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Abstract
This thesis investigates the suitability of using functional programmingfor building

parallel rule-based systems.

A functional version of the well known rule-based system OPS5 was implemented,

and there is a discussion on the suitability of functional languages for both building

compilers and manipulating state.Functional languages can be used to build compilers

that reflect the structure of the original grammar of a language and are, therefore, very

suitable. Particularattention is paid to thestate requirements and the state

manipulation structures of applications such as a rule-based system because,

traditionally, functional languages have been considered unable to manipulate state.

From the implementation work, issues have arisen that are important for functional

programming as a whole.They are in the areas of algorithms and data structures and

development environments.There is a more general discussion of state and state

manipulation in functional programs and how theoretical work, such as monads, can be

used. Techniques for how descriptions of graph algorithms may be interpreted more

abstractly to build functional graph algorithms are presented. Beyond the scope of

programming, there are issues relating both to the functional language interaction with

the operating system and to tools, such as debugging and measurement tools, which

help programmers write efficient programs. In both of these areas functional systems

are lacking.

To address the complete lack of measurement tools for functional languages, a

profiling technique was designed which can accurately measure the number of calls to a

function , the time spent in a function, and the amount of heap space used by a function.

From this design, a profiler was developed for higher-order, lazy, functional languages

which allows the programmer to measure and verify the behaviour of a program.This

profiling technique is designed primarily for application programmers rather than

functional language implementors, and the results presented by the profiler directly

reflect the lexical scope of the original program rather than some run-time

representation.

Finally, there is a discussion of generally available techniques for parallelizing

functional programs in order that they may execute on a parallel machine.The

techniques which are easier for the parallel systems builder to implement are shown to

be least suitable for large functional applications.Those techniques that best suit

functional programmers are not yet generally available and usable.
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Introduction

Current research indicates that there is a need for parallelism in rule-based systems

in order to increase their speed[Gupta86], [Hillyer86],and [Miranker87].Functional

programming is considered a technique well-suited for harnessing parallelism because

functional programs decompose into independent tasks each of which can be evaluated

concurrently [Hudak85], [Cripps87], and[Watson88]. Giventhat there is a need for

parallelism and there is a tool that is well-suited for harnessing parallelism, it seems

pertinent to ask the question:

Can functional programming be used for harnessing parallelism in rule-based

systems?

The need for extra resources in computer systems is being hampered by

conventional software and hardware techniques[Turner80]. Thesoftware limitations

are known as thesoftware crisis , where the size and complexity of software systems is

becoming unmanageable.This is combined with a proportional increase in both the

number of bugs, and the cost of development and maintenance. One solution to the

software crisis is the use of functional programmingtechniques which provide benefits

through good design, powerful abstraction mechanisms, the lack of side-effects, and a

strong mathematical basis [Turner84].

On a par with the software crisis is thehardware crisis in which the limits imposed

by both the speed and size of hardware have begun to force designers into new areas.

To overcome the hardware deficiencies, the use of parallelism is generally advocated.

Large scale parallelism can be derived from machines with hundreds or thousands of
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processors all executing programs at the same time[Hillis85]. Eachprocessor does a

small amount of the work, but the whole homogeneous machine does enormous

amounts. Thearchitecture of these parallel machines is a deviation from conventional

machines, and the harnessing of the parallelism to the fullest capacity calls for novel

techniques in software. Functional programming provides a method for approaching

software design in a novel way[Hughes89] and, as functional languages are

independent of any machine architecture[Henderson80] [Glaser84],they are amenable

to execution on a wide range of machines.

A particular class of applications which imposes a heavy load on conventional

architectures and would benefit from parallelism are rule-based systems[Stefik81].

Rule-based systems[Hayes-Roth85] are the use of artificial intelligence techniques

applied to human understanding and reasoning[Winston81], [Rich83], [Charniak85].

They are particularly appropriate for many tasks, including requirements analysis,

expert systems for analysis and synthesis, and for complex problems where the flow of

control is unknown or the definition of the model is incomplete.

In the past, rule-based systems, which provide a powerful paradigm for problem

solving, have been limited by their run-time performance. In an attempt to overcome

this, several parties have written parallel versions of rule-based systems[Gupta84],

[Hillyer86], [Gupta86],and [Oflazer87].They all use specialized hardware for their

implementations and their work provides comprehensive data concerning these

specialized machines.Yet, although the behaviour of their algorithms are well

understood, little work in this area has been done for general purpose hardware.

There is a need to build a parallel implementation of a rule-based system that is

portable, flexible, and does not require specialized hardware. As a functional

programming environment provides a mechanism which enables programs to be

independent of any machine architecture, there is no need for the programmer to be

concerned with the partitioning, scheduling, and synchronizing of parallel tasks as this

can be done automatically by the compiler and the run-time system[Clack85],

[Clack86] (Although some researchers advocate the use of annotations or skeletons to

indicate parallelism and placement in addition to the automatic analysis provided by the
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compiler [Hudak85], [Kelly87] ). In parallel functional programming environments,

the dynamic mapping of tasks onto machines occurs at run-time in contrast to some

specialized environments, in which a static mapping of tasks onto machines is done in

advance [May84].This feature enables functional environments to have dynamic load

balancing, which distributes work more evenly[Hudak84]; in other words, no machine

need be idle if there is work to be done[Eager86]. Themost important aspect from a

programming viewpoint is that parallelism is implicit and no programmer intervention

is needed to run the rule-based system on a selection of different parallel machines.

Goals of the research

The need for parallelism in rule-based systems has been ascertained.In [Stolfo86]

and [Rosenthal85],both conclude that implicit parallelism, which is where the system

finds the parallelism rather than the programmer stating where it is, is a promising area

to investigate in order to obtain more parallelism in a rule-based system.This is

because programmer specification of parallelism has reached its limits due to the

complexity of the task.As a consequence of the findings of Stolfo and Rosenthal and

because one of the many proposed benefits of functional languages is that parallelism is

implicit, functionalprogramming techniques seem well-suited for obtaining parallelism

in a rule-based system.Therefore, functional programming was chosen as the vehicle

for the implementation of a parallel rule-based system in this research.

The original goals of the research were:

i) to use functional programming techniques to implement a rule-based

system.

ii) to analyse the functional rule-based system for inefficiencies and then to

implement efficient new algorithms or to transform old algorithms into

more efficient ones.

iii) to create a version of the functional rule-based system that is amenable to

execution on a parallel machine.
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iv) to analyse the functional parallel environment and gather data on the

performance of the parallel functional rule-based system in order to remove

any inefficiencies.

v) to compare the performance of the parallel functional rule-based system

with an existing parallel rule-based system.

Only when these 5 aims have been addressed will it be possible to determine if

functional programming techniques are suitable for harnessing parallelism in rule-based

systems.

There are three main research areas in this thesis, namely: functional programming,

rule-based systems, and parallelism.There has been previous research work in

combinations of two of the three areas, but this thesis is new in combining all three.

These main research areas are inter-related such that their combination can be viewed as

a three way relationship:

rule-based

systems

functional

programming
parallelism

There has been little work on large parallel functional applications as much of the

work in the functional programming arena has been either theoretical or focused on

implementing abstract machines and compilers.Although the many proposed benefits

of functional programming appear to render it a well-suited method to use for both

parallelism and rule-based systems, there is as yet no definitive answer indicating how

useful functional programming techniques are for harnessing parallelism in general and
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rule-based systems in particular.

The functional programming environments available are not as mature as

imperative programming environments because practical functional programming

environments are relatively new. There are few sources of functional interpreters and

compilers, there are no known full development environments for functional languages,

and there are no books on the design and development of large, functional applications.

Furthermore, there are no design methodologies in general use for developing

functional programs as there are for imperative programs. The lack of development

environments and written material could limit the development of a functional

application; this thesis will investigate if this is the case.

Furthermore, the formalisms which constitute the basis of functional languages are

considered to be an advantage for functional programmers.These formalisms provide a

rigid framework within which programs are built.However, this advantagecould also

be adisadvantagebecause operations that are simple to do in imperative languages

could be difficult in a functional language due to this rigid framework.(For example, it

is impossible to add a line of code to print the value of an object. In order to get this

value, the code must be explicitly designed).

Contributions

The contributions of this thesis are:

• a critical assessment of the suitability of functional programming

techniques for implementing large applications and rule-based systems in

particular.

• a critical assessment of practical state manipulation techniques in functional

programming.

• a large, working, application written in a lazy, higher-order functional

programming language which does large amounts of state manipulation

• a critical assessment of the functional programming environment, with

suggestions for how the environment can improve.
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• the design, implementation and analysis of a tool for profiling lazy, higher-

order functional programs.The tool measures function call count, time

spent in a function, and the heap space used by a function.

• a critical assessment of techniques for parallelizing large functional

programs.

Overview of the thesis

It is the aim of this research to investigate if functional programming techniques can

be used to develop and build rule-based systems that are of an acceptable quality, if they

are indeed beneficial for tasks that require parallelism, and if they can be used to

harness parallelism in a rule-based system such that the resulting rule-based system

executes at an acceptable speed. In addition, the available functional programming

development environments will be considered in relation to these aims, and in particular

to determine their suitability for writing a large application.

Chapter 1 provides a general background to the three main research areas, and the

advantages of functional programming are discussed in more detail.

Chapter 2 provides a more detailed discussion of rule-based systems, why certain

pattern matchers are more efficient than others, and discusses previous work in parallel

rule-based systems.

Chapter 3 considers the design and implementation of a rule-based system written

in a higher-order, lazy functional language, and discusses how different aspects of

functional programming affected the design and the implementation of separate

components of the rule-based system.

Chapter 4 discusses the issues arising from the implementation in chapter 3.

Particular attention is paid to programming aspects, namely algorithms and data

structures, and to the efficiency of programs. This chapter considers the functional

programming environment in more general terms than chapter 3.

Chapter 5 addresses one of the issues arising in chapter 4 — the lack of

measurement tools. The design and implementation of a profiler for higher-order, lazy
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functional programs is described. This profiler measures the number of calls to a

function, the amount of time spent in a function, and the amount of heap space used by

a function.

Chapter 6 considers how parallelism can be harnessed in a functional program and

shows the results of using a real parallel machine. It can be seen that the techniques

advocated are not ready to be used for large functional programs.

In the final chapter the work is reviewed and conclusions drawn.Pointers to where

further work needs to be done in order to develop functional programming into a more

useful tool for harnessing parallelism in rule-based systems are discussed.
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Chapter 1

1. GeneralBackground

This chapter presents a general background to the three main research areas in this

thesis, namely functional programming, parallelism, and rule-based systems.

1.1. FunctionalProgramming

A functional program is a program that consists entirely of functions.A program

has a main function, which calls other functions to do work for it, and they in turn call

yet more functions.The main function collects input from the user and prints the result

which is calculated by its body. Functional programs have a mathematical basis which

enforces a rigorous approach to the design and implementation of the program.

Functional programming is being investigated by many researchers because of its

theoretical basis, and because functional programs are amenable to automatic machine-

based reasoning. The areas being investigated include automatic program

transformation [Darlington80][Darlington90], automatic program proving[Turner82],

and formal semantics[Stoy80] [Schmidt86],while others are investigating the efficient

implementation of functional programs on conventional architectures ([Turner79],

[Fairburn87], [Peyton-Jones87],) [Peyton-Jones89] . The area this thesis investigates

is the use of functional programming for large applications.

The benefits gained from writing an application in a functional language are:

• there are expressions only, no commands. Functionalprograms express

what to do as opposed to conventional programs, which express how to do

it. This prevents programmers from worrying about small details, such as
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incrementing a control variable of a loop, and leaves the programmer free

to solve larger problems.

• there is no assignment to variables, just definitions; thus there can be no

side-effects and the ability to state formally what is happening in a program

is maintained. Obscure behaviour from variables being unexpectedly

updated is eliminated.

• there is no explicit flow of control or sequencing due to there being no

variables to change in a loop statement and no concept of a program

counter to state where the next instruction is. Therefore, there are no

confusing goto’s. Theprogrammer does not have to define a total ordering

on operations; flow of control and sequencing is through function

application, recursion, and data dependencies.

• there is no explicit memory management.The memory or heap space is

managed transparently, with heap space being allocated and deallocated on

demand. Thisavoids the problems of programs failing because of illegal

pointers.

• there is no connection between the source language and the underlying

machine architecture.Therefore, the code for the application need never be

changed when a different sequential or parallel machine is available.

• potential parallelism in the code can be found by special compiler

techniques because there are no inter-procedural dependencies between

functions. Asthe parallelism is implicit, the programmer is saved from

stating where parallelism occurs.

• functions are first class items within a functional language and are as

important as data. This results in the same treatment for functions as for

numbers and lists, thus presenting a level of uniformity not seen in

conventional languages.

• higher-order functions are permitted.This enables functions to be passed

or returned to or from other functions arbitrarily, thus allowing a high
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degree of expressiveness.

• lazy evaluation is available in some run-time systems which allows infinite

data structures to be defined. This means general solutions to problems can

be defined rather than having a solution for an arbitrary number as is often

the case in imperative programs, whereby a programmer will chose to

evaluate a large number of solutions. This results in greater modularity

[Hughes89].

• there are very few syntactic rules, thus enabling programmers to

concentrate on the problem at hand and not on the syntax.Conventional

languages often over-burden the programmer with syntactic rules[May83].

• the notation used in functional languages is very close to that used in

formal methods, hence any system designed using these methods can be

implemented very rapidly. Functional languages are often considered as

executable specification languages [Turner84].

These benefits allow the development of more expressive and modular programs

which are closer to the conceptual abstraction of a model.This contrasts with the

conventional approach which requires a sequence of commands to be specified to fit

with the traditional von-Neumann model of computation[Backus78]. Thisis a major

benefit for functional programming because no time needs to be spent changing the

conceptual model into the von-Neumann model so that an algorithm can be expressed in

a conventional programming language.

With all these benefits forwarded to the functional programmer, he is free to

concentrate on problem solving rather than fiddling with minor details.The high-level

specification of functional languages means that program proving techniques and

automatic program transformation techniques can be used. This is a further benefit for

functional programmers. This is not the case for conventional languages where these

techniques are not available to programmers.
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1.1.1. Program proving

To determine if a function behaves correctly it is desirable to prove its correctness

rather than running numerous and contrived tests of the function which may not find

failure cases. Functional programs are amenable to program proving, which is much the

same concept as a mathematical proof. The approach used to prove functional

programs is based on equations and the properties of equality. Most of the facts one

may wish to prove about a program may be expressed as equations.For example we

may need to prove that:

map (f. g) = map f. map g

or that:

reverse (reverse l)= l

In [Bird88] there is a detailed presentation of proofs of both of these equations.

The attraction of this approach is that functional programs already consist of

equations, so that the nature of proving a program involves deriving a new set of

equations which have the same properties as the given set of equations.Reasoning with

equations is a well established mathematical activity and thus presents no new

undefined problems.

1.1.2. Program transformation

Program transformation is a technique for mapping an expression from one form to

another using techniques similar to algebraic manipulation.For example,n(x + 1) can

be transformed intonx + n, and vice-versa.Dif ferent transformers take the expression

and rewrite the expression such that it is semantically equivalent but structurally

changed. Transformation can be used to improve efficiency in programs by

manipulating the text of a program while maintaining correctness. The set of

transformations developed are [Burstall77]:

Definition — introduces a new definition.
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Instantiation — introduces a substitution instance of another equation.

Unfolding — replaces a call of a function by its body, substituting the formal

parameters.

Folding — replaces the body of a function by a call to the function with the

parameters

Abstraction — introduces sub-definitions.

Program transformation can be used to convert well designed code into a more

efficient form for execution.Table 1.1 shows the attributes of thebefore and after

code. Thebefore code is the style written by the programmer and has all of the

desirable properties of a program from a human perspective.Theafter code is the code

actually executed on a machine and has the desirable property of executable code,

namely efficiency. Thus, program transformation does all the hard work of optimization

and allows the programmer to concentrate on the important issues of good quality

design and structured programming.

Before After

clean obscure

modular tangled

short long

simple complex

inefficient efficient

Table 1.1: Transforming functional programs for efficient execution

Program transformation techniques can also be used to generalize regularly used

expressions into new function definitions. The following is a step-by-step example of

how transformation is of benefit to functional programmers.
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An Example of Program Transformation

This example relies on some proofs that are not shown here but are taken to be true.

As an example of program transformation, consider a function that takes two lists and

appends every element of the first list onto every element of the second list. This is

similar to the cross product function, which is traditionally defined as:

{( x, y) | x∈X, y∈Y}

This function will be calledcp [1].

Thecp function can be used to create the cross product of multiple lists.The following

expression creates the cross product of 4 lists:

cp list1 (cp list2 (cp list3 (cp list4 [[]]))) (A)

where the resulting list will have elements of the same length as the number of lists

passed to the calls ofcp, in this case 4.By using program transformation, it is possible

to convert multiple calls ofcp into a function that will take any number of lists, and

produce their cross product. Step 1 uses the proof:

f (g x) = ( f .g) x

such that equation A can be transformed into:

(cp list1 . cp list2 . cp list3 . cp list4) [[]] (B)

Step 2 uses the proof:

( f . g) x = compose[ f , g] x

such that equation B can be transformed into:

compose[cp list1 , cp list2 , cp list3 , cp list4] [[]] (C)

Step 2 uses the proof:

map f [x1, x2, . . . ] = [ f x1, f x2, . . . ]

[1] A version of cross product which can be composed with other cross product functions can
be defined in Haskell as:

cp :: [a]->[[a]]->[[a]]
cp xs ys = [ (x:y) | x <- xs , y <- ys]
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such that equation C can be transformed into:

compose(map cp[list1 , list2 , list3 , list4]) [[]] (D)

where brackets have been added around themap expression for grouping. The final

step involves the introduction of a new definition:

multicp l = compose(map cpl ) [[]] (E)

Using the new functionmulticp, equation A can be written as the expression:

multicp [list1 , list2 , list3 , list4]

However,multicp can be passed any number of lists to generate the lists’ cross product.

The importance of transformation in large functional programs is discussed in

[Kelly87]. Kelly’s PhD thesis has an extensive description of program transformations

used for a graphics processing system which takes a naive implementation and produces

a program which is more amenable to a distributed, parallel architecture. In the cross

product example, it took 5 transformation steps to go from a specific instance of

function calls to a general purpose function.

1.1.3. FunctionalApplications

There are few large functional applications, and the creation of one normally is of

enough interest to generate some research papers. Some examples of large functional

applications are shown in table 1.2.At the start of this research there was little

reference material for the functional applications builder. The current situation is that

many more have been written and reported in recent times, showing how functional

[2] A collection of applications is being made by Partain for his work on benchmarking
Haskell implementations[Partain92]. Thissuite of functional programs is intended to be a repre-
sentative workload for a Haskell compiler and run-time system.The suite will be used for finding
good features of different Haskell compilers.
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applications are now coming to the fore [2].

Application Author Location Reference

YACC in SASL S. Peyton-Jones UCL [Peyton-Jones85]

R. Jones UKCLexical Analyser

Generator

[Jones86]

Spreadsheet S.Wray Cambridge [Wray86]

A. Appel PrincetonSML in SML compiler [Appel87]

Database P. Trinder Glasgow [Trinder89]

Process Animation K. Arya Oxford [Arya89]

L. Augustsson ChalmersLazy ML in Lazy ML

compiler

[Augustsson89]

Solid Modelling D. Sinclair Glasgow [Sinclair90]

C. Runciman YorkA terminal emulator [Runciman91]

Text Compression P. Sanders BTLabs [Sanders92]

J. BoyleQuasi Linear

Hyperbolic Partial

Differential Equations

Argonne

National

Laboratory

[Boyle92]

Oil Reservoir Modelling R. Page Amoco [3]

Table 1.2: Examples of functional applications

Much of the earlier implementation work for this thesis was done using the

functional language Miranda†[Turner85]. It was chosen at the beginning of the

[3] Personalcommunication

† Miranda is a trademark of Research Software Ltd.
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research because it was the most effective lazy, higher-order functional language

available. Ithad the latest features, it was commercially supported, and it was widely

used in the functional programming community. Since that time Miranda has been

superseded in the functional programming community by Haskell, a public domain

language for which there are now many sources of compilers and interpreters

[Hudak88]. AsHaskell is the more modern and generally used functional language, and

because any Miranda functions can be easily converted to Haskell, all code examples

will be in Haskell even though they were originally implemented in Miranda.A brief

introduction to Haskell is given in appendix B in order to clarify the features used in

this thesis.

1.2. Parallelism

The main aim of parallelism is to execute a program on more than one processor in

order to speed-up the execution time of that program. This technique is achieved by

splitting the program into separate tasks and evaluating the tasks concurrently, or by

applying the same operation to many data items concurrently[Uhr87]. The former

approach is known as process parallelism and the latter is known as data parallelism.

Process parallelism consists of a number of independent threads of control engaged

in concurrent computation. Each task does a small amount of the whole computation.

Data dependencies between the tasks cause task synchronization.Data parallelism

consists of multiple data structures which are processed at the same time by one

operation.

Attempts to design and write parallel languages resulted in parallel features being

added to existing languages. The method for programming in these languages relies on

the programmer knowing which parts of the program can be executed in parallel and

how data in different parts of the program interacts with the other data.This process

introduces another level of complexity in software creation. It is more difficult to write

a parallel program than to write a sequential program due to the complexity of parallel

algorithms, side-effects causing unexpected interactions, and the enormous amount of

time spent on finding the parallelism. When a program is large and complex, the task of
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explicitly stating where the parallelism is can be difficult.

An alternative method is to use functional programming, in which the parallelism is

implicit and can be found by a clever compiler[Clack85]. Thereare no side-effects in

functional programming, so there are no obscure interactions and there is no global data

store and, thus, no need to synchronize on global data. In addition, the semantics of the

language are well defined and do not change when a parallel evaluation mechanism is

used [Peyton-Jones89a].Furthermore, there is no burden for humans in learning

parallel features; they can involve themselves with expressing algorithms only.

Although parallelism is a way to improve the performance of complex applications,

the parallelism harnessed has to be effective, i.e. a parallel version of a program must be

more efficient than the best sequential version. Furthermore, some algorithms need to

be rewritten and / or redesigned in order to work in parallel. (Experiments with old

Fortran programs have demonstrated this[4]). Effective parallelism is not about

keeping processors busy but about speed-up relative to the speed of the fastest

sequential version. Schultz warns [Schultz88]:

i) a parallel algorithm can be made to achieve optimal cpu usage by

increasing the complexity — that is, just because a parallel algorithm is

keeping many cpu’s busy does not mean that the algorithm is effective.

ii) a parallel algorithm can be made cpu bound either by making its

complexity sufficiently bad or by using slower cpu’s.

iii) a poor algorithm doing operations at a high rate does not necessarily finish

before a good algorithm doing operations at a slow rate.

The important factor is speed-up over the best sequential version of a program.One can

define speed-up to be:

speed− up =
time of the bestsequential algorithm

time of the bestparallel algorithm

[4] The programs are known asdusty deckprograms because they are so old they were origi-
nally entered into a computer via adeck of punched cards. The cards have been stored for so long
that they have becomedusty.
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In [Padua87],which is predominantly about parallelism and Fortran, Padua

discusses how parallelism is harnessed in imperative languages such as Fortran and how

this may differ for functional languages. He observes that explicit parallelism, which

forces the programmer to use parallel language constructs in order to harness

parallelism, must be used. The constructs may be one of:

• fork/join

• microtasks

• parallel loops

and are needed due to the features of imperative languages, such as global store and

side-effects.

Conversely, implicit parallelism occurs when a compiler or interpreter automatically

extracts the parallelism.Due to the absence of side-effects in functional languages,

Padua observes that there is no need for compile-time:

• inter-procedural analysis to compute dependencies

• array expansion

• variable renaming

which are all required for parallel versions of Fortran and other imperative languages.

Padua concludes that, although there are differences in parallel languages at present,

future parallel systems will comprise program manipulation components, meta

languages, and specification languages.The functional programming world is able to

address of all these now.

1.2.1. Parallelhardware

Designers of parallel hardware can make choices regarding the style of the machine

they build. The main issues affecting their decisions are:
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• general versus fixed communication

• fine versus coarse granularity

• multiple versus single instruction streams

• shared versus distributed memory

Although each issue can be characterized by extreme schools of thought, each offers a

spectrum of choices rather than a yes/no decision.Each choice is independent of the

other, thus allowing for many styles of architecture [Hillis85].

General Versus Fixed Communication

Some portion of the computation in all parallel machines involves communication

among the individual processors.General communication permits any processor to talk

to any other, whereas fixed communication allows only a few specific patterns of

communication which are defined by the hardware.

The main advantage of fixed communication is simplicity, and for certain

applications this mechanism can be much faster. The general communications

machines have the potential of being easier to program for a wider range of tasks, and

the connection pattern can change dynamically for particular data.However, depending

on how a general communications network is implemented, some pairs of processors

may be able to communicate more quickly than others due to attributes of the

underlying real architecture.

