order to understand the results of the profiler and to use
those results to improve a program, the programmer should know about substitutive
equality/ referential transparency so that he can transform or re-write his code not only

correctly but also more effectively.

Compiler
The programmer needs to know the following about the compiler:
» the flags that control the main/most useful options and what they do
» the compiler optimizations which may affect the running of the program.

It would be useful if the compiler writers and abstract machine writers
would document the optimizations, transformations, and features in their
systems so that programmers realise their existence and can take account of
them if necessaryFor example, list comprehensions are often converted

into other functions, e.q:
fnge=[gx|x<-[1..€]]
gets converted silently into calls to built in functions.
The programmer does not need know:

» if the compiler does dead code eliminatidbead code can be removed
without affecting the program because it is never referenced and therefore

never executed.

Abstract Machine Run-Time System

With regard to the abstract machine run-time system, the programmer needs to

know:

» that functions and data are treated in the same way and that they both

require space
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» that function applications require space

* whether the system evaluates lazily or striciiyiis means the programmer
needs to know that computations can be delayed by the lazy evaluation
mechanism, but he does not need to know how this happens. He should
also know that with laziness he can save space and evaluation time by
sharing expressions (and that using pipelining is tectefe way to write

functions) [Clayman93a].

» which sort of garbage collection technique is being used, as this feay af
the results from the profilerResults from the two main kinds of garbage
collectors may look like those in figure 5.2. The mark and sweep and two-
space copying collectors only run at certain intervals, so garbage builds up
and is collected in a big mark and sweep for compacting space or the
copying phase. Incremental garbage collectors collect garbage

immediately.

Space Space

N

Time Time

Mark and sweep Incremental
Two-Space Copying

Figure 5.2: Space usage with two different garbage collectors

The programmer does not need to know the following about the abstract machine

run-time system:

» which abstract machine is being used, although some programs may behave

well on one abstract machine and badly on another
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* how a function is applied to an argument

* how laziness works and how the abstract machines’ mechanisms provide

laziness

» about stack space in an abstract machine, and that different machines use
the stack dierently Some, for example the ABC machifg&oopman90],

use more than one stack.

5.4.2. Pogram Size

This section considers the size of program to which the lexical profiler is best
suited. \éry short programs do not utilise the lexical profiler to its highest abilityg
lexical profiler is more useful when monitoring programs that use more than a minimal
amount of resources. One reason for this is that data is collected on every function call,
every function return, and when cells are allocated and de-allocktedgever the
system clock does not have a fine enough resolution for complete accDrettye Sun
workstation used for the development of the proftlee clock resolution is 20 ms (this
resolution is built into many other machines). Therefore, all times attributed are in
chunks of 20 msWith very small programs, the whole program run may occur within
20 ms; this is neither the fault of the profiling technique nor the implementation of the
lexical profiler but is a limit of the hardwarelf access to a real-time clock were

availableall timings would be 100% accurate.
For example, consider a function that converts a string to an integer:

string_to_intl :: String -> Int
string_to_intl s = string_to_int’ s 0
where
string_to_int' [Jv=v
string_to_int’ (h:t) v = string_to_int’ t (10*v + (ord h - zero))

zero =ord '0’

If one only needs to compare the funct®operformance with another string to integer

conversion function, the lexical profiler would be an overkill solution - a sledge hammer
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to crack a nut'When using this function to convert a string to an intetperexecution
time would be less than the clock resolution of the machine. It is in this situation that

the number of cells and the number of reductions is us€ahsider another string to
integer function:

string_to_int2 :: String -> Int

string_to_int2 s = sum [ x*y | (X,y) <- scale_factors ]
where
digits = map ((\v -> v - ord '0’).ord) s

scale_factors = zip (reverse digits) (iterate (*10) 1)

In order to determine which string to integer function is the most efficient, one can
compare their run-time behaviours for a given inptdble 5.2 gives the number of
cells used and the number of reductions performed for the given input (this experiment
was done using the Haskell interpretaofer).

string_to_intl string_to_int2
Input

cells reductions cells| eductions
10 3 19 7
"1" 19 9 47 23
12" 29 14 77 41
"123" 39 19 107 59
"1234" 49 24 137 77
"12345" 59 29 167 95
"123456" 69 34 197 113

Table 5.2: The number of cells used and reductions performed for 2 string to int functions

The data in table 5.2 shows that, although both functions display linear beham@ur

function is more efficient than the othé&ne can see fatring_to_intl that:
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no of cells = 1 length input + 9

no of reds= 5 x length input + 4
and forstring_to_int2 that:

no of cells = 3 length input + 17
no of reds= 18 x length input + 5

A programmer would choosgring_to_intl to convert strings to integers in an

application because it is the more efficient function.

5.4.3. Requiements for Lexical Profiling

Lexical profiling requires the compiler to record the lexical scope of functions so
that the run-time system can monitor the functions and attribute measurements correctly
in the presence of higher-order functions and lazy evaluation. The compiler needs to
access the source program early in compilation and is responsible for maintaining the

lexical affinities throughout all subsequent program transformations.

The run-time system is responsible for measuring the time spent in a function, the
number of calls to a function, and the amount of space used by a funthierspace
used by a function equates to the number of cells allocated during the evaluation of that
function. Thenumber of calls to a function denotes the number of times that function is
applied to some guments. Theime spent in a function is the accumulation of small
amounts of time in different parts of that function. This is illustrated in figure 5.3 where
times are incremented at relevant points during evaluation, i.e. when a call is made to

another function and when a return is made from a function.

In order to retain time data for a call graph, it is necessary to remember when one
function was called from another and how long this tobk.enable this, drom tableis
built for every profiled function. It records the current profiled function, the function
from which it was called, and the number of calls and amount of time associated with

the function from which it was called. An exampiem table of calls tok will be:
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call g from f, save’s time

ng /
Time Inh /

Y Ing

Inf

call h from g, save g'ime

return from h to g, savesiime

return from g to f, save gtime

In f
return from f, save’$ time

Vertical lines represent time spent in a function.

Horizontal lines represent function calls and returns.

Figure 5.3: Timings saved when calling or returning from functions

In function From No.of calls Accumulated time

Eachfrom tableis a representation of calls from multiple parents to a single child.
To generate the full call graph, the data for a single parent to multiple children is
needed. Thislata can be generated by inverting evfeoyn table All the data relating
to "from g to fn" can be generated by collecting all the "in fn from g" data in éweny

table, as n:
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From table data Inverted table

f fromg gtof
hfromg gtoh
k fromg gtok

When the full call graph is generated, the profiling results are evaluated and returned to

the user.

Both inheritance and statistical profiling styles require that output is restricted to

functions whose profile was requested by the programirar each profiled function

the following is reported:
* the time consumed by the function
» the space consumed by the function
» the number of times the function was called (and from whom)
* the number of calls the function made (and to whom)

The programmer can then compare and contrast the output of both styles to obtain a

clearer overall picture.

5.4.4. LexicalProfiling

The innovation of the lexical profling technique for profiling lakgher-order

functional programs is theombinationof:
1. profilingfunction definitions rather than expressions.

2. attributingthe costs of all, and onlyhose expressiongxtually contained

within each profiled function to that function.

3. takinga macroscopic view of the program and collecting statistics over a

whole program run.

This thesis definekexical pofiling as a technique with the above three properties; it

differs from dynamic profiling, which associates measurements with the run-time
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representation of the program (ag/@layman91] and [Sansom92] ). The advantage of
lexical profiling is that it provides information that is related to the way the program is

written rather than to the way it is evaluated.
Consider the following example:

f = g (sum[1..2000])
f = g 500500

whereg is non-strict in its ggjument. Lexicallythe sub-expressiosum[1..1000]

appears within the body 6f. Therefore, it is reasonable for the programmer to expect
the cost of executing this sub-expression to be attributdd. tdlany implementors
disagree with this approach because the evaluation of the sub-expression actually occurs
wheng is executed.However lexical profiling is designed to be used by application
programmers who may know nothing about the run-time system. When using the
lexical profiling style for the second expression, the cost of apptying the atomic
value500500 is attributed td” and is lower than the cost previously attributedl to

The programmers attention is therefore drawn immediately to the differences in the

definitions off andf’

The lexical profiler collects statistics for user defined functions for edthhetop-
level functions or just those which the programmer requgds The restriction to
top-level functions greatly simplifies the profiler at minimal cost to the programmer
The profiler should measure the time and space used at run-time by profiled functions
and report the number of calls made to(from) profiled functions and from(to) whom.
For lexical profiling, the profiler must recognise when lazguarents are being
evaluated and switch context so that the time and space required for the evaluation are
attributed to the function whose definition lexically contains the associated expression.
The context switch does not constitute a full function call so the number of calls made

must not be incremented.

[25] Thisis achieved by compiler options rather than inline program annotations.
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5.5. ImplementationTechniques for Lexical Profiling

The lexical profiling technique is amenable to implementation in both compiled and
interpreted abstract machine§his section demonstrates the general principles of the
profiler’s design and implementation and uses a sequential, interpreted model of graph-
reduction in order to simplify the presentati¢®6]. The modifications in both the
compilation phase and the execution phase are examined and details presented of call-
count profiling, time profiling, and space profilifg7]. Thenfollows a discussion on

how the lexical profiling technique applies to compiled abstract machines.

5.5.1. Compilationphase

The first pass of the compiler builds a graphical representation of the program,
called CGF [Parrott91], marks the root of every function to be profiled with a one bit
root-tag which is used for the call-count data, and also assigns a unique profiling colour
to each function.The colour is used when function time and heap space usage are
recorded. Asecond pass propagates the profiling colours from the root node to
descendant nodes which are not themselves marked as Teaigpasses are required
because all root tags need to be in place before propagation occurs in order that colours

are propagated to the correct graph nodes.

By using the CGF notation to show the compsleepresentation of a short program
segment, the placement of root tags and profiling colours in the two passes of the

profiling phase of the compiler can be seen. Consider the program:

[26] Full implementation details for both compiled and interpreted abstract machines can be
found in [Clayman91].

[27] Thedesign of the profiling technique was done by myself assisted by David Parrott, and
the implementation of the profiling technique was done David Parrott assisted by rirpsdilill
details of the implementation changes in the UCL experimental redneaeader is directed to
Parrotts PhD thesis [Parrott93].
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main = f 10

fx =h1(@x][ 1.1000])

gab=a:r everseb

This program can be represented graphically and seen in figure 5.4, which shows the

CGF form of the programOn the right hand side of the cells is the expression which

each cell represents.

10 <«

o,

1000

reverse

Figure 5.4: The CGF for program

h 1 (g x [1..1000])

g x [1..1000]

[1..1000]

a: reverse b

reverse b

The first pass of the profiling phase places the root markers on the relevaritigeiis.

5.5 shows which cells have root tags associated with them. Figure 5.6 shows all the

cells after the profiling colour has been propagated to them. During the propagation

pass of the profiling phase, the presence of a root tag forces the current colour not to be

propagated further.
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ROOT(main)
1 ROOT(f)
4‘_//} h 1 (g x [1..1000])
N k\\\\\\ g x [1..1000]
1| 1000 [1..1000]
MAIN(g)

a : reverse b

reverse

reverse b

Figure 5.5: The CGF for program, plus root markers

Unprofiled Functions

When propagating profiling colours to shared unprofiled functions, it is observed
that the order of doing the propagation can lead feréifit run-time result$28]. The
shared function will inherit the profiling tag of the first function that has its tag
propagated to the shared function. When another profiled function has its tag
propagated to this shared function, the propagation will stop as the shared function will
already have a profiling tagHowever this approach does not produce the correct
results, as will be demonstrated shortiynprofiled functions should not be shared by
more than one profiled function. Contravention of this rule is detected during the colour

propagation phase when an attempt is made to paint a non-root node which already

[28] Although sharing can cause problems in the profiling stage, sharing is known to cause
problems in other areas of functional programming so this is nothing unique.
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ROOT(main)

main
1 ROOT(f)
| f h 1 (g x [1..1000])
N l\f g x [1..1000]
1% 111000
MAIN(g)
a: reverse b
g
reverse

reverse b

Figure 5.6: The CGF for program, plus root markers and colours

possesses another colowWhen faced with the issue of shared functions, there are 3

methods the user can choose to deal with this. He can either:

a)

b)

theuser can chose to profile the shared function separdtelhe lexical
profiler, the user is warned where there is sharing and he can chose to

recompile the program with the shared function explicitly profiled.

letthe profiler force a profiling colour onto a shared functibmthe lexical
profiler, dl shared unprofiled functions are given a spesigred profile

colour.

let the profiler make a unique copy of the shared functionthis case,
functions which share other functions will have their own local copy of the
shared function.This has serious consequences in a, famctional system

where sharing is used to reduce the amount of work undertakas.
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approach can be investigated as further work.
As an example of the sharing problem consider the following code:

f x = x + v alue
g X = x * v alue

value = [1..1000]

This code can be represented in CGF as figure 5.7.

MAIN(f)
1: + <1,1> —
f
0: . 1 1000
MAIN(g)
1| * <1,1> —
g

Figure 5.7: The CGF for program, showing shared expression

Note that iff and g are profiled andvalue is not, then the order in which the
compiler propagates the profiling colours will determine which function gets attributed
the cost ofvalue . In this example, if the compiler propagates the colourff fdirst,
thenvalue will be attributed tof , but if the compiler propagates the colour tpr

first, thenvalue will be attributed tog. Clearly this is not what is expected, but as

previously described there are 3 methods to overcome this.

Once every profiled function has been coloured, transformations performed on the
graph must preserve the colours so that knowledge of the lexical scoping of the original
program is retained. In this wayhe profiling is correct even if colourbecome

fragmented during compile-time program transformation.
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5.5.2. Executionphase - call, time, and space profiling

The run-time system monitors the call-count, time, and space data during the
execution phase.Parrotts interpreter represents function definitions by graphical
templates constructed and coloured at compile-tii2@]. At run-time, the profile
colour is copied from the appropriate template whenever a user function is instantiated.
Each node of an instance is also tagged with the profile colour of the calling function.
When laziness or calls to higherder functions cause the node to be passed into
another function, the tagging enables the profiler to identify not only the function from

which the node originated but also its parent function.

Retaining the original lexical filfations of nodes is of utmost importance when we
come to promote execution times up the call graph to obtain final profiling statistics.
The reader should note that profile colours and profile root-tags are properties of the
profiling mechanism and not of the reduc@nce assigned, the colour of a node cannot
be changed by the reduction process; overwriting a addettion or argument cells

has no effect on its colouring.

Call-count profiling

Counting the number of calls made to a function is very simple. Each time a call is
made to a function which possesses a profile root-tag, the call count for that function is
incremented. This mechanism works for simple, recursive, and mutually recursive

function calls.

Time profiling

The expected behaviour for time-profiling is shown in figure S\&rk may be
done by a function both before and after a subsidiary function is invoked, hence the
appropriate timing must be updated with the cost of work performed whenever control

is transferred either by a function call or return.