Fine Versus Coarse Granularity

In any parallel computer with multiple processors, there is a trade-off between the

number of processors and the size of each processor. We can characterize machines

with a handful of processors as being coarse grained and machines with thousands to

millions of processors as fine grained. The conventional, single processor machine is an

extreme case of a coarse grained machine.

The fine grained processors have the potential to be faster because of the larger

degree of parallelism, but the potential speed-up may not always happen due to factors
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such as a large communication overhead. The processors in a fine grained system are

generally less powerful, so many small processors may be slower than one fast, large

processor.

Multiple Versus Single Instruction Stream

A multiple instruction stream machine is a collection of autonomous computers,

each capable of executing different code.A single instruction stream machine is a

collection of identical computers, each executing the same code. As both types of

machine operate on different data, this leads to the commonly used synonyms for

parallel machines – MIMD (multiple instruction multiple data) and SIMD (single

instruction multiple data)

The most common type of SIMD machines are vector or array processors.These

fall into two categories, either general purpose machines such as the Cray

supercomputer, or special purpose machines such as CLIP[Duff83], which is used

specifically for image processing.

MIMD machines come in many different forms due to the different methods of

design and construction used by the different research groups. Some of the better

known forms include dataflow machines[Watson79], Transputers [Inmos85],

hypercubes [Intel85],the Connection machine [Hillis85], and the graph reduction

machine [Cripps87] [Clack86]. Graphreduction machines are commonly used for

executing parallel functional programs.

The choice as to whether SIMD or MIMD is better is difficult to make as the SIMD

machine can simulate the MIMD machine and vice-versa. For well structured problems

with regular patterns of control, the SIMD machines have the edge.In applications in

which the control flow required of each processor is complex and data dependent, the

MIMD architecture has the advantage.There are many arguments to consider when

choosing an architecture for a real application [Fox89].
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Shared Versus Distributed Memory

When processors have to access memory there are generally two configurations for

this memory, (a) shared memory, where there is one memory and every processor has

access to that memory, and (b) distributed memory, where there are many memories.In

the distributed memory case, either the memories are independent units whereby any

processor can access the memory, or the memories are associated with one processor

and only that processor can access the memory. Each layout has advantages and

disadvantages for different applications and, again, there are many arguments to

consider when choosing an architecture.

1.3. TheRule-Based System Approach

Rule-based techniques are appropriate for many tasks, including requirements

analysis, expert systems for analysis and synthesis, and complex problems where either

the flow of control is unknown or where there is an incomplete definition of the model

[Hayes-Roth85] [Waterman86]. Becauseof their modularity, rules appear to be the

most natural representation for systems that are in constant flux [Hayes-Roth83].

One of the major reasons for choosing rule-based systems is that humans usually

find it intuitively appealing to express their knowledge in terms of condition / action

pairs (i.e. ifcondition thenaction). Also, because rule-based systems tend to be built

incrementally due to knowledge becoming available in a piecemeal fashion, it is not

necessary to know the entire model in advance, but rather to gradually build towards it

[Waterman86] [5].The power of rule-based systems is most evident when they are

applied to large ill structured problems for which it is difficult to provide a detailed

specification, such as analysing complex laws and statutes.

[5] This process of acquiring knowledge in a piecemeal fashion is similar to the way a baby
learns. Itlearns a few rules and has a few facts but it is still able to exhibit intelligent behaviour.
As it learns more rules and facts the baby is capable of doing more.Babies are not born with a
head full of rules and facts. They gradually acquire these, andthere is no pre-determined path as
to how the baby’s life will develop – it develops and is shaped as needs arise.The same is true for
rule-based systems.
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A rule-based system is a tool which enables the builders of artificial intelligence

applications to represent their knowledge of a domain through rules (see

[McDermott78], [Hayes-Roth85],and [Waterman86] ). Consider an example rule

from a computer hardware configuration program given in[McDermott82]. Thisrule

helps to assign power supplies to a bus of the computer:

IF the most current active context is assigning a power supply

and a bus module of any type has been put into the cabinet

and the position it occupies in the cabinet is already known

and space is available in the cabinet for a power supply at that position

and there is an available power supply

THEN put the power supply in the cabinet in the available space

This rule is part of a system that started with 300 rules, and grew over a period of 6

years to have approximately 3500 rules. As the rules were added, the program could

configure new computers as they were manufactured and could perform many new

tasks. It is this kind of evolutionary growth to which rule-based systems are most

suited. Therules are specified in English by the rule-based system designer to be

expressive. Theyare then encoded by the rule-based system designer into a particular

rule-based system language when enough rules have been acquired to process the facts

of the domain.In an implementation of a rule-based system, rules are encoded in the

form of productions [6].

1.3.1. HowA Rule-Based System Works

A rule-based system has three main components:

• production memory, which contains productions each in the form of

condition / action

[6] Becauserules are encoded in the form of productions,rule-based systemsare also called
production systems.
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• working memory, which contains working memory elements, each one

being a fact about the domain

• an inference engine, whose task is to initiate the recognize-act cycle

In a rule-based system, production memory and working memory are independent

of one another. Both production memory and working memory are unstructured and

elements within each are independent of the other elements. Only the recognize-act

cycle can combine the contents of production memory and working memory, and on

each iteration of the cycle may update working memory. This process is shown in

figure 1.1.

production

memory

working

memory

recognize-act cycle

Figure 1.1: The components of a rule-based system

Production memory contains productions which are similar to a single conditional

(if-then ) statement in a conventional programming language. All productions are

independent of one another, and there is no predefined order of production execution.A

production containsn conditionsC1 to Cn andm actionsA1 to Am. A production may

be executed when working memory is in a state such that all conditionsC1 to Cn are

simultaneously true.When the production is executed, then all actionsA1 to Am are

evaluated in the order in which they are written[7]. An action may add or delete an

[7] Somerule-based systems, such as SOAR [Rosenbloom85] have been modified to allow
actions to occur in parallel.
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object from the contents of working memory or do some input or output.Usually the

condition parts of a production are called the left hand side (LHS) and the action parts

are called the right hand side (RHS). This is because productions take the written form:

C1 C2
. . .Cn → A1 A2

. . . Am

where the conditions are to the left of the arrow and the actions are to the right.

Working memory contains objects called working memory elements.These objects

represent either physical objects, relationships between objects, or statements about a

particular domain.Working memory contains the "state of the world" for each rule-

based system application, and its contents change continuously as the rule-based system

executes productions. Production memory, by contrast, is stable[8]. Working memory

and production memory are independent, and both have to be initialized at the

beginning of exection for an application to work.Working memory is initialized with

facts about the domain, that is, it contains the current "state of the world", and

production memory is initialized with the rules of the domain.

The inference engine is the executor in a rule-based system.It determines which

productions are appropriate to select by matching each production against contents of

working memory. It then chooses one production to execute through conflict resolution.

The execution of the production causes the actions to be evaluated, which then causes

working memory to be updated, and hence the "state of the world" changes.This

process of selection and execution is called therecognize-actcycle. Becauseof the

continuous operation of therecognize-actcycle and because of changes in the "state of

the world", new productions are selected on each iteration of this cycle.If it becomes

impossible to select a production for execution, then the inference engine stops.

Therecognize-actcycle takes the form:

1. match — evaluate the LHS’s of the all the productions in production

memory to determine which productions are satisfied given the current

[8] Someimplementations of rule-based systems allow new productions to be built at run-
time. Thisallows the rule-based application to display a learning behaviour. However, the most
common implementation is for production memory to be static.
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contents of working memory. The match process compares each condition

of a production with every element of working memory.

2. conflict resolution— choose one production with a satisfied LHS.Often,

more than one production is satisfied in the match phase; this is called a

conflict. Theconflict is resolved by selecting the best single production.If

there are no satisfied productions, then the inference engine halts.

3. act — perform the actions specified in the RHS of the selected production.

The actions may update working memory or do input or output.

The cycle iterates again by going back to matching, i.e. step 1.

The control flow and data flow of a rule-based system are presented in figure 1.2.

Control flows from the matcher, to conflict resolution, to act, and back to the matcher

again – this is the recognize-act cycle. Data flows from production memory and

working memory into the matcher for matching, and into working memory when a

production is acted upon.

Rule-based systems differ from conventional programs in two major respects.The

first is that rule-based systems use a different method of encoding the state of a

computation than conventional methods.A conventional program encodes state by

updating values in variables.A rule-based system encodes state by placing objects into

the system’s working memory. The second difference is the way the flow of control is

managed. Aconventional program uses ordered statements together with control

constructs such as loops and conditional branching.A rule-based system uses left hand

side satisfaction. That is, each production’s left hand side is a description of the states

in which the production is applicable, such that the production is satisfied when objects

in working memory cause each condition on the left hand side of the production to be

true. Whenthe rule-based system performs a match it is in effect searching for the best

production to process the data in working memory. Once a production is chosen, the

actions on the right hand side cause working memory to be updated.

The rule-based system model allows the programmer to concentrate on the essential

problem solving strategies of a domain expert rather than complex data structures or

control strategies[Brownston85]. Becauseof the relatively independent nature of the
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production

memory

working

memory

matcher
conflict

resolution
act

data flow

control flow

Figure 1.2: The control and data flow in a rule-based system

rules and the reduced amount of control information, a rule-based system specification

does not prematurely determine the control strategy of the final solution.A rule-based

system has neither a declarative model nor an imperative model.It requires an entirely

different concept of program structure. The focus of attention using this technique is on

non-formal solution strategies where knowledge elicitation is used to incrementally

devise new rule sets to solve a small part of a problem.As more rule sets are created

the system is able to perform more tasks.The interaction between the rules relies on the

working memory elements that match the rules and the conflict resolution which choses

a rule to execute.Dif ferent conflict resolution strategies allow identical rule sets to

appear to behave differently. This often leads to unexpected behaviour as the flow of

control may jump into an unexpected rule set, but it is this seemingly non-deterministic

behaviour that makes rule-based systemsappropriate for modeling intelligent

behaviour where no known algorithms exist[McDermott78]. AsBrownston observes,
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this approach often leads to the discovery of algorithms and solutions to problems

which may be missed when using conventional techniques.
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Chapter 2

2. State-Savingin Rule-Based Systems

In this chapter there is a brief description of OPS5, which is a widely used rule-

based system. There is a discussion and analysis of state-saving and non state-saving

matching algorithms used in rule-based systems. This will show the benefit of saving

state in a rule-based system matcher. Particular attention is paid to the Rete matching

algorithm used in OPS5. This is an efficient algorithm for doing matching and is

effective in sequential and parallel implementations. Then follows adiscussion on

research into parallelizing OPS5; this includes work done on the design of special

hardware for executing rule-based systems in parallel, in particular OPS5, and on why

the Rete matching algorithm is amenable to implementation on a parallel system.

Finally, the issues arising from this research which lead onto considering why functional

programming could be suitable for harnessing parallelism in OPS5 are reviewed.

2.1. ALanguage for Rule-Based Systems

The rule-based system chosen for further investigation in this thesis is OPS5

[Forgy81]. OPS5is a system which allows the encoding of rules as a set of independent

productions. Moreover, it is widely used and is the basis for some of the largest and

best known expert systems (for example, a computer backplane configuration system

[McDermott82] and an expert mainframe operator [Griesner84] ).Due to its wide use,

OPS5 is sometimes called theFORTRAN of artificial intelligence languages[Stolfo86].

Because of its wide use, its simplicity, the availability of a working rule-based system

environment, and the availability of a formal grammar[Forgy81], OPS5 was
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considered the best system to analyse and to make comparisons with the rule-based

system devised in this thesis [9].

The representation of knowledge in OPS5 is contained in working memory. The

representation is oriented towards objects and relations between objects. Each object

and its attributes are represented through the use of working memory elements.For

example, a working memory element may represent a block, which is namedblock1, is

red, weighs 500 grammes, and measures 100 mm on each side. This block object can

be represented in OPS5 as:

(block

ˆname block1

ˆcolour red

ˆmass 500

ˆlength 100

ˆheight 100

ˆwidth 100)

In this example, the nameblock is the object class and is followed by a set of

attribute pairs. The name of the attribute is preceded with a caretˆ and followed by

the attribute value.

The specification of rules in OPS5 is simple yet sophisticated, allowing relatively

easy encoding of knowledge into rules. The left hand side (LHS) of a production

consists of one or more conditions. Each condition is a pattern that describes a working

memory element. During the match phase of the recognize-act cycle, each condition of

a production is compared with elements in working memory in order to determine if the

condition matches any working memory elements.The condition is considered satisfied

if it matches at least one working memory element, and the whole production is satisfied

if every condition is satisfied.

[9] Full details of the syntax of OPS5 and how to program a rule-based system application can
be found in[Brownston85], and reasons for choosing OPS5 as a language to build expert systems
can be found in [Clayman87].
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The patterns of each condition are abstract representations of working memory

elements. Thesepatterns may fully match every attribute pair of a working memory

element, or may partially match a working memory element by matching a few attribute

pairs. Apattern will match any working memory elements that contain the information

in the pattern. For example, the condition pattern:

(block ˆcolour red)

would match any working memory element that described a red block, such asblock1.

However, the pattern

(block ˆcolour blue)

would not matchblock1 because the colour attribute ofblock1 is red. Patterns may

contain variables which can match anything, but if the variable occurs again in the

production, the value of the variable must be the same as before.In this way, OPS5 is

able to the represent relationships between objects.

The right hand side (RHS) of a production consists of the actions. The actions can

add, delete, or modify working memory elements and perform input or output.To

create a working memory element, OPS5 defines themake action. This takes a

description that looks like a pattern and creates a working memory element.

A production consists of a name, a set of conditions, and a set of actions.The p

symbol is used to denote a production and the--> symbol is used to separate the LHS

and RHS. The following example production prints a message if it finds a coloured

block:

(p find-coloured-block

(goal ˆstatus active ˆtype find ˆobject block ˆcolour <c>)

(block ˆcolour <c> ˆname <n>)

-->

(write stdout Found a <c> block called <n>))

In this rule, if the first condition matches a relevant working memory element and the

second condition matches the working memory element forblock1, then the message:

Found a red block called block1
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would be produced.

2.2. Alternativesto OPS5

The OPS5 rule-based system is freely available software which is reliable.It works

on various platforms, as the source code has been written in many dialects of LISP, and

there is detailed documentation and descriptions of how the inner parts of OPS5 work.

This allows a functional OPS5 to be written and compared with an existing version.

Furthermore, parallel versions of OPS5 have been built and documented. As OPS5 is

used widely for research into rule-based systems, it was chosen for this research rather

than any of the other options.In this section there is a brief overview of the alternative

rule-based systems to OPS5 which were considered at the beginning of this research.

The tools considered were large hybrid tools and small PC-based tools.

Large Hybrid Tools

The large hybrid tools that were considered were all commercial products; ART

sold by Inference Corporation, KEE sold by Intellicorp, and Knowledge Craft sold by

Carnegie Group. They are knowledge engineering environments rather than merely

rule-based system shells. This is due to the fact that they each offer a variety of

different ways to approach any given problem. They are complex systems with many

options and considerable flexibility. The range of facilities these tools provide for

knowledge-based system developers are:

• different methods of representing knowledge within each system

• inheritance of values by entities in the system

• alternative worlds or viewpoints, which allow hypothetical reasoning

• the support of truth maintenance mechanisms

• the selection of powerful inference and control mechanisms

The user interfaces of ART, KEE, and Knowledge Craft employ advanced man-

machine interface techniques.All three tools provide natural language interface
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mechanisms and explanation facilities, and allow full access to the underlying system

and to other programming languages such as LISP or C.This enables developers to

write critical code in a more efficient manner. These tools also allow access to

commercial database systems for storing large amounts of data.With all these facilities

available to the systems developer, any one of the three tools considered would be

highly suitable to develop and implement a deliverable expert system.However, this is

not the aim of this research.

The drawbacks of these development environments are the lack of a detailed

description of their inner workings which is needed in order to make comparisons with

the implementation in this thesis. There were no known parallel implementations of

these tools and they were too big and complicated to emulate given the scope of the

research. Furthermore,they consume enormous amounts of computing power, require

machines with huge amounts of resources in order to execute, and need graphics

hardware for their advanced user interfaces. In the light of these drawbacks, the large

hybrid tools were not considered suitable for this research.

Small Tools

The small tools considered were taken from a collection of rule-based system tools

which have proliferated recently on desktop PC’s. Theywere considered because of the

availability of the machinery for development and for end-users, and because the

software was generally available.These were also commercial products but much

smaller and cheaper than the hybrid systems. Those available were Expert Ease, Micro

Expert, Micro Synics, and ES/P Advisor.

The power and flexibility of these tools is quite limited because they are specifically

written for small machines.However, they were adequate for an initial investigation

into rule-based systems. This investigation began by taking each tool individually and

attempting to execute the demonstration programs. All four tools failed to execute for

various reasons. Because of these execution failures and the lack of documentation, it

was decided that the PC-based tools and the PC operating systems were either too

unreliable or too unstable for this research.
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2.3. Different matching algorithms

A matching algorithm in a rule-based system computes the state of the match

between the whole of working memory and all the productions.Its task is to select the

productions in which every condition of the production matches an element from

working memory. From the selected productions, just one is chosen by conflict

resolution for further execution.There are two main techniques for doing this

matching; they are non state-saving and state-saving.

2.3.1. Nonstate-saving matching algorithms

The non state-saving algorithm is the simpler. Every condition of every rule is

matched with every working memory element to generate the state of the match.

Conflict resolution chooses the one production for execution, and the state of the match

is then forgotten. However, every iteration of the recognize-act cycle recomputes the

state of the match, but because very little changes on each iteration, it is nearly the

samestate that gets recomputed and forgotten. Dueto the matching behaviour of this

approach, the algorithm is sometimes called thedumb matcher. As this algorithm

keeps recomputing the same state, it can clearly be improved.

2.3.2. State-saving

Matching algorithms for rule-based systems can save some of the match state on

each iteration of the recognize-act cycle.This is because each match state is similar to

previous match states. By saving some state, the cost of the match is reduced.There

are different matching algorithms for OPS5 that store different amounts of state.They

are:

i) the TREAT algorithm [Miranker87],developed for the DADO machine at

Columbia University [Stolfo83] [Gupta84]. TREAT saves working

memory elements that match each condition but does not save anything that

matches combinations of conditions.The match for the combinations is

recomputed on each iteration of the recognize-act cycle.
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ii) the Rete algorithm[Forgy82], developed at Carnegie-Mellon University.

Rete saves working memory elements that match each condition and also

saves data for some fixed combinations of conditions. It stores data for the

combination of successive conditions in a rule. It stores the state of the

match for condition 1, and then the state of the match of condition 1

combined with condition 2, and then the state of the match for a

combination of condition 1 and condition 2 and condition 3, until all the

conditions have been matched.

iii) Oflazer’s algorithm [Oflazer87]. This algorithm saves working memory

elements that match each condition and it also saves the combinations of

matches for all conditions. It stores the state of the match for condition 1

and condition 2, for condition 1 and condition 2 and condition 3, etc. But it

also stores the state of the match for condition 1 and condition 3.

The amount of state saved is different in each of these three algorithms.TREAT is

at the low end of the state-saving spectrum; however, it has to recompute some fixed

combinations on each cycle which increases its execution time.Oflazer ’s algorithm,

which is at the high end of the state-saving spectrum, spends a lot of time computing

state which may never be used and also stores huge amounts of state.Its execution time

and memory usage are higher than both TREAT and Rete. Rete is in the middle of the

state-saving spectrum and is the algorithm used in the sequential version of OPS5.

2.4. Analysisof Matching Algorithms

This section provides an analysis of the cost of using either non state-saving or

state-saving algorithms. Data collected by Gupta in[Gupta86] shows the typical values

in a range of real rule-based system applications for the average size of working

memory, the average number of productions, and the average number of conditions for

all productions. The data was collected from four OPS5 applications and two SOAR

applications [10] [Rosenbloom85], and is shown in table 2.1.

[10] SOARis another rule-based system that is similar to OPS5.
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Attribute OPS5 SOAR Average

528 371 476Average size of working memory

955 191 700Average number of productions

3.39 9.29 5.36Average number of conditions

Table 2.1: Data from Gupta’s PhD thesis

2.4.1. CostAnalysis of a Non State-Saving Matcher

The cost of using a non state-saving matcher for real systems can be evaluated by

using the data collected by Gupta in a set of equations which identifies the cost of the

non state-saving matcher.

Let:

w = average size of working memory

p = average number of productions

l = average number of conditions

The average cost of a match for one production during one iteration of the recognize-act

cycle involves choosing all the combinations of the size of the production’s left hand

side from working memory and then matching them with the production. This equates

to:

wCl =
w!

l ! (w − l )!

The average cost of matching during one recognize-act cycle is the cost of one

production multiplied by the total number of productions:

p × wCl (A)

When using a non state-saving matcher, the average number of matches per iteration of

the recognize-act cycle can be evaluated by instantiating the values ofw , l and,p in

equation A. The values from table 2.1 for OPS5 systems are:
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w = 528

l = 3.39 (rounded to 3)

p = 955

The average number of matches per recognize-act cycle equates to:

= 955× 528C3

= 955×
528!

3! 525!

= 955×
528× 527× 526

1 × 2 × 3

= 2. 33× 1010

Therefore, when using a non state-saving matcher for a large OPS5 application, there

are 2. 33× 1010 matches performed oneverycycle.

To calculate the algorithmic complexity of the non state-saving matcher some

approximations are made. One can use the approximation [11]:

528× 527× 526

1 × 2 × 3
≈ 5283

so that the average number of matches is approximately:

955× 5283

Therefore, equation A can be approximated by:

p × wl

The complexity of the match is approximately polynomial on the size of working

memory, and is cubic (l = 3) for an average OPS5 program.

[11] It can be observed that:

wCl → wl as w→ ∞, l → 1
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2.4.2. CostAnalysis of the Rete State-Saving Matcher

The Rete algorithm uses a clever compiler which converts the left hand side of a

production into a graph representation of that production, called a Rete network.Nodes

in the graph are used either to test attribute pairs of working memory elements or to

save the state of previously computed matches. The test nodes match an individual

attribute value or test that variables are bound correctly across combinations of working

memory elements.The state-saving (or memory) nodes are used to save working

memory elements that have successfully matched tests in the network. When all the

conditions have been satisfied, the terminal node becomes active and the production is

put into the conflict set. Consider two example rules, such as:

(p p1

(C1 ˆattr1 <x> ˆattr2 12)

(C2 ˆattr1 15 ˆattr2 <x>)

(C3 ˆattr1 <x>)

-->

(remove 3))

and

(p p2

(C2 ˆattr1 15 ˆattr2 <y>)

(C4 ˆattr1 <y>)

-->

(modify 1 ˆattr1 12))

These two productions have the Rete networks as presented in figure 2.1.

For extra efficiency, Rete is able to share partial networks between productions.

This further enhances the speed of matching because it eliminates matches and reduces

the number of nodes in the network compared with the non-sharing networks.Both

productionsp1 andp2 have a clause that starts:
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class == C1 class == C2

attr2 == 12

memory
 node

attr1 == 15

memory
 node

and node

memory
 node

and node

class == C3

terminal
  node
 for p1

 ROOT of network
for production p1

memory
 node

test variable <x>

test variable <x>

memory
 node

and node

class == C4

terminal
  node
 for p2

test variable <y>

attr1 == 15

memory
 node

 ROOT of network
for production p2

class == C2

Figure 2.1: Rete networks for productionsp1 andp2

(C2 ˆattr1 15 ...)

which can be shared. The network with sharing is shown in figure 2.2.

Gupta states that the behaviour of Rete is independent of both the number of

productions in the rule-based system program and the size of working memory. He

observes that the way production systems are currently written means that changes to

working memory only affect a small fraction of productions. Gupta has calculated that

each change to working memory will have an effect, on average, on 28 productions in

the next iteration of the recognize-act cycle. This highlights how ineffective a non

state-saving matching algorithm can be because if only 28 out of 955 productions are

affected, then the non state-saving matcher does needless matching on 927 productions.

That is, 97% of the matching work is unnecessary in a non state-saving matcher.
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class == C1 class == C2

attr2 == 12 attr1 == 15

memory
 node

memory
 node

and node

memory
 node

and node

memory
 node

and node

class == C3 class == C4

terminal
  node
 for p1

terminal
  node
 for p2

  ROOT of network
for all productions

memory
 node

test variable <x>

test variable <x> test variable <y>

Figure 2.2: A Rete network with sharing

By saving state, it is possible for a matcher to discriminate between productions that

need to be matched and those that do not.This means that the work done by a state-

saving matcher is reduced to just 3% of the work done by a non state-saving matcher.

However, Rete is better than this; it does not even match the 3% of affected productions

but saves the state of the match from the previous recognize-act cycle.Data from Gupta

indicates that there are, on average, 97 simple matches and 42 variable testing matches

per change to working memory, and that there are 3.1 working memory changes per

production firing. Therefore, there are:

3. 1× (97+ 42) = 430
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matches per cycle of the production system. In the non state-saving matcher there are

2. 33× 1010 matches per cycle, and with Rete there are 430. Therefore, the Rete state-

saving matcher is algorithmically superior to a non state-saving matcher.