[29] Fora detailed introduction to the fundamentals of graph reduction, see [Peyton-Jones87]
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Space profiling

Space profiling is quite simple. The colour of a newly allocated node is always set
by the heap managewhich is responsible for incrementing the corresponding space-
profile counter Therefore space usage is monitored in real time rather than having
visits to the whole graph at discrete intervals, as [Runciman92]. More

comprehensive data can be built if the colour of the calling function is also recorded.

5.5.3. Lexicalprofiling and compiled graph reduction

The techniques presented are illustrated using an interpreted model of graph
reduction but they can also be implemented as part of a fully compiled abstract
machine. Compiledyraph reduction typically makes much more use of the stack for
calculations which do not need to be written out to the heap. The heap is used when
closures and shared data structures are built (e.gPegeon-Jones89] )To implement
the lexical profiling technique for compiled abstract machines such as the Spineless
Tagless G-Machine abstract machine instructions should be extended to carry profile-
colour parameters. This would allow heap nodes to be built with profile colour tags,
code sequences to pass their colours onto child sequences, and special profile markers to
be constructed on the stack. The last of these extensions works in much the same way as
update markers which force shared value updates in the heagF@esurn87] or
[Peyton-Jones89] ). Code for examining the extra parameters, node colours, stack
markers, and also for incrementing the relevant profile counters would be included in

the executable binary.

5.5.4. Extendingthe technique to parallel graph reduction

Lexical profiling can be extended to parallel graph reduction by distributing the
from tables Each processing element will have its ofwvom table which will be
updated in the usual manneAt the end of a program run, a ndwom table is
generated from the sum of the data in evégm table This distribution and
accumulation can be accomplished due to the properties that allow a functional program

to run in parallel and because of the way lexical profiling colours the program before the
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execution stageOnce a program is coloured, it is not significant where a function

executes.

5.6. Analysisof the Lexical Profiler

This section shows the output from a profiling session in order to illustrate the
information given by the lexical profilerThe results presented here were obtained
using the UCL experimental interpreting reducer rather than an optimized compiled
reducer The space usage is presented in cells rather than bytes. This is significant
because the number of cells remains the same when executing the program either with
profiling or without profiling. The profiling data for time and call-count is presented
separately from the space usage data. Execution times are accumulated and reported for
every profiled function. The time and call-count for each function is subdivided
according to the functions that called it. These times denote the actual execution time
rather than the elapsed wall-clock time. The time for garbage collection is presented

separately and isot included in the time for any function.

At present the timings for each function are at a resolution of 2@msstated
earlier this is a limit of the current hardware rather than the lexical profiling technique.

On hardware with a real-time clock the results would be more accurate.

5.6.1. ObservingProgram Behaviour

In this section the profiler is used to observe the behaviour of two progfdras.
results of profiling the well known functional program nqueens and a small relational

database are presented.

the nqueens program

The nqueens program tries to put n queens on a chess board such that they are all in
a safe position. Theprogram can attempt to put from 1 queen up to 8 queens on the
board, and it returns all the valid results. In the following test the first 10 valid results,

with 7 queens on the board, is profiled. The code of the nqueens program is:
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queens :: Int -> [[Int]]

queens 0

[0l

[ p ++[n] | p<-queens m, n<-[1..8], safe pn ]

queens (m+1)

safe :: [Int] -> Int -> Bool
safe pn = all not [ check (i,j) (m,n) | (i,j) <-zip [1..]p]

where m =1 + length p

check :: (Int,Int) -> (Int,Int) -> Bool

check (i,j) (m,n) = j==n || (i+j==m+n) || (i-j==m-n)

main = take 10 (queens 7)

The nqueens program was compiled for profiling and results were asked for the
functions queens , safe , check , and main . The space usage of nqueens is
presented in figure 5.8 ach line represents the number of cells used by a function over
time. Thespikes in the lines represent where cells are used by a function and then
garbage collected when they are not needed. The space results presented give similar
information to the Runciman and Wakeling heap profiler but are in a different form.
Runciman and Wakeling present their data as cumulative strata, whereas the lexical
profiler presents the data for each function absolut@dy. With the space usage data
alone, attention is drawn to tlgeieens function as it uses the most spachared

code is presented by the lexical profiler because some functions are shared but, as can

be seen, these shared functions are an insignificant factor in the compuation.

[30] It would not be difficult to post-process the space usage data to generate a report in the
style of Runciman and Wakeling.
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Figure 5.8: Heap usage results for nqueens program
In From Noof Calls | Time in seconds
main 1 1.12
gueens main 1 22.48
queens 7 69.82
safe gueens 742 520.76
check safe 2003 103.06
Garbage collection time in seconds 197.86

Table 5.3: Call-count and timing results for nqueens

queens

safe

main
check
(shared)

Lexical profiling also produces both call-count and timing data. By analysing the

data in table 5.3, it is possible to gain further insight into the behaviour of the program.

From the data in table 5.3, attention is not drawn to the funqueens but to the

162



functionsafe . Thesafe function has 742 calls to it and the accumulated time is 520
seconds, which is 70% of the program execution ti@kearly it is thesafe function

which could benefit from some optimisation. If only a heap profiler were available, it
would be impossible to determine that this behaviour ariks.functionsafe , when

given a list of current queen positions on the board and a possible new queen position,
evaluates whether the new queen can be safely placed on the Bdedlist
comprehension does the arranging of the checks to see if the queen can be taken in the
new position, and the results are processed using thatenot  , which determines

if each element of the list comprehension is faBg.looking at the definition oéll ,

it becomes apparent that a more efficient function can be written to determine if every

element of a list is false. The code & is:

all :: (a -> Bool) -> [a] -> Bool

allp = and.mapp

and :: [Bool] -> Bool

and = foldr (&&) True

This code is indicient in this case becaua# not inverts every element of the
list before evaluating thand term. Thisis unnecessayynd a new all-false function

can be defined as:

allFalse :: [Bool] -> Bool
allFalse [] = True
allFalse (True:r) = False

allFalse (False:r) = allFalse r

andsafe can be redefined as:

safe pn = allFalse [ check (i,j) (m,n) | (i,)) <-zip [1..]p]

where m =1 + length p

The call-count and time data of the new version of the program are presented in table
5.4.
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In From Noof Calls | Time in seconds

main 1 1.20

gueens main 1 22.58
queens 7 66.34

safe gueens 742 424.64

check safe 2003 98.38

Garbage collection time in seconds 174.60

Table 5.4: Call-count and timing results for new nqueens

safe now executes in 80% of the time that it used to and the whole program is 15%
faster This shows the benefit of having call-count and time profiling dake space

profile is very similar to the previous one, and is not shown here.

simple database program

Here profilingdata is presentefor an example program that is a demonstration of
a dmple relational database written in the functional style. The program is written in
Haskell and contains approximately 350 lines of Haskell source code. The database
program provides the functionality to display a table, to select rows from a table, to
project columns from a table, to generate the union of two tables, and to join two tables

to produce a new one.

The profile shown in figure 5.9 is for a run of the database program that displays a
table generated by joining two existing tabl@he heap space usage of this program is

presented in figure 5.8 and was gathered usinmbiegitance style of profiling.
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Figure 5.9: Heap usage results for database program

In figure 5.9, the line for the functiocshowtable which displays the resulting table,

rises continuously throughout the program run. This continuous rise draws attention to
the possibility ofshowtable having degenerate behavioufor the functionjoin, the

line rises steadily as cells are allocated and after 10 seconds of execution time fluctuates
from the 800 cells level. For bottablel and table2 there is a rise as cells are

allocated, then their usage of cells reduces slowly.
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In From Noof Calls | Time in seconds
main 1 0.02
showtable main 1 28.74
join main 1 24.78
tablel main 1 0.66
table2 main 1 0.94
shared code main 0 31.22
Garbage collection time 22.06

Table 5.5: Call-count and timing results for database program

The timing data for the database program is displayed in table 5.5. Notice that one
third of the program execution time was spent in shared codes. indicates to the
programmer that much of the execution time was spent in functions that were not
profiled explicitly In order to gather more detailed information, the program should be
compiled withmore functions being profiled. It is beneficial for the compiler to warn
the user when a function is being shared and by which functions it is being shieed.
compiler used in this PhD does thig appendix A, there is an example of the call-
count and time data for this program which was gathered by pradNiey function in

the database program.

By analysing the space and time data for this program, one can see that the
showtable  function hangs onto the space it uses until the end of the program run.
Therefore, there needs to be a further investigation of this function in order to determine

the cause of the observed behavioline code foshowtable is:
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showtable:: Table->[Char]
showtable table
= disp_title ++ "\n" ++ disp_colhdr ++ "\n" ++ disp_row el
where
disp_title = concat ["Table name: ", name ,
"“\tPrimary key: ", pk,
"\tForeign key: " ,fk]
disp_colhdr = concat (map ((ljustify 10).fst) colhdr)
disp_row [] =]
disp_row (r:rs) = concat (map (ljustify 10) r) ++
"\n" ++ disp_row rs

Table name pk fk colhdr el = table

showtable makes use afoncat and++ to generate output when given a table.
test profile of botlconcat and++ is undertaken.To focus the tesshowtable s
applied to just one table. The space usage for this test is displayed in figure 5.10 and the

timing data is displayed in table 5.6.
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Figure 5.10: Heap usage results fahowtable

168



In From Noof Calls | Time in seconds
main 1 0.00
showtable main 1 14.88
table2 main 1 110
concat showtable 7 0.24
concat 24 0.46
++ showtable 14 6.56
concat 24 7.06
Garbage collection time in seconds 7.01

Table 5.6: Call-count and timing results fashowtable

It can be seen that the append functienis actually the cause of the problem. It hangs
onto cells until the end of the program rufRurther tests were run to try to eliminate

this problem, and many definitions-ef were tried without success.

5.6.2. \érifying Program Behaviour

In this section the profiler is used to verify the behaviour of two prograimes first
case-study uses the profiler to verify whether or not the funfidn is tail strict
and the second case-study uses the profiler to verify if a hand-coded function performs

better than a pipeline which does the same job.

foldr

In an example from Runciman andak¢lings heap profiling papefRunciman92],
they observe that "certain functions can cdotdly  to betail strict ". To verify this
belief, a case-study was constructed which passes a simple functmdrto One

version of the simple function forcésldr  to become strict and another version uses
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foldr lazily. In this case-studya cons function is passed toldr and then the
head of the resulting list is taken. The first version of cons does pattern matching on its

second ggument. Theode used in this example is:

pmCons :: a ->[a] -> [a]
pmConsv [ =v:]]

pmConsv (hit)=v:h:t

list :: [Int]

list = foldr pmCons [] [1..100]

main :: Int

main = head list

By profiling this program it can be seen thatr  has become strict. There are 100
calls topmCons when only 1 is expected, and the heap usage g lathen it is
expected to be small. The call-count and timing data for this example is displayed in

table 5.7 and the heap usage is displayed in figure 5.11.

In From Noof Calls | Time in seconds
main 1 0.08
list main 1 7.66
pmCons list 100 1.20
foldr list 1 0.02

foldr 100 2.14
Garbage collection time in seconds 2.76

Table 5.7: Call-count and timing results fqpmCons
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Figure 5.11: Heap usage results f@mCons program

Theconsfunction can be rewritten without pattern matching:

gdcons :: a ->[a] -> [a]

gdconsvi=v:l

list :: [Int]

list = foldr gdcons [] [1..100]
main :: Int
main = head list

As can be seen in table 5.8, the program goes much faster and the number of calls to the
cons function is the expected numbes. 1. Clearly, the pattern matching is a problem

when combined witlfoldr
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In From Noof Calls | Time in seconds
main 1 0.02
list main 1 0.10
gdcons list 1 0.00
foldr list 1 0.00
Garbage collection time in seconds 0.06

sum of squares

The second example is a program to sum the squares of a list of nuritbers.
[Ferguson88], Ferguson suggests that the pipelining style of programming (through the
use of function composition), which is common in functional languages, is inefficient as
there is a need to build and immediately destroy intermediate list elenfemgre
efficient version can be written which has the same semantics and operational behaviour
as the pipelining versionHowever this efficient version has the disadvantage that it is

considerably less clear than the pipelining versionthis section, the profiler is used to

Table 5.8: Call-count and timing results fogdcons

verify Fergusors datment. Feguson defines the sum of the squares to be:

(sum . map square . upto 1) n

A program to evaluate this expression is:
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sumSquares :: Int -> Int

sumSquares n = (sum . map square . upto 1) n

upto :: Int -> Int -> [Int]
upto n m =if n > mthen ]

else n : upto (n+1) m

square :: Int -> Int

square x = xX*x

main = sumSquares 400

By profiling this program, the results obtained for call-count and function times are

displayed in table 5.9 and the heap usage results are displayed in figure 5.12.

In From Noof Calls | Time in seconds
main 1 0.00
sumSquares main 1 0.04
sum sumSquares 1 834
map sumSquares 1 0.02

map 400 8.64
upto sumSquares 1 0.00

upto 400 9.52
square sumSquares 400 2.04
Garbage collection time in seconds 7.30

Table 5.9: Call-count and timing results fasumSquares
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Figure 5.12: Heap usage results faumSquares program

A second version of the sum of squares program, whicguSen says is more

efficient, is:

sumNsquares n = sumNsquares’ 01 n

sumNsquares’ res m n = if m > n then res

else sumNsquares’ (res + square m) (m+1) n

main = sumNsquares 400

The results of profiling this program are displayed in table 5.10 and figure 5.13.
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In From Noof Calls | Time in seconds
main 1 0.00
sumNsquares main 1 0.00
sumNsquares’ sumNsquares 1 0.04
sumNsquares’ 400 9.18
square sumNsquares’ 400 1.94
Garbage collection time in seconds 2.98

Table 5.10: Call-count and timing results f@umNsquares
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Figure 5.13: Heap usage results f@umNsquares program
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Therefore, Ferguson is correct in stating that the second version of sum of the squares is
faster because the second version executes in 14 seconds whereas the first version took
36 secondsHowever in the second version, the space usage has a larger peak than the

first version.

5.6.3. Achievement®f Lexical Profiling

The achievements of the lexical profiling technique for,lagherorder functional
languages are reviewed with respect to suggestions made by RuncimaralkeiohyV
regarding problems that profilers for functional languages might hawe.
[Runciman90], Runciman and Wakeling suggest that profiling tools sugrafsare of

limited use for profiling functional programs. The reasons they give are:

1. The semantic gapthey comment that functional programs do not map
directly into a machine representation and require much transformation.
They claim that measurements of a run-time profiler may beuifto

associate with structural units of source code.

This is one of the motivations for lexical profiling. The structural unit is
the function definition and is independent of any later transformations.
Results are associated directly with the textual function definition, which
the programmer understands, and do not depend on the run-time

representation.

2. Hidden outines they claim that routines in the functional run-time system
may carry out a significant proportion of the computational wdfkr
example, the full cost of garbage collection would go to the function that

needed some memory and induced the garbage collection.