2.5. ParallelRule-Based Systems

The desire for parallelism in rule-based systems is motivated by the observation

that, although rule-based systems have been used extensively to build large expert

systems, they are computationally expensive because of the matching required and,

hence, run slowly. This slow execution time limits the use of rule-based systems to

domains that are not time critical. For example, one study considered implementing an

algorithm for real-time speech recognition using a rule-based system[Newell78]; it was

found that present rule-based systems were between 5,000 and 20,000 times too slow

for such a task. Rete was considered a suitable candidate for a parallel implementation

of OPS5 because it is such a good algorithm for matching in sequential rule-based

systems.

2.5.1. Parallelismand Rete

In his PhD thesis[Gupta86], Gupta states that the expected speed-up available from

parallelism in Rete is between 100 and 1,000 times.However, the actual amount of

speed-up is between 10 and 25 times. The main reasons for this are:

i) only a small number of productions are affected on each change to working

memory (28 on average).

ii) a large variation exists in the processing required for each production.

Furthermore, this variation can change on each cycle of the production

system.

iii) the number of changes made to working memory per cycle is minimal (3.1

on average)

The consequences (of these reasons) are:
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i) only a few processors would be busy even if there were a processor per

production. Thisis due to the small number of productions that are affected

on each recognize-act cycle.

ii) oneis less certain of any speed-up due to parallelism because the stage after

matching cannot begin until all productions have been matched. If the time

to process one production is large, then the variation of processing time is

large and the speed-up will be reduced. Figure 2.3 shows the time taken to

process some productions in parallel. Matching all productions takes the

same time as matching the most expensive production. Gupta states that it

is desirable to eliminate the variation (for example, by using load

balancing). Thesituation may change from cycle to cycle, but the

important aspect is the timetmax, because this is the time taken for the

whole match phase.The aim is to reducetmax so that it is closer totavg.

This situation is shown in Figure 2.4.

iii) the speed-up from processing multiple changes to working memory in

parallel is minimal because only a small percentage of working memory is

changed on each cycle and the amount of processing required to deal with

these changes is also minimal.

The limited amount of speed-up available in OPS5 is mainly due to the way rule-

based system programmers write their rules.To overcome this problem and to make

effective use of a parallel machine, it is necessary to decrease the variation in the cost of

processing each production.Gupta’s method for harnessing parallelism involved

designing a parallel version of Rete which exploits parallelism at a fine-grained level.

The parallel Rete algorithm processes each node of the Rete network as a parallel task.

However, Gupta observes that 75% - 95% of execution time is spent processing state-

saving memory nodes and very little time is spent processing test nodes.
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Time to

process

production

1 2 3 4 5 6 7 8 9 10 11 12 13

tmax

tavg

Productions

Figure 2.3 Actual situation — variation in processing time

2.5.2. ParallelImplementations of OPS5

Practical attempts at harnessing parallelism in the OPS5 rule-based system have all

been successful to some degree.However, most can be characterized by three recurring

features: the use of special hardware for the parallel machine, the use of different

partitioning algorithms for each of the different architectures, and the static placement

of tasks onto machines. For a detailed overview of much of this work see[Gupta86a]

or [Gupta89].As an example of the differences, consider the hardware chosen by these

groups:

i) the Production System Machine project at Carnegie-Mellon [Gupta86] has

32-64 processors with shared-memory. Each processor has a hardware task

scheduler.
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Time to

process

production

1 2 3 4 5 6 7 8 9 10 11 12 13

tmax tavg

Productions

Figure 2.4 Ideal situation — no variation in processing time

ii) the DADO machine from Columbia University [Stolfo83] was a binary

tree of 16,000 very small processors with distributed memory.

iii) the NON-VON machine, also from Columbia University, has between

16,000 and 1,000,000 very small processors connected to 32 larger

processors [Hillyer86].This is also connected as a binary tree.

iv) Oflazer’s machine [Oflazer87]is a tree with 512 medium size processors at

the leaves of the tree. These are combined with very simple processors at

other nodes.

In order to drive these machines using conventional imperative techniques,

significant parts of the application need to be rewritten in order to get the required

parallelism. Thisthesis proposes that using functional programming techniques on a

parallel machine will result in a portable implementation of a rule-based system.
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2.6. Summary

A state-saving matching algorithm is far superior to the simple non state-saving

matching algorithm as it needs to do only 3% of the work.The Rete state-saving

matcher is very efficient, and for a typical OPS5 application with over 500 working

memory elements and over 900 productions, it does 430 matches compared with a non-

state-saving matcher which would do approximately 2. 33× 1010 matches.

Parallel versions of rule-based systems do not display as much speed-up as

expected because of the way the programmers of rule-based systems write their rules.

To overcome these limits, Gupta built a parallel version of Rete which processes each

node of the Rete network as a separate task.

The challenge for functional programming is to emulate the efficiencies of Rete in

both sequential and parallel environments. Gupta stated that 75% to 95% of the

processing time is spent updating state-saving nodes.As functional languages have no

concept of updatable store, recreating these efficiencies could be difficult. As there are

no standard ways to manipulate state in a functional language,it is proposed that a

prototype rule-based system be built using a non state-saving matcher in order to

determine the effectiveness of manipulating state items such as production memory and

working memory, before the manipulation of the extra state held by a state-saving

algorithm is undertaken.Some researchers concluded that implicit parallelism

techniques are the only way to improve the parallel performance of a rule-based system

beyond that achieved by human intervention (see [Stolfo86], and[Rosenthal85] ).By

implementing a rule-based system in a functional language, one can expect to gain an

efficient, automatically parallelized implementation.
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Chapter 3

3. The Design and Implementation of a Functional

Rule-Based System

This chapter describes the design and implementation of a version of functional

OPS5 that has been created for this thesis. OPS5 is interesting from a functional

programming viewpoint because it is an application that encompasses various

computing disciplines. It has a compiler, a lexical analyser, and a pattern matcher and it

requires a large amount of state which is accessed and regularly updated and does input

and output from the environment. The literature has few reports of functional

applications and the problems that arise, and as such this application highlights some of

the issues that arise when building large applications.

This chapter contains a description of the design of each part of the functional rule-

based system.Then the issue of state is discussed as this is a problem area in any

functional application. This is followed by details of the actual implementation of the

rule-based system with each component of the system considered separately. And,

finally, an analysis of the working functional rule-based system which highlights both

the problems and the solutions of using functional languages for large applications.

3.1. Designof a Functional Rule-Based System

One of the main investigations of this thesis was the analysis of the design and

implementation of a large functional application. The process of building large

applications in imperative languages is well known, but has its own problems.

However, the process for functional languages is not well documented.
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Early research indicated that there are problems which arise in functional programs

that are not evident in imperative programs.These problems are the issues of (i) the

manipulation of state and the related issue of store, and (ii) doing input and output.In

imperative systems there arevariables that hold values of state and which may be

accessed or updated arbitrarily. Many imperative languages use lexical scoping to limit

access to variables, but global variables are accessible everywhere.Eachvariable has a

position in the computer’s store and may be accessed and updated.A procedure in an

imperative language may access and update the variables even if the variables have not

been passed as an argument. Similarly, input and output in imperative languages can be

done in arbitrary places. The input and output streams are part of a global environment

that can be easily accessed without explicit mention of them if used in a function.

The functional rule-based system was designed with five main parts: there are three

components that constitute the recognize-act cycle — thematcher, conflict resolution,

andact; a compiler, which compiles the textual form into a form used by the matcher

and the act process; and arun-time system, which provides the infra-structure to glue

the previous four parts together.

Initially there seems to be a problem with retaining and updating state for both

production memory and working memory. Functional languages do not provide

updatable global variables, so how is it possible to implement a system which is

inherently state-saving? The matcher needs access to both production and working

memory, conflict resolution needs access to a selected subset of both production and

working memory, and the act process needs to change the contents of working memory.

An answer to this question will be seen in this chapter.

In the traditional imperative model, much of the global state is available in all parts

of the system. In addition, any part of the state can be updated at any time, regardless of

whether or not it is appropriate to that part of the system.This method of updating

allows bugs to be easily introduced, although object-oriented techniques provide a

discipline which reduces this problem[Stroustrup86]. Becausefunctional systems do

not have a global environment which can be accessed at any time, any items of state that

are needed in a function have to be passed to itexplicitly. By contrast, the imperative
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system hasimplicit access to state.

In the functional implementation, the run-time system of the rule-based system

passes state explicitly from one part of the system to another, removing the need for any

global updatable state.Because no part of the system needs access to everything held in

the state,the relevant items can be passed to any part of the system. For example, the

match phase of the main cycle only needs access to the production memory and the

working memory. No other items in the state are needed and no others are passed on.

Another aspect of passing explicit state in functional languages which is not seen in

imperative languages is the need toplumb in the state. State has to be passed explicitly

from function to function, just as water pipes are passed from room to room in a central

heating system. Consider the example:

work :: (a->b) -> [a] -> [b]

work f l = [ f a | a <- l , test a ]

Suppose we wish to count the number of timesf is applied to its argument. Inan

imperative language, it would be possible to add a line of code which updated the state

of a global variable and the type of the function would not need to change.In a

functional language this technique cannot be used.The state has to be made explicit,

thereby changing the type of the function to:

type State = Int

workS :: (a->b) -> ([a], State) -> ([b], State)

workS f (l,s) = (list, s + sum statevals)

where

(list, statevals) = unzip [ (f a, 1) | a <- l , test a ]

This explicit change of the type and the extra code has to be done by design; it cannot

be added as an afterthought. This isplumbing.

Figure 3.1 shows how the five main parts of the system fit together. The run-time

system retains all the state and then passes the appropriate items to other parts of the

system. Thedetails of the items passed to each part are described in section 3.2, but
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only some state items are needed in each part of the system.In figure 3.1,pm

represents production memory andwmrepresents working memory.

run-time system

compiler

filename productions

match

pm

wm

match env

conflict

resolution

conflict set
production

act

wm elems

production
wm elems

Figure 3.1: How the functional rule-based system fits together

The run-time system is the interface to the outside world, thus providing a

mechanism for doing input and output.A large part of the design was a compiler that

would recognize a language which specifies the rules for the rule-based system.Input

to the compiler is in a textual form. Output from the compiler is in a form used by the

match process, namely a list of productions which are saved in production memory.

This requires interaction with the state-saving mechanism.

The match function takes the current working memory and current production

memory and does an exhaustive match by matching every clause of every production

against every working memory element. The result of this function is a conflict set,

which is returned to the run-time system.The conflict set is passed through a conflict

resolution function which selects one production to execute.The selected production

together with the whole of working memory is passed to the act function, which

executes the production and updates the working memory by either adding and deleting

elements or doing input and output. The new working memory is passed back to the

run-time system for the next iteration of the recognize-act cycle.
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3.2. StateRequirements of a Rule-Based System

The state required for a rule-based system is relatively large, comprising hundreds

of productions and thousands of working memory elements. In the functional rule-

based system there are twelve items of state to pass around, none of which can be

avoided. Theapplication runs from cycle to cycle, saving and updating different state

items as it runs.The following sections will demonstrate how state handling need not

be a problem, for the amount of plumbing which is required can be reduced and the

access and update mechanisms can be streamlined, resulting in an elegant approach to

state access and state update.

3.2.1. StateItems in the Functional Rule-Based System

This section describes what items of state are saved in the implementation of the

rule-based system. As previously stated, there are twelve items. These twelve items are

briefly explained below:

Production memory — where all the productions are kept.

Working memory — a collection of independent data structures.This is the

data that is matched with the productions.

Conflict set — the set of all matched productions which could possibly be

acted on, together with their working memory instantiations.

Conflict resolution strategy — a function which takes the conflict set, and

resolves down to the one production to be used on the next act.In OPS5 there

is a choice of two conflict resolution functions.The choice is made at the start

of execution of the rule-based system.

Conflict set history — a  history of all productions and their working memory

instantiations which have previously fired.This is kept because OPS5

disallows productions from firing twice with the same instantiation.

Curr ent resolved production — the next production to fire, with full

instantiation of working memory elements and bound variables [Forgy81].
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Stream to file map— a map of stream name to file name.When OPS5 opens

a file, a stream name is returned. From then, OPS5 can write to the stream.

This is needed in order to output to the correct file.

Curr ent firing cycle — a count of how manyrecognize-act cycles have

occurred, in other words how many productions have been fired. Each cycle of

the system increments this.

Curr ent working memory timestamp— every working memory element has

a unique timestamp which is used in various places. This timestamp is

incremented every time an element is added to or deleted from working

memory.

Debug output level — OPS5 does different amounts of debugging output

depending on the value of the debug output level.0 means none; 1 means

indicate which productions are firing; 2 means indicate all of 1 and also which

items are being added to or deleted from working memory.

System input — all input to the system is passed in the state. It is eaten by

some actions.

System output— the output is incremented in many places, such as in actions

and as part of debugging. Access to it is needed almost everywhere.

As previously stated, not all parts of the system need access to every item in the

state. Becausethe run-time system is the infra-structure which holds the entire system

together, it seemed better to have one big state and many access functions rather than

having many small state structures which hold different parts of the state.Table 3.1

shows that different items in the state are used by many different parts of the system.

Splitting a state structure into many small ones would introduce unwanted complexity.

Table 3.1 also shows that different parts of the system interact through values in the

state structure.Dif ferent sub-parts of therecognize-actcycle access or set the items

within the state to be used for later processing.
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Item in state Set by Accessed by

production memory compiler matcher

compiler

run-time system

working memory run-time system

act

matcher

act

run-time system

conflict set matcher conflict resolution

run-time system

conflict set history conflict resolution conflict resolution

conflict resolution strategy conflict resolutionSET ONCE

current resolved production conflict resolution act

stream to file map act act

current firing cycle act act

current working memory timestamp act act

current debug output level value SET ONCE compiler

act

system input actSET ONCE

system output run-time systemANYWHERE

Table 3.1: State items in the functional rule-based system

3.3. Implementationof the Functional Rule-Based System

The implementation of the rule-based system is discussed, with each main element

of the functional OPS5 considered separately. First the compiler for the OPS5 language

53



is discussed.From this it will be seen how suitable functional languages are for

building compilers. Then follows a discussion on the recognize-act cycle and the run-

time system for the functional OPS5.

3.3.1. TheOPS5 Compiler

Functional programming languages are particularly well suited to writing compilers

and compiler tools and have been used successfully to write compilers for functional

languages. Someexamples are the Lazy ML compiler written in Lazy ML

[Augustsson89], the Standard ML compiler written in Standard ML[Appel87], and the

Hope compiler written in Hope[Burstall80]. Compiler tools have also been

successfully written; for example, a Yacc parser generator in SASL[Peyton-Jones85], a

lexical analyser generator [Jones86], and a mechanism devised for integrating parser

definitions into CAML [Mauny89]. Recentwork in this area includes the Chalmers

Haskell compiler, built on top of their Lazy ML compiler, and the Glasgow Haskell

compiler. These programs form the largest body of working functional programs.

The compiler for the functional OPS5 has been designed with three main parts; a

lexical analyser, a parser, and a back end translator.

input
lexical

analysis
parser translator output

Lexical analysis converts the input from a list of characters into a list of tokens

which the parser then uses. The lexical analyser was hand-coded and explicitly matches

fixed input sequences. No special lexical analyser generator tools were used.

The parser is a set offunctions that represent the formal grammar of the input

language as closely as possible, with one function for each grammar clause.

The translator converts the parsed data into the output form (in this case, a sequence

of productions). The translation is achieved by using an action for each grammar

clause.
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The desire was to make the compiler as simple and easy to comprehend as possible.

The compiler built is a recursive decent compiler [Aho86] which has rewrite rules for

each clause parsed. It is important to note that this style of compiler will not parse left-

recursive grammars (since the parser would recurse infinitely). For example, the

grammar clause:

expr::= expr op expr

is an example of a left-recursive clause. The source language for OPS5 has an LL(1)

grammar [Forgy81]. Thus,it was not necessary to convert the grammar clauses from a

left-recursive form to a non left-recursive form.

A Framework to Represent a Formal Grammar

This section discusses a functional framework for building a parser for the OPS5

input language.From this it can be shown why functional languages are so well suited

to the task of writing compilers. The grammar used will be a simple arithmetic

evaluator which is often used in the compiler literature as an example to highlight the

features of a compiler. However, in this case the grammar is a part of the OPS5

grammar. The full grammar can be found in the OPS5 reference manual [Forgy81].

In the grammar:

expn = term+ term |

term- term |

term

term = factor* factor |

factor / factor |

factor

factor = ( expn) |

number
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theconcatenationof terms is implicit whilst thealternation of clauses is explicit using

the | symbol.The grammar can be made more explicit by representingconcatenation

with the AND symbol andalternation with the OR symbol. The more explicit

grammar looks like:

expn = termAND + AND termOR

termAND - AND termOR

term

term = factorAND * AND factorOR

factorAND / AND factorOR

factor

factor = ( AND expnAND ) OR

number

A framework for a parser is defined such that there are functions which represent the

notation of the formal grammar. This enables the conversion of a formal grammar into

a working parser. The framework for the parser has functions that represent the

grammar symbols OR and AND.These, respectively, are calledpor andpand . Also

defined is aterminal function for parsing the terminals of the grammar. The

grammar can be converted to a functional form using these framework functions, and

will result in [12]:

[12] Theform `f` is Haskell syntax for the infix application off .
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expn = (term `pand` plus `pandl` term) `por`

(term `pand` minus `pandl` term) `por`

term

term = (factor `pand` times `pandl` factor) `por`

(factor `pand` divide `pandl` factor) `por`

factor

factor = (lpar `pand` expn `pandl` rpar) `por`

get_num

This is only the outline of a parser and it cannot do any parsing yet. The addition of the

actions to enable it to work will be considered later.

When building a functional parser, it is necessary to remember that functional

programming makes things more explicit. In particular, there is no global place from

which input can be collected, and, therefore, it must be passed into the parsing functions

as an argument. Inputalso has to be returned from the parsing functions, together with

any other data, as the parsing functions may take values from the input.

An algebraic data type is defined to represent values returned from a parsing

function. Thesefunctions may return a value of any type as well as the input, so the

data type is defined as:

data Parser_value a i = ...

wherea is the type of the parsed value andi is the type of the input.The actual

constructors for this type are not of importance here.A parsing function which takes

some input and returns a parser value has the type signature:

parser_function :: [input] -> Parser_value a input

The main parsing functions are those defined in the framework of the functional parser,

namely por , pand , and terminal . Both por and pand are higher-order

functions that apply parsing functions to some input.
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The functionpor takes, as arguments, two parsing functions and some input and

returns a parser value. Each parsing function may return a result which has eaten some

input or failed to parse and eaten no input, (the mechanism for choosing a parsed value

is discussed in Aho, Sethi, and Ullman [Aho86] ). In this compiler, por takes the first

successful parse, but it could easily be replaced by a function that selected the longest

parse or that returned every parse as in [Wadler85]. Thetype ofpor is:

por :: ([i] -> Parser_value a i) ->

([i] -> Parser_value a i) ->

[i] ->

Parser_value a i

The first two arguments are the same type as other parsing functions, and whenpor is

applied to its first two arguments it has type:

por fn1 fn2 :: [i] -> Parser_value a i

This is the same type as other parsing functions, and therefore it is a higher-order

function which can be passed to another parsing function.

The functionpand is similar topor except that it returns the result of both parses.

It has type:

pand :: ([i] -> Parser_value a i) ->

([i] -> Parser_value b i) ->

[i] ->

Parser_value (a,b) i

When applied to its first two arguments,pand can also be used as a higher-order

argument to other parsing functions, as in the grammar for the expressions.

Every parser needs a mechanism to collect terminals from the input, and one has

been defined.The parsing functionterminal takes as an argument a terminal

symbol which it expects to find in the input stream. It then returns a parser value.The

type of the terminal symbol and the input must be the same, givingterminal the

type:
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terminal :: i -> [i] -> Parser_value i i

When terminal is given its first argument, it can be passed to other parsing

functions.

Once the input has been parsed, the compiler will take an appropriate action.

Within the functional compiler framework anaction function has been defined.The

action function takes a higher-order parsing function which returns a parsed value, a

function to do some action on the parsed value, and some input.A modified parsed

value is then returned by theaction function, which has type:

action :: ([i] -> Parser_value a i) ->

(Parser_value a i -> Parser_value b i) ->

[i] ->

Parser_value b i

A support function foraction is the as function. It checks to see whether a

parser returned a failed parse value. If it did, thenas returns the failed parse, otherwise

it calls a function to process the successful parse. Using this mechanism, failed parse

values can be propagated through the compiler to parsing functions that wish to catch

errors and successful parse values can be processed in the place in which they are

collected. Theas function takes two arguments – a function to process the parsed

value and the parsed value – and then returns a new parsed value.as has type:

as :: (Parser_value a i -> Parser_value b i) ->

Parser_value a i ->

Parser_value b i

To complementas , the functionreturn is defined, which allows a new value to be

returned as a parsed value.return takes the new value and an existing parser value,

and it returns a new parser value.return is used as the first argument toas , and has

type:
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return :: v ->

Parser_value a i ->

Parser_value v i

Further functions used in the processing of the action aredollar0 , dollar1 ,

dollar2 , etc. whichpick thenth element from a parsed value. The parsing functions,

together with action , as , return, and the dollar functions are usually

combined in the following way:

parsing_function

‘action‘ (\p ->

return(f (dollarn p)) ‘as‘ p)

The parsing function does the parsing andaction applies the action(\p -> ...

) to the parsed value. The functionas checks to see if p is a failed parse or not. If it

is, thenas returns the failed parse, otherwise it applies the functionreturn (f

...) to the parsed value, which causes a new parser value to be returned

Using The Framework

The functional framework is used in the OPS5 compiler, where each grammar

clause is represented with a unique algebraic type.This is a benefit when writing a

compiler because each parser function and its associated action is strongly typed.This

enables the functional language type-checker to test the type of every function in the

parser for consistency. As a result, any errors that may have occurred in the writing of

each action can be found at compile time rather than at run time.By using this

technique in the OPS5 compiler and other parsers it has been found to reduce run-time

errors in parsers quite substantially. The data types for the OPS5 grammar, with the

arithmetic expression terms shown in particular, are:
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data Production = Production PName LHS RHS

data LHS = LHS [Condition_elem]

...

data RHS = RHS [Action]

...

data Expn = PExpn Term Term |

MExpn Term Term |

SExpn Term

data Term = TTerm Factor Factor |

DTerm Factor Factor |

STerm Factor

data Factor = BktExpn Expn |

NFactor Int

The grammar of the OPS5 compiler is now presented, with particular attention paid to

the arithmetic expressions:
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prod :: [OPS5_tok] -> Parse_val Production OPS5_tok

prod = ((lpar `pand` terminal "p" `pand` name `pand`

lhs `pand` terminal "-->" `pand` rhs `pand` rpar)

`action` (\p ->

return (Production (dollar3 p) (dollar4 p)

(dollar6 p)) `as` p))

...

expn :: [OPS5_tok] -> Parse_val Expn OPS5_tok

expn = ((term `pand` plus `pandl` term)

`action` (\p ->

return (PExpn (dollar1 p) (dollar3 p)) `as` p))

`por`

((term `pand` minus `pandl` term)

`action` (\p ->

return (MExpn (dollar1 p) (dollar3 p)) `as` p))

`por`

term `action` (\p ->

return (SExpn (dollar0 p)) `as` p)
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term :: [OPS5_tok] -> Parse_val Term OPS5_tok

term = ((factor `pand` times `pandl` factor)

`action` (\p ->

return (TTerm (dollar1 p) (dollar3 p)) `as` p))

`por`

((factor `pand` divide `pandl` factor)

`action` (\p ->

return (DTerm (dollar1 p) (dollar3 p)) `as` p))

`por`

factor `action` (\p ->

return (STerm (dollar0 p)) `as` p)

factor :: [OPS5_tok] -> Parse_val Factor OPS5_tok

factor = ((lpar `pand` expn `pandl` rpar)

`action` (\p ->

return (BktExpn (dollar2 p)) `as` p))

`por`

get_num `action` (\p ->

return (NFactor (picknum (dollar0 p))) `as` p)

The action for the parser function converts parsed values of one type into values of the

type returned by the parser function.Consider the functionexpr , which returns the

typeExpn . It will parse using the functionterm , which returns the typeTerm . The

actions inexpr return results using the constructorsPExpn , MExpn, or SExpn . If

any data given to one of these constructors were not of typeTerm , then the type

checker would complain. By having a new type for each grammar clause, the type

checker of the functional language compiler can determine errors in the parser. If the

parser had just one type throughout the code, it would be possible to introduce more

errors at run time.

Work similar to the parser presented in this thesis has been done by Hutton

[Hutton90]. Huttonuses the techniques devised by Wadler [Wadler85] to build parsers
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which also use higher order functions to represent the formal grammar. Hutton’s use of

Wadler ’s techniques have not been designed for large compilers, although Hutton

demonstrates that they can parse non-trivial grammars. In Hutton’s parsers, the tasks of

parsing and semantic action are merged together. That is, some of the semantic actions

are done as part of the parsing and some are done as a rewrite rule. Hutton represents

concatenationin the formal grammar as three functions, namelythen , xthen , and

thenx . The then function works in a similar way to thepand function defined in

this thesis.However, the functionsxthen andthenx throw away the first or second

parse, respectively, after a parse has succeeded. This contrasts with the parser in this

thesis, which explicitly has anaction for each parse that is responsible for manipulating

parsed values. In this thesis, the two issues of parsing and rewriting have been

successfully separated. There is only one function forconcatenation, namely pand .

Consequently, the parser closely represents the specification of the formal grammar,

having all the semantic actions in a separate rewrite rule. Furthermore, by maintaining

the discipline of using a separate algebraic type for each grammar clause, many errors

can be detected and identified at compile time (unlike Hutton, who may not detect these

errors until run time).

The combination of regular higher-order functions for the parser and the use of

strong typing provides a framework for building large parsers.It is simple to convert

the grammar into a parser and then to construct the rewrite rules.If Hutton’s technique

is used, then the parser and the construction of the semantic actions need to be

considered at the same time. This increases the scope for errors, rendering Hutton’s

technique less suitable for large parsers.

3.3.2. TheRecognize-Act Cycle

The recognize-actcycle of a rule-based system is usually said to occur in the

following order:

i) match — which evaluates the LHS’s of the productions to determine which

are satisfied given the current contents of working memory.
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ii) conflict resolution — which selects one production with a satisfied LHS.

If no productions have satisfied LHS’s, then the system halts.

iii) act — which performs the actions specified in the RHS of the selected

production.

The following sections show how match, conflict resolution, and act have been

implemented in a functional language.The section "The Run-Time System" presents

how each of these parts is used and called with the right arguments.

Match

During the match phase, the OPS5 interpreter determines every instantiation of

every production. Furthermore, if any of the productions can be instantiated by more

than one list of working memory elements, then the interpreter finds every valid list of

elements and puts these instantiations into the conflict set.

The functiondo_match matches all productions with all of working memory. It

uses a list comprehension to do a cross product over production memory and working

memory. For each production, tuples of working memory elements are generated which

have the same number of elements as the number of clauses in the rule’s left hand side

and are matched against that rule’s clauses. Everyrule that has all its clauses matched

successfully will go into the conflict set.The working memory tuples are generated on

each loop of therecognize-actcycle:
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do_match::PM->WM->[Conflict]

do_match ps ws

= select_conflict_set [(match_rule wm_el a_prod) |

a_prod <- prod_list ;

wm_el <- wm_lists !! (index a_prod) ]

where -- !! is the list index function

prod_list = pmget_as_list ps -- get PM as one list

wm_lists = wm_cross_product ws -- all WM tuples of all sizes

index prod = length (get_lhs prod) -- index is no of LHS clauses

Conflict Resolution

In the OPS5 user manual[Forgy81], the conflict set is defined to be a set of pairs in

which each pair contains a production name together with a list of working memory

elements satisfying the production’s LHS. Conflict resolution examines this set to

determine which instance dominates all others. The method for determining which is

dominant is called the resolution strategy, and OPS5 has two of them — LEX and

MEA. Eachstrategy has an ordered list of rules to follow, and is described in the OPS5

User ’s Manual [Forgy81].

The ability to create new types easily and to specify sequences of operations using

function composition renders functional languages suitable for converting an ordered

list of tasks into a functional definition.The method for converting a list of ordered

rules into a function relies on a simple analysis of each rule. Consider the functions

defined for the OPS5 conflict resolution strategy:

• stage1takes the conflict set history and the conflict set and removes all the

instantiations from the conflict set that have fired already – this avoids

unintentional (and potentially infinite) loops between rules, however the

rule programmer is free to create his own explicit loops.
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• stage2 sorts instantiations by the timestamps of the working memory

elements in the instantiation tuple so that later stages can choose the

instantiations with the newest timestamps.The process differs in the initial

sort depending on whether the LEX or MEA conflict resolution strategy is

being used and is split into 3 functions:

• lex_stage2_sortsorts instantiations by the timestamps of the

working memory element tuple, ordered with the newest timestamp

first

• mea_stage2_sortsorts instantiations by the timestamps of the

working memory element tuple, with the timestamp of the first

element of the tuple followed by the rest of the tuple which is

sorted and ordered newest first

• stage2_ordersorts on two values. First on timestamp list, then by

production name.

• stage2_selectselects only those instantiations whose timestamp

lists are the same as the first member of the timestamp list.

• for stage3, if stage2_selectreturned one instantiation, then this is the

selected item. If there is more than one item, then it is necessary to check

the specificness of each production and choose the item which is most

specific in the current context.The specificness of an instantiation is

evaluated by counting the number of simple matches and variable matches

in the original production. Instantiations are considered more specific if the

count is higher; that is the production had a higher number of matches.

• in stage4, if there is still no obvious item, then an arbitrary item is chosen

The types for each function are given below:
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stage1 :: [(Pname,[Timestamp])] -> [Conflict] -> [(Pname,[Timestamp])]

lex_stage2_sort :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]

mea_stage2_sort :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]

stage2_order :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]

stage2_select :: [(Pname,[Timestamp])] -> [(Pname,[Timestamp])]

stage3 :: [Conflict] -> [(Pname,[Timestamp])] -> [Conflict]

stage4 :: [Conflict] -> Conflict_Resolution_State

These functions can be combined in a pipeline to generate the two functions needed for

conflict resolution.

The LEX conflict resolution strategy:

lex :: [(Pname,[Timestamp])] -> [Conflict] -> Conflict_Resolution_State

lex cs_hist cs

= ( stage4. stage3 cs .

stage2_select . stage2_order . lex_stage2_sort .

stage1 cs_hist) cs

The MEA conflict resolution strategy:

mea :: [(Pname,[Timestamp])] -> [Conflict] -> Conflict_Resolution_State

mea cs_hist cs

= ( stage4.(stage3 cs).

stage2_select.stage2_order.mea_stage2_sort.

stage1 cs_hist) cs

Act

In the act phase of the cycle, the actions of the chosen production are executed one

at a time in the order that they are written. These actions may add or delete elements

from working memory, or they may do input and output.
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3.3.3. TheRun-Time System

The run-time system of the rule-based system is the infra-structure that binds the

application together. Functions within the run-time system manipulate the items in the

state, generating a new state after they are called.The recognize-actcycle is the main

operation of any rule-based system. The form of this cycle is:

match→ conflict resolution→ act

Although previous sections demonstrated that no part of the system needs access to

every item in the state, it is pertinent that the state be set correctly and in a

predetermined order. It is necessary to represent the mainrecognize-actcycle in a

functional way while still retaining its same operation. This can achieved by updating

items of state as well as using the same ordering as in the original algorithm.

In the run-time system, equivalent functions are defined within the run-time system

with the following types:

match :: State -> State

conflict_resolve :: State -> State

act :: State -> State

Each of the above is a function which does one part of the main cycle. When composed

together, the result is:

act.conflict_resolve.match

From this it is evident that the ordering of operations can be achieved through function

composition. Thecomposition is of typeState → State. The functions in this

composition take the whole state, and then pass the relevant parts to a sub-function

which does the real work. The value returned by the sub-function is set into the state,

ready for when the next function begins.

By composingmatch , conflict_resolve , and act , each of which sets an

item in the state, the behaviour of the original algorithm can be achieved.The result is a

functional implementation equivalent to the recognize-act state-saving algorithm.Since

the update of the state is hidden at this level, as opposed to having explicit manipulation
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of the state, the result is a function written in a higher-order style which is elegant and

hides the explicit plumbing.

The run-time system of the rule-based system has many other functions which are

all of type State→ State. This includes the compiler, which reads rules from a file,

compiles them, and then puts them into production memory. There are many top-level

functions which are equivalent to those in the original OPS5 run-time system.By

having all the functions of the same type, new top level functions can be added easily.

The problems of explicit plumbing are hidden through abstraction, enablingstate-

saving programs to be written in a functional style.There is no need for extra code for

state at the top-level since the manipulation is done in theState→ State functions.

When using higher-order functions, an abstraction for manipulating state is created.

This abstraction overcomes the issues of plumbing in the same way thatpor and

pand , when used as higher-order functions, create an abstraction for building parsers.

An example of a state manipulation function is the functionmatch . This takes

production memory and working memory, and then returns an environment of matches

for every production which could possibly fire next time. This environment is the

conflict set. The match function used in the run-time system encapsulates the

previously described matching function, calleddo_match , within a State→ State

framework. Itcan be written as:

match :: State -> State

match s = let conflict_set = do_match (get_pm s) (get_wm s)

in

set_conflict_set conflict_set s

The functionsset_conflict_set , get_pm , and get_wm are defined in an

abstract data type for state.do_match is the function that actually does the match.

Whenmatch is completed, the state will have been updated with a new value for the

conflict set.
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Combining forms

For the functional OPS5 to interact with the user, a wrapper function is defined

which retrieves the output of the system from the state for the user to see.This is

achieved by applying theget_output function, which is of typeState→ Output, to

the state of the system. Many functions are declared of typeState→ State. These are

composed in order to operate on the state.To get the output to the user, the

get_output function is applied to the state. The result is something like:

get_output ((fn. ... .f2.f1) empty_state)

In the wrapper, functions are passed as a list in the order that they will be evaluated.

The wrapper arranges for them to be composed so that they will then give the correct

result. Thewrapper can be written as:

execute :: [(State -> State)] -> output

execute = get_output.(foldl applys empty_state)

where

applys st command = command st

applys :: State -> (State->State) -> State

The functionexecute composes all the functions in its argument list and gets the

output at the end.A system can then be run with:

execute [load_productions "file",

conflict_resolution_strategy mea,

make "(make start)",

run]

This produces the desired effect of executing a rule-based system.

Input and Output

Input and output are also considered to be problematic in functional programming

because there are no side-effects and it is not obvious how to do both of them from the

middle of a large application.By having the input and the output streams held as items
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in the state, they both can be easy manipulated.

In a large application it may be necessary to do input or output at any time.In order

to do this, access to both the input and the output stream is required. The particular

functions required to do input and output may be buried deep in the application, so the

streams must be passed down there.Since there is already a mechanism for passing

items around, the state-saving structure is ideal for input and output streams.The

alternative is to pass the streams around separately. This can lead to complicated

control structures and to the loss of the previously seen functional cleanliness.

In the rule-based system output is produced in many places.Having the output

stream in the state combined with the abstract data type functions makes it simple to do

output. Anyfunction that needs to do output can affect the output item in the state.

Two functions for doing output are defined:add_output , which adds some new

output to the end of the existing output, andreset_output , which sets the output to

nil. The function add_output is the most common and the safest to use. This is

because any function currently doing output is often unaware of the other output

previously done. The functionreset_output is only used in the top-level wrapper.

The section "Combining Forms" demonstrates how state update functions can be

composed to affect multiple state items.If one of these state update functions is

add_output , then it seems to behave like a print statement in an imperative

language; for it is buried in a large expression and looks as though it is unrelated to the

output stream. Consider the example:

(set_item1 new . add_output "hello world" . set_item2 val) state

in which theadd_output expression is detached from any obvious plumbing (in fact,

the plumbing is implicit in the function composition).Input to the rule-based system is

handled in the same way. It is held in the state and manipulated by the abstract data

type functions.If the application needs any input, it can get it from the state. Input is

always eaten from the beginning of the input stream, and any input eaten is removed by

rewriting the input stream.
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Problems with I/O

As previously stated, input and output are considered problematic in functional

programming. Inthe application in this thesis there is a problem with output.The

observed behaviour is that no output is produced until the system stops.Then, once the

system stops, all the output appears. This can be perturbing, especially since the more

common result is for output to appear gradually. However, this behaviour can be

explained, and a solution found which gives the behaviour we desire. By analysing the

way the system was built, its operation can be predicted.

A solution to the problem of state being held up until the end of the program run

relies on onlyappendingnew output to old output, because if new output is prepended

anywhere, the results may be unpredictable (i.e. wrong). A top-level wrapper function

can be used to ensure that new output is only appended to old output. If functions are

not composed but, instead, the output from each of the functionsf1 to fn is collected as

each function is evaluated, then the result is the desired behaviour of output appearing

as it is generated.

An alternative approach to the wrapper function is:

new_execute :: [(State -> State)] -> State -> Output

new_execute [] st = []

new_execute (command:rest) st

= get_output this_run ++ new_execute rest new_state

where

new_state = reset_output this_run

this_run = command st

this_run :: State

The functionnew_execute could be started with an initial state ofempty_state .

The output for each update function is collected and prepended to the rest of the

processing. Beforecontinuing, the output is reset to avoid outputting the same thing

twice. Thefunctional simplicity of the former case has gone. Although both cases are

semantically equivalent, they have a different run-time behaviour. The temporal

behaviour of functional systems cannot be expressed as part of the program and can be
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difficult to determine, especially in large programs. There have been undocumented

reports of other attempts at large functional programs which have similar problems.

A second solution devised has a cleaner interface.A function is defined which

generates a list of states that correspond to each state-update function which needs to be

executed. Fromthat list, the output can be collected and concatenated in order to

provide output as it is generated.First, a function must be defined that generates a list

of states. This list is generated in the order in which the state-update functions are

called, thereby eliminating any hold-up of the output. This function is defined as:

statelist::[(State -> State)] -> State -> [State]

statelist [] st = []

statelist (command:rest) st

= newstate : (statelist rest newstate’)

where

newstate = command st

newstate’ = reset_output newstate

This function must also reset the output stream in order to avoid incorrect output.The

wrapper can now be defined as:

newer_execute::[(State -> State)] -> State -> output

newer_execute fns st = concat.(map get_output).(statelist fns st)

If a clean functional interface to state manipulation is created, there is difficulty

with output. However, this can be overcome, to a degree, by having a wrapper layer at

the highest level which collects output as early as possible. It is not yet clear how this

difficulty will manifest itself if output interleaves with input further into the bowels of

the system. It may be that the simplicity completely disappears. Further work can

investigate this issue. In particular the use of monads[Wadler90] and I/O combinators

[Dwelly89] can be evaluated, as both allow an abstract framework to be created within

the whole program structure. The currentState→ State functions do not provide a

controllable method for collecting input from the input stream when input and output

are interleaved within a singleState→ State function. Usingeither I/O combinators or
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some specially designed monads could allow a framework to be built which overcomes

the interleaving problem.

3.4. ExecutingOPS5

A working version of OPS5, written in Miranda, was built for this thesis.By

executing some test programs that are present in the LISP source of OPS5, the

functional OPS5 was evaluated. (Appendix C has an example of one of these

programs). Thefunctional OPS5 executed the productions of the test programs corectly.

However, executing the functional OPS5 on a sequential machine was very slow

because a non state-saving matcher was used.If a state-saving matcher, such as Rete,

had been used one would expect to see a significant difference in the run-time

performance, going from cubic on the size of working memory to independent of the

size of working memory, as was discussed in chapter 2.In this section, a summary of

the performance of different versions of OPS5 is shown in table 3.2.

In this research it has been discovered that it is difficult to run the functional OPS5

on a parallel machine due to problems such as:

i) availability — there are few machines built to execute parallel functional

programs and even fewer with accessibility.

ii) dif ferent language — the only machine that was available was the GRIP

machine [Clack85a]which has been installed at Glasgow University for

general use[Hammond91]. TheGRIP system uses either Lazy ML or a

Haskell subset. There were no translation tools to convert Miranda into

either Lazy ML or Haskell. Hand translation is possible but the need never

arose as the matching algorithm used was too inefficient and the GRIP

system was found to be unsuitable for the task required.

iii) non-trivial to use — GRIP requires hand annotations to harness parallelism.

To do this for many thousands of lines of code is very time consuming and

unlikely to be optimum or correct.
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Imperative Functional

Sequential A version of OPS5 written in

Franz Lisp was executed in both

interpreted and compiled form.

It used the Rete matcher.

The Miranda version was exe-

cuted in interpreted form.It

used a non state-saving matcher

and was therefore very slow.

Parallel I have not personally tested any

parallel versions of OPS5 due to

both the hardware and software

being unavailable. Some so-

called parallel versions of OPS5

have only ever been tested on

simulators. Furtherdetails of

these parallel implementations

can be found in the references

shown in chapter 2.

The functional version has not

been tested on any parallel ma-

chine. Thereasons for this are

discussed in chapter 6.

Table 3.2: Summary of performance of OPS5

These issues will be discussed more fully in chapter 6, in which parallel functional

programming is considered and the problems encountered are discussed.

Furthermore, it was discovered that the measurement tools and techniques are

thoroughly inadequate for observing the behaviour of an executing functional program.

The number of graph reductions and the time in cpu seconds presented by functional

run-time systems is of little use because it indicates nothing about the behaviour of the

running program. Agraph reduction on one machine may do substantially more work

than a graph reduction on a different machine even though they are both required to do

identical tasks. Graph reductions can be considered a similar measurement to MIPS in

that they are not a reliable indication of real performance.
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3.5. Analysisof the Functional Rule-Based System

The design, implementation, and execution of the functional rule-based system is a

feasibility study of the practical use of functional programming from both a

programming and an execution viewpoint. The programming viewpoint is a test to see

if a large state-based application can be written effectively in a functional language.

The execution viewpoint is a test to see if the functional application can be used on a

day-to-day basis.

The functional rule-based system uses a simple non state-saving matching

algorithm which has polynomial behaviour. This rule-based system consists of 5 main

components:

i) the compiler

writing this re-enforced the view that recursive compilers are easy to build

in functional languages.Much work has been done on functional

languages and compilation as seen in section 3.3. This compiler is a simple

recursive-decent compiler for a non-left recursive grammar.

ii) the matcher

this is the core of a rule-based system.This matcher uses a simple non

state-saving algorithm whereby every clause of every rule is matched

against every working memory element on every cycle.As stated, its

behaviour is poor.

iii) the run-time system

this is the framework for the functional OPS5. It arranges for input and

output to the program and binds the compiler and matcher together. It

manipulates a large state object, which has all the data required by the

program, such as production memory and working memory.

iv) act

this updates working memory and does input and output
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v) conflict resolution

this uses a pipeline of functions to emulate an ordered list of instructions

There is a general misconception amongst imperative programmers that functional

languages are unable to deal with state.This thesis refutes this claim with the proof of a

working application. In this chapter a technique was demonstrated for writing

applications which manipulate state.This technique combines using an abstract data

type to represent state with a set of higher-orderState→ State functions. Byusing this

technique, 90%of the rule-based system OPS5, which is an inherently state-saving

application, has been successfully implemented.

Due to the desire to keep the compiler simple, the initial version of the compiler

does not include error reporting or error recovery. Although this is sufficient for a

prototype compiler, further work would be the implementation of a second version in

which the lexical analyser and the parser support both error reporting and error

recovery.

The fact that a functional language is being used to implement OPS5 presents both

advantages and disadvantages. Depending on ones point of view the advantages for one

person may be the disadvantages of another and we see that they are the same.The

disadvantage is thatstate must be represented explicitly and therefore the code must be

redesigned. As all state is explicit, the program code can look messy and thus lose the

functional expressiveness that is expected.Imperative programs look much the same

when state is added because state manipulation is implicit.The advantage is thatstate

must be represented explicitly and therefore the code must be redesigned. There is

explicit control over which parts of the state are passed and accessed, therefore implict

state manipulation and generally accessible global store issues are overcome.

Furthermore, an imperative implementation allows error reporting to be added as an

afterthought. Thishas the disadvantage that error reporting and error recovery may

suffer from incoherent design. In a functional system, error reporting and error

recovery must be explicitly designed into the system.
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Limitations of the Functional OPS5

The rule-based system created for this thesis is limited in comparison to the LISP

version of OPS5. Only the main actions have been implemented, and the compiler is

somewhat limited, giving few error messages and being unforgiving when errors do

occur. These limitations have not been a problem because the original LISP system

gives good error messages and can be used as a benchmark for any testing done.A

group at Carnegie-Mellon University has implemented OPS5 in C. Their

implementation has limitations which are similar to those found in the functional OPS5.

This is because both Miranda and C treat programs and data differently, whereas LISP

treats them the same.

In the functional OPS5 there are problems with:

• doing I/O, as seen previously.

• bugs buried deep in the system which were hard to find, because of a lack

of debugging tools.

• measuring the performance of the system. Because neither the time spent

in functions nor the space used can be measured, it is impossible to

compare this system with other implementations of OPS5.

Benefits of Functional Programming

The features of strong typing, the creation of new data types, and higher-order

functions in functional languagesmake applications such as compilers easier to write

than in imperative languages. Pipelining (via function composition) aids in the building

of algorithms, for example:

• in the compiler, the data types used for the simple OPS5 matcher were

extended by adding new functions to convert the structure into a new form.

The code for the original compiler was untouched.

• in the run-time system, numerousState→ Statefunctions were composed
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• in the conflict resolution, each section of the definition was converted to its

own function. These functions were given their own data type and then

combined in a pipeline to form a working algorithm.

In general the use of pipelining and abstract data types are an effective way to write

large programs. The termpipelining rather thanfunction compositionis used because

it is possible to impose an abstract framework on the program which looks like function

composition but is not. For example, monads may be used to pipeline functions, as will

be seen in chapter 4.Expressions can be arbitrarily complex, and can be easily

combined with one another. In imperative languages, there are commands and

expressions which cannot be easily combinedbecause expressions return values and

commands do operations. Functional languages present a uniformity to the

programmer.

3.6. Summary

The lessons learnt from writing a large application in a lazy, higher-order functional

language are:

• pipelining combined with well considered data types can be used to do an

ordered set of operations, e.g. conflict resolution.

• abstract data types can aid expressiveness, e.g. state manipulation or parser

values.

• higher-order functions and laziness aid modularity. It is possible to write a

general algorithm rather than selecting an arbitrary, yet large, number of

instances of an algorithm. This begs the question "why aren’t there more

Haskell libraries around" ?

• functional programming is very good for writing compilers because the

formal grammers can be easily encoded into a functional form.

• using functional programming for state means that there is explicit control

over the state rather than implicit control.This can be used to great effect

by:
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a) limiting access by passing around only the parts required.

b) creatingstructures from a state.Stacks of state can be used for

undoing operations. e.g.save-excursion in emacs.

• one can get natural looking code for many applications, e.g. compilers and

graphics, as seen in [Henderson82] or [Arya89].

• one can get a prototype of a program working quickly. There is no fiddling

with little things such as pointers to pointers.

• functional programming is easy to learn and easy to start building complex

applications. This observation was supported by comparing the

accomplishments of first year Unversity students learning Pascal with those

learning Miranda. The students that learnt Miranda were able to solve

much more complex problems than the students who learnt Pascal.

• the conversion of some well known algorithms can be difficult. Algorithms

are usually defined in an imperative way. However, by reinterpreting the

definition more abstractly, a functional implementation can be devised.

• easy to extend existing code by pipelining and function composition.
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Chapter 4

4. IssuesArising in Functional Programming

One of the main aims of this thesis is to design and implement a rule-based system

in a functional language and then to compare its performance with an existing rule-

based system. This chapter discusses the software engineering issues that have arisen

whilst writing such a large application in a lazy, functional programming language.

Many of the issues discussed go some way to dispell various negative viewpoints held

about functional programming.However, some re-enforce these negative viewpoints,

and it is these issues which must be resolved if functional programming is to progress.

By writing a large functional program as part of this research some interesting

aspects of functional programming have been discovered. These aspects are related to:

• algorithms and data structures

• development environments

This chapter discusses these two aspects and the issues that have arisen with respect to

them. First, the issue of state is considered as this is an essential aspect of all

programming systems.This leads into a discussion on monads, a theoretical concept

that has been adapted as a possible way to deal with building a framework for state

manipulation in functional programs. Then follows a section on vectors, a common

data structure in imperative languages that is missing in functional languages.The

section on graphs highlights the difficulties of functional languages in implementing

certain algorithms that are easy to implement in imperative languages. The next section

discusses the limited interaction of functional languages with the operating system

which makes getting input and output into large applications non-trivial.Finally, there
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is a discussion on the lack of measurement and debugging tools for functional

programs, and how this hinders functional programmers from making their programs

more effective.

4.1. State

One of the most important aspects for any programming system is that of state.

Mechanisms for accessing, updating, and passing state are available in most languages.

In imperative languages these mechanisms are usually so transparent that many

programmers rarely give them much consideration.However, state manipulation has

been a difficult issue in functional programming.As functional programs must make

state explicit in all functions which need access to state, and because these functions

return updated state objects, we seem to beplumbing in the state[13]. Thisplumbing

can make programs look unwieldy and inelegant because the main operation of

functions is obscured by the numerous details pertaining to state manipulation. This is

especially true when the number of state items is large. Yet plumbing is essential in

state-saving functional applications. It is not possible to write a set of functions and

then add an extra argument which holds state. Items in the state are manipulated and

the functions then return whole state objects.