During garbage collection, a lexical profiler can stop measuring execution
time and start measuring garbage collection tiéhen returning to the
evaluation, the profiler can continue measuring for the correct function

according to its profile colour.
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3. Global lazinessthey maintain that lazy evaluation makes itfidifit to
assess the cost of isolated program parts and claim that changing a program

may change the point of evaluation.

The lexical profiler counteracts this dilemma because profiling information
is always reported with respect to the lexical scoping of the source.
Therefore, the results are insulated from the effects of laziness. It is
possible to diierentiate between real function calls and changes of context

due to delayed evaluation.

4. Space leaksthey observe that having laziness means expressions may be
held unevaluated for later use and that the lazy evaluation strategy can

cause large demands on memory usage.

In the lexical profilerspace usage can be observed and measured. As every
cell is tagged, it is possible to measure cell usage separately for every

function.

5. Recursion and cycleghey observe thagprof is poor at handling the

recursive functions which functional programs rely on.

In a lexical profiler the root of every profiled function is tagg&terefore,

recursive functions can be handled correctly.

This PhD concludes that lexical profiling overcomes apparent obstacles in building an

effective profiler for lazyhigher-order functional languages.

5.7. Summary

One of the major problems in developing applications in, famctional languages
is the lack of tools which aid the programmer in debugging and analysing the run-time
behaviour of the application. This chapter addressed this issue and presented the design
and implementation of a profiler which measures call-count, time, and heap space usage
of lazy, higherorder functional languages using a technique cdbeatal profiling.
This is of benefit to the applications programmer because results can be directly related

to the source code and no knowledge of the underlying run-time system is required.
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Furthermore, neither profiling annotations nor primitives need to be learned as lexical
profiling allows the program to be executed unchangédge lexical profiling technique
is the only one that can present results for all 3 types of data, namely call-count, space,

and time.

The programmer can run his program with both statistical and inheritance profiling
in separate runs and compare the output to determine how his program békbees.
the programmer is comparing the graph from the inheritance profile with the graph from
the statistical profile, he can determine whether an inherited function is causing a lot of

resource usage.

The use of lexical profiling was demonstratég examining example Haskell
programs. Fronthese examples, it was shown how the profiler presents data on the
execution of the program and allows problem areas in the code to be idenified.
lexical profiler allows the programmer to observe the execution of functional programs

by observingvhere events occur angthat they signify.
The task of profiling functional languages relies on two tenets:
(i) usinglexical function definitions rather than a run-time representation.

(i) ensuringthat the compiler preserves the lexical affinities irrespective of

program transformations.

Existing approaches have had limited success in profiling feglyerorder functional
languages. Irorder to overcome these limitations, one can use the lexical profiling

technique to build a working profiler for functional languages.

One of the benefits of lexical profiling over the annotation style of profiling is that
the programmer does not have to change any code to do lexical profiiegzompiler
and the run-time system will do all the worlvith cost annotations, the programmer
has to decide where to place the annotations and which expressions will give
meaningful results. There are many problems with this technique, and they are
discussed inf[Sansom92]. Sansomlso reviews the paper [Clayman91] which is an

early description of the current work. He comments that:
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» unprofiled functions cannot be shared by more than one profiled function

As stated sharing unprofiled functions is undesirable because when a
profiled function shares unprofiled functions the results produced will be

incorrect. SectiofiUnprofiled Functions" these arguments in more detail.
» separate module compilation is not possible

In the current, experimental version there is no separate module
compilation. Howeverin a poduction version this limitation can be
overcome. lItis possible to design a system which allows modules to be
compiled separately by keeping the colours of all profiled functions in a
special profiling symbol table. At link time, the profiling symbol tables can
be combined by a phase of the linker to produce the full colouring of the

program.

Recently Sansom has adapted his work to encapsulate techniques from lexical profiling

in his cost centers [31].

Therefore, lexical profiling is a fundamental development in run-time analysis tools
for lazy, functional languages. Its results are reported with respect to the source code,

which every programmer understands.

A conclusion is that the profiler produces data which has not been seen before, and
therefore work needs to be done to understand the graphs that are proOGueed.
obvious result is that a higher line on a space usage graph indicates that more space is
being used by a functior-lowever more exposure to the results of lexical profiling are
needed in order to provide more comprehensive knowledge of the meaning of profiling

results. Thdurther work required is:
i) theanalysis of space usage graphs

i) definition of what peaks and troughs mean in space usage graphs

[31] Personatommunication.
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iii) to provide the programmer with a list of changdsat he can make to

programs when presented with certain patterns of data from the profiler.

In the current version of the profiler statistical profiling has not been implemdiited.

statistical profiling data is required it can be generated by post-processing the run-time

results of the existing profileNo extra changes need to be made to the compiler or the

run-time system of the functional languagéhe post-processor can collect the function

call counts and the time spent in functions in order to generate the percentage of time

spent in each profiled function.

The extensions to be made to the profiler are:

)

to add constructor profiling. Runciman andakéling do this in their
profiler. With constructor profiling, the space used by each function is not
presented as one homogeneous amount but is presented per constructor
allocated by that function. The space results will have a report for each
constructar This will give the programmer both more information and

clearer details as to how a function is allocating space.

At present the lexical profiler does not do constructor profiling. It uses
FLIC as its input language and any indication of the names of constructors
have been stripped by the Haskell compilén the FLIC source, only

PACKs are seen.

i) to allow copying of the body of shared functions. At present, shared

functions can be profiled either individually twgether using thehared
profile colour The desire is to make a copy of each shared function, thus

making the copy local to each function that needs it.
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Chapter 6

6. Parallelismand Functional Programs

This chapter reports the discoveries from attempts to find the best technique to
parallelize a large functional application and considers the advantages and
disadvantages of annotations, skeletons, and compiler detected parallelism when
parallelizing a large applicationlhe work is reported from the view of the programmer
trying to evaluate the available tools and techniques; the views of parallel system

implementors may be very different.

Parallelism in functional programming is appealing because expressions within a
program are independent and the lack of data dependencies within a program permits
the concurrent evaluation of these expressions. The functional program which executes
on a sequential machine can just as easily execute on a parallel mabhine.
[Peyton-Jones89a], Peyton-Jones indicates that parallel functional languages have

advantages over parallel imperative languages. These advantages are:

* no new language constructs are required to express parallelism, nor are
there any sychronization or inter-task communication constructs. This is

because all parallelism can be implicit.

* no ecial techniques are needed to protect shared data from concurrent

tasks. Thiss because there is no updatable store and no side-effects.

e it is no nore complicated to reason about the correctness of a parallel
functional program than a sequential program. This is because no new

constructs have been added, so all the same techniques still work.
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» the results of a program are determinate. This is because the model of
computation has not changed for the parallel environment, therefore, any

variance in processing and communication speeds is irrelevant.

Although functional programs use implicit parallelism to achieve a reasonable
speed-up, functional algorithms must be designed with parallelism in mind. For
example, the functiosum, which generates the sum of the numbers 1 to n, can be

written as:

suml=1

sum n =n+sum (n-1)

However this function can only be executed sequentially because the data dependencies
for the additions occur one after anothBeyton-Jones shows how a parallel version of

sum may be written:

sum =psum1ln

psum lo hi = hi, hi==lo
= psum lo mid + psum (mid+1) hi, otherwise
where

mid = (lo + hi) / 2

This version osum decomposes the workload into two separate parts, (i) the sum from
1 to a md-point and, (ii) the sum from the mid-point to mhe workload is recursively

decomposed, witbach task evaluating its part of the sum.

Many techniques for identifying and extracting parallelism in functional programs
have been devised; they are annotations, skeletons, and compiler detected parallelism.
Once the program has been parallelized, the individual tasks have to be mapped onto
processors to makefettive use of the machindo do this requires some management
of theparallel environment.Techniques for task management include load balancing,

scheduling, and partitioning.

This chapter discusses three ways to harness parallelism in functional programming,

namely the use of annotations, the use of skeletons, and the of compiler detected
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parallelism. Theanvestigation into techniques currently available for parallelizing the
functional rule-based system led to the use of the GRIP parallel pro¢€¢sck85a] as

it was the only one available during this resear8h. experiment was devised to test

the suitability of running a program in parallel on GRARd the results obtained from

this experiment are presented. Then follows a discussion on the use of annotations,
skeletons, and compiler detected parallelism in other parallel systems. This leads into a
review of parallelism in functional programming, and in particular the advantages and
disadvantages of these three techniques. There is a brief section on current parallel
applications and, finallyconclusions are presented concerning the best method for

harnessing parallelism in a functional program.

The requirements for parallelizing small programs are oftefierdift from lage
programs and thus thegaiments presented in this chapter may not be relevant for small

programs.

6.1. Parallelismin Functional Programming

This section discusses currently available technology for identifying parallelism in
functional programs and for managing that parallelism in a parallel environifieere
are currently three ways to identify parallelism in functional programs — compiler

detected techniques, skeletons, and annotations.

6.1.1. CompilerDetected Parallelism

Compiler detected parallelism is a technique in which a phase of a compiler
analyses the source code to determine which parts of the program may run in parallel.
This is most commonly done through the use of strictness anal¢ek85].
Strictness analysis determines if the value of expressions will be needed at some time in
the future. If they are needed, then the expressions may become new parallefdasks.
enhance compile-time strictness analysis, Burn has promysddation transformers
which allow the strictness data to be modified at run-time when more information

becomes available [Burn87].
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6.1.2. Skeletons

Skeletons embody general structures of computation within a functional framework
[Cole90] [Darlington91].Skeletons are higher-order functions which provide building
blocks for the specification of parallel algorithms. The programmer uses a skeleton
function within a program to denote the kind of structure an algorithm has, but the
skeletons do not change the meaning of the cdades algorithm can then be run

efficiently on a parallel machine.

Consider an example where the programmer knows that a set of functions are to be
combined into a pipelinePipelines are commonly written as compositions, so the

programmer may write code such as:

(f1 - f2 - f3 - ..fn)data

Yet this forces the functions to be composed and, as a consequence, little parallelism

may occur However by using skeletons, the programmer may express the pipeline as:

pipeline [f1, 2, f3, ... fn] data

With this construct, the parallelism may be generated in different ways feredif
parallel machines depending on which is the mdstieft. Theskeleton allows the
programmer to express his knowledge of how the functions are to be combined in an

abstract way.

6.1.3. Annotations

Annotations are declarations which the programmer hand-places into programs in
order to specify where the parallelism should ocd¢dudak85] [Hammond91b].The
annotations do not change the semantics of the program and, therefore, the program will
give the same results when annotations are not Usedlotations are used because it is
sometimes difficult for a compiler to determine where all the parallelisiRasonsider
the psum example. If the programmer uses annotations to harness parallelism, then the

code for the parallel sum could be written as:

184



sum =psum1ln

psum lo hi = hi, hi==lo
= PAR (psum lo mid) + PAR (psum (mid+1) lo), otherwise
where

mid = (lo + hi) / 2

Here the annotatioRAR indicates that both arguments to the addition operator are to be

executed in parallel.

6.1.4. ManagingParallelism

The management of the parallel environment aims to ensure that the machine is
being used ééctively. Load balancing is a mechanism which tries to give every
processor of a parallel machine an equal amount of work to peffdutiak84]. This
may involve moving tasks from busy processors to idle processors in order to attain the
balanced load. Partitioning is a mechanism which splits programs into tasks and then
splits these tasks into smaller sub-tafidsidak85a] [Goldbeg88]. Eachtask can be
executed concurrently with other task®nce new tasks have been created, it is the
scheduling mechanism which decides which ones to exe¢Galdberg88]
[Hammond91a]. Ifno tasks are available to schedule on the current procéissor
some load balancing is required to migrate tasks to that procéktoere are no tasks
available anywhere in the parallel environment, then some existing tasks need to be

partitioned in order to create new tasks.

These three mechanisms (partitioning, scheduling, and load balancing) are closely
related and each can be done either staticatllgompile-time or dynamically at run-

time.
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6.2. Useof parallel systems

In this section there is a discussion on the use of functional programming systems
which have parallelismMany of the earlier systems which have been reported, such as
Hudaks erly work (see [Hudak84], [Hudak85],and [Hudak85a]) or ALICE
[Cripps87], no longer seem to exidRecent systems, such as the FAST project which
aims to build an implementation of Haskell on a machine consistingaofsputers
[Glaser90], are still under development and are not available. Some of the reported
systems, which at first seemed promising, only ran on sequential machines or on

simulators of parallel machines [Eekelen89].

Attempts to use other systems that have been reported have vacmks to both
the ALICE parallel machine and the FLAGSHIP parallel machine was unavailable
during this research. Access to the GRIP parallel machine was encouraged by its
administrator and he supplied many documents on how to access and use the system
[Hammond91]. Thdollowing section describes the use of the GRIP parallel machine
in order to investigate its suitability for executing a parallel version of the functional

rule-based system written for this thesis.

6.2.1. Useof GRIP

The GRIP parallel machine is now publicly accessible over the Internet as a malil
server Either Lazy ML [Augustsson89] or HaskdlHudak88] programs can be sent to
GRIP for execution in a parallel environmethe document [Hammond91] describes
how this is done. The GRIP environment provides a subset of the Haskell prelude plus
support for some annotations to harness parallelism. Programs are executed on GRIP
and results are mailed back to the originator for analysis. Having GRIP set up as a malil
server allows wider access to the machine. As the GRIP machine is accessible over the
Internet, it allows some experiments to be undertaken in parallel functional
programming. Whout access to GRIRo parallel functional programming could have
been done for this PhDThis section discusses how the parallelism is harnessed and

describes some of the results obtained back from GRIP.

186



An experiment was devised to evaluate the strictness analysis technique used on
GRIP by defining a small program to calculate a fibonacci numblee fibonacci
program is used because it is a simple program that is a well understood and often used
test case in functional programming circles. Its use here is to highlight the parallelism
available in GRIP and it is not meant to be a representative functional application.
Once the feasibility of executing a parallel program on GRIP has been established, then

larger examples can be used for further evaluation of the parallel machine.

In [Clack85], the strictness analysis technique was proposed as a mechanism for
determining where parallelism is available in a program. Run-time task management is
used to manipulate that parallelism in the GRIP machifiee following program,
which is a standard fibonacci function, was sent to GRIP to evaluate the use of strictness

analysis in the compiler:

fib :: Int -> Int

fib0=1

fibl=1

fib n = fib (n-2) + fib (n-1)

main _ = show (fib 15)

The results from GRIP can be seen in figure GHis activity report shows that the

processor called "14.1" was 100% busy most of the time, as indicated by the solid line.

Reduction Time - 14.1
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Read/Flush ——-
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Figure 6.1: GRIP activity chart forfib program
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The activity report for the other GRIP processors is the same as that seen in figure 6.2

and shows that these processors were idle.