Plumbing is not needed in imperative languages because the concept of state is

different. Theconcept of state in an imperative language is a combination of three

features – the value of the state, side-effect, and updatable store:

• the value of the state is the current condition of some structure, either a

base type such as an integer or some composite type such as a tuple.The

termstatewill be used to mean this within this thesis

• updatable store is a location in an environment that may have its value

changed during the execution of a program.Functional systems do not

[13] Thisprocess is calledplumbing because the state has to be passed into every function ex-
plicitly, and then explicitly passed back.The extra work required is similar to fitting piping that
feeds water to different rooms in a house.
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have updatable store.

• a side-effect is a procedure that causes some operation to occur secondary

to the main operation of a function. This usually manifests itself as an

update to some store or as some input or output.Functional systems do not

have side-effects.

The combination of these three concepts allows imperative programmers to write

programs such that state manipulation is transparent and plumbing is not needed.

Although the above are sometimes considered to be related in imperative systems, in

functional systems they are different.

Programmers who use imperative languages often fail to see how state can be

represented in a functional language.This is because functional languages have single

definitions, and imperative programmers are used to a computational model which

encourages the use of updatable store through side-effects. Oftenwhat is overlooked is

that the run-time binding of values to the formal parameters of a function provides a

mechanism which is similar to the imperative model.In the functional model, state is

expressed explicitly as an extra parameter to a function[14]. This differs from the

imperative model, in which state can be expressed implicitly by using a global variable.

Furthermore, inthe imperative model, names are associated with locations in the

updatable store, but in the functional model, names are associated with parameters to a

function.

The state required for a rule-based system is relatively large, comprising hundreds

of rules and thousands of working memory elements.In the rule-based system used in

this thesis there are twelve items of state to pass around.The rule-based system runs

from cycle to cycle, saving and updating different items of state as it executes.The

following sections present the techniques discovered which show how state

manipulation need not be a problem in functional languages. The amount of plumbing

which is required can be reduced and the access and the update mechanisms

[14] Theuse of higher-order functions and currying can make extra parameters seem to disap-
pear.
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streamlined. Thetechniques presented allow functional programmers an elegant

approach to state access and state update.

4.1.1. ManipulatingState

Many functional programs contain small amounts of state and manipulate this state

effectively. This can be demonstrated by considering a program which generates a set

of stars in a pyramid. The pyramid starts with a single star in the first row. With each

consecutive row one more star than the previous row is generated.The program builds

rows of stars up to a given value.The state items required here are 1) the number of

stars required per line and 2) the maximum number of stars required for the pyramid.

To code this in ANSI C, one could write:

stars(int max)

{

int current;

for(current = 1; current <= max; current++)

generate_stars (current);

}

The variablecurrent is state-saving.Its value is used to control a loop, and it is

updated on every iteration of that loop.

To code this in a functional language such as Haskell, one could write:

stars :: Int -> [Char]

stars m = stars’ 1 m

stars’ :: Int -> Int -> [Char]

stars’ current max = [], current > max

= generate_stars current

++ stars’ (current + 1) max, otherwise
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Both the C and the Haskell programs produce the same result.In the C program the

variablecurrent is updated in place, but in the Haskellversioncurrent is passed

to a new instantiation ofstars’ with a new value, namely(current + 1) .

To write code with a similar structure to the ANSI C, one could define a higher-

order operator likefor , to get:

stars :: Int -> [Char]

stars max = concat

(for 1 (<=max) (+1)

generate_stars)

for :: a -> (a -> Bool) -> (a -> a) -> (a -> b) -> [b]

for value done next f

= [] , if n ot (done value)

= f v alue : for (next value) done next f , otherwise

In this example, the functionfor applies the argument functiondone to a current

value in order to decide if the for loop has finished.for recurses with a new value

which is created by applying the functionnext to the current value. The result is a list

of values. The explicit control variablecurrent of the imperative program has been

eliminated from thestars function. Thefunctional "for loop" produces a list of

results which have to be concatenated to produce one list.

Another technique for manipulating state which is familiar to functional

programmers is that of accumulating parameters.Using this technique, a parameter

which accumulates a value acts as an updatable variable (i.e. the state).This is

highlighted by the following commonly used functionrev , which reverses a list.This

can be written in Haskell as:
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reverse::[a] -> [a]

reverse l = rev l []

rev::[a] -> [a] -> [a]

rev [] acc = acc

rev (h:t) acc = rev t (h:acc)

Here the first argument torev changes on each instantiation. It has a new value

consed onto it, this being the accumulating parameter.

From the previous examples it can be seen that functional programs treat state by

passing it around explicitly. No problems are encountered here because each state held

in the parameterscurrent (in thestars example) andacc (in the rev example)

is local to the recursive computation. When a single state item is needed beyond the

scope of one function, or if more than one state item is required, new issues arise.

State-saving appears to be increasingly problematic when more than one value must

be remembered.This is encountered, on a limited scale, with functions that take and

return tuples of state values.The lexical analyser is a pertinent example of this. In a

functional implementation one might have a function that takes some input, and then

returns an eaten token combined with the remaining input. For example :

lex :: [Char] -> (Token, [Char])

lex input = (tok, rest)

where

tok = get_a_token input

rest = drop_a_token input

The function lex returns both the current state of the input and the current token.

Thus, state has to be manipulated by the function that callslex . Functional

programmers are usually happy with, and capable of, this sort of processing.

The state-saving that is considered to be more difficult is when multiple items of

state can be updated at any time.This type of state-saving is described briefly in

[Hudak89]. Hudak’s example is rather limited in that his state object is a 2-tuple.He
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defines two update and two access functions for his state object:

x ( xval,ival) xval’ = (xval’,ival)

i ( xval,ival) ival’ = (xval,ival’)

x’ (x,i) = x

i’ (x,i) = i

Hudak uses these functions as an example to dispell the myth that state-saving cannot

be done in a functional language.He uses an abstraction for state access through the

functionsi’ andx’ , and an abstraction for state update through the functionsi and

x .

More extensive use of state manipulation can be found in[Dwelly89]. Dwelly

defines dialogue combinators, which are higher order functions used for manipulating

I/O streams when defining user interfaces. This works successfully for the I/O streams,

but he uses small tuples with pattern matching for state manipulation. In his system,

state is just a 2-tuple containing a brush size and a colour. Consider an example which

changes the colour of a pen:

ChangeColourRed (brush,colour) (input:rest_input)

= ( [], (brush,Red), rest_input)

Note how this function takes two arguments and returns a 3-tuple containing some

output, the new state tuple, and the rest of the input.Although this technique for

manipulating state is fine when dealing with two or three state items, it is impractical

when there are many more state items.

In the following sections the difference between pattern matching directly and using

an abstraction is presented. The effectiveness of each will be seen, particularly when

the number of state items is large.

Pattern-Matching

As previously shown, one can implement state manipulation as a tuple and use

pattern matching to access or set items. Dwelly uses this style of implementing state in

his work [Dwelly89] but, as previously mentioned, his state tuple is very small.Hudak
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also uses a tuple and pattern matching, but he hides this in an abstraction.The use of

abstraction, which is important in functional programming, will be described in the next

section.

The use of pattern matching for stateis a technique that allows functional

programmers to express state manipulations on many state items at once.However,

this technique is only effective for small tuples. Consider an example from the

functional rule-based system, described in chapter 3, which has 12 items of state.For

access to one state item, such as the production memory, the code would be:

get_pm :: OPS5_State -> Production_Memory

get_pm (pm,wm,cs,cs_hist,res_strat,instantiation,stfm,cycle,timestamp,debug,input,output)

= pm

To update an item of state such as the conflict set, which is generated by doing a match

on the production memory and working memory, a function which uses pattern

matching and tuples can be written as:

match :: OPS5_State -> OPS5_State

match (pm,wm,cs,cs_hist,res_strat,instantiation,stfm,cycle,timestamp,debug,input,output)

= ( pm,wm,new_cs,cs_hist,res_strat,instantiation,stfm,cycle,timestamp,debug,input,output)

where

new_cs = do_match pm wm

The long names of patterns can be replacedby shorter names, however the significance

of these names would then be lost. When using pattern matching and tuples, functions

become messy and the lucidity of the code is lost as attention is drawn to the pattern

matching rather than to the body of the function. Therefore, this style is unreasonable

for large state objects.

Haskell wildcarding can overcome some of these problems by eliminating names

which do not appear in the body of the function[15]. Considerthe previous match

example, where the use of Haskell wildcarding would produce code such as:

[15] Thiscan also be eliminated in SML by using records
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match :: OPS5_State -> OPS5_State

match (pm,wm,cs,_,_,_,_,_,_,_,_,_)

= ( pm,wm,new_cs,_,_,_,_,_,_,_,_,_)

where

new_cs = do_match pm wm

Although the code is neater, this style is still unsatisfactory because attention is still

drawn to the pattern matching rather than to the body of the function.If this style is

used in every function that manipulates the state, a program becomes difficult to

comprehend (See "Abstract Machine Specification in Functional Languages"

[Koopman90] as an example of this). Therefore, using pattern matching and tuples for

large state objects is unrealistic.

Abstract Data Types

If an abstraction is used through the use of an abstract data type, functions for

setting items and functions for accessing items in the state type can be defined.Each

item within the state abstract data type has its own functions for setting and accessing its

value. Eachfunction that sets a state item takes the old state and a new item, then

returns the whole new state. Each function that accesses a state item takes the state,

then returns the single item. The empty state value must be defined because there will

be times when the state value has not been set and there must always be a valid state.

All items in the empty state must be valid for that type and should be reasonable

initializer values.

The implementation type of the state is any concrete data type that the programmer

feels is suitable.Yet this is hidden by using abstract data types, thus sparing the

programmer the burden of explicitly pattern-matching the concrete type in every

function that accesses state.Access to the state is only through the abstract data type

functions [16].

[16] This technique is similar to classes in object-oriented languages, where components of a
class are accessed via accessor functions.
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An advantage of using abstract data types for state is that all the implementation

details are hidden beneath a layer of functions. These functions allow the access and

setting of the items in state to be done in a clean functional way. Moreover, if these

functions have meaningful names, then the code becomes readable and lucid.For

example, to update one item in a state one could write:

set_item1 val state

This function would return a new state withitem1 changed toval . If pattern

matching were used instead, the lucidity of the code would be lost and the containing

functions would become messy, long-winded, and difficult to comprehend.

A further advantage of sensibly implemented abstract data types is that update

functions can be composed in order to perform multiple updates. This composition can

be performed for any updates needed.In order for this to work, all update functions

with their arguments must be of the same type, such asState→ State. To update two

items, sayitem1 anditem2 , this could be expressed as:

(set_item2 new . set_item1 val) state

which will return a new state with bothitem1 anditem2 updated.

If more items are added to the state object, then the underlying implementation type

must change but the functions that access the state may stay the same.That is, only the

functions which need access to the new items require change and any changes to the

program will probably be minor. This is very important when developing large

applications; having the correct interface to state can avoid wasted time and effort. By

contrast, the pattern-matching mechanism is particularly painful.If another item of

state is added, then one must extend both the argument pattern and the resulting pattern.

This must be done for all patterns in every function which pattern matches on the state,

even though the added item may not be part of the function’s operation.

As stated, multiple updates to the state can be performed by composing updates to

an original state. Although this is clean and readable, it introduces some new and

undesirable features.
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First, when reasoning about updates one might surmise from the composition of the

updates that their ordering is important; it rarely is. The order of composed updates is

usually of no significance.The emphasis is on the resulting state, which remains the

same even if the ordering of updates is different. Forexample:

(set_item2 new . set_item1 val) state

which gives the same result as:

(set_item1 val . set_item2 new) state

can be interchanged freely, even though they may appear to be different. Thisapparent

difference may reduce the lucidity of any code.

Second, one may get the impression that state update is a divisible operation which

can be broken down into its component parts, i.e.one item of state is updated, then

another item of state, and so on until the updating is completed. If this is the case, one

might assume that it is possible to examine the state between each update of the items.

However, state update is not usually meant to be a divisible operation. The desire is to

update all the items at once. Therefore, it must be clear that updates are neither ordered

nor divisible.

Third, the state update is sequentialized on the update functions.All references to

the state go through these update functions. This could cause problems if there are

many composed updates. This is particularly important in a parallel system where

sequentialization reduces the available parallelism.

One solution to these problems is to avoid abstract data types and revert to using

explicit pattern matching. If pattern matching is used, direct access to multiple items

can be achieved and updating multiple items can be accomplished in one operation.

Furthermore, using pattern matching with multiple updates appears to be an indivisible

operation, thus obliterating any concept of ordering, sequentialization, and divisible

updates. Theprogrammer has to decide which technique is most suitable for his

program.

An alternate solution is to devise a set of higher-order operators which make it

explicit that there is no ordering, no divisibility, and that state access may be
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parallelised.

4.2. Monads

After much of this research had been undertaken, a new concept from the

theoretical side of functional programming was presented.The concept is that of

monads and was presented by Wadler in his paper "Comprehending Monads"

[Wadler90]. Monadswere originated by Moggi [Moggi89] to provide a way of

structuring denotational specifications of imperative programming language features

such as state, exceptions, and continuations.Wadler has adapted Moggi’s work into a

technique for structuring functional programs. This section has an extensive description

of how monads can be specified in functional languages and then shows some examples

of using monads to clarify theirability. Following this is a description of how monads

can be used to build a framework for state manipulation in a functional program.

In his paper, Wadler shows how monads may be used for manipulating state,

exception handling, non-determinism, and representing continuations within a

functional language.The state manipulation functions he describes are for fetching and

assigning values to a state value bound up within a state monad. He shows some simple

example applications of the fetch and assign functions.The paper was very effective as

many in the functional programming arena persuaded themselves that the issue of state

manipulation had been solved and that monads were theonly way to do state

manipulation. Thisis not the case. The discussion on monads will show that monads

are good for structuring functional programs, and particularly good for abstracting this

structure, regardless of the concrete types being passed and returned by functions.Yet

there is nothing obligatory in using monads for state, although it could be useful to use

them for programs that have some state manipulation components.

Monads can be used to create an abstract structure within which small changes can

be made to the functionality of a program without fundamental structural changesbeing

made to the code. Imperative programmers can already do this as imperative languages

have features which allow and encourage such changes.However, functional

programmers often need to rewrite major parts of their code when some small changes
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are introduced.Two common examples are the addition of a single state variable or the

desire to add debugging output.

To demonstrate the power of monads, a simple arithmetic evaluator is examined. It

uses monads to create structure within the program. From this initial example two

further demonstrations will be derived. One will add some error handling to the

program and the other will add limited state manipulation. From these examples it will

be seen how the use of monads in a program can make seemingly complex changes

simple. Theseexamples are used to clarify the practical uses of monads.These

practical uses were unclear to many as Wadler ’s paper, although impressive, is rather

theoretical. Theseworked examples will provide a basis for the discussion on monads

for state manipulation.

A monad is a triple that consists of a type constructorM, used to create the monadic

type, plus the two operations:

unit :: a → M a

bind :: M a → (a → M b) → M b

unit creates a monadic version of a value when passed that value, and constitutes a

monad creating identity function.bind applies a function to a monadic value; it is the

monadic version of postfix function application.

All monadic functions also have to satisfy 3 laws which are discussed in

[Wadler91]. Thelaws can be summarised as:

unit ;; f = f

f ;; unit = f

f ;; (g ;; h) = (f ;; g) ;; h

The symbol;; is a function that represents monad composition such thatf ;; g

doesf followed byg , wheref andg are both monadic functions. The function;;

can be defined as:
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(;;) :: (a -> M b) -> (b -> M c) -> (a -> M c)

f ;; g = \a -> l et mb = f a

in bind mb g

An example arithmetic evaluator has the grammar:

expr::= expr op expr

| number

op ::= + | - | * | /

This can be represented with the following data types:

data Expr = Expn Op Expr Expr |

Constant Int

data Op = Add | Sub | Mul | Div

The evaluator takes an expression and evaluates it.A function to do this could be

written as:

eval :: Expr -> Int

eval (Constant c) = c

eval (Expn op e1 e2) = do_op op (eval e1) (eval e2)

Now consider a version of the evaluator written using monads. As the structure of

the evaluator is bound with monads, the evaluator’s type reflects this. Instead of it

being of typeExpr → Int , as in the previous evaluator, it is of typeExpr → M Int . The

evaluation of a constant involves taking its value and returning it as a unit monad.The

evaluation of an expression involves applying monadic expressions in a specific order

using thebind function. Thesecond clause ofeval can be read as: evaluatee1 ;

bind v1 to the result; evaluatee2 ; bind v2 to the result; apply the operator to both

v1 andv2 ; and finally end. The operator is applied in the functiondo_op , which also

returns a monadic result type. The code for the monadic evaluator is:
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eval :: Expr -> M Int

eval (Constant c) = unit c

eval (Expn op e1 e2) = eval e1 ‘bind‘ (\v1 ->

eval e2 ‘bind‘ (\v2 ->

do_op op v1 v2 ‘bind‘

end))

A monadic version ofdo_op can be defined as:

do_op :: Op -> Int -> Int -> M Int

do_op Add a b = unit (a+b)

do_op Sub a b = unit (a-b)

do_op Mul a b = unit (a*b)

do_op Div a b = unit (a/b)

where all returned values are monadic.

The first version of the monadic evaluator uses the simplest definitions for the

monad triple. They are:

type M a = a

unit :: a -> M a

unit a = a

bind :: M a -> (a -> M b) -> M b

a ‘ bind‘ k = k a

The mondic typeM a is a synonym for the original type, theunit function is the

identity function, andbind applies its second argument to its first.Two support

functions are also defined. They are theend function, which returns the unit monad,

and thedisplay function, which prints a monadic value:
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end :: a -> M a

end = unit

display :: M a -> String

display a = show a

Notice the difference in clarity between the two versions ofeval . This highlights

one of the drawbacks of monads, namely that clarity of expression is lost and that

expressions are sequentialized by thebind function. Themonadic version of the

evaluator seems unnecessarily complex, but this can be beneficial as will be seen later.

To test the operation of the monadic evaluator some test expressions are defined:

text_expr0 = Constant 666

test_expr1 = Expn Div (Constant 123) (Constant 7)

test_expr2 = Expn Mul (Constant 123) (Constant 7)

test_expr3 = Expn Sub test_expr2 test_expr1

test_expr4 = Expn Div (Constant 1) (Constant 0)

The evaluator can be tested with an expression such as:

(display.eval) test_expr1

The results of the 5 test expressions are displayed in table 4.1.

Expression Result

test_expr0 666

test_expr1 17

test_expr2 861

test_expr3 844

test_expr4 Program error: Division by 0

Table 4.1: Results of first monadic evaluator
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This evaluator fails badly with the expression:

Expn Div (Constant 1) (Constant 0)

because of a division by zero and results in the program terminating in an uncontrolled

manner. This is a common fault in many programming languages.

One can see how the problem of dealing with the division by zero can be dealt with

easily when using monads. The traditional approach to solving this problem in

functional programming is to define a new data type for results and then to rewrite all

the functions that use the new data type[17]. Whenusing monads, a new monadic data

type is defined and the monadic functionsunit andbind are redefined.A change is

also made to the evaluator in thedivide clause of thedo_op function. Thenew type

definition is:

data Result a = Failed String | Success a

type M a = Result a

and the new definitions forunit andbind are:

unit :: a -> M a

unit a = Success a

bind :: M a -> (a -> M b) -> M b

a ‘ bind‘ k = case a of

Failed s -> Failed s

Success v -> k v

The divide clause ofdo_op is changed to:

[17] In imperative languages a global variable is used to raise an exception which is processed
later. This cannot be done in side-effect free functional languages.
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do_op Div a b = case b of

0 -> f ail "cant divide by zero"

_ -> u nit (a/b)

The display function has to be changed, and a function to return a failure, as used in

do_op , is defined:

display a = case a of

Failed s -> s

Success v -> show v

fail::String -> M a

fail s = Failed s

These changes are all that is required to add a safety mechanism into the monadic

evaluator. The test expressions can be re-evaluated to give the results in table 4.2, with

the evaluation of 1/0 being processed in a controlled manner.

Expression Result

test_expr0 666

test_expr1 17

test_expr2 861

test_expr3 844

test_expr4 cant divide by zero

Table 4.2: Results of second monadic evaluator

One of the reasons monads were devised was to allow the specification of state

manipulation within programs. In the next example, it will be seen how a state monad

can be added to the arithmetic evaluator with the use of a single state object to hold a

count of the number of operations performed by theeval function. Again, the

differences to the original monadic evaluator will be presented in order to clarify how
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little has to be changed when using monads.A new definition for the monadic type is

created, together with definitions forunit andbind . The definitions used are those

described by Wadler in the section on state transformersin "Comprehending Monads".

A state transformer is a function which takes a state object and a value and returns a

tuple with the value and the stateobject. Forthe following example, the state object is

a count and the monad type is the state transformer. The type definitions are:

type Transformer a = Count -> (a, Count)

type Count = Int

type M a = Transformer a

and the definitions forunit andbind are:

unit :: a -> M a

unit a = (\s -> (a,s))

bind :: M a -> (a -> M b) -> M b

a ‘ bind‘ k = \s0 -> let (v1,s1) = a s0

in k v1 s1

Other changes required are to thedisplay function and to theend function. Inthe

two previous examples theend function has been the monadic identity function.The

end function is now redefined to be the function that increments the number of

operations undertaken:

101



display :: M a -> Count -> String

display f = \s -> let (v1,s1) = f s in

("Value: " ++ show v1 ++

" Operations: " ++ show s1)

end :: a -> M a

end = incr_ops

incr_ops :: a -> M a

incr_ops a = (\s -> (a,s+1))

The test expressions can be re-evaluated using the revised evaluator to give the results

in table 4.3

Expression Result

test_expr0 Value: 666 Operations:0

test_expr1 Value: 17 Operations:1

test_expr2 Value: 861 Operations:1

test_expr3 Value: 844 Operations:3

test_expr4 Program error: Division by 0

Table 4.3: Results of third monadic evaluator

The values presented in table 4.3 show that the state holding object has been added

to the program without the problems of plumbing that are usually associated with

adding state values to functional programs. The results returned have both the required

value and the number of operations, however the problem of division by zero is still

present. Thecombination of both state manipulation and error handling could be put

into a monadic version of the arithmetic evaluator if desired. The changes to make to

the original monadic evaluator would also be small.Techniques for doing the

combination of monads can be found in[King92]. Thestructuring that monads provide
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is powerful and flexible, but the code produced when using monads lacks the lucidity

and elegance of code which does not use them.

4.2.1. Sequencingwith monads

Having seen monads being used for a state value in a small program, this section

reconsiders how state manipulation functions are combined using function composition

(as seen in chapter 3) to form an ordered set of commands, as used in the rule-based

system, and then considers if there is an equivalence with monadic functions.

Observe that there is a relationship between the imperative style of statement

ordering and ordering through state manipulation functions in functional programs.

Given some imperative code such as:

{

one;

two;

three;

}

where one , two , and three represent statements in the program, this can be

expressed in the functional style as:

do [

one,

two,

three

] :: S tate → State

Thedo function is a function which allows this state manipulation to be expressed in a

familiar style, namely that of an imperative, block structured language. Each ofone ,

two , and three are of typeState→ State, and the functiondo has type[State→

State]→ State→ State. The functiondo is passed a list ofState→ State functions,

which are applied in the order given.This provides the familiar syntax and layout seen

in imperative languages.Alternatively, the list of State → State functions can be
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composed together as:

three . two . one

which produces a composed function [18] of typeState→ State.

When using monads, state manipulation functions cannot be composed together as

each of the monadic functions are of typeState→ M State. Therefore, a function has to

be defined to allowState→ M State functions to be combined.The function defined by

Wadler, which is not solely for state manipulation, is the;; function. Rememberthat it

has type:

(;;) :: (a → M b) → (b → M c) → a → M c

where(f ;; g) doesf followed byg .

Note that;; has a type that is similar to the normal compose function, which has type:

( . ) :: ( a → b) → (c → a) → (c → b)

and where(g . f) doesf followed byg .

Given the monadic compose function;; and some monadic state manipulation

functionsoneM, twoM , and threeM , where each are of typeState→ M State, then

one can express a state manipulation as:

oneM ;; twoM ;; threeM

This produces a combined function of typeState→ M State. Wadler observes that to

access the state from within the state monad, one needs to define a state reader function

which has type:

state_reader :: M State → State

Using the state manipulation monads, one can now express theState→ State function

as:

[18] It is not possible to do higher-order function composition in an imperative language as
many statements work by side-effect and not as a functional form.
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state_reader . (oneM ;; twoM ;; threeM)

This shows that there is a structural equivalence between the composition ofState→

State functions and the use of monadic state manipulation functions, as both express an

ordering of functions within aState → State framework. Both forms are

interchangeable within a program, and therefore monads model this kind of

computation well.

One of the problems that arose in the state manipulation functions in the functional

OPS5 was that of misunderstanding what constituted aState→ State computation. It

may be assumed that a composed set ofState→ State functions worked in a specific

order, or that the state betweenState → State functions could be analysed for

meaningful data, even though this was not meant to be the case.When using function

composition, this misunderstanding could not be solved. When using the monadic;;

function, this problem could also arise. As an example consider:

oneM ;; twoM

This reads as dooneM then dotwoM. As stated, it is sometimes desirable that no

order is implied in these state manipulation functions.The abstraction that monads

provide allows a function to be defined to alleviate the problem of implied ordering in

state manipulations.A function could be defined as:

(any_order) :: (a → M a) → (a → M a) → a → M a

which, when used in the following way:

oneM ‘any_order‘ twoM

would express that there is no particular order in whichoneM andtwoM are combined.

This is not possible with function composition using the( . ) operator. Hereg . f

always means dof followed by g , although the functionany_order could be

defined in such a way to abstract function composition.

The problem of analysing state between function compositions is also alleviated

when using monads because the value returned by each monadic state manipulation

function is of typeM State rather than of typeState. This is persuasive enough to
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prevent anyone assuming intermediate states are meant to be analysed.

It is important to remember that monads do not address the issue of accessing and

updating many items in a large state, such as that seen in the functional rule-based

system in this thesis. These techniques are still needed even if the state manipulation

framework is to be built using monads.

4.2.2. Reviewof monads

The important thing to note is that the technique used in this thesis for state

manipulation and that of monads arecomplementary:

• monads address the structure of a problem with state manipulation

• the technique used in this thesis addresses the issue of accessing and

updating multiple state items

It is also important to note that both techniques can be combined in the same state

manipulation parts of a program. State monads give a framework within which state

can be passed around effectively by making it obvious that there is state.Monads

would be just as cumbersome with 12 state items.

Wadler has stated that it is tedious to use monads, but it is easy to modify programs

which have them when needing to change the behaviour of that program. This has been

demonstrated in the arithmetic evaluator examples.Table 4.4 summarizes Wadler ’s

view of using monads.
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Good points Bad points

More flexible than impure effects Lessefficient than impure effects

Makes obvious where effects occur Makes itpainfullyobvious

Facilitates sequential style May hinder parallelism

Pretty theory Ugly syntax

Table 4.4: Wadler ’s view of monads

4.3. Vectors

In this section an argument is made for having vector manipulation as primitives

within the functional language.A vector is a fixed-sized, same-type structure with fast

access and fixed space usage.Vectors are present as arrays in imperative languages and

have O(1) access time and O(n) space usage.One of the main reasons for having

vectors in functional languages is that without them many applications will not achieve

the speed required to match imperative programs and, therefore, functional languages

will not be used for general-purpose programming. There is no need for this situation to

persist. Thedefinition of Haskell mentionsmonolithic arrays— these structures look

like arrays but there is no guarantee that they have O(1) access or are of a fixed size.

Haskell arrays can be generated lazily, and some of the array elements can have

undefined values.Therefore, the name vectors is chosen to differentiate these structures

from Haskell arrays.

Most functional systems implement data structures usingcons cells. All compound

types (such as TUPLES and PACK’s in FLIC) can be implemented in this way. It

provides a convenient and easy implementation technique such that allocating and

garbage collecting cells becomes easier, therefore simplifying memory management.

However, this simplicity can lead to inefficiencies with certain data structures or

algorithms. Althoughsmall data structures can be pattern matched effectively, for

example:
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f ( a, b, c)

or

g ( Algebraic a b c)

large data structures are not effective to use if pattern matching is needed. Consider an

example with a 26-tuple, which may look like:

f ( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z)

= . ..

and is unwieldy. Now consider the need to usea 1000-tuple, where the effort required

to manage these sorts of structures in a large program would be enormous.

If the elements are of the same type, then the data structure could be implemented

as a list. If access is needed to any element, then the item can be accessed using the list

index operator!! , such that:

list !! n

gets thenth element of the list. This process involves O(n) pointer traversals which, if

done continually on the same list, can be very inefficient compared to accessing O(1)

structures.

In many cases, the overhead of building arbitrary length dynamic structures is not

needed. Thereis often a case for fixed-sized, same-type data structures within

programs. Thepower and flexibility of lists is not needed, it is the efficiency of vectors

that is required.This is pertinent for this thesis as this requirement arises in the

implementation of OPS5.Imperative languages have vectors in the form of arrays,

which have O(1) access and O(n) space usage. Consider theliteralize construct,

which declares a data structure within working memory. The following literalize

statement:

(literalize Class attr1 attr2 attr3)

asks OPS5 for a data structure withClass as the class name and 3 attribute pairs.

These data structures are generated once, accessed many times, and never updated.It is

desirable to have a data structure with a fixed size and O(1) access time available from
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the functional implementation. This thesis argues that vectors are an essential data

structure for functional languages.

Vector primitives are essential in functional languages for efficiency reasons.

Without vector primitives, a functional version of any algorithm that requires O(1)

access to fixed-type data structures can never match the speed of the imperative version

using arrays.In particular, a functional OPS5 will always be slower than an imperative

version regardless of any parallelism present.

There is little previous work in the area of lazy, higher-order functional languages

and vectors. Many LISP systems have equivalent structures, but none occur regularly in

lazy, higher-order functional languages. Recent work by Hartel and Vree analysed some

case studies where vectors were added to their functional language[Hartel92]. They

observed that lists accessed in order can be as efficient as accessing an array in the index

order 0,1,... However, if the order of accessing the array is non-sequential, then arrays

are more efficient. Theydeduce that this restricts the class of problems for which arrays

arebetter suitedthan lists, namely to where the access order of the array is not 0,1,...

Hartel and Vree analyse some 1-dimensional fast fourier transform functions, some

which use lists and others which use arrays. They conclude that:

• efficient implementation of arrays contributes significantly to the

performance of functional languages

• the overhead of array construction can be too large in certain algorithms

• there is a distinction between array construction and array subscription

The last two points raise questions regarding the specification syntax of arrays. In their

system, a Haskell-like notation is used which is clearly expensive at run-time.

Other work on vectors has been associated with parallel functional systems, but the

main thread of this work has been the parallel systems themselves, and the vectors have

been secondary. A notable exception is Jouret’s work on data parallel functional

programming [Jouret91].An example where the vectors are secondary is the work by

Robertson on evaluating some Hope+ test programs on the Flagship machine

[Robertson89]. Robertsonmentions that the Flagship instruction-set supports vectors.
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After comparing programs which are written in both Hope+ and the Flagship assembler,

he states that the Hope+ versions are much faster to write and modify. However, he

observes that the assembler programs using vectors have the following benefits:

• they give impressive speed increases. nqueens is 10 times faster and a

"triangle game", devised by Gabriel [Gabriel85], is 30 times faster with

vectors than without vectors.

• there is fast access to data items

• they are more efficient than lists [19].

• the number of graph reductions was reduced, which in turn caused a small

speed-up.

On evaluating a transaction processing benchmark, Robertson concluded that

improvements in efficiency would have been possible if vector primitives had been

available from Hope+.

Much work has been done in the parallel programming world using vectorizing

compilers. Fortrancompilers have been used in the numerical processing world and

vector based hardware is often used to run vectorized Fortran programs[20]. This

work seems to have been ignored in the functional world, perhaps because few

researchers currently use functional programming systems for real work on parallel

machines. Anexception is Boyle and Harmer who use a functional language for

vectorizing an application on a Cray[Boyle92]. In "Structured Parallel Functional

Programming" [Darlington91],various points about vectors are presented:

• the Intel i860 is a parallel vector processor, but there is no suggestion that

vectors be a built-in type which can be operated on in parallel by vector

primitives.

[19] This was especially so when parallelism occurred, as the indivisible structure of vectors
aided the locality of computation.Linked lists split across many machines can degrade perfor-
mance significantly.

[20] Examplesuppliers of vectorizing compilers and hardware are: Alliant, IBM, Fujitsu,
NEC, and other smaller niche manufacturers.

110



• there is some recognition that vectors are important.Some functions are

presented using arrays and it is stated that the CM2 computer has built-in

operations for arrays.However, these ideas are not elaborated into the

functional programming arena.

• array operators are introduced.These are defined for moving data around

the array of processors.However, array operators are not vectors as I

propose, but are arrays of SIMD processors.

However, because no amount of parallelism can attain the speed-up lost by not having

vectors, it is essential that vectors be included as a primitive within a functional

language.

4.3.1. AVector Data Type

Having considered why vectors are essential for functional languages, this section

proposes a data type for these vectors and the next section proposes some primitive

functions for vector manipulation.

The vectors proposed have type:

Vector α

whereα is the type of the elements in the vector. Unlike Haskell arrays, the number of

elements in the vector is not part of the data type. For vectors, the structure required has

the following attributes:

i) it is of a fixed size, which is determined at run time

ii) the contents are created once, they are never updated

iii) fast access is guaranteed to all elements, namely O(1) access

This differs from arrays in imperative languages which have updatable store and allow

the contents to be changed.

There are some alternatives to having vectors built in as primitives, but each one

presents problems. The alternatives are:
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a) Memoizedfunctions. Theseare not so suitable because nothing is known

about the structure of the memoised function at run time, this is up to the

functional language implementation.There are no guarantees regarding the

access time or space usage.

b) Vectored lists. The Miranda system will automatically and silently convert

lists of a known size at compile time into a vector. This is a useful compile

time enhancement, but if the size is unknown at compile time then this

feature does not work.

c) Tuples. Thisis ineffective as one would need a new set of definitions for

each size of a vector. For example:

type Vector_n = (elem1, elem2, ..., elemn)

getn 1 ...

getn i (elem1, elem2, ..., elemi, ..., elemn) = elemi

...

getn j (elem1, elem2, ..., elemj, ..., elemn) = elemj

getn n ...

Therefore there would beO(n2) access functions.These functions have to

be written for all instances of i, from 0 to n. Furthermore, for each size of

vector the same set of functions must be written.

4.3.2. Primitivesfor Vectors

This section describes the proposed set of primitives for manipulatingvectors. The

primitives have been designed to present a simple, yet flexible, interface to vectors.

They should be easy to program with and easy to implement. The primitive functions

have type:
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vectorBuild :: [a] -> Vector a

vectorGetElem :: Vector a -> Int -> a

vectorSize :: Vector a -> Int

A vector is created using avectorBuild primitive. Theuser does not supply the

size of the vector, its size is determined from the size of the input list. The size is not an

argument of the type constructor but is accessible through a primitive, namely

vectorSize . To access an element of a vector, the vectorGetElem primitive is

used.

The issue of changing a cell in a vector is addressed by having a vector copy

primitive, which has the type:

vectorChange :: Int -> a -> Vector a -> Vector a

This creates a copy of the vector with one cell changed.This technique was chosen

because:

(i) it can be executed quickly at run-time by doing a block copy plus an in-

place update of one cell.

(ii) it saves converting the vector to a list, changing elements, and then

revectorizing

(iii) it makes it possible to do the update of the one cell without doing a copy

when suitable compilation and run-time techniques become available

Consider some simple uses of the vector primitives by worked examples. First, a

vector can be created:

v = v ectorBuild [’h’, ’e’, ’l’, ’l’, ’o’] :: Vector Char

which is a vector of characters. As stated, access to individual elements of the vector

can be achieved with:

vectorGetElem v 1 => ’e’ :: Char

which returns the 1st element of the vector. The size of the vector can be requested

with:
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vectorSize v => 5 :: Int

which returns the number of elements in the vector. To make a copy of a vector with

one element changed, thevectorChange primitive is used which creates a new

vector. The issues relating to in-place update are current research in the functional

programming world and, although they are not addressed directly by these primitives,

they may be addressed in the future. An example of creating a new vector is:

vectorChange 0 ’H’ v :: Vector Char

which creates a new vector whose 0th element is the character ’H’.Multiple new

vectors with multiple updated cells can be created by composingvectorChange

functions. Forexample:

(vectorChange 0 ’H’ . vectorChange 1 ’E’ . vectorChange 2 ’L’) v :: Vector Char

creates a vector with the characters ’H’, ’E’, ’L’, ’l’, and ’o’.

As stated, the primitives need to be simple yet flexible.Therefore, it is necessary to

create useful functions using the primitives, such as a vector to list function.This does

not need to be a primitive itself and can be written as:

vecToList :: Vector a -> [a]

vecToList v = map (vectorGetElem v) [0..(vectorSize v - 1)]

Another well known vector manipulation function is that of selecting part of a vector to

generate a sub-vector. This can easily be expressed as:

subVec :: Int -> Int -> Vector a -> Vector a

subVec min max v = vectorBuild (map (vectorGetElem v) [min..max])

Once a functional language has primitive vectors, it is possible to have the run-time

efficiencies required by an application such as OPS5. Again, consider the scenario in

OPS5 where a working memory element is declared as:

(literalize Class attr1 attr2 attr3)

This could be represented as a vector of length 4, each element being some pre-defined

OPS5 type, so that a working memory element could have type:
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Vector OPS5cell

For this scenario, imagine that there also exists specific working memory elements

within working memory expressed as:

(Class ˆattr1 5 ˆattr3 10)

This can be encoded using the vector primitives:

wme = vectorBuild [WMEstr "Class",

WMEnum 5,

WMEnil,

WMEnum 10] :: Vector OPS5cell

Furthermore, if there were a production condition such as:

(Class ˆattr1 = 5)

this could be converted into a matching function that uses vectors.A code segment to

do this could be:

match_prod_clause wme = vectorGetElem wme 0 == WMEstr "Class" &&

vectorGetElem wme 1 == WMEnum 5

By using vectors, each match would execute more rapidly as each call of

vectorGetElem has O(1) time complexity, as opposed to O(n) when using lists.

This would speed up a functional implementation of OPS5 dramatically.

4.3.3. Otheruses of vectors

Vectors can be used for other purposes in functional programs whereO(1) access is

important. Oneobvious example is hash tables.Traditionally, hash tables are used in

order to speed up access to large data spaces by using both a table of values and a

hashing function that converts a value into a hash table index.Hash tables are generally

faster to access than lists or trees, but in a functional programming system without

vectors this may not be the case.To access thenth element of a hash table in a language

without vectors would require the use of some other data type together with that data

type’s accessor functions. For example, a hash table built using lists would requireO(n)
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time to access thenth bucket. Whenusing vectors this can be reduced toO(1).

When updating a hash table it is usual for one bucket to be updated at a time.The

vectorChange primitive is ideal for the situation in which a new copy of the vector

is created with one item updated.A bucket can be represented using a list of values.In

the Rete pattern matcher the memory nodes of the Rete network use lists to store

working memory elements that have matched nodes in the network.Gupta [Gupta86]

observed that by replacing the list by a hash table the Rete algorithm became more

efficient. Without the ability to implement efficient hash tables in a functional language

the speed of an imperative rule-based system could not be matched.

There are undoubtedly many other situations where vectors would be essential for

an algorithm. The quicker they appear in functional languages the better.

4.4. Graphs

It has been found that there is little experience in using functional languages to

solve a large set of well known algorithms.There are many books, journals, and papers

on algorithms and data structures which express solutions to problems in an imperative

style ratherthan a declarative style (for example Horowitz and Sahni [Horowitz76] ).

As a consequence of this, and because most functional programming research is either

theoretical or focussed on abstract machine implementation, there are drawbacks for

functional programming as a whole. They are that:

a) thereis little well known experience to draw on

b) thereare few well known solutions to problems

c) thereare large gaps in the whole solution space

Although there are numerousbooks on the subject of graphs and their

implementation in imperative languages, few documented solutions for building and

manipulating real graphs in functional languages were found during this research.This

is a prime example of the stated drawbacks.Initially, it seemed impossible to create a

real cyclic graph in a lazy, higher-order functional language. Once this problem was

solved and a cyclic graph was created, it then seemed impossible to visit this cyclic
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structure in a controlled manner because functions that visited the cyclic structure

executed infinitely when a cycle was reached.The solution to both of these problems

highlighted that:

i) a new technique had been discovered which had not been documented

before

ii) this technique required an interpretation of the standard definition which

was more abstract than that stated in Horowitz & Sahni.

The differences in the approach to programming graphs are presented in the following

sections. Fromthis description it is possible to see why some algorithms, such as graph

building, are relatively difficult in functional languages.

Traditionally, functional programmers build and manipulatelists of objects and

often write polymorphic functions which perform generic operations on lists that are

independent of the type of objects stored within them. Lists are simple data structures

and arbitrary lists can be readily described using algebraic data types. Graphs, however,

are more complex structures and, in their most general form, may contain cycles.The

static construction of a graph is relatively straightforward, but it is the construction of

arbitrary cyclic graphs "on the fly" that is more problematic. Figure 4.1 is a directed,

cyclic graph which has a cycle between nodes ’A’ and ’C’.

’A’

’B’’C’

’D’

Figure 4.1: A small directed, cyclic graph

It is possible to represent a graph either by some form of adjacency matrix,by a

function which will return a list of the successors of a given node, or by a form of
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virtual heap using a list of nodes.However, none of these representations actually

produce a real graph (that is, a truly cyclic data structure which has direct references

between nodes along the arcs).The ability to build a truly cyclic data structure is

important for reasons of efficiency. If a  graph data structure has direct reference from

node to node, the arcs can simply be followed to reach another node. By contrast, if a

non-cyclic representation of the graph is used, then there is an interpretive overhead

every time the program follows an arc. For many applications, truly cyclic structures

are more concise, more expressive, and more elegant than representations of graphs.

Traditional functional programming solutions to the problem of creating graph data

structures has involved the construction of arepresentation of a graph rather than

building a truly cyclic structure. For example:

• a graph may be represented by a list of nodes and a separate list of arcs,

thus circumventing the problem of physically connecting arcs to nodes.

• a graph may be represented as a function which maps from a given node to

a list of the successors of that node

• a graph may be represented as avirtual heap, which uses a list as the heap,

with list indexing being used to access individual nodes within the heap

(successor nodes are identified by their index).The termvirtual heap is

used because the location of each cellin the list is used as a virtual address

within the heap.

None of the above methods have arcs with direct access to nodes in the graph, all are

subject to time and/or space overheads, and none are as elegant as a truly cyclic

structure [21].

It is possible to create real cyclic graphs in a functional language by giving a name

to each node and then referencing the node names explicitly from other nodes.The

[21] A vector representation has the potential to be the most efficient. If speed is the main re-
quirement then it may be preferable to use a vector rather than a truly cyclic structure.In this case
each graph node is an element of the vector and references to nodes in the graph are represented as
indexes into the vector. Access to successor nodes can be achieved with O(1) lookup. At present,
very few lazy functional languages currently provide vectors with guaranteed fast access.
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cyclic graph of figure 4.1 can be represented as:

data Graph a = Node a [Graph a]

nodeA, nodeB, nodeC, nodeD :: Graph Char

nodeA = Node ’A’ [nodeC, nodeB]

nodeB = Node ’B’ [nodeD]

nodeC = Node ’C’ [nodeA, nodeD]

nodeD = Node ’D’ []

graph = nodeA

An alternate approach is to explicitly place the list indexing operator!! into a virtual

heap representation in order to create a cyclic graph structure.The arcs of the graph are

represented by direct references to nodes. The cyclic graph of figure 4.1 can now be

represented as:

data Graph a = Node a [Graph a]

nodes :: [Graph [Char]]

nodes = [ Node ’A’ [nodes !! 2, nodes !! 1],

Node ’B’ [nodes !! 3],

Node ’C’ [nodes !! 0, nodes !! 3],

Node ’D’ []

]

graph = nodes !! 0

Both of these representations build static graphs. If it is required to construct an

arbitrary graphical structure to be specified at run-time by a textual description, then

the construction of a truly cyclic structure is by no means as obvious.The first solution

relies on the fact that one can name the nodes of the graph and refer directly to the

names in the source code.Unfortunately, the static names that are bound to data objects

at compile time are no longer available at run-time and it is certainly not possible to

introduce new names to label new graph nodes as they are encountered.However, the
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method of representing graphs using the virtual heap can be extended to be more

general.

By representing a graph as an adjacency list and then converting this to a virtual

heap, it is possible to create a truly cyclic data structure which has arcs with direct

access to nodes of the graph and which can be built "on the fly".This approach makes

heavy use of laziness (specifically lazy constructors) to achieve the desired goal.Both

the adjacency list and virtual heap are intermediate tools for constructing the real graph.

The arcs of the resulting graph aredirect references to the nodes, and the resulting

data structure will be that shown in figure 4.2.

Node ’D’Node ’B’ Node ’C’Node ’A’

nodes :: [Graph Char]

!! 2 !! 3 !! 0 !! 3!! 1

Figure 4.2: Representing a simple graph using embedded virtual addressing

Initially it appears that the space overhead of the top-level listnodes and the time

overhead of the!! operator prevent a cyclic graph from being constructed.However,

as the!! operator is embedded in the representation of the graph, when an arc is

followed, the index expression is re-written by the functional run-time system to point

directly at the relevant element of the list.Figure 4.3shows the re-written data

structure after the two arcs of the initial node have been visited.In Figure 4.3, there are

fewer references tonodes than there are in Figure 4.2.Whenall of the references to

nodes have been evaluated, then the list structure is no longer required and is garbage

collected. Atthis point only the required data items are left, arranged as a graph with
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Node ’D’Node ’B’ Node ’C’Node ’A’

nodes :: [Graph Char]

!! 3 !! 0 !! 3

Figure 4.3: The list structure turning into a cyclic graph

direct access to nodes along the arcs.This is illustrated in Figure 4.4, in which the final

data structure compares favourably with the original graph of Figure 4.1. The space

overhead of the enclosing list has been eliminated, and future traversals of the graph

are efficient in time because the pointers representing the arcs are followed directly.

When graphs are constructed in imperative programs, it is common to include with

each node a bit that is set when the node is visited.This bit is used by graph traversal

functions in order to ensure that nodes are not visited more than once; this avoids

infinite loops due to cyclic pointers in the graph.

However, the functional paradigm prevents the in-place update of a visited bit.To

overcome this problem each node of the graph is augmented with a unique tag.When

visiting the graph, a list of tags is constructed to record the nodes that have already been

visited. Priorto visiting a node, the list of tags is checked to see if it already contains

the tag of the node to be visited; if it does, then the node is not revisited.Unfortunately,

the list-of-tags technique introduces a searching overhead of O(n2) time-complexity

wheren is the number of nodes to be visited.This is expensive in comparison to the

constant overhead of checking a single bit.However, more efficient structures than a
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Node "D"

Node "A"

Node "B"Node "C"

(mygraph!!0) :: Graph [Char]

Figure 4.4: The adjacency list turned into a cyclic graph

list could be used if required.

The resulting graph structure generated by the functional program is immutable and

this provides some advantages over mutable graphs generated using imperative

techniques. Theadvantages are:

i) the same copy of the graph can be traversed multiple times without danger

of unwelcome interaction

ii) thereis no need to unmark the "visited" bits

iii) a single graph can be traversed by concurrent tasks

To facilitate use of these functional graphs, an abstract data type was designed and

used in various case studies.The graphs can have both nodes and arcs labelled with

separate types. This allows the implementation of doubly linked lists, rings, and solving

the shortest path problem using a cyclic graph.A full description of the implementation

details can be found in [Clayman93].

By taking a well known data structure and creating a functional form, and by taking

its associated algorithms and reinterpreting the definitions of those algorithms in a more
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declarative way, it is possible to implement the algorithms. The creation of the cyclic

graph data structure was a non-trivial exercise, and a similar situation is likely to occur

again for another data structure and its algorithms.It is issues such as this which hinder

the general acceptibility of functional programming. Many programmers want to take

well known data structures and algorithms and implement them directly in the language

they know. Although this is not always possible with functional languages, the benefit

of finding an implementation technique can bring many unforeseen advantages.The

functional programming world needs a book on data structures, just as the imperative

programming world has had for many years.

4.5. Interaction With The Operating System

This section discusses the two main mechanisms which enable a program to interact

with the operating system.

4.5.1. Inputand Output

As seen in chapter 3, input and output to functional programs is not as easy as in

imperative programs. This is because the imperative model does input and output by

side-effect, allowing both to occur anywhere in a program.It is not clear to imperative

programmers howto do input and output if these side-effect procedures are removed.

The Miranda system and other functional interpreters provide a very simple model

for doing input and output. The technique presented in Miranda allows a function of

type [Char] -> [Char] to be applied to the input of the program rather than applying

the function to some arbitrary string. The value returned by that function becomes the

output of the program.This streambased model of I/O does work, but it is too simple

to provide the flexibility required in a large application.

At the start of this research, the literature search and discussions with other

researchers in the field of functional programming revealed little in the way of concrete

experience for doing input and output in a large, functional application. There were

some suggestions for how it may be done and of particular note is the work by

123



Thompson [Thompson86].Thompson defines control structures, in which the operators

allow the flow of control to be reflected in the syntactic form of a function.However,

even in simple examples there are problems with the large number of types and support

functions required. In a large application, such as a rule-based system, having such a

large number of types and support functions would be problematic.