Reduction Time - 15.0
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L Reduction — 7
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Figure 6.2: GRIP activity chart forfib program

To oonfirm that only one processor was busy and that no parallel tasks were being
created, the task creation report for processor "14.1" was analysed and the results seen

in figure 6.3. This confirms that no parallel tasks were being created by GRIP.
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Figure 6.3: GRIP activity chart forfib program
Finally, the aggregated report for all processor activity in GRIP is analysed and seen in

figure 6.4. Figure 6.4 shows that GRIP was 5% busy and 95% idle during the execution

of this program.
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Figure 6.4: GRIP activity chart forfib program

The results of this experiment show that the current GRIP environment does not use
the strictness analysis technique, baly uses annotations embedded in the program to
create new parallel taskS'he program sent to GRIP executed on a single processor
only, rather than on many processors as would be expected when strictness analysis is
used. Therédnave been no reports that the strictness analysis technique does not work,
so it is suprising that the method for harnessing parallelism seems to have changed since
GRIP was first envisaged. Peyton-Jones considers that strictness analysis is still the
best way forward but, in the short term, annotations are an easier way to harness

parallelism [32]

For a second experiment, another version of fibonacci was created using GRIP
annotations in order to harness some parallelism[Hammond91b]Hammond and
Peyton-Jones describe some of their early work using GRIP for executing parallel
programs and show the results of some simple experimental programs such as a parallel
fibonacci program and a parallel 8-queens prograhe results are somewhat erratic
and they conclude that "some kind of dynamic thread control is necessary to control
excess parallelism in the fine-grained cada"[Hammond9la]Hammond and Peyton-

Jones address some of the issues raised in their early Werther [Hammond91b]
nor [Hammond9lakuggest how the annotations are used or how tasks should be

created at the source program level.

[32] Personatommunication from Peyton-Jones
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To harness parallelism on GRIRe annotatiopar must be used, such that:

par new expression = expression

Thepar annotation causes the expressiew to become a new parallel task which is
then sent to a task pool. The expresseapression is evaluated on the current
processar The returned value isxpression ; the annotatiorpar is only used to

create new parallel tasks. For example:
par small big

would send a small task to the task pool and evaluate a big task on the current processor
If the big task needed to be split into smaller tasks, then it would needpaore

annotations to create the new tasks.

The aim of the second experiment was to devise some annotations that would create
many new tasks in the task pool. This approach was taken in order to maximise the
amount of parallelism available in the fibonacci program. Using annotations, the

following function was devised:
twopar fa b = par a (par b (f a b))
Thetwopar function creates two taska, andb, to run in parallel and appliefs to

the results on the local processdysing thetwopar function, the new version of

fibonacci is:

fibTP :: Int -> Int

fiboTP0O=1

fibTP1=1

fibTP n= (fibTP (n-1)) ‘padd’ (fibTP (n-2))

padd = twopar (+)

main _ = show (fibTP 30)

The results of processor activity from GRIP are seen in figure 6.5.
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Figure 6.5: GRIP activity chart forfiboTP program

Figure 6.5 shows that out of the 120 seconds of execution time, 43% was spent

evaluating, 49% was spent idling, and the rest spent in system management (doing tasks
such as garbage collection). The results of the parallel task creation are seen in figure
6.6.
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Figure 6.6: GRIP task creation chart fofibTP program

The reports from GRIP show that thousands of new parallel tasks were created.
Although the number of new tasks and the time spent creating these tasks was very
high, the percentage of time evaluating the tasks was relativelyTibarefore, having
too many small parallel tasks caused GRIP to spend a disproportionate amount of time

in task creation thus leaving less time for task evaluation.

These results led to the next experiment, in which two functions were devised to

create fewer parallel tasks. First:
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onepar' fab = para(fab)

which spawns a parallel taskand returng a b as aresult. Second:

onepar’fab = parb(fab)

which spawnsb as a parallel task and returhsa b as a result.Using just the

onepar’ function, a new version of fibonacci was written:

fibOP :: Int -> Int

fibOP 0 =1

fibOP 1 =1

fibOP n = onepar’ + n2 (fibOP (n-1))
where

n2 = fibOP (n-2)

main _ = show (fibOP 30)

The aggregated results for the processor activity from GRIP are seen in figure 6.7.
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Figure 6.7: GRIP activity chart forfibOP program
Figure 6.7 shows that the execution time was 73 seco@dflghis, 72% was spent

evaluating, 14% was spent idling, and the rest spent in system managéhentsults

of the parallel task creation are seen in figure 6.8.
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The results of the experiment using fi®OP definitions showed that less tasks

were being created. The effect of this is thatfth®P program executed faster as a

larger percentage of time was spent evaluating rather than creatingAastparison

of the results of the last two experiments can be seen in table 6.1.

Total time | EVvaluation time Idle time Other time
Program
seconds %age| seconds| %age| seconds %age seconds
fibTP 120 43 51.60 49 58.80 8 9.60
fibOP 73 72 52.56 14 10.22 14 10.22

Table 6.1: Comparison of speed betwddTP andfibOP

In table 6.1, attention is drawn to the number of seconds spent evaluating. The program

that created more parallel tasks took 120 seconds to complete but spent only 51.60

seconds evaluatingHowever the program that created less parallel tasks took 73

seconds to complete and spent 52.56 seconds evaluating. This shows wigat a lar

overhead creating tasks can be.

Once it was established that the parallel annotations had to be used with care, it was

then possible to write some parallel versions of well known functions. For example, a

parallel version omap can be written as:
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pcons = onepar” (%)

pmap f ] =[]
pmap f (h:t) = (f h) ‘pcons’ (pmap f t)

Using this definition(f h)  executes on the current processor \itiiap ft  being

sent to the task pool for further parallel evaluatidhis parallel version of map was put

into a bigger test program. The results of this experiment were that the GRIP run-time
system failed. The assumption was that the annotations had been used incdrhectly
actual problem (according to Kevin Hammond, the GRIP system administrator) was due
to some bugs in the GRIP system garbage collector which were being tracked down at
that time. According to Clack, one of the original designers of GRiB version of

pmap causesspeculative parallelism because every new task with a calpraap

causes yet another new task to be created. Any task placed in the task pool is a
guarantee to the GRIP system that the task needs to be evaluated. Therefore, the
concept of lazy evaluation does not apply to tasks, even though one may expect laziness

in a system that evaluates lafynctional languages. Clack states that the expression:
head (pmap id [1..])
will cause an infinite computation.

Although the fibonacci experiment highlights the pitfalls of annotations, it does not
reveal much about the behaviour of large applicatiofgrther medium-sized test
programs were sent to GRIBut these too failed to execute. During this research, the
GRIP run-time system was being developed to use annotations and to utiliszendif
abstract machine from the one originally document&tis meant that GRIP was

unstable at times.

6.3. OtherReported Experience

This section summarises other reported use of parallel identification techniques.
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6.3.1. Useof Compiler Detetected Parallelism

Some early work on using compiler detetected parallelism through strictness
analysis was presented by Goldpen [Goldbeg88]. This paper describes the
Buckwheat system, which is a working implementation of a functional language on a
commercially available multi-processor machinBy using strictness analysis at
compile-time and various scheduling strategies at run-time, Gglddeowed

impressive speed-ups as extra processors were added to the system.

A recent system that uses compiler detected parallelism is the DIGRESS system
[Clack92]. DIGRESSs an architecture for executing parallel functional programs on a
network of workstations. Each workstation has one (or nji@8§) processing element,
which communicates via a purpose built communications sub-sy$@&mosh9l].
DIGRESS is intended for coarse-grained parallelism and its expected use igdor lar
functional applications. Because the load on workstations can vary dramatically and
because DIGRESS does not expect sole use of the workstation, various strategies for
run-time scheduling, load balancing, task size evaluation, and task partitioning have
been devised. No results have been reported for DIGRESS, but a workload synthesizer

and simulator have successfully utilized the communications sub-system.

Boyle and Harmer recently presented work which uses a functional language to
harness parallelism on a CRA-MP vector processofBoyle92]. Theprogram was
used to solve some problems using partial differential equations. The language they
used for the program was pure LISFhe LISP program was automatically transformed
into CRAY Fortran using the TAMPR transformation system. TAMPR system used
domain dependent, domain independent, and hardware dependent phases to produce the
Fortran. TheFortran that was generated was not intended to be human readable, but
was produced as a notation to inform the hardware how to perfbhia.is because the
Fortran compiler produces very efficient vectorizing code on theYCHAe results of
Boyle and Harmeés work show that their functional program was faster than a hand

coded Fortran program written to solve the same problem. This highlights how

[33] Thereasons for running more than one processing element on a single processor worksta-
tion are discussed in Parrstthesis [Parrott93].
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compiler detected techniques can be beneficial for data parallelism.

6.3.2. Usef skeletons

Skeletons address the issue of mapping common algorithmic structures onto an
underlying machine without the programmer having to know the details of that

machine. Therogrammer may imagine that a set of composed functions, such as:

¢ - g- h-i - jdata

could execute on a parallel machine, with each function on a separate processor creating
a ppeline of functions with data flowing from one processor to anotimereality this
depends on the complexity of the functions and the type of the data, but it does not stop
the programmer thinking about the composition as a pipelihkerefore, the
programmer may imagine that each of the composed functions is placed terendif

processar This is seen in figure 6.9.

cpu cpu cpu Cpu cpu

«——— data

results -e—— f

A

A
>
A
[
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Figure 6.9: A pipeline of functions

Skeletons can address the expression of pipelines in an abstracTheagomposed

functions may need to be expressed as:

pipeline [f, g, h, i, j] data

to get the desired behaviour on a particular machinghis way the programmer can

express the ideas in an abstract notation without relying on low-level annotations.

For each environment, the skeleton foipeline may create code that is
amenable to compiler detected parallelism or the skeleton may be written using the
annotations for that environment. Therefore, the programmer is insulated from using
the annotations. It may be that the compiler makes decisions about which actual

skeleton code to use depending on the size of the functions and the type of the data.

196



This is possible even when the programmer uses the same skeleton in the same
program. Inthe paper "Structured Parallel Functional Programmifizgrlington91],
Darlington et. al. suggest that other common structures for programs (such as divide and
conquey meshes, lattices, and farms) are useful. They state that one of the advantages
of using skeletons is that they may be transformed using standard functional
programming transformation techniquddsing this mechanism, they demonstrate how

to transform a program which uses one skeleton into an equivalent program which uses
a dfferent skeleton. The example shown converts a mergesort which uses a divide and
conquer skeleton into a mergesort which uses a pipeline skeleton. This technique
further enhances the power of parallel functional programming as using skeletons frees
the programmer from the burden of understanding the underlying machivese
transformations can be done silently by the compiler and improve the performance of

the program.

In [Cole90], Cole presents a skeleton for divide and conqit dso defines the
iterative combination skeleton, which combines elements in a set of objects if the
elements are considered to be good partners. Each iteration over the set reduces the
number of set members until there is just one mem@Bete shows how this can be
used to describe a minimum spanning tree algorithm. Cole also defines the cluster
skeleton which, by his own admission, is a solution in search of a problem. This arose
because it was designed from the hardware up. Once the cluster skeleton was designed,

there were no obvious algorithms in which to use it.

In [Darlington91], skeletons are presented in which the aspects of process
granularity interconnectivity of processes, and process placement are made explicit.
These skeletons are low-level specifications of parallelism but are still more abstract
than annotations because they can still express whole parallel stru@aréagton et
al. state that a low-level skeleton may assume that each function supplied as an
argument corresponds to a distinct process, and that each process may be allocated to
adjacent processors with a single communication link between each stage. These low-
level skeletons are an attempt dtogéncy on certain machine architecturétowever,
they lose the flexibility of the more abstract skeletons, which just address structures of

computation, and leave the choice of efficient execution techniques to the coripiler

197



the programmer does not fully understand the underlying machine, he may use the low-

level skeletons ineffectively.

Darlington et al. also present more abstract skeletons which can create as many
processes as required. They observe that for many algorithms neither the inter
connection between the processes nor the placement of tasks can be determined at
compile-time. Theytoo, present a set of skeletons including divide and conoene
skeletons, such as Kely/'Caliban notation[Kelly90], are used to express process
networks which can then be parallelized. However ZARch uses a divide and
conquer strategy for parallelism, only has a divide and conquer skeleton
[McBurnley90].

Most skeletons have been devised for creating process parallelism; that is, separate
tasks execute concurrently to solve a probléfowever Jouret has suggested skeletons
for data parallelism [Jouret91] which express parallel computation over large data sets,
such that one operation is applied to every data item at dioceet shows the benefits
of functional programming for data parallel computation and how his skeletons allow an

abstract expression of this kind of parallelism.

If a system needs parallelism to be indicated by the prograntineer skeletons
seem very suitable.They express abstract structures of computation which the
programmer may already have in mind. Another benefit of skeletons is the ability to
transform from one skeleton to another in order to achieve the misiereaf
implementation. Howevens &eletons have only been produced for a few well known
sets of solution strategies, when a new solution to a problem is found, there may be no

suitable skeleton and, consequemnly parallelism may be harnessed.

6.3.3. Useof Annotations

In this section there is a discussion of the results from parallel functional systems

that use annotations to harness parallelism.

Some of the earliest uses of annotations in parallel functional languages were seen
in [Hudak85]. His paper addresses the issue of explicitly stating the mapping from

program to machine using annotations that indicate on which processor to place a task.
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This static mapping was considered uninteresting, so a function was devised which
returned the current processor id and allowed the id to be manipulated in order to create
new processor id. Thisfunction could then be used in other functions in order to
determine on which processor to place a newly created task and to create programs that
could execute on machines where the processors were either tree structured or in a
mesh. Theannotations were used to create parallel versions of factorial and a matrix
multiplication. Howeverthe programmer has the burden of stating on which processor

a task must execute.

Using annotations for more than just task creation is considered by ReedB9].

This paper presents a quicksort program which can be expressed as:

gsort [] =[]
gsort (s:rest) = gsort [e | e<-rest, e<s]
++ [s] ++

gsort [e | e<-rest, e>=g]

When successive changes are made to the quicksort program by adding annotations and
rewriting sub-functions, different parallel behaviour is achiev@d. achieve task
partitioning, the sampar annotation as the one used in the GRIP system is placed in

the program. This produces parallel version of quicksort:

psort ] =[]

psort (s:rest) = (par glo . par ghi) (glo ++ [s] ++ ghi)
where
glo = psort [e | e<-rest, e<s]

ghi = psort [e | e<-rest, e>=3]

This parallel version loses the clarity of the original but is still recognizable as

quicksort.

Roe observes that this version of quicksort will create parallel tasks which attempt
to evaluate the expressig@sort [] . The creation of these tasks causesfitieht
execution. © avoid this, mechanisms to control the size of a task or to delay creating
new tasks are presented. The size of a task is determined by counting the size of the list

passed as an gument. If the list hasenough elements, then tasks are created;
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otherwise, the current task evaluates the [&h. delay the creation of a task, some
heuristics are suggested which are attributed to Hughes (but no reference is given).