The approach chosen in this thesis has both input and output passed around the

program as part of the state object. Both the input and output have to be plumbed into

the program in order for there to be access to both streams anywhere in the program.

As seen in chapter 3, having both input and output held in the state object can prevent

input and output from behaving in a way the user would expect. This occurs when the

state manipulation functions for I/O are not written with the operational behaviour of

input and output in mind. The result is that all output is held up until the end of the

program execution, then it all appears. This is perturbing, since the more usual

behaviour is for output to appear gradually. This turns out to be a run-time issue rather

than a semantic one, as the output is correct. By rewriting the state I/O functions, again

seen in chapter 3, this odd run-time behaviour can be eliminated.

This work has highlighted the need for I/O control structures for use within

functional applications. This is an important area of research for functional

programming because input and output can be accessed anywhere in a program and

because they have a run-time temporal behaviour as well as a semantic value.This

temporal behaviour cannot be expressed as part of the program and, as discovered, can

be difficult to determine, especially in a large application.

A newer model for manipulating input and output to functional programs is the

continuation model. Thismodel is used in the Haskell programming language.The

Haskell I/O system allows for interactions with the environment provided for the

program by the functional run-time system. In this environment, a program has a

special type whereby the topmost function produces a list ofRequest . These

requestsfor input and output are taken by the environment and, after execution, each

one returns aResponse . The Haskell I/O continuation system is layered on top of a

stream based model of I/O, and both models can be mixed within the same program.
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Unfortunately, the continuation model does not address the issue of building I/O control

structures for use within a program althoughit allows the top level interactions to the

run-time environment to be expressed with clarity and flexibility.

To address the need for I/O control structures, Dwelly suggests the use ofdialogue

combinators in his paper "Functions and Dynamic Interfaces"[Dwelly89]. He

observes that their use is not well known, but then goes on to show how they can be

used for systems with graphical interfaces. An area for further research would be to

write a range of large applications using the dialogue combinators and to evaluate how

they perform.

There is still much work to do in addressing input and output in functional

programs. Asin other areas, one can expect that the functional model will eventually be

as expressive as the imperative model.Further work can be directed at building control

structures for large applications.Some work was undertaken by Runciman to address

the problem of input and output being held up.In [Runciman89],a special form of

strictness analysis combined with some special transformation rules for a compiler are

suggested. However, until these features are available in every functional language

compiler, the run-time behaviour problems will persist.

4.5.2. Environment Interaction

The functional run-time system provides a mechanism which enables the functional

program to interact with the operating system environment, such as doing input and

output. InHaskell this mechanism is theRequest / Response system, where each

Request to the Haskell run-time system has a correspondingResponse . Full

details of theRequest / Response system can be found in the Haskell report

[Hudak88]. Theadvantage of this mechanism is that non-determinism is confined to the

operating system and referential transparency is maintained within the Haskell program.

The disadvantage is that all interactions to the operating system must come through the

main function, thus limiting these interactions to one place. The program’s interaction

with the Haskell run-time system and the operating system environment can be viewed

in Figure 4.5.
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Haskell
program

Haskell run-time
        system

Operating system

Request Response

Top level

Figure 4.5 The interaction of a Haskell program and the operating system

Currently, the number of interactions with the operating system is very small.(The

Lazy ML system [Augustsson92] provides a few more interactions than Haskell, but

still not an extensive number).Those Haskell provides deal with file access and I/O

stream access. The small number of operating system interactions limits the use of

functional programming to either simple test programs or applications with a very

limited form of input and output[22]. Morecomplex applications cannot be written as

there is no way to harness the operating system calls required.

As an example, consider theEcho request. It is a request to the functional

language run-time system to turn on or to turn off echoing on the standard input stream

to the program.The run-time system will make a call to the operating system to initiate

this request, and finally a response is returned to the program.The problem in this case

is that the facility to turn on or to turn off echoing is a single option in one operating

system call. The other options of this operating system call are unavailable to the

functional programmer, even though the programmer may deem them essential.The

solution to this problem is for the functional language to provide an interface to each

system call for the functional programmer to use at will [23].

[22] A former COBOL programmer, who is now a Haskell programmer, informs me that
Haskell provides more operating system interactions thanCOBOL.

[23] This is a problem of having a limited manifesto, i.e. the design of lazy, functional
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The lack of operating system interactions is a major obstacle for functional

programming and hinders its general use. Until this issue has been addressed and

resolved, functional programming is likely to remain in the realms of either a teaching

language or a prototyping language. This is unfortunate because the compilers and run-

time systems of functional languages are now of commercial quality, and large groups

of programmers are not getting access to these functional programming environments.

4.6. Measurement

The techniques and tools available for observing and measuring the behaviour of

functional programs are thoroughly inadequate.Given that one cannot measure the

execution behaviour of a functional program effectively, it is impossible to make

comparisons between programs, verify that algorithms display the expected behaviour,

or observe degenerate behaviour.

At present there are no tools to help a programmer find a problem function and then

to rewrite the function to make the program faster. A simple re-write of a function can

make all the difference to a slow program.With well-defined measurement techniques,

one can find these problem functions and also find where laziness has an effect on the

program. With this knowledge, a better understanding of how functional programs

actually work can be obtained, which in turn helps the programmer to write better

programs. Atpresent the measurement tools available to the functional programmer

are:

a) countingthe number of graph reductions performed

b) countingthe number of cells used

These measurements are neither detailed enough nor do they express anything about the

behaviour of the program.Furthermore, the information they provide is different in

each functional run-time system.

languages, rather than the design of lazy, functional programmingenvironments.
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Three different simple test programs were executed on two different abstract

machines, namely Miranda and Gofer, in order to gather figures for the number of graph

reductions performed and cells used. The programs are:

1. fac , a program to generate one factorial:

fac n = 1 , n==0

= n * f ac (n-1) , otherwise

test n = fac n

2. facs , a program to generate a list of factorials:

facs = 1 : fact 1

where

fact n = n* facs !! (n-1) : fact (n+1)

test n = take n facs

3. sfib , a program that generates the fibonacci of a number together with the number

of calls to sfib and the number of recursions from the original call to sfib:

empty:: (Int,Int)

empty = (0,0)

test n = sfib (n,empty)

sfib::(Int,(Int,Int)) -> (Int,(Int,Int))
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sfib (0,(fc,pl)) = (1, (fc+1, pl+1))

sfib (1,(fc,pl)) = (1, (fc+1, pl+1))

sfib (n,(fc,pl)) = (fibm1+fibm2,

(1+fcm1+fcm2, max (plm1+1) (plm2+1) ))

where

(fibm1,(fcm1,plm1)) = sfib (n-1, (fc, pl))

(fibm2,(fcm2,plm2)) = sfib (n-2, (fc, pl))

Table 4.5 displays the number of graph reductions and table 4.6 displays the heap cells

used for the expressiontest n .

program fac facs sfib

n 10 15 10 15 10 15

mira 124 184 223 363 11552 128590

gofer 45 63 116 127 2120 23672

Table 4.5: Graph reductions for expressiontest n

The table for the number of cells used is:

program fac facs sfib

n 10 15 10 15 10 15

mira 241 344 321 592 12774 141836

gofer 73 109 250 317 5846 65116

Table 4.6: Heap cells used for expressiontest n

For the programsfac , facs , and sfib , the values returned by the functions are

the same on both the Miranda and the Gofer run-time system, but the number of graph
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reductions and the number of cells used for each machine is different. Dueto the

different kinds of reductions used within each abstract machine, the grain size of a

reduction is different in all of the abstract machines. These figures, which are easy for

the run-time system implementor to produce, are of little benefit to the programmer.

Given that these measurement techniques and tools are inadequate, it is not possible

to make any decisions as to the quality of a program.This is one of the reasons why the

development of the functional OPS5 was limited.Without tools to compare its

performance with exisiting versions of OPS5, it is impossible to state any concrete facts

regarding its behaviour; for example, one cannot determine if the functional version of

the matcher is faster than the imperative version.To overcome this problem, some

measurement tools and techniques were designed and implemented for this PhD.

Examples of strange behaviour in functional programs are:

i) Wadler points out that some functions which are expected to beO(n2) may

be less than this due to lazy evaluation.

ii) Simon Peyton-Jones describes functions in his SASL paper which seem to

be cyclic functions.He observes that when these functions are written

incorrectly they do not become cyclic and their space usage increases

dramatically [Peyton-Jones85].Hughes makes a similar point in his paper

"Why Functional Programming Matters" [Hughes89].

With a measurement tool the strange behaviour of both (i) and (ii) can be verified.

The measurement tools and techniques will be fully explained in Chapter 5, where

the design and implementation of a profiling tool for lazy, higher-order functional

languages is presented.

4.7. Debugging

Another problem facing functional programmers is the lack ofdebugging tools.

Debugging functional programs is much more difficult than imperative programs

because referential transparency has to be maintained.Furthermore, as there are no

side-effects and no ordering of statements, it is impossible to insert extraneousprint
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statements into a functional program.All output must be produced by the main function

of the program. For any debugging output to appear, it must be returned as an extra

value from the function that needs to be debugged in addition toall the functions up to

the main function. The design and programming effort required to make these changes

is non-trivial, especially in a large application. Most of this effort is wasted because the

extra debugging code is thrown awaywhen the debugging is finished. If monads were

used inevery function, then only the monadic type and the definitions forunit and

bind need to be changed.However, the resulting code, particularly in a large

application, would be inelegant.

During the development of the functional OPS5, no debugging tools for functional

languages were discovered. In an attempt to address this issue, a simple debugging

utility was designed by myself and Parrott as an extension to the FLIC language

[Parrott90]. Thisextension is a function which prints some debug output by side-effect

to a special output stream which is invisible to the program yet behaves in a

referentially transparent way within the program.The function, calleddebug , takes as

arguments a printing function and a value. The printing function is applied to the value

and the returned string is sent to the special output stream.The value returned by

debug itself is the value given; thereforedebug behaves like the identity function

within a program.A definition for debug could be:

debug :: (a -> [Char]) -> a -> a

debug show_fn a = a

The expressionshow_fn a was to be automatically inititiated by the run-time system.

This technique was discovered to have serious drawbacks.First, the value passed to

the debug function may not have been evaluated at the timedebug was called.To

produce a result on the special output stream would require fully evaluating this value in

order to apply the printing function to it.However, thedebug function was meant to

be invisible to the rest of the program and to behave like the identity function.If

debug were to evaluate arbitary expressions, then the behaviour of the whole program

might change. It was found that thedebug function was strict in both arguments and,

therefore, did not behave as desired. Second, the nature of lazy evaluation means that
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the output produced by a program usingdebug would not necessarily be in the order

that the programmer expects to see it.Given that the debug function was meant to be an

aid to the programmer, this behaviour is not beneficial. The special debugging function

was rejected as a debugging tool.

Recent attempts to define what constitutes debugging of a functional program have

been addressed in "An Algorithmic and Semantic Approach to Debugging" by Hall et.

al [Hall90]. The design and implementation of tools for doing debugging of functional

programs using the algorithmic approach to debugging has been undertaken by Nilsson

and Fritzson[Nilsson92]. Althoughalgorithmic debugging is only one approach to

solving the problem of debugging functional programs, the fact that someone is now

addressing this issue is promising for all functional programmers.
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Chapter 5

5. Profiling

One of the original aims of this thesis was to compare the performance of an

existing rule-based system with a functional version, but this is impractical due to the

present lack of measurement tools. Chapters 3 and 4 highlight that one of the major

problems in developing applications in lazy, functional languages is the lack of tools

which aid the programmer in debugging and analysing the run-time behaviour of the

application. Thischapter addresses the issue of analysing the run-time behaviour by

describing the design and implementation of a profiler for lazy, functional languages.

The major issue when profiling programs is to enable the programmer to use the

resulting information to determine whether parts of the program consume a

disproportionate amount of resources. For many real-world applications it is not just

desirable but essential for a programmer to be able to monitor and subsequently alter the

time and space behaviour of the program.Without profiling information, it may be

impossible to rectify a program which exhibits degenerate behaviour.

Lazy, higher-order functional languages provide a programming framework which

is far removed from the details of instructing computer hardware.This high-level

framework enables a programmer to express problem solutions in a way that closely

resembles the problem specifications and which may exploit new software-engineering

techniques [Hughes89].Unfortunately, this high level of abstraction means that the

executable form of a functional program is unrepresentative of the original source code.

This poses two problems:

1. Thesource code is an unreliable indicator of a program’s eventual run-time

behaviour. It is therefore difficult for a programmer to use static analysis
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techniques to reason about the time and space complexity of a functional

program. Thisdirectly contrasts with imperative languages, in which the

source code is a key factor in estimating a program’s behaviour prior to

execution.

2. It may be difficult for a programmer to interpret information on the run-

time behaviour in order to reason about sections of the program which may

need to be modified.

Most profilers address the second of these two problems.

In order to address the issues that have been highlighted in this thesis concerning

the lack of measurement tools for functional languages, a profiler is proposed that is

designed primarily for use by application programmers rather than functional language

implementors. Thisprofiler provides information that is related to the way the program

is written rather than to how it is evaluated; this enables programmers to relate results

back to the source program easily. The results directly reflect thelexical scoping of the

source program, thus overcoming problems caused by compile-time program

transformation, lazy evaluation, and higher order functions.I call this techniquelexical

profiling .

Using the lexical profiling technique, alexical profiler was constructed, by Parrott

and myself, to monitor programs as they run and to build detailed trace information for

post-mortem analysis and debugging[Clayman91], [Clayman92].This lexical profiler

uses a mechanism which accurately profiles the call-count, time, and heap space used by

lazy, higher-order functional programs. The results are similar in nature to, but more

accurate than, theUNIX [24] imperative language profilergprof [Graham82].

This chapter presents four different methods of profiling functional programs,

followed by a discussion on two styles of profiling – inheritance and statistical.Then

five existing profilers are reviewed in relation to how they each affected the design

decisions for the lexical profiler. Various design issues of lexical profiling are presented

followed by a discussion on the actual implementation techniques that were used to

[24] UNIX is a trademark of Bell Laboratories.
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construct the lexical profiler. Finally, there is an analysis of the working lexical profiler

with profiling data obtained from worked examples.

5.1. Different Kinds Of Profiling

There are four different kinds of profiling that can be undertaken in functional

programming environments:

i) Program profiling. Measurements relate to the program’s behaviour and

are reported with respect to functions in the source code. This islexical

profiling .

ii) Expression/Closure profiling . This is similar to the earlier cost

experiment at UCL [Parrott90] and the old Glasgow Cost Centres

[Sansom92]. Inexpression/closure profiling, measurements are based on

how the program executes and the results are reported when an expression

is evaluated. This is dynamic profiling.

iii) Abstract machine profiling. This measures how effective an abstract

machine is by examining the overheads of function calls, function returns,

heap management, garbage collection, etc [Hammond91a].

iv) Task profiling. This is particularly relevant in parallel environments where

programs are divided into tasks which execute on separate machines.The

number and size of the tasks are reported [Parrott92].

In [Runciman90],Runciman and Wakeling provide a good overview of the problems

associated with profiling functional programs. They make several suggestions

regarding the sorts of information that would be useful to a programmer and provide a

more detailed analysis of how such information might be collected.Later in the chapter

there is a summary of the issues listed in [Runciman90] andhow the lexical profiler

addresses these issues.

The research in this thesis has indicated that it is not clear to everyone in the field of

functional programming that these different kinds of profiling can be usefully measured

separately. Many people in functional programming who are doing measurement are
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implementors interested in low level details.They wish to measurewhen work is done

and at what point an expression is evaluated and to observe the effect that lazy

evaluation has had on a program. This gives very different results from lexical

profiling, which is dissociated fromwhen work happens. Lexical profiling measures

whether work happens and how much happens, with results being presented with

respect to the source code. The difference is mainly in the way in which lazy evaluation

has an observable effect on the program.

The following examples show the difference in the results between dynamic and

lexical profiling. Consider thefollowing programs:

Program 1

f = (g x) / 18

where x = expression

g x = (h x) * 1 0

h x = x + 3 2

Program 2

f = (g 10) / 18

g y = (h x) * y

where x = expression

h x = x + 3 2

Program 3

f = (g x) / 18

where x = expression

g x = x * (h 1 0)

h y = y + 3 2
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Although these three programs are similar, they differ where the expressionx is

declared and evaluated.Table 5.1 shows the number of primitive operations counted for

the functions in each program using both lexical profiling and dynamic profiling.The

term px equates to the number of primitive operations required to evaluatex . The

results of the lexical profiler always show the cost ofx being associated with the

function in whichx is lexically contained.The results of the dynamic profiler highlight

the presence and effect of laziness, and the cost ofx is associated with the function that

required the value ofx .

Number of primitive operations

lexical profile dynamicprofile
Function in which x is

declared reduced f g h f  g h

Program

1 f  h 1 + px 1 1 1 1 1 + px

2 g  h 1 1+ px 1 1  1 1 + px

3 f  g 1 + px 1 1 1 1+ px 1

px is the number of primitive operations

Table 5.1: How the cost of primitives is attributed by lexical and dynamic profiling

Although most profilers do not count primitive operations as a statistic, these examples

highlight the differences in the two styles.Moreover, they indicate that in order to fully

appreciate how a program is evaluating,both profilers can be used together to provide a

comprehensive view.

Consider another example in which dynamic profiling may give differing results but

lexical profiling will give a consistent result. In the program:
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f = (g x) + (h x)

where x = expression

g x = h x * 1 0

h x = x + 3 2

the evaluation order of the primitive+ is important. If the evaluation order of+ is left

to right, then a dynamic profiler will creditg with the evaluation ofx , but if the

evaluation order of+ is right to left, thenh will be credited with the evaluation ofx .

In a parallel system where the load balance and evaluation order are non-deterministic,

a dynamic profiler may return different results on different occasions. Lexical profilers

do not suffer from either of these problems as results are associated with lexical scope.

This provides a static relationship between the source code and the run-time results.

A further advantage of lexical profiling is that because the results are dependent on

the source code, it is possible to change the underlying evaluation mechanism and

ALWA YS have meaningful results. As there is not a strong relationship between the

source code of a functional program and its evaluation mechanism, one could, for

example, replace a graph reducer with a Term Rewriting System[Glauert90]. The

results of the lexical profiler would still be associated with the source code.A dynamic

profiler for a Term Rewriting System may give very different results and may not fit the

model of evaluation that the programmer has.Therefore, with lexical profiling the

programmer getsmeaningful profiling data for his program regardless of the evaluation

mechanism, but data from dynamic profiling is always dependent on the evaluation

mechanism.

5.2. Stylesof Profiling

This section describes two styles of profiling,statistical and inheritance, which

provide complementary views of the execution of the program.A technique for

profiling lazy, higher-order functional programs is presented which uses both of these

profiling styles. This technique is based on the lexical structure of the source code and

therefore produces information that is meaningful to a programmer.

138



To be fully (100%) accurate a profiler needs to reconstruct the entire call-path for all

function calls; however, in practice this is too costly. Therefore, the run-time log is

restricted to information concerning the calls made by a function to its immediate

children [Graham82].Traditionally this causes problems because profilers are forced to

estimate the execution time of more remote generations. Consider the call-graph

segment shown in figure 5.1. Here the functioni is called only fromh , but h is called

from bothf andg .

h

f g

i

Figure 5.1: A typical call-graph segment

The following code outline represents this scenario:

f a = h a + 1

g b = h b - 1

h x = i x + i x

i x = x + 1

The functioni is only called by the functionh . The total time spent in or belowf is

uncertain because it includes the timings fori (which is called fromh ), of which

unknown amounts are due to calls originating fromg . The profiler will keep a log of

callsf to h , andg to h , andh to i , but notf directly through toi , or g through toi .

One solution to this problem is to dividei ’s time according to the ratio of calls from

f to h and fromg to h ; this isstatistical profiling (e.g., if there are 6 calls fromf to h

and 4 calls fromg to h , thenf will get 60% of the time ini andg will get 40% of the

time in i ). However, statistical profiling is blatantly inaccurate as there need not be a

linear correlation between the number of calls and the execution time; in fact, calls

139



originating at eitherf or g may not invokei at all; this depends on the value of the

parameters passed toh . Nevertheless, the information about the calls to immediate

children is accurate.

An alternative solution is to allow the code fori to be subsumed by the code forh

(i.e. as far as profiling is concernedi is then an integral part ofh ). This is inheritance

profiling. Under inheritance profiling, the sub-functioni is just an extension of its

parent, and the total amount of time spent in or belowh due to eitherf or g is

determined absolutely. Although accurate over many generations, this style does not

report a separate timing fori and it appears that profiled sub-functions ofi are called

directly fromh — this may be confusing for the programmer as the functioni seems to

have no data relating to it.With inheritance profiling the code outline would be

profiled as though it had been written as:

f a = h a + 1

g b = h b - 1

h x = i x + i x

where

i x = x + 1

To provide comprehensive profiling, this PhD advocates the use of both statistical

and inheritance profiling modes within the same profiler.

5.3. ExistingProfilers

This Section describes existing profilers for both imperative and functional

languages and considers how they motivated and affected the design decisions for the

lexical profiler.

5.3.1. gprof - an existing imperative profiler

The UNIX profiling tool gprof [Graham82] produces a profile of a program based

on the call graph of the programs execution.Results are presented with an entry for

each function, together with its call graph parents and call graph children. The data for
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child functions is propagated up the call graph to incorporate a measure of the expense

of subchildren.Thegprof mechanism is a great improvement over the simpler flat style

of profiling which just reports how many times a function is called, the amount of time

spent in that function, and the percentage of total running time spent in that function.

As a result,gprof has been used successfully with imperative programs for many years.

The implementation ofgprof is based on the assumption that code is statically

placed in consecutive memory locations at load time. The execution time of each

function is not measured exactly, but approximated by monitoring the location of the

program counter every 1/60th of a second.A histogram of program counter values is

constructed and the amount of time spent in each function is estimated by post-

processing the histogram in conjunction with a map of code locations. One problem

with gprof is that it does not monitor space utilisation and so cannot provide full

information for programs which make extensive use of dynamic memory allocation

(however themprof profiler [Zorn88] does provide this facility). In addition,gprof

does not provide useful information for mutually recursive functions because it

collapses each strongly-connected component in the syntax graph to a single point.

Despite the faults and inaccuracies mentioned above,gprof has proved to be a

useful tool for imperative programmers.This provides a motivation to develop similar

profiling tools for functional languages.

5.3.2. TheNew Jersey SML Profiler

Most current implementations of functional programming languages provide only

rudimentary profiling statistics, with information restricted to (for example) the number

of garbage collections performed, the total number of reductions performed, and the

total number of memory cells used. The New Jersey version of Standard ML is

remarkable for the fact that it is supplied with a profiler which gives more extensive

information related to function names.

The New Jersey SML profiler described in[Appel88] uses an inheritance profiling

style but does not try to address the inaccuracies that are introduced (other than

directing the programmer to experiment by using multiple profiles, choosing different
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groups of functions each time in an attempt to get a more accurate picture of what really

happened). Itis limited to strict evaluation and neither profiles heap space usage nor

provides a statistical profiling option.

The SML profiler is also inaccurate when profiling higher-order functions because it

attributes execution times of higher-order arguments to special identifiers instead of to

the real functions. The example in [Appel88] argues that the ambiguous results are of

little consequence in short programs where a higher-order function is called just once

and suggests that the programmer should be able to guess to which real function the

special name refers.However, guessing is not so simple for large programs where

higher-order functions, such asmap, are called repeatedly with different higher-order

arguments each time. The SML profiler coalesces all applications of a single higher-

order parameter into a single timing, thus losing vital information. If timings are kept

separate by inventing a new name for each call, the programmer will be swamped with

too much information to decipher it sensibly.

5.3.3. UCLinline cost primitive

An early profiling technique investigated at UCL for measuring the cost of

evaluating an expression was the use of inline cost functions[Parrott90]. This

technique uses a cost function which has the equivalent semantic behaviour to the

identity function. The cost of the evaluation is written to a special output stream which

cannot be accessed by the program. For example:

g x = c ost (f x) + 1

would report the cost of evaluatingf x . There is no data for space usage or function

call-counts. Dueto problems with lazy evaluation and unevaluated arguments, the use

of inline cost functions relies on evaluation transformers[Burn87] to enable the

function to measure the cost of evaluating its argument by forcing the correct amount of

evaluation to occur inside the cost function (i.e. the cost function evaluates its argument

as far as the surrounding context demands and returns the result).
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However, the use of inline cost functions has drawbacks because the information

provided by a cost function is dependent upon its context at run-time.It is impossible to

interpret the results without thoroughly understanding the effects of laziness on the

evaluation of a program.When evaluation transformers are used, the results presented

are for a program which is slightly different to the one the programmer wrote.Hence,

the results are not very useful. In aparallel implementation, the order in which

expressions are evaluated cannot be determined and the timings returned bycost will

change from one program run to another. A fundamental problem with this profiling

technique is that it takes a microscopic view of the program, whereas a macroscopic

view would report its results at a level of abstraction understood by the functional

programmer.