Using these heuristics, the following version of quicksort is presented:

gsort | =hsort | ]

hsort [] I =11

hsort (s:rest) | = seq sl (slo ++ [s] ++ shi), length | <k
where
slo = hsort [e | e<-rest, e<s] (I++[shi])

shi = hsort [e | e<-rest, e>=s] []

= (parp . seqslo) (slo ++ [s] ++ shi), length | ==
where
(p:ps) =1
slo = hsort [e | e<-rest, e<s] (ps++[shi])

shi = hsort [e | e<-rest, e>=s] []

This version is rather contrived, making the final result a program in which the clarity of
the original and the essence of quicksort is Ig#t]. It would be difficult for the
average programmer to write programs in the resulting style on a regular Bgsis.
writing functions such that their meaning is obscured, there is a good chance that the
maintenance costs will be highdfurthermore, it may be practical to spend this amount

of time on a 2 line program, but not on a many thousand line program.

In his conclusions, Roe states that in order to achieve speed-up, a parallel program
must make efficient use of a parallel machine and that in order for this efficiency to
occur, parallel programs must explicitly control certain aspects of parallelism, notably

task size and the re-evaluation of expressions. Although this may be true, it is debatable

[34] Thisprogram also uses tlseq annotation, which is defined as:
seqab=hb
and evalutes and then returnis .
Neither a definition fok nor an expression for the case wiemgth | > k was given.
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if programmer intervention and hand-placed annotations are the best method for
achieving such étiencies. Roaloes observe that the embarrassing lack of empirical
studies using real programs and data prevents one from identifying thefimah@f
issues in parallel functional programminglowever to conduct empirical studies on

these yet-to-be-written programs requires decent measuring tools, of which few exist.

Work done at the University of Nijmegen revolves around a technique called
Communicating Functional Processes and the language Concurrent Clean, which is an
intermediate language between functional languages and parallel machines
[Eekelen89]. In [Eekelen90], the use of annotations is described and there is a
discussion on parallel functional programming which is similar to thafRioe89].
Eekelen observes that using annotations for parallel partitioning can create tasks which
do little work and he suggests techniques that are similar t@ Roe’der improve the
task’s workload. Amethod similar to Roe’is dso devised for controlling the size of a
task by limiting parallelism if the amount of data passed to a function is sEekelen
also proposes a technique called interleaved processes, in which a process spawns a new
task for execution on another processaluates some expressions on the current

processqrand then combines the results.
Eekelen presents two annotations. One is for creating a parallel task, such that:
PAR expr

causeexpr to be evaluated in parallel. The other is for evaluating an expression on

the current processoirhis is achieved by:
SELF expr
By combining both annotations, interleaved processes can be created. Eekelen suggests
that a construct, such as:
SELF exprl ‘op‘ PAR expr2
will do the interleaving.

Although the annotations of Concurrent Clean and GRIP aieretit, there is an

equivalence between therkekelens interleaving construct can be written using GRIP
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annotations, such that:

SELF a‘f PARD == parb (fab)
and:
PAR a ‘f* SELF b == para(fab)

These GRIP definitions may look similar because the first equivalence is the same as the
definition onepar” and the second equivalence is the same as the definition

onepar’

In both Roe and Eekelen, there is a discussion on how annotations can be used to write

skeletons such as divide and conquer or pipelines.

6.4. Reviewof Parallelism in Functional Programmming

Much of the work in parallel functional programming is experimentation with small
parallel programs and little is being done witlgaparallel programsl. believe that, in
general, parallelizing should be done on a macroscopic scale rather than on a
microscopic scaleThis is because machines are becoming smédister and cheaper
with larger, faster and cheaper memory and higher comms bandwidth (no one will
really parallelize a program to sort 50 numbers on new machines; this is a hangover

from the past).

Different institutions are using tkfent languages which causes fragmentation of
research. Furthermoreach institution has its own specialized hardware which merely
exacerbates the situation. This means that any work done at one institution cannot be
consolidated easily because the programs have to be rewritten either ferantdif
language or with different annotations / skeletoHsaskell [Hudak88]s an attempt to
address the language issue, but this is happening slowly and high quality compilers are
only just appearing.There seems to be no common ground for the specification of
annotations / skeletons. Having few machines available probably limits the growth of
parallel functional programming. In addition, the consequence of relying on
specialized hardware limits this growth even morer@viken [\fanken90] reviews

hardware for parallel functional programming).
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Data parallelism through the use of vectorization is being successfully used in the
Fortran world to get data parallelism easiljhis has been seized upon by Boyle and
Harmer who have written functional programs which execute faster on arGRAtor
processor than hand written Fortran programs which do the same Rasktional
programming for data parallelism has been addressed by Hill in his work on Data
Parallel Haskell[Hill92], and by Jouret in his work on skeletons for data parallelism
[Jouret91].

In this section there is a review of the investigation into parallel functional
programming. Muclof the review regards GRIP because it was on this system that
most exposure was gained to parallel systefiee GRIP system is the only accessible
parallel environment available for experimenting with functional programs, so the
original designers at UCL and the current developers at Glasgow are to be congratulated

for this acheivement.

6.4.1. Reviewof GRIP

The results of using the GRIP machine to experiment with annotations in various

programs shows that:

(i) toomany parallel tasks slow down the computation because too much time

Is spent managing tasks rather than evaluating tasks. For example:
f p arallel_task parallel_task
does not seem to be an effective use of parallelism, whereas:
f | ocal_task parallel_task
proves better Therefore, more parallelism does not bring more speed.

(i) annotationsseem to be an ineffective way to harness parallelism. In the
fibonacci experiment, it was possible to test various placements for
annotations to get the best results, but in a large application this would not
be feasible.Without a thorough understanding of the whole program and
the environment in which parallelism is to be used, it iBcdit to decide

where the annotations for parallelism should be plagdedin other areas,
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experience can be gained by building a body of knowledge. But for general
use, a programmer should not need to be an expert in order to get

parallelism.

(ii)) without an understanding of the run-time system and how the annotations
work, any annotations that are used to optimise some parallel performance
could be undone by changes to the run-time systEmat is, annotations
are very specific to a machine and run-time system; they are not portable to
other systems and may not be effective if a change is made to improve a
feature of the run-time systeniherefore, annotations are only useful on

one machine and one version of its run-time system.

From these simple yet enlightening experiments, the question has to be asked "what
is the result of 6-7 years of research into implicit parallelisnifZdnnotations can go so
wrong, why should any other technique be rejected without a thorough investigation?
As stated, Peyton-Jones considers that strictness analysis is still the best way forward,
but in the short term annotations are an easier way to harness parall&li&m.
conclusions drawn from this investigation are that, in order to use annotations
effectively, one must be restricted to one machine and one run-time system. One must
also learn the peculiarities of the annotations, because annotations are not necessarily
portable to other machineslowever this machine dependence runs counter to one of
the main arguments for using functional programming, namely that functional programs
are independent of any machine architectiienctions are a declaration of work to be
done rather than a sequence of instructions for a maclHaoef there is a machine
independent program, why add machine specific annotati@msthe evidence of both
Goldbergs work on Buckwheat and the use of GRIiie only way forward is to do
further research into implicit parallelism by finding ways to improve task management

techniques.

Relying on Purpose-Built Hardware

In the paper "Some Early Experiments on GRIP" [Hammond91b], Hammond and

Peyton-Jones present a table of timings for the program nfib:
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let
nfib n = if (n<2) then 1
else
let n1 = nfib (n-1)
in

par nl1 (nl1 + nfib (n-2) + 1)

show(nfib 30)

In table 6.2, the speed of GRIP with various configurations of processors is compared

with the speed of some Sun workstations.

Configuration | Time (in secs)| Speedup
Sun 3/50 76.3 1.00
Sun 3/60 59.6 1.28
Sun 3/260 47.9 1.59
GRIP (1 proc) 75.0 1.02
GRIP (3 procs) 27.3 2.79
GRIP (6 procs) 14.3 5.34

Table 6.2: The speed of GRIP compared with the speed of Sun workstations

The GRIP processing elements use the same Motorola MC68020 microprocessor as
a n 3/50, which explains why a GRIP with 1 processor is about the same speed as a
Sun 3/50. Hammond and Peyton-Jones observe that there is a near linear speed-up
when using multiple processors on GRIFhey state thanfib 30  does 2,692,537
function calls, which means a GRIP machine with 6 processors did about 188,000

function calls a seconfi35]. Theyalso state that, with a hand-tuned version of nfib,

[35] Thisis evaluated by dividing the number of function calls by the total execution time, i.e.
2,692,537 /14.3 =188,289.3
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they managed to speed up from 17 times using 20 processors. It can be calculated that
the program took 4.41 seconds and that GRIP did 610,552 function calls a s€bmnd.

may seem impressive for a multi-processor Motorola 68020 machine, but the latest
workstations from Sun, such as the Sun 10 workstation, are 60 times faster than a Sun
3/50. If one were to extrapolate the figures to a Sun 10, one can calculate that the
program would take 1.27 seconds to execute and that there would be 2,120,108 function
calls per secondTherefore, the latest workstations, which cost about 6,000 pounds,

could run programs faster than a 20 processor GRIP.

This highlights the problem of using purpose-built hardware as opposed-tbe‘of
shelf" technology The techniques devised for GRIP are reliant on GRIP being
available and working. If GRIP is not available, or fails to work, the experiments and
investigation are seriously held up until a new machine arriveg may take years if
the machine is purpose-builtf the investigation into GRIP had used ftdie-shelf"
technology then the techniques could be moved over easily when newer and faster

machines arrive.

The gestation period of GRIP has been so long that it has been superseded by a
single workstation.This leads us to question whether the techniques discovered (and

those yet to be discovered) are suitable for:
i) only GRIP
i) singlebus machines with multiple processors
iii) any multi-processor system

In the past, special purpose machines, for example Lisp machines, have been
superseded by general purpose workstations as the workstations became increasingly
faster The lesson learned is that a number of large hardware manufacturers can build

faster machines more quickly than a few small manufacturers.

In [Hammond91b],Hammond and Peyton-Jones discuss fine control of the
machine. Itseems some of their problems are related to the way the task pool is
managed on GRIPIf a new task is created (sparks in GRIP-speak), then it is forcibly

sent to a global task poolhis clearly has severe overheads if the new tasks are small,
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and their paper discusses some of the issues regarding small Raskesxample, one
scenario they consider is the evaluatiorEef+ E,. Suppose the parent sparks and

then discovers thdf, is quick to evaluate or needs no evaluatidhe parent then goes

to evaluateE, but discovers that it is unable to because another processor is currently
evaluating E,; or that, even though no processor is evaluatifig there was a
considerable cost in sendirtg; to the global task poolin other systems, such as
DIGRESS, when tasks are created they are sent to the local task pool, which has less

overhead.

In the scenario oE; + E,, if E; were made into a new task on DIGRESS, it would
be placed in the local task pool at minimal cd$tE, were evaluated quicklyhen E;
would be available from the local task podt; would only be evaluated by another
processor if, at the timE, was being evaluated, another processor had requested some
work andE; happened to be the first task in the local task pool and the local processor
was the heaviest loaded. Parrott observes that DIGRESS can be swamped with new
tasks with little degradation in performance because new tasks go onto a local task pool
[Parrott93].

If there needs to be more control of the machine,as Hammond and Peyton-Jones
suggest, why does GRIP only provide two annotations, namely par and Beg@nly
allows the spawning of new processes. Why not devise a declarative framework for

task management?

6.4.2. AQuestion of Maintenance

Annotations force the programmer to change his code to indicate where new
parallel tasks should be. Under the UNIX system, the programmer has no say in matters
which were (and still are), in some systems, considered essential for the programmer to
control. Thishas not been detrimental to thdeetiveness of UNIX as an operating
system. Soméusually mainframe) systems require the programmer to state how much
memory their program will use, how much 1/O it will perform, and how long it will run.

If these limits are exceeded, the program staplX has clearly demonstrated that it

is not essential to specify these limits, ratites desirable from the programnigipoint
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of view not to specify them. Better systems, not programmer intervention, will solve

the issue of the effective harnessing of parallelism.

One of the biggest issues in the software industry at present is that of maintenance
and debugging. As programs gefglar and more complex the cost of maintenance rises
sharply Functional programming is of benefit here as programs can genuinely be built
as machine independent black boxes, whereby the complexity of the source code can be
reduced and therefore maintenance can be made simpléhe complexity of a
program is increased by adding parallel annotations, the maintenance task will not
become easier but more difficult and castlypelieve that using a language where there

are no annotations and where the code is more readable is beneficial.

In the long term, | think one should contrast / weigh-up the cost of maintenance
with the cost of absolute speethat is, if one adds annotations to a program in order to
make it more dicient on a parallel machine, what is the cost of adding these
annotations and what is the cost of the extra maintenawi#zhe extra speed-up be
worth the extra incurred costsl® it cheaper to buy a faster machine? If optimum
performance is not the ultimate goal, then there is not the cost of addindgdienef
enabling annotations and the maintenance costs are. |dw®mv much slower is a
program compiled with strictness analysis than a program with annotations? Is the
difference worth the extra cost of maintenancBf?e elegance and correctness of

functional programs could outweigh any run-time difference.

6.4.3. Advantages and Disadvantages of Compiler Detected
Parallelism

The advantages of compiler detected parallelism are:
i) codeis portable as there are no environment specific dependencies

i) no changes to the code are required and so there is no human intervention

in the parallelizing process.

iii) parallelismis found automatically
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iv) parallelismis dependent neither on the programmer knowing fixed parallel
structures (as in skeletons) nor on the programmer thinking he knows

where the parallelism is (as in annotations)
The disadvantages are:
i) compilerdetected parallelism through strictness analysis can be very slow

i) the resulting program may not utilize the machine as much as programs
with hand written annotations in which the programmer may know a
significant amount about the parallel properties of the algoritkivith
compiler detected techniques, the programmer is unable to specify where

parallelism should occur

Implicit parallelism using compiler detected techniques and task management can
be beneficial as shown by Goldgen the Buckwheat experiment$iowever it is not

clear if compiler detected techniques alone are sufficient.

6.4.4. Advantagesnd Disadvantages of Skeletons

Using skeletons, general structures of computation can be specified which cause
tasks to evaluate in parallelt has been seen that parallelism has to be designed into a
system because parallelism is not easy to harness in all algorithms due to data
dependencies. Skeletoaow the programmer to express where parallelism occurs in
an algorithm through abstract ideas such as pipelines, lattices, divide and cetequer
The skeletons are compiled into efficient code depending on the actual type of hardware

used.

Skeletons are amenable to automatic program transformation techniques which can
convert one skeleton type into anothérhis allows the programmer to specify a
skeleton type and to have the skeleton transformed into one that can be executed
efficiently on a machine. Some skeletons are independent of any machine environment
while others are tied to a machine such that they become non-poriabtae
researchers use skeletons that make explicit the issues of process gramui@rity

connectivity and process placemerfiDarlington91]. Theirtechnique is more abstract

209



than annotations but still too low-level for the applications programfresenting the
programmer with high-level skeletons which hide low-level features is required in order
to provide machine independent parallelism. These high-level skeletons are portable
because they can be written in terms of low-level skeletons or annotations on each
different machine. It is important to remember that the programmer may not fully
understand the workings of the underlying machiée is to program using low-level

skeletons, then he may make mistakes which cause poor behaviour from the program.