5.3.4. GlasgowCost Centres

In [Sansom92],a profiler with a primitive similar to the UCL cost primitive is

presented. Sansomand Peyton Jones introduce the named cost centre, which associates

the cost of evaluating an expression with a given name.This concept is the same as the

UCL cost primitive but has been extended to allow nested cost centres.The problems

of lazy evaluation and unevaluated arguments also arise.To overcome some of these

problems, Sansom and Peyton Jones suggest that code should be rewritten in certain

instances in order to calculate the cost correctly. This may be a reasonable task for a

short 10 line test program but is unsuitable for a 4000 line application.

As with the early UCL cost primitive, this solution to profiling requires the

programmer to understand how a run-time system evaluates a functional program so

that the programmer can then place the cost-centre primitives in the correct place.

5.3.5. Runcimanand Wakeling Heap Profiler

In [Runciman92],Runciman and Wakeling describe a profiler that monitors heap

usage of lazy, functional programs but does not measure call-counts or the time spent in

functions. Theirsystem relies on the user understanding how a run-time system works.

This view of execution may be normal to a system implementor but is often alien to
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applications programmers. In a worked example, data graphs are presented which show

the producers of heap cells and the data types that are associated with those cells.The

graphs are then analysed to determine the behaviour of the program with an aim to

reduce heap usage. Although a significant reduction in heap usage was achieved, the

authors were required to display a wider knowledge of the underlying implementation

than would be expected of a typical applications programmer.

On two out of four occasions, Runciman and Wakeling observed problems with

their compiler and run-time system; they then modified their compiler and run-time

system in order to bring about the performance gain. For the ordinary applications

programmer, with neither access to the source code nor knowledge of the internal

workings of these systems, the changes made by Runciman and Wakeling would be

infeasible.

The Runciman and Wakeling profiler measures heap space by visiting the whole

graph at pre-determined intervals. For large heaps (as in their example), the pauses

caused by these visits will be long. Thus, for practical reasons, an upper bound is

imposed on the sample frequency but this can cause the presented data to be inaccurate.

5.4. LexicalProfiling

In this section the main aspects associated with the design decisions for lexical

profiling are discussed.

5.4.1. DesignObjectives

When an applications programmer uses a functional language to implement a

system and then uses the lexical profiler to help him analyse the run-time behaviour, it is

expected that he knows certain attributes of the languages he is using, the compiler and

how it works, and the underlying abstract machine.
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Language

On the language side, the programmer needs to know the basics of functional

programming. However, in order to understand the results of the profiler and to use

those results to improve a program, the programmer should know about substitutive

equality/ referential transparency so that he can transform or re-write his code not only

correctly but also more effectively.

Compiler

The programmer needs to know the following about the compiler:

• the flags that control the main/most useful options and what they do

• the compiler optimizations which may affect the running of the program.

It would be useful if the compiler writers and abstract machine writers

would document the optimizations, transformations, and features in their

systems so that programmers realise their existence and can take account of

them if necessary. For example, list comprehensions are often converted

into other functions, e.g:

fn g e = [g x | x <- [1..e]]

gets converted silently into calls to built in functions.

The programmer does not need know:

• if the compiler does dead code elimination.Dead code can be removed

without affecting the program because it is never referenced and therefore

never executed.

Abstract Machine Run-Time System

With regard to the abstract machine run-time system, the programmer needs to

know:

• that functions and data are treated in the same way and that they both

require space

145



• that function applications require space

• whether the system evaluates lazily or strictly. This means the programmer

needs to know that computations can be delayed by the lazy evaluation

mechanism, but he does not need to know how this happens. He should

also know that with laziness he can save space and evaluation time by

sharing expressions (and that using pipelining is an effective way to write

functions) [Clayman93a].

• which sort of garbage collection technique is being used, as this may affect

the results from the profiler. Results from the two main kinds of garbage

collectors may look like those in figure 5.2. The mark and sweep and two-

space copying collectors only run at certain intervals, so garbage builds up

and is collected in a big mark and sweep for compacting space or the

copying phase. Incremental garbage collectors collect garbage

immediately.

Mark and sweep

Two-Space Copying

Incremental

Space Space

Time Time

Figure 5.2: Space usage with two different garbage collectors

The programmer does not need to know the following about the abstract machine

run-time system:

• which abstract machine is being used, although some programs may behave

well on one abstract machine and badly on another
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• how a function is applied to an argument

• how laziness works and how the abstract machines’ mechanisms provide

laziness

• about stack space in an abstract machine, and that different machines use

the stack differently. Some, for example the ABC machine[Koopman90],

use more than one stack.

5.4.2. Program Size

This section considers the size of program to which the lexical profiler is best

suited. Very short programs do not utilise the lexical profiler to its highest ability. The

lexical profiler is more useful when monitoring programs that use more than a minimal

amount of resources. One reason for this is that data is collected on every function call,

every function return, and when cells are allocated and de-allocated.However, the

system clock does not have a fine enough resolution for complete accuracy. On the Sun

workstation used for the development of the profiler, the clock resolution is 20 ms (this

resolution is built into many other machines). Therefore, all times attributed are in

chunks of 20 ms.With very small programs, the whole program run may occur within

20 ms; this is neither the fault of the profiling technique nor the implementation of the

lexical profiler, but is a limit of the hardware.If access to a real-time clock were

availableall timings would be 100% accurate.

For example, consider a function that converts a string to an integer:

string_to_int1 :: String -> Int

string_to_int1 s = string_to_int’ s 0

where

string_to_int’ [] v = v

string_to_int’ (h:t) v = string_to_int’ t (10*v + (ord h - zero))

zero = ord ’0’

If one only needs to compare the function’s performance with another string to integer

conversion function, the lexical profiler would be an overkill solution - a sledge hammer
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to crack a nut!When using this function to convert a string to an integer, the execution

time would be less than the clock resolution of the machine. It is in this situation that

the number of cells and the number of reductions is useful.Consider another string to

integer function:

string_to_int2 :: String -> Int

string_to_int2 s = sum [ x*y | (x,y) <- scale_factors ]

where

digits = map ((\v -> v - ord ’0’).ord) s

scale_factors = zip (reverse digits) (iterate (*10) 1)

In order to determine which string to integer function is the most efficient, one can

compare their run-time behaviours for a given input.Table 5.2 gives the number of

cells used and the number of reductions performed for the given input (this experiment

was done using the Haskell interpreter, Gofer).

string_to_int1 string_to_int2

cells reductions cells reductions
Input

"" 10 3 19 7

"1" 19 9 47 23

"12" 29 14 77 41

"123" 39 19 107 59

"1234" 49 24 137 77

"12345" 59 29 167 95

"123456" 69 34 197 113

... ... ... ... ...

Table 5.2: The number of cells used and reductions performed for 2 string to int functions

The data in table 5.2 shows that, although both functions display linear behaviour, one

function is more efficient than the other. One can see forstring_to_int1 that:
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no of cells = 10× length input + 9

no of reds= 5 × length input + 4

and forstring_to_int2 that:

no of cells = 30× length input + 17

no of reds= 18 × length input + 5

A programmer would choosestring_to_int1 to convert strings to integers in an

application because it is the more efficient function.

5.4.3. Requirements for Lexical Profiling

Lexical profiling requires the compiler to record the lexical scope of functions so

that the run-time system can monitor the functions and attribute measurements correctly

in the presence of higher-order functions and lazy evaluation. The compiler needs to

access the source program early in compilation and is responsible for maintaining the

lexical affinities throughout all subsequent program transformations.

The run-time system is responsible for measuring the time spent in a function, the

number of calls to a function, and the amount of space used by a function.The space

used by a function equates to the number of cells allocated during the evaluation of that

function. Thenumber of calls to a function denotes the number of times that function is

applied to some arguments. Thetime spent in a function is the accumulation of small

amounts of time in different parts of that function. This is illustrated in figure 5.3 where

times are incremented at relevant points during evaluation, i.e. when a call is made to

another function and when a return is made from a function.

In order to retain time data for a call graph, it is necessary to remember when one

function was called from another and how long this took.To enable this, afrom tableis

built for every profiled function. It records the current profiled function, the function

from which it was called, and the number of calls and amount of time associated with

the function from which it was called. An examplefrom tableof calls tok will be:
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return from f, save f’s time

return from g to f, save g’s time

return from h to g, save h’s time

call h from g, save g’s time

call g from f, save f’s time

In f

In g

In h

In g

In f

Time

Vertical lines represent time spent in a function.

Horizontal lines represent function calls and returns.

Figure 5.3: Timings saved when calling or returning from functions

In function From No.of calls Accumulated time

f . . .  . . .

g .. .  . . .

h .. .  . . .

k

Eachfrom table is a representation of calls from multiple parents to a single child.

To generate the full call graph, the data for a single parent to multiple children is

needed. Thisdata can be generated by inverting everyfrom table. All the data relating

to "from g to fn" can be generated by collecting all the "in fn from g" data in everyfrom

table, as in:
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From table data Inverted table

f from g g to f

h from g g to h

k from g g to k

When the full call graph is generated, the profiling results are evaluated and returned to

the user.

Both inheritance andstatistical profiling styles require that output is restricted to

functions whose profile was requested by the programmer. For each profiled function

the following is reported:

• the time consumed by the function

• the space consumed by the function

• the number of times the function was called (and from whom)

• the number of calls the function made (and to whom)

The programmer can then compare and contrast the output of both styles to obtain a

clearer overall picture.

5.4.4. LexicalProfiling

The innovation of the lexical profling technique for profiling lazy, higher-order

functional programs is thecombinationof:

1. profilingfunction definitions rather than expressions.

2. attributingthe costs of all, and only, those expressionstextually contained

within each profiled function to that function.

3. takinga macroscopic view of the program and collecting statistics over a

whole program run.

This thesis defineslexical profiling as a technique with the above three properties; it

differs from dynamic profiling, which associates measurements with the run-time
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representation of the program (as in[Clayman91] and [Sansom92] ). The advantage of

lexical profiling is that it provides information that is related to the way the program is

written rather than to the way it is evaluated.

Consider the following example:

f = g ( sum [1..1000])

f’ = g 500500

whereg is non-strict in its argument. Lexically, the sub-expressionsum[1..1000]

appears within the body off . Therefore, it is reasonable for the programmer to expect

the cost of executing this sub-expression to be attributed tof . Many implementors

disagree with this approach because the evaluation of the sub-expression actually occurs

wheng is executed.However, lexical profiling is designed to be used by application

programmers who may know nothing about the run-time system. When using the

lexical profiling style for the second expression, the cost of applyingg to the atomic

value500500 is attributed tof’ and is lower than the cost previously attributed tof .

The programmers attention is therefore drawn immediately to the differences in the

definitions off andf’ .

The lexical profiler collects statistics for user defined functions for eitherall top-

level functions or just those which the programmer requests[25]. The restriction to

top-level functions greatly simplifies the profiler at minimal cost to the programmer.

The profiler should measure the time and space used at run-time by profiled functions

and report the number of calls made to(from) profiled functions and from(to) whom.

For lexical profiling, the profiler must recognise when lazy arguments are being

evaluated and switch context so that the time and space required for the evaluation are

attributed to the function whose definition lexically contains the associated expression.

The context switch does not constitute a full function call so the number of calls made

must not be incremented.

[25] This is achieved by compiler options rather than inline program annotations.
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5.5. ImplementationTechniques for Lexical Profiling

The lexical profiling technique is amenable to implementation in both compiled and

interpreted abstract machines.This section demonstrates the general principles of the

profiler ’s design and implementation and uses a sequential, interpreted model of graph-

reduction in order to simplify the presentation[26]. The modifications in both the

compilation phase and the execution phase are examined and details presented of call-

count profiling, time profiling, and space profiling[27]. Thenfollows a discussion on

how the lexical profiling technique applies to compiled abstract machines.

5.5.1. Compilationphase

The first pass of the compiler builds a graphical representation of the program,

called CGF [Parrott91], marks the root of every function to be profiled with a one bit

root-tag which is used for the call-count data, and also assigns a unique profiling colour

to each function.The colour is used when function time and heap space usage are

recorded. Asecond pass propagates the profiling colours from the root node to

descendant nodes which are not themselves marked as roots.Two passes are required

because all root tags need to be in place before propagation occurs in order that colours

are propagated to the correct graph nodes.

By using the CGF notation to show the compiler’s representation of a short program

segment, the placement of root tags and profiling colours in the two passes of the

profiling phase of the compiler can be seen. Consider the program:

[26] Full implementation details for both compiled and interpreted abstract machines can be
found in [Clayman91].

[27] Thedesign of the profiling technique was done by myself assisted by David Parrott, and
the implementation of the profiling technique was done David Parrott assisted by myself.For full
details of the implementation changes in the UCL experimental reducer, the reader is directed to
Parrott’s PhD thesis [Parrott93].
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main = f 1 0

f x  = h 1 (g x [ 1..1000])

g a b = a : r everse b

This program can be represented graphically and seen in figure 5.4, which shows the

CGF form of the program.On the right hand side of the cells is the expression which

each cell represents.

10

1

:

reverse

.. 1 1000

h

f 10

h 1 (g x [1..1000])

g x [1..1000]

[1..1000]

a : reverse b

reverse b

Figure 5.4: The CGF for program

The first pass of the profiling phase places the root markers on the relevant cells.Figure

5.5 shows which cells have root tags associated with them. Figure 5.6 shows all the

cells after the profiling colour has been propagated to them. During the propagation

pass of the profiling phase, the presence of a root tag forces the current colour not to be

propagated further.
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10

1

:

reverse

.. 1 1000

h

f 10

h 1 (g x [1..1000])

g x [1..1000]

[1..1000]

a : reverse b

reverse b

ROOT(main)

ROOT(f)

MAIN(g)

Figure 5.5: The CGF for program, plus root markers

Unprofiled Functions

When propagating profiling colours to shared unprofiled functions, it is observed

that the order of doing the propagation can lead to different run-time results[28]. The

shared function will inherit the profiling tag of the first function that has its tag

propagated to the shared function. When another profiled function has its tag

propagated to this shared function, the propagation will stop as the shared function will

already have a profiling tag.However, this approach does not produce the correct

results, as will be demonstrated shortly. Unprofiled functions should not be shared by

more than one profiled function. Contravention of this rule is detected during the colour

propagation phase when an attempt is made to paint a non-root node which already

[28] Although sharing can cause problems in the profiling stage, sharing is known to cause
problems in other areas of functional programming so this is nothing unique.
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10

1

:

reverse

.. 1 1000

h

f 10

h 1 (g x [1..1000])

g x [1..1000]

[1..1000]

a : reverse b

reverse b

ROOT(main)

ROOT(f)

MAIN(g)

main

f

f

f

g

g

Figure 5.6: The CGF for program, plus root markers and colours

possesses another colour. When faced with the issue of shared functions, there are 3

methods the user can choose to deal with this. He can either:

a) theuser can chose to profile the shared function separately. In the lexical

profiler, the user is warned where there is sharing and he can chose to

recompile the program with the shared function explicitly profiled.

b) let the profiler force a profiling colour onto a shared function.In the lexical

profiler, all shared unprofiled functions are given a specialshared profile

colour.

c) let the profiler make a unique copy of the shared function.In this case,

functions which share other functions will have their own local copy of the

shared function.This has serious consequences in a lazy, functional system

where sharing is used to reduce the amount of work undertaken.This
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approach can be investigated as further work.

As an example of the sharing problem consider the following code:

f x = x + v alue

g x = x * v alue

value = [1..1000]

This code can be represented in CGF as figure 5.7.

+

* <1,1>

<1,1>

.. 1 10000:

1:

1:
MAIN(f)

MAIN(g)

g

f

Figure 5.7: The CGF for program, showing shared expression

Note that if f and g are profiled andvalue is not, then the order in which the

compiler propagates the profiling colours will determine which function gets attributed

the cost ofvalue . In this example, if the compiler propagates the colour forf first,

then value will be attributed tof , but if the compiler propagates the colour forg

first, thenvalue will be attributed tog . Clearly this is not what is expected, but as

previously described there are 3 methods to overcome this.

Once every profiled function has been coloured, transformations performed on the

graph must preserve the colours so that knowledge of the lexical scoping of the original

program is retained. In this way, the profiling is correct even if coloursbecome

fragmented during compile-time program transformation.
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5.5.2. Executionphase - call, time, and space profiling

The run-time system monitors the call-count, time, and space data during the

execution phase.Parrott’s interpreter represents function definitions by graphical

templates constructed and coloured at compile-time[29]. At run-time, the profile

colour is copied from the appropriate template whenever a user function is instantiated.

Each node of an instance is also tagged with the profile colour of the calling function.

When laziness or calls to higher-order functions cause the node to be passed into

another function, the tagging enables the profiler to identify not only the function from

which the node originated but also its parent function.

Retaining the original lexical affiliations of nodes is of utmost importance when we

come to promote execution times up the call graph to obtain final profiling statistics.

The reader should note that profile colours and profile root-tags are properties of the

profiling mechanism and not of the reducer. Once assigned, the colour of a node cannot

be changed by the reduction process; overwriting a node’s function or argument cells

has no effect on its colouring.

Call-count profiling

Counting the number of calls made to a function is very simple. Each time a call is

made to a function which possesses a profile root-tag, the call count for that function is

incremented. This mechanism works for simple, recursive, and mutually recursive

function calls.

Time profiling

The expected behaviour for time-profiling is shown in figure 5.3.Work may be

done by a function both before and after a subsidiary function is invoked, hence the

appropriate timing must be updated with the cost of work performed whenever control

is transferred either by a function call or return.

[29] Fora detailed introduction to the fundamentals of graph reduction, see [Peyton-Jones87]
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Space profiling

Space profiling is quite simple. The colour of a newly allocated node is always set

by the heap manager, which is responsible for incrementing the corresponding space-

profile counter. Therefore space usage is monitored in real time rather than having

visits to the whole graph at discrete intervals, as in[Runciman92]. More

comprehensive data can be built if the colour of the calling function is also recorded.

5.5.3. Lexicalprofiling and compiled graph reduction

The techniques presented are illustrated using an interpreted model of graph

reduction but they can also be implemented as part of a fully compiled abstract

machine. Compiledgraph reduction typically makes much more use of the stack for

calculations which do not need to be written out to the heap. The heap is used when

closures and shared data structures are built (e.g. see[Peyton-Jones89] ).To implement

the lexical profiling technique for compiled abstract machines such as the Spineless

Tagless G-Machine,abstract machine instructions should be extended to carry profile-

colour parameters. This would allow heap nodes to be built with profile colour tags,

code sequences to pass their colours onto child sequences, and special profile markers to

be constructed on the stack. The last of these extensions works in much the same way as

update markers which force shared value updates in the heap (see[Fairburn87] or

[Peyton-Jones89] ). Code for examining the extra parameters, node colours, stack

markers, and also for incrementing the relevant profile counters would be included in

the executable binary.

5.5.4. Extendingthe technique to parallel graph reduction

Lexical profiling can be extended to parallel graph reduction by distributing the

from tables. Each processing element will have its ownfrom table which will be

updated in the usual manner. At the end of a program run, a newfrom table is

generated from the sum of the data in everyfrom table. This distribution and

accumulation can be accomplished due to the properties that allow a functional program

to run in parallel and because of the way lexical profiling colours the program before the
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execution stage.Once a program is coloured, it is not significant where a function

executes.

5.6. Analysisof the Lexical Profiler

This section shows the output from a profiling session in order to illustrate the

information given by the lexical profiler. The results presented here were obtained

using the UCL experimental interpreting reducer rather than an optimized compiled

reducer. The space usage is presented in cells rather than bytes. This is significant

because the number of cells remains the same when executing the program either with

profiling or without profiling. The profiling data for time and call-count is presented

separately from the space usage data. Execution times are accumulated and reported for

every profiled function. The time and call-count for each function is subdivided

according to the functions that called it. These times denote the actual execution time

rather than the elapsed wall-clock time. The time for garbage collection is presented

separately and isnot included in the time for any function.

At present the timings for each function are at a resolution of 20ms.As stated

earlier, this is a limit of the current hardware rather than the lexical profiling technique.

On hardware with a real-time clock the results would be more accurate.

5.6.1. ObservingProgram Behaviour

In this section the profiler is used to observe the behaviour of two programs.The

results of profiling the well known functional program nqueens and a small relational

database are presented.

the nqueens program

The nqueens program tries to put n queens on a chess board such that they are all in

a safe position. Theprogram can attempt to put from 1 queen up to 8 queens on the

board, and it returns all the valid results. In the following test the first 10 valid results,

with 7 queens on the board, is profiled. The code of the nqueens program is:
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queens :: Int -> [[Int]]

queens 0 = [ []]

queens (m+1) = [ p ++[n] | p<-queens m, n<-[1..8], safe p n ]

safe :: [Int] -> Int -> Bool

safe p n = all not [ check (i,j) (m,n) | (i,j) <- zip [1..] p ]

where m = 1 + length p

check :: (Int,Int) -> (Int,Int) -> Bool

check (i,j) (m,n) = j==n || (i+j==m+n) || (i-j==m-n)

main = take 10 (queens 7)

The nqueens program was compiled for profiling and results were asked for the

functions queens , safe , check , and main . The space usage of nqueens is

presented in figure 5.8.Each line represents the number of cells used by a function over

time. Thespikes in the lines represent where cells are used by a function and then

garbage collected when they are not needed. The space results presented give similar

information to the Runciman and Wakeling heap profiler but are in a different form.

Runciman and Wakeling present their data as cumulative strata, whereas the lexical

profiler presents the data for each function absolutely[30]. With the space usage data

alone, attention is drawn to thequeens function as it uses the most space.Shared

code is presented by the lexical profiler because some functions are shared but, as can

be seen, these shared functions are an insignificant factor in the compuation.

[30] It would not be difficult to post-process the space usage data to generate a report in the
style of Runciman and Wakeling.
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Figure 5.8: Heap usage results for nqueens program

In Fr om Noof Calls Time in seconds

main 1 1.12

queens main 1 22.48

queens 7 69.82

safe queens 742 520.76

check safe 2003 103.06

Garbage collection time in seconds 197.86

Table 5.3: Call-count and timing results for nqueens

Lexical profiling also produces both call-count and timing data. By analysing the

data in table 5.3, it is possible to gain further insight into the behaviour of the program.

From the data in table 5.3, attention is not drawn to the functionqueens but to the
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functionsafe . Thesafe function has 742 calls to it and the accumulated time is 520

seconds, which is 70% of the program execution time.Clearly, it is thesafe function

which could benefit from some optimisation. If only a heap profiler were available, it

would be impossible to determine that this behaviour arises.The functionsafe , when

given a list of current queen positions on the board and a possible new queen position,

evaluates whether the new queen can be safely placed on the board.The list

comprehension does the arranging of the checks to see if the queen can be taken in the

new position, and the results are processed using the termall not , which determines

if each element of the list comprehension is false.By looking at the definition ofall ,

it becomes apparent that a more efficient function can be written to determine if every

element of a list is false. The code forall is:

all :: (a -> Bool) -> [a] -> Bool

all p = and . map p

and :: [Bool] -> Bool

and = foldr (&&) True

This code is inefficient in this case becauseall not inverts every element of the

list before evaluating theand term. Thisis unnecessary, and a new all-false function

can be defined as:

allFalse :: [Bool] -> Bool

allFalse [] = True

allFalse (True:r) = False

allFalse (False:r) = allFalse r

andsafe can be redefined as:

safe p n = allFalse [ check (i,j) (m,n) | (i,j) <- zip [1..] p ]

where m = 1 + length p

The call-count and time data of the new version of the program are presented in table

5.4.
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In Fr om Noof Calls Time in seconds

main 1 1.20

queens main 1 22.58

queens 7 66.34

safe queens 742 424.64

check safe 2003 98.38

Garbage collection time in seconds 174.60

Table 5.4: Call-count and timing results for new nqueens

safe now executes in 80% of the time that it used to and the whole program is 15%

faster. This shows the benefit of having call-count and time profiling data.The space

profile is very similar to the previous one, and is not shown here.

simple database program

Here profilingdata is presentedfor an example program that is a demonstration of

a simple relational database written in the functional style. The program is written in

Haskell and contains approximately 350 lines of Haskell source code. The database

program provides the functionality to display a table, to select rows from a table, to

project columns from a table, to generate the union of two tables, and to join two tables

to produce a new one.

The profile shown in figure 5.9 is for a run of the database program that displays a

table generated by joining two existing tables.The heap space usage of this program is

presented in figure 5.8 and was gathered using theinheritancestyle of profiling.
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Figure 5.9: Heap usage results for database program

In figure 5.9, the line for the functionshowtable, which displays the resulting table,

rises continuously throughout the program run. This continuous rise draws attention to

the possibility ofshowtablehaving degenerate behaviour. For the functionjoin , the