Skeletons exist for only a few well known algorithmic structures. Consider the
graph manipulation functions presented in chapter 4. As there is no standard functional
solution to creating and visiting cyclic graphs, there is no skeleton by which graph
manipulation algorithms can be parallelizefire we to tell functional programmers
who have large graphs that they cannot have parallelism? Furthermore, as the graph
manipulation techniques are complex and have not yet been fully analysed, the source
of parallelism is not yet obviousTherefore, implicit techniques for harnessing

parallelism still seem the best way forward for many algorithms.

Skeletons have the disadvantage that changes have to be made to the source code in

order for parallelism to be harnessed, unless they are used from the design stage.

6.4.5. Advantagesnd Disadvantages of Annotations

Although the annotations of Nijmegen ardealiént from those on the GRIP system,

both systems use annotations that have basically the same attributes.
The advantages of using hand-coded annotations are:

i) it is possible to get effective parallelism by matching the granularity of the

tasks with the granularity of the machine.

i) it is possible to acquire a deeper understanding of how an algorithm
parallelizes by experimenting with the placement of annotations and

analysing the run-time behaviour in detalil.

The disadvantages of annotations are:
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i) theyare not portable; each machine/system may haferelit annotations.
The annotations will be written for only one machine and may have to be
rewritten when porting to a different machin€his is because annotations
are associated with some underlying environment, for example.GRIP
Therefore, a program which has the parallel annotations of GRIP will not
run in a different parallel environment, such as the one suggested by

Nijmegen, and vice-versa, unless all the annotations are changed.

i) they can cause the program to have poor parallel behaviour; the
programmer may misunderstand how they work or not understand enough
in order to use them correctlyrhe programmer needs to understand the
underlying machine, the run-time system, and how the program will be
evaluated by that system in order for the annotations toféetieé. The
model of functioning programming and the rhetoric behind it generally

discourage this knowledge as it is meant to be unnecessary.

iii) their effectiveness mape reduced if the abstract machine implementation

changes.

iv) they go against the grain of functional programming because they (a) tie

you to a particular machine and (b) involve changing the source code.

It is assumed that the programmer (a) knows where the parallelism is, and (b)
knows how to add annotations to harness the parallelism. For there téetivef
parallelism using annotations, both (a) and (b) have to be true. There is no evidence
that one follows the otherf the programmer does not know where the parallelism is,
then one must consider howesftive he will be at accurately placing annotations in the
program. Fosmall programs it may be easier to have a full understanding of the whole
system, but for lare programs where there may be only minimal knowledge of the
system, and placement could bdidiflt. If a gmall set of hand placed annotations seem
to harness enough parallelism, why not place them automatically after a small amount

of analysis?

Peyton-Jones has commented that if one uses annotations in a program and then

transforms this program, then the transformer doelembow what to do with the
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annotations. believe the use of annotations together with program transformation is
contradictory One would only use annotations for explicit speed-up on a certain
machine. Ifa program transformer could transform away any usefulness of the
annotations, as Peyton-Jones suggests, then the use of annotations and program
transformation together is of no value. Peyton-Jones recent idea is to have special
combinators to affect run-time behavio{86]. Irrespectiveof the advantages and
disadvantages of annotations, it does not seem beneficial to hand place annotations in a
many-thousand line program. Therefore, annotations may be effective for
understanding the nature of how a certain reduction mashinetime system behaves

with small programs, but they are not effective for large programs. Thus, a big gap
exists between the use of annotations for harnessing parallelism and the requirements of

application programmers.

The techniques of compiler detected parallelism, skeletons, and annotations have
the same goal but use different approachesthe parallel functional programming
world at present just one technique is chosen for harnessing paralldlisray be that
future systems use combinations of them, and so there seems no need to reject any of

them as unsuitable. Figure 6.10 shows how these three techniques are related.

6.5. ParallelApplications

Parallel computers are now in regular use at Caltech (The California Institute of
Technology) for several major scientific calculatioff®x89]. Thissection contains a
list of the types of applications undertaken at Caltech — first, because they are typical of
the sorts of problems that are run on a parallel machine and second, to contrast with the
programs that have been run and reported on parallel, graph reduction mathiaes.

types of applications reported at Caltech are:

+ |attice monte carlo simulations

[36] Personatommunication
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nothing in code
compiler detected parallelism
+ task management

high-level skeletons

low-level skeletons

annotations in source language
e.g. GRIP with Haskell

annotations in intermediate
language e.g. Concurrent CLEAN

less machine
specific, i.e. more
portable

more machine
specific, i.e. less
portable

more abstract

less abstract

Figure 6.10: Layers of abstraction in parallel functional code

» subatomic string dynamics

e high T, superconductivity

« exchange energies iAe® at a temperature of 0.1mK

e astrophysical partical dynamics
» astronomical data analysis

e guantum chemistry reaction dynamics

* grain dynamics by lattice gas techniques

e computer chess

* ray tracing in computer graphics



* kalman filters
* plasma physics

Work on adding annotations to guicksort or fibonacci program will not

impress the people that need high volume parallel machines. It is clear that the
implementors of programs on parallel graph reduction machines are not addressing the
Issues that need to be addressed in order to render these machines acceptable in parallel

programming environments.

Boyle and Harmer are unique in reporting a large parallel application written in a
functional languagdBoyle92]. Theirapplication to solve partial differential equations
ran faster than a hand-coded version written in FortrRar parallel functional
programming to advance, more serious parallel applications have to be wAittEod
start may be a highi, superconductivity program, which Fox saysembarrassingly

parallel. Surely, parallel functional programming techniques can do well here.

6.6. Summary

There seems to be little evidence that compiler detected parallelism and task
management does not work even though it is accepted that the strictness analysis can be
very slow and that task management may not utilise the machine to its fullest capacity
when compared with handcrafted annotatiodswever this approach is appealing for
large applications which may need to be portable because the programmer does not
need to know anything about the underlying machine. Furthermore, it seems
contradictory to have a high level declarative language and then add low-level machine
specific annotations. It has been seen that both Boyle and Harmer and @oldber

successfully used compiler detected parallelism.

If the programmer needs or wishes to intervene, skeletons seem a better choice than
annotations because skeletons allow the programmer to express structures within a
program without knowing much about the underlying system. Skeletons can be made
portable by writing the code for them on each parallel machine. Skeletons have an

advantage over strictness analysis in that the programmer can say where some
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parallelism occurs, which is not possible with strictness analysiaotations seem the

worst approach to harnessing parallelism from the view point of the large applications
programmer They are specific to each machine and, therefore, not portable. They must
be hand placed and the programmer must understand the specifics of the behaviour of
each placed annotation. The advantages of annotations are that they can be manipulated
to obtain high performance from a parallel machiAs.stated, this is fine for short test

programs but unsuitable for large applications.

This thesis proposes that strictness analysis at compile time and task management at
run time is the most appealing solution in genefd. machines get faster and cheaper
and memory gets larger and cheaplee cost of processor time for task management
will become insignificant.Researching strategies for task management seems to be the
way forward [Parrott93]. Furthermoreit is my belief that the programmer should
accept a bit of inditiency in the system and not try to manipulate the program until it is
perfect. Foxobserves that parallelism is easier to harness when a problem has a regular
decomposition; Boyle and Harmer show that this is even true for functional languages.
However for problems with an irregular decomposition he notes that the efficiency of
parallel machines is lawvith an N-CUBE achieving 50% efficiency and a CRénly
5% eficiency He dates that, on average, the CRAX-MP at Caltech achieves an
efficiency of just 12% for all problems. He concludes that there is too high of an
expectation of efficiency on parallel machinds it is clear that no parallel technology
is achieving neat00% eficiency, the benefits of parallel functional programming can

be evaluated without expecting a linear speed-up for all applications.

Limiting factors in the consolidation of research into parallel functional

programming have been:
i) thereliance on special hardware
i) thelack of proliferation of the special hardware
iii) the lack of tools for generalized hardware

To overcome these problems, systems such as DIGRESS have been designed.
DIGRESS is an experimental system for running functional programs in parallel on a
network of workstations (although this is not the only architectiéth DIGRESS,
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more exposure to writing and executing parallel functional programs can be obtained.

The criticisms in this chapter are based on the usability of parallelism harnessing
techniques from the view point of the applications programribe recommendation
for further work is that more effort needs to be expended on skeletons and strictness
analysis, which both retain the high level properties of programs, rather than fiddling
with annotations, and that more real applications be used as test cases when testing the

techniques for parallel functional programming.

It is interesting to note that ifHudak84], Hudak states that DAPS (Distributed
Applicative Processing System) is aimed at Al systems. Hudak states that Al programs
do not execute efficiently on supssmputers and DAPS would be tailored especially
for Al programs. No generally available working system has appeéredclear that a
parallel version of OPS5 could not have been executed for this thesis, irrespective of the
kind of matcher used.The only parallel machine available, GRIRould not
successfully execute much more than a simple test progwaiiough Stolfo
[Stolfo86] and RosenthaJRosenthal85] both concluded that implicit parallelism is
promising for obtaining more parallelism in a rule-based system than the previously
used approaches, obtaining such parallelism in a functional environment is not yet
feasible. Untiltechniques for harnessing parallelism in large, functional programs have
been developed and tested it is not possible to determine how best to parallelize a

functional version of OPS5.

In the report [Johnsson90], John Hughes asked the question: "Implementors, what
analysis would you want from us analysis designers to make your parallel functional
implementation run faster?" After this, Johnsson prints a list of items requested for
analysers. Clearlyhe time is right for the implementors to take their turn and ask
application builders: "What features do you want in a language or system in order to

harness parallelism in your application?"
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Chapter 7

7. Conclusions

In this chapter the discoveries of this work are presented together with a review of
the original goals of the research and a summary of the research issues. Suggestions for

continuing this research are contained in the section on further work.

At the start of this research it seemed that the need for parallelism in rule-based
systems could be met by the apparent suitability of functional languages for harnessing
parallelism. Howeverthis research has indicated that this need cannot be met at

present. Theonclusion of the work in this thesis is that:

Thee ae no fundamental limitations that prevent functionabgramming
from being used for lge applications such as rule-based systehigwever,

the envionment for building and executing functional programs needs to be
improved in order to addiss the limitations imposed by the immaturity of

current functional programming environments.
The contributions of this thesis are:

e a critical assessment of the suitability of functional programming
techniques for implementing large applications and rule-based systems in

particular.

» acritical assessment of practical state manipulation techniques in functional

programming.

* a large, working, application written in a lazhigherorder functional

programming language which does large amounts of state manipulation
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a critical assessment of the functional programming environment, with

suggestions for how the environment can improve.

the design, implementation and analysis of a tool for profiling tagher-
order functional programs. The tool measures function call count, time

spent in a function, and the heap space used by a function.

a critical assessment of techniques for parallelizinggdafunctional

programs.

This thesis has discovered that:

)

it is a non-trivial task to design and develop a rule-based system in a
functional language because of the requirements for state manipulation,
input and output, sequencing of operations, and complex data structures
and algorithms.Techniques had to be specially devised for the functional
rule-based system in order to deal with these specific requireniemits.
differs from an imperative environment which has some of these techniques
already built-in. The power and flexibility of the functional approach
allows the design and implementation of these techniques to be approached

in an organised and modular fashion.

i) someaspects of functional languages and their associated environments are

not always suited to large applications. Certain aspects are difficult to do in

a functional language, such as representing data structures such as graphs
or doing input and output from deep in an application. Other aspects
require either support from the functional language, such as a vector data
type needed to execute a rule-based systéoieatly, or better interaction

with the operating system.

iii) the lack of measurement tools is a hindrance for the developer gé lar

applications. Whout these tools it is impossible to observe or verify the
behaviour of algorithms and prograntfsurthermore, the lack of debugging
tools makes it impossible to fix a range of bugs which occur inside lar

programs.
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iv) the current facilities for executing functional programs in parallel
environments are not effective for der applications. The use of hand-
coded annotations may be fine for small programs but it is unsuitable for
large programs. Furthermore, there is a lack of parallel functional

machines on which programs can be executed.

7.1. Reviewof the Goals of the Research

In the introduction it was stated that when the 5 original aims have been addressed
it will be possible to determine if functional programming techniques are suitable for
harnessing parallelism in rule-based systems. In this section, these original aims are

reviewed in the light of the discoveries of this research.

Goal (i)
To wse functional programming techniques to implement a rule-based system.

In chapter 3 the design and implementation of a rule-based system was discussed,
and it can be concluded that a functional language can be used to implement such an
application. Thepower and expressiveness of functional programming is an aid in the
development of large applications. The ability to build abstractions and to use-higher

order functions is a benefit to the programmer.

A compiler for the OPS5 language was built using a framework of haylder
functions that closely represents a formal gramnvdith this framework, a parser for
any LL(1) grammar can be built and such a parser was built for OPS5 in this research.

The framework has also had extensive use in other applications.

An algorithm which is comprised of a description as an ordered list of statements
can be converted into a functional algorithm by converting each item of the description
into its own function. These functions are given their own data type and then combined

in a pipeline to form an algorithm expressed in a functional style.

The implicit state manipulation in imperative languages has the advantage that it

can be undertaken with relative ease. This is not the case in functional langliages.
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advantage of state in functional languages is stete must beepresented explicitly

and theefore the code must be designeds there is explicit control over which parts

of the state are passed and accessed, the negative issues of implicit state manipulation
and generally accessible global store are overcome. The disadvantage of state in
functional languages is thatate must beepresented explicitly and thefiore the code

must be designe® accommodate itAs all state is explicit, the program code can look
messy if an inappropriate implementation technique is chobeperative programs

look much the same when state is added because the state manipulation is implicit.

The requirement to store large amounts of state in a functional application can be
achieved by using an abstract data type for the state object. Access and update
functions are defined, which are of tyf¢ate — State These are combined in a
pipeline to facilitate state manipulation throughout the applicatotop-level function
can control the application of ea8tate » State function to get the desired behaviour
from the application.The misconception that functional languages are unable to deal
with state is held by many imperative programmers; the state manipulation undertaken

in this application is enough to prove them wrong.

The manipulation of both input and output has to be done with dai®possible
to write programs that hold onto all of the output until the end of a prograniTtus.
behaviour can be perturbing to the yseino would expect output to occur gradually

However the semantics of the program remain correct.

Goal (ii)

To analyse the functional rule-based system for inefficiencies and to then implement

efficient new algorithms or to transform old algorithms into engficient ones.

In chapter 4 it was seen that the tools available for analysing the behaviour of
functional algorithms and programs were non-existébst functional environments
report the behaviour of a program as the number of reductions and the number of cells

used. Thigells the programmer very little about the real behaviour of a prodBaimn

[37] Thisinformation is equivalent to driving a car that has no dashboard equipment. At the
end of a journey the car reports that there were 487,000 engine revolutions and that 690 litres of
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Furthermore, the number of reductions and the number of cells used differs on each

abstract machine.

To address the need for a tool to analyse functional programs, a profiler was
designed and builtThis profiler measures the number of calls to a function, the amount
of time spent in a function, and the number of cells used by a function. The profiler is
aimed at application programmers rather than abstract machine builders and,
consequentlythe results presented are amenable to the programrher results are
reported with respect to the lexical scope of the program rather than some run-time

representation. Thisew technique is callddxical profiling.

In chapter 5 both the design, implementation, and usefulness of the lexical profiler
were presented. In order for results to be associated with the lexical scope of a
program, it is necessary for both the functional language compiler and the run-time
system to be modified. The compiler colours a representation of the program to
attribute lexical scope and the run-time system collects data continuously throughout

execution. Theollected data can be reported to the programmer as execution occurs.

The benefits of tools that allow program behaviour to be monitored was also shown
in chapter 5. The lexical profiler makes it possible to ascertain (i) if functions are
inefficient, as seen in the nqueens program; (ii) if functions have space behaviour
problems, as seen in the database program; (iii) if functions have strictness problems, as
seen in the foldr program; and (iv) if one function is more efficient than apatheen

in the sum of squares programs.

Due to the limits of the functional compilers available during this research, it was
not possible to profile the functional rule-based system. The Haskell compiler used in
this research, which was the original Glasgow Haskell compiNas not able to
compile such a large application. It was too slased too much heap space, and had

quite a few bugg438]. TheUCL experimental reducer uses FLIC as its input language,

exhaust fumes were expelled. As most people are aware, the behaviour of the car needs to be fed
to the driver in units the driver understands and at continuous intervals in order for the driver to
gain a useful assessment of thesceurrent performance.

[38] Theoriginal Glasgow Haskell compiler sometimes had degenerate behakaugxam-
ple, it once took 45 minutes to compile a 243 character program on a Sun 3.
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however newemore robust, Haskell compilers cannot be used with this reddder
new Glasgow Haskell compiler does not produce FLIC, and the Chalmers Haskell B

compiler produces illegal FLIC.

An investigation into program transformation tools for use by application

programmers was never undertaken as the need never arose.

Goal (jii)
To aeate a version of the functional rule-based system that is amenable to execution on

a parallel machine.

In chapter 2 an analysis of matching algorithms in rule-based systems was
presented. Thishowed how Rete is a good algorithm for both sequential and parallel
rule-based systems. It was clear that matching algorithms that saved state were far more
efficient than those that did notHowever the functional rule-based system was
implemented using a non state-saving algorithm because it was necessary to determine
if a large, functional application could manipulate the large amounts of state required
irrespective of the extra state required in the Rete maté&sewas shown in chapter 3,

the functional rule-based system was a success.

To write a version of Rete requires the manipulation of graphs that have state saving
nodes. INRete, each production is converted into a graph representation, with attribute
pairs in each condition being converted to nodes havirfgrelift behaviour Some
nodes do simple tests, some do variable instantiation tests, but most significantly for this
thesis, some nodes are state-savi@hapter 4 showed that it is possible to create and
visit graphs in a functional languagelowever this was a non-trivial problem to solve.
Although it is possible to create and visit graphs and to manipulate state in a functional
language, the ability to have graphs with state-saving nodes is a requirement of the Rete
matcher The non-existence of such generally available algorithms limits the
development of a functional Retd&he development of graphs with state-saving nodes

is still outstanding and is, therefore, an area for further research.

The use of state-saving algorithms and data structures is an issue that has not been

addressed within a state manipulation framework. The research in this thesis found
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effective ways to manipulate state-lowever this was only used as a framework for
State — State functions. A functional Rete would require a mechanism where
individual state-saving nodes could be updatatthough the current framework does

not allow this, the use of linear typ@#/adler90a] may be of benefit. When using linear
types the programmer specifies which values have single-threaded access through a
program. Thisallows the run-time system to do in-place updates because a value is
guaranteed not to be needed by other functions. The use of linear types can be
investigated as further research, howeasrnost functional environments do not have

linear types their applicability may be limited.

Once the required data structures for a functional Rete can be built, it will be
possible to determine if a state-saving algorithm in a functional languagedtvet
Although the functional version may not have thecefncy of updatable store as in the
imperative version, it will be possible to observe the algorithmic improvements of state-
saving over non state-saving algorithniseen if it were possible to build a version of
Rete today, the facilities and techniques available for running it in parallel are not
suitable. Inchapter 6, the facilities and techniques presented were more suitable for

small programs rather than large applications.

It can be concluded that parallel functional programming environments are not quite
ready to execute applications such as a rule-based sysiéns. research has
highlighted this and shown issues that need to be addressed in order for functional

programming to be usable on a day-to-day basis for parallel applications.

Goal (iv)

To analyse the functional parallel environment to gather data on the performance of the

parallel functional rule-based system in order to remove any inefficiencies.

As no parallel version of the functional rule-based system was created and
executed, it was not possible to analyse ofe.do such an analysis requires suitable
tools. Inchapter 6, the results presented by GRIP were shown. These results indicate to
the programmer the effect of his program on the machlime amount of cpu busy /

idle time is presented, together with the number of new tasks credbeeever there is
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no information on either which functions were executed or which functions created the

tasks.

The results presented by GRIP are more useful to the programmer who understands
what the underlying machine is doinglowever functional languages are independent
of any execution environment, therefore it is reasonable for a programmer not to have
such an understanding. It is beneficial to have reports that the programmer can
understand. Havintexical profiling on a parallel machine would be an additional aid
for the programmer To address this need, the DIGRESS project has implemented
lexical profiling on its parallel environment, but reports from executing programs are

unavailable at present.

It is clear that the reports from a parallel environment need to present more facets
of execution than for programs on a sequential machine, but they still need to direct the

programmer to the cause of the observed behaviour.

Goal (v)

To ompae the performance of the parallel functional rule-based system with an

existing parallel rule-based system.

The research never came this. fddowever to determine relative performance
requires comparison of like with like. The behavioral indicators for a parallel rule-
based system can be collated from the work reported for these applications. It is not
clear which of these indicators can be retrieved from a functional rule-based system in

order for the comparison to occur.

7.2. Summaryof the Research Issues

This section reviews the main research areas investigated for this thesis.
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Developing Functional Applications

The majority of research in the functional programming arena is aimed at the
theoretical aspects of functional programming and the implementation of abstract
machines rather than developing applications. Although the theoretical research is not
misplaced, this thesis proposes that by focusing on the practical issues of functional
programming and attempting to proliferate the technology via general purpose

programming, the required development and, hence, maturity will be forthcoming.

Functional programming has been around for a shorter time than imperative
programming and the difference in the number of man-hours devoted to providing /
discovering well known solutions in each is apparent. In functional programming there
are few well known solutions to problems that are considered nculiffor
imperative programmers. For example, the algorithms for creating and visiting graphs
need to be interpreted in a more abstract way than the traditional, imperative

description.

It has been seen that there are some efficiency issues that need to be addressed in
functional languages. Thefigiencies ofhaving O(1) access to data structures in a
rule-based system can not be overcome by using parallelism. This thesis proposes that
vectors can be added to functional languages without compromising the integrity of the

functional model.

Recent work in functional programming has addressed the issues of high quality
compilers, such as the Haskell B compiler from Chalnj@sgustsson92a] and the
Glasgow Haskell compiler written in HaskgMHall92]. It is promising that work is
being undertaken in the areas of state manipulation [Hudak93], input and output

[Achten92], and sequencing [Hall92].

Functional Programming Environments

These need to be improvedhere are too few interactions with the operating
system. Thisneans that functional languages cannot lbectbely used for general

purpose programming because the speed of the current interactions are too slow.
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Measurement

By implementing a large application in a functional language it has become
apparent that the support tools needed for suge landertakings are not available. In
order to overcome this, a technique called lexical profiling was designed and
implemented so that higherder lazy functional languages could be measurdool
has been built that presents the number of calls to a function, the time spent in a
function, and the heap space used by a functildns technique not only gives more
information but also is more accurate than the traditional, well known imperative
profiler "gprof". Other approaches to profiling have appeared receantty they too
address the lack of tools for programmers. The availability of measurement tools will

allow functional programmers to observe and verify the behaviour of their programs.

Parallelism and Functional Programming

Much of the research in this area uses small test programs, such as nqueens and
factorial, as reference cases rather than large applications, which is where parallelism is
really needed.Fox [Fox89]has shown the types of applications being parallelized at
Caltech and has dubbed these applications "grand challenge” problems. Research into
parallel functional programming must be directed at these "grand challenge" problems
in order to prove its &ctiveness. Boyland Harmer have successfully shown that
functional languages are capable of addressing the real needs of parallel systems, as
their functional version of a partial differential equation program executed faster than a

hand-coded Fortran program to do the same job [Boyle92].

Current aguments that functional programs execute too slowly is only relative to
todays hardware and compilation techniqueBhe fate of specializedisP machines
was sealed when general workstations outperformed them in terms of cost and
performance within the space of a few years. This raises the question of the benefit of
building specialized hardware for executing functional programs in parailehapter
6, it was seen that a Sun 10 workstation is faster than GRIP with 20 processors.
Furthermore, the bandwidth of current networking technology for workstations is

100Mb/s when using FDDI. The combination of new workstations and new networking
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technology can provide an environment with computing power many times greater than
GRIR Future hardware will make an even bigger difference to execution times, even
for functional programs. [Article91] reports thalT &T scientists managed to get a
laser chip to pulse at a rate 80 femtosecondsFuture networking technology is
aimed at gigabit bandwidthaVhen machines are built out of devices that are this fast,
the execution speed of functional programs will not be an issue. Therefore, it would be
better to direct effort at executing functional programs efficiently on existing hardware
and in parallel on networks of general purpose machines so that the techniques are

transferable to new machines when these machines become available.

Work in this area has begun with tbeGRESSproject [Clack92],which aims to
make parallel abstract machine technology more generally available without requiring
special purpose hardware but, instead, using networks of workstafibagpromise of

this approach has led to the commercial development of the technologies required.

The observation that parallel functional programs are unable to use a parallel
machine efficiently now seems to be an irrelevant diversikmx observes that a Cray
at Caltech only achieves 5% efficiency on irregular problems, and 12% efficiency on
average. Havingeollated data from many experiences of parallel systems in 12
application domains, he states that, in general, there is too high an expectation of
efficiency in parallel programs. In light of this, parallel functional programming may

yet flourish.

Parallel Rule-Based Systems

Although Rete is considered a good matching algorithm for both sequential and
parallel rule-based systems, it may bdidift to attain its efficiencies in a functional
language because Rete has many pragmatic design decisions. It might be more suitable
to implement a matcher with a more theoretical basis in a functional language than the

Rete matcher.
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7.3. Further Work

There needs to be a large body of solutions to well known algorithms written in
functional languages. This can only come about by implementing the algorithms and it
is pertinent to suggest that this work starts soon. This thesis found both problems and
solutions in data structures and algorithms that were specifically suited to rule-based
systems. Furthaework will reveal solutions to problems that are more general in nature.
For example, there was a need for graphs with state saving nodes. Although these are

needed for the Rete algorithm, they may also be of use in many other algorithms.

State manipulation, input and output, and sequencing need to be addressed in the
future. Theyare essential for large applications, and this has been recogrihed.
research presented mechanisms for doing these three issues, however further work can

extend these ideas.

Further work needs to be done to improve functional language interaction with the
operating system in order for functional programming to be of use for a wider range of
applications. Atpresent there is just simple input and output to file streafwms.
operating system supports much more than file 1/0, however it could be difficult to
integrate all of the operating system functions into a functional environniémtse
functions that are selected for inclusion into the functional environment need to be

implemented as efficiently as possible.

By addressing all of these areas, functional languages could then be realisticly used
for general purpose programmin@o ad functional programmers, | look forward to the
day when someone writes a book, using a higheer lazy functional language, as an
equivalent of Knutts "The Fundamentals of Computer Algorithms" [Knuth68] or
Kernighan and Plaugsr "The Elements of Programming Style" [Kernighan78], or
when someone writes "Numerical Recipes in Haskell" to join "Numerical Recipes in C"
[Press88].

The lexical profiler designed and implemented for this thesis executed on an
experimental reducer which uses the FLIC language as its input. Runciman and
Wakeling make changes to the Chalmers Lazy ML compiler to accommodate their heap

profiler. For more general use and usabjlttye lexical profiler needs to be included in a
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Haskell compiler and into various run-time systems. Furthermore, the space usage
results need to be extended in order to report in as much detail as the Runciman and
Wakeling heap profiler; that is, to report each constructor separdieiy is impossible

in the current FLIC implementation where this information has been lost, but in a
Haskell implementation this information can be collect@the reports given by the
lexical profiler are based on the inheritance profiling style. For statistical profiling, the
results have to be post-processed. Further work is to design and implement this post-

processaor.

Debugging tools are still lacking in the functional programming world, although
some suggestions for their implementation are now being miatisson92].
Functional programs tend to be more bug free than their imperative counterparts
because the computations are expressed at a higher level and because the strong type
system forces programs to be type corréd¢bwever bugs do still occur and further

work can provide the required debugging tools.

Further work in the area of parallelism and functional programming needs to be
directed at techniques for harnessing parallelism that are amenable to the builder of
large applications. Parallel functional environments need to have greater availability
and this can be achieved through implementing such environments on networks of
general purpose machines. Once these parallel environments are available, they need to
produce reports of activity that allow the programmer to analyse the parallel behaviour
Further work in this area is to design reporting and analysis tools that are independent of

the underlying machine yet reflect some common parallel environment.

Once all this further work has been done, it will be possible to design and build a
parallel rule-based system. Further work in this area is to investigate the new Match
Box algorithm [Perlin89]. Match Box, which has been specifically designed for
matching in a parallel environment and has a formal basis, could be implemented in a
functional language easier than other more pragmatic matching algorithms such as Rete

because functional programming is amenable to implementing formal algorithms.
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Appendix A

Database Profiling Data

This appendix shows call-count and time data gathered from a run of the functional
database program wheggery function in the program was profiled\s every function

is profiled, no function is inherited by another.

In From Noof Calls | Time in seconds
main 1 0.00
showtable main 1 0.42
join main 1 0.04
tablel main 1 0.32
table2 main 1 0.48
space ljustify 35 0.04
copy space 35 1.50
take copy 35 1.98
take 206 10.92
length ljustify 35 0.42
strict foldl’ 144 0.20
foldl’ length 35 0.46
foldl’ 144 1.42
createEquiJoin join 1 1.66
equiJoinRow createEquiJoin 29 1.48

231



In From Noof Calls | Time in seconds
getEntityFromBindingList| equiJoinRow 58 6.42
typeForeignKey join 1 0.06
typePrimaryKey join 1 0.06
== join 1 0.00
equiJoinRow 29 0.02
getEntityFromBindingList 16 0.26
typeForeignKey 3 0.00
typePrimaryKey 1 0.00
/= createEquiJoin 25 0.06
getEntityFromBindingList 16 0.04
foldr foldr 46 0.42
flatten 7 0.10
flatten showtable 7 0.04
filter getEntityFromBindingList 58 1.48
typeForeignKey 1 0.04
typePrimaryKey 1 0.02
filter 60 1.60
getEntityFromBinding getEntityFromBindingList 116 1.02
snd typeForeignKey 1 0.00
typePrimaryKey 1 0.00
bindingSetTo&ble 28 0.04
head getEntityFromBindingList 58 0.22
typeForeignKey 1 0.00
typePrimaryKey 1 0.00
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In From Noof Calls | Time in seconds
bindingSetTo@able 1 0.00
tableToBindingSet join 2 0.10
colhdrToBinding table®BindingSet 29 0.16
multi tableBindingSet 10 0.40
multi 26 0.82
fst showtable 7 0.00
typeForeignKey 3 0.00
typePrimaryKey 0.00
bindingSetToable 7 0.00
ljustify showtable 35 0.26
showtable 7 0.02
typeForeignKey 3 0.02
typePrimaryKey 1 0.00
bindingSetToable 1 0.00
map showtable 6 0.06
getEntityFromBindingList 58 0.72
bindingSetTo&ble 14 0.20
tableToBindingSet 4 0.08
map 190 2.36
++ showtable 7 0.06
createEquiJoin 2 0.02
equiJoinRow 8 0.06
ljustify 35 0.22
++ 1396 14.18
flatten 46 0.54
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In From Noof Calls | Time in seconds
nullEntity getEntityFromBindingList 116 0.30
getEntityFromBinding 58 0.06
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Appendix B

Introduction to Haskell

In this appendix a brief introduction to the lalmgherorder functional language
Haskell [Hudak88]s given in order to clarify the features used in the functional rule-
based system. Many of the features presented here will are used in examples in this
PhD. Asthis introduction will be brief, further details on functional programming can
be found in the many tutorial guides to programming in functional langu&gedazy
languages see Bird andadler [Bird88]or Glaser Hankin, and Wl [Glaser84]. For
strict functional languages see Henderson [Henderson80] or Ableson and Sussman
[Ableson85].

As with most languages Haskell has values and types. In the numeric domain there
arelnt 's for integers anéfloat ’s for floating point numberslin Haskell the symbol
can be read ds of type, where:
1:1 nt

3.14 :: Float

There are characters and strings:

'a’ .. Char

"hello" :: String
and lists:

[1,2,3,4] :: [Int]

When a type value is in square brackets it is redbtasf type. Thetype String is the
same agChar] such that'hello” is shorthandfor ['h’, 'e’, I, I,

'0’l] . The use ofChar] is so common that the shorthand for it is deemed essential.

Lists in Haskell are polymorphic and therefore may bemf type, but not of
mixed types.If more than one object needs to be mixed, Haskell provides tupthesy.

can contain similar or mixed polymorphic types. For example:
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(0, 0) :: (Int, Int)
Is a 2-tuple with the same type, and
(1, 3.14, ’a’) :: (Int, Float, Char)
is a 3-tuple with mixed typesluples can be constructed of aamjty [39].
Functional programs are made upeapressions Some examples are:
take 2 [1,2,3,4]
returns
[1,2] :: [Int]
or
filter even [1,2,3,4]
returns
[2,4] :: [Int]
or
map addl [1,2,3,4]
returns
[2,3,4,5] :: [Int]
Expressions can be arbitrarily complex and can be combined easily with one.ahother
imperative languages there are commands and expressions which cannot be easily

combined because expressions return values and commands do opeFRatiarimnal

languages present a uniformity to the programmer.

One of the features of modern functional programming languages is laziress.
is a technique whereby values are evaluated when they are needed. This allows the

programmer to create very general algorithms without worrying about the resources that

[39] 1-tuplesare not allowed because they are syntactically the same as bracketed expressions.
0O-tuples, which contain no value, are written as ().
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are consumed. In the following example, the expredgdioh  reads as 1 to infinity
In a strict languagfl..]  would be evaluated before any other computation is started.
Therefore, such a program would never terminate. In a lazy language, the amount of

computation is dependent on the context, so:
take 10 [1..]
returns

[1,2,3,4,5,6,7,8,9,10] :: [Int]

without entering a non-terminating condition.

In Haskell, new names are introduced with function definitions. The programmer is
encouraged to state the type of the definition, even though this is not essential as
Haskell can derive the type for any expressi@onsider a function definition to add 1

to an integer:

addl :: Int -> Int

addlx=x+1

The first line is called théype signatug. It states thataddl takes anint as an

argument and returns &mt as a result. The type signature foris [40]:

(+) :: Int-> Int -> Int

It takes 2nt’s as aguments and returns ant .

Another feature of modern functional programming languages is higter
functions. Functionsvhich manipulate other functions, either by taking functions as
arguments or by returning functions as results, are said to be ‘uglesr Functions
are treated in the same way as values sudntaand Char. Higherorder functions
encourage the use of the building blocks approach to software development.
particular named arguments to functions can be dropped satdit can be defined

as:

[40] Any function with a non-alphabetic name is surrounded by parentheses. Full details are
in the Haskell report.

237



addl = (+ 1)

Expressions, laziness, and higher-order functions can be combined, such as:
map addl (take 10 [1..])
which returns:
[2,3,4,5,6,7,8,9,10,11]
In fact the name of the functiaddl is not needed, and the expression can be written
as:
map (+1) (take 10 [1..])
The functionmap is one of those that is polymorphi¢t can be used on many

types of objects, so there is no need for a mapping function for each type. The type

signature fomap is:
map :: (a->b) ->[a] -> [b]

The lettersa and b represent arbitrary and potentially different typesap has 2
arguments, the first is a function of tyjg@ -> b), the second is a list d’'s. map
applies the function to every element of the argument list, and returns abist dh
the previous function the firstgarment was the functiof#1) which is of typelnt ->
Int. Both the input list and returned list were of tyjpd] . Consider another example
using map, in which the functioaven is passed as angument. even returns

whether or not theargument passed to it is an even integéne functioneven has

type signature:
even :: Int -> Bool
We @n usesven in:
map even (take 8 [1..])
which has the result:

[False, True, False, True, False, True, False, True] :: [Bool]
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The theoretical basis for functional languages is lambda calculus, and many
programmers wish to manipulate lambda expressions in their prog@amsider an

example function which doubles an integer:

double :: Int -> Int

double x = x + x
This can be used as follows:
map double [1..5]
which returns:
[2,4,6,8,10]
However the functiondouble can be replaced with a Haskell lambda expression.

The lambda calculus tervhx . X + x can be written in Haskell ag -> x+x . This

can be used in the following way:
map (\x -> x+x) [1..5]
which returns:
[2,4,6,8,10]
This leads into two more features of modern functional programming languages,
sharing and referential transparen®yhen sharing occurs, in the expression:
double (complicated 10)
the term (complicated 10) only gets evaluatednce. In languages without

sharing, given a similar definition of doublegmplicated would be evaluated

twice. WIth referential transparencihe expression:
double (complicated 10) == complicated 10 + complicated 10

is always true. Oneof these terms can be replaced by the other term at any time

without altering the meaning and value of the program.
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Data Types In Haskell

Haskell allows the definition of new data types to complement the set of built-in

types. Forexample:

data Temperature = Farenheight Float |

Celcius Float

defines a new typ@emperaturewhich is a union of two type constructorSelcius and

Farenheightare the type constructors, and they both have Fjqet -> Temperature

The new types then can be used in function definitibteskell allows the new type to
be pattern matched in the definition of a functi&®@onsider a function that takes an
arbitrary value of typ@emperature and returns &emperaturewhich always uses the

Celcius constructor:

t_to_c :: Temperature -> Temperature
t to_c (Farenheight f) = Celcius ((f-32)*9/5)

t to_c (Celcius c) = Celcius c

This new functiort_to_c can be used anywhere tA@mperatures are needed.This
can be seen in the following function which returns the number of degrees to absolute

zero (0 Kelvin):

degrees_to_abs_zero :: Temperature -> Float
degrees_to_abs_zerot =temp - abs_zero

where

abs_zero =-273.05

Celciustemp =t to ct

Another feature of Haskell is the ability to have local definitions which are only in
the scope of the lexically containing functioklodern functional languages, including
Haskell, determine if an expression is local by using what is calledfthiee rule.

Any definitions indented to the right of, or equal to, the first symbol aftewkieze
symbol are considered to be onside and local to the current definition. Expressions with

less indentation are considered to be offside ofwhere symbol and therefore not a
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local definition. The where symbol has to be to the right of the first character of the
function definition. The Haskell manual gives a full description of its treatment of

layout control and indentation.

Haskell also allows the definition of types which are parameterized and

polymorphic. Considethe typeFinder in:

data Finder a = Found a |

Fail

Finder may be instantiated over arbitrary types because it is polymorphic. There may

be instances dfinder Int, Finder Float, Finder Temperatureand so on.

The following functionjs_in , checks to to see if a value is in a list. The returned
value is of typeFinder a. In languages such as C [Kernighan78a], an error value

returned by a function can be:

a) partof the domain, e.g. functions returning integers often retlirnto

mean failure even though is part of the integer domain

b) setin a global variable, which has to be checked after the function has

returned.

Because new types can be easily created and manipulated in Haskell, these
programmingstyles can be avoided and more correct functions writt€he is_in

function can be written as:

is_in :: a->[a] -> Finder a
is_in value ] = Fall
is_in value (h:t) = Found value,  value ==

= i s_in value t, otherwise

Within is_in  there is more pattern matching, with the list structure which is the
second argument represented(byt) . Hereh is the head of the list ard is the
tail. We dso see the equational style of programming, with the symbol comma (i.e. a
, ) separating the returned expression on its left from the guard on the right, such that

expr, guard can be read as "if guard then expr". This style is similar to
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mathematical notation and is popular in the functional programming commdrigy

functionis_in  can be used thus:
is_in 3[1,2,3,4]
which returns:
Found 3 :: Finder Int
Haskell allows functions to be put in an infix position by surrounding the function name
in backquotes™ . This makes expressions more readable, so:
5 Tis_in"[1,2,3,4]
returns:
Fail :: Finder Int
or:
1.5 is_in" [0.5, 1.0, 1.5, 2.0]
returns:
Found 1.5 :: Finder Float
This brief introduction highlights the main features of the modern functional

programming language Haskell, many of which will be used in this Ful.details of

Haskell can be found in the Haskell defintion report [Hudak88].
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Appendix C

An OPSS5 test program

In this appendix, the source of an example program for testing OPS5 is presented.
This program solves the "Monkey and Bananas Problem" in which there is a monkey in
a room and some bananas attached to the ceilling example program uses a set of
goals which enables the monkey to reach the banahésll description of the design

and implementation of this program can be found in [Brownston85].

(p mb1
(goal “status active “type holds “object <w>)
(object "name <w> "at <p> "on ceiling)
>

(make goal “status active “type move “object ladder “to <p>))

(p mb2
(goal “status active “type holds "object <w>)
(object "name <w> "at <p> “on ceiling)
(object "name ladder "at <p>)

>

(make goal “status active “type on “object ladder))

(p mb3
(goal “status active “type holds "object <w>)
(object "name <w> "at <p> “on ceiling)
(object "name ladder "at <p>)
(monkey “on ladder)
-->

(make goal “status active “type holds "object nil))

243



(p mb4
(goal “status active “type holds “object <w>)
(object "name <w> "at <p> “on ceiling)
(object "name ladder "at <p>)
(monkey “on ladder “holds nil)
->
(write (crlf) grab <w>)
(modify 4 “holds <w>)

(modify 1 “status satisfied))

(p mb5
(goal “status active “type holds "object <w>)
(object "name <w> "at <p> "on floor)
-—>

(make goal “status active “type walk-to "object <p>))

(p mb6
(goal “status active “type holds "object <w>)
(object "name <w> "at <p> “on floor)
(monkey “at <p>)
>

(make goal “status active “type holds "object nil))

(p mb7
(goal “status active “type holds "object <w>)
(object "name <w> "at <p> “on floor)
(monkey “at <p> “holds nil)
-—>
(write (crlf) grab <w>)
(modify 3 “holds <w>)

(modify 1 “status satisfied))
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(p mb8
(goal “status active “type move “object <o> "to <p>)
(object "name <o> “weight light “at <> <p>)
>

(make goal “status active “type holds "object <0>))

(p mb9
(goal “status active “type move “object <o0> "to <p>)
(object "name <o0> "weight light "at <> <p>)
(monkey “holds <0>)
->

(make goal “status active “type walk-to "object <p>))

(p mb10
(goal “status active “type move “object <o> "to <p>)
(object "name <o> "weight light "at <p>)
>

(modify 1 “status satisfied))

(p mbl11l
(goal “status active “type walk-to "object <p>)
>

(make goal “status active “type on “object floor))

(p mb12
(goal “status active “type walk-to "object <p>)
(monkey “on floor "at { <c> <> <p> } "holds nil)
-->
(write (crlf) walk to <p>)
(modify 2 "at <p>)

(modify 1 “status satisfied))
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(p mb13
(goal “status active “type walk-to "object <p>)
(monkey “on floor "at { <c> <> <p> } "holds <w> <> nil)
(object "name <w>)
>
(write (crlf) walk to <p>)
(modify 2 "at <p>)
(modify 3 "at <p>)

(modify 1 “status satisfied))

(p mb14
(goal “status active “type on “object floor)
(monkey “on { <x> <> floor })
-—>
(write (crlf) jump onto the floor)
(modify 2 “on floor)

(modify 1 “status satisfied))

(p mb15
(goal “status active “type on “object <0>)
(object "name <o> "at <p>)
-->

(make goal “status active “type walk-to "object <p>))

(p mb16
(goal “status active “type on “object <0>)
(object "name <o> "at <p>)
(monkey "at <p>)
-->

(make goal “status active “type holds "object nil))
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(p mb17
(goal “status active “type on “object <0>)
(object "name <o0> "at <p>)
(monkey “at <p> “holds nil)
-—>
(write (crlf) climb onto <0>)
(modify 3 "on <0>)

(modify 1 “status satisfied))

(p mb18
(goal “status active “type holds “object nil)
(monkey “holds { <x> <>nil })
->
(write (crlf) drop <x>)
(modify 2 “holds nil)

(modify 1 “status satisfied))

(ptl
(start)
->
(make monkey "at _5 7 “on couch)
(make object "name couch "at _5_7 "weight heavy)
(make object "name bananas “on ceiling "at _2_2)
(make object "name ladder "on floor "at _9 5 "weight light)
(make goal “status active “type holds "object bananas)

(remove 1))
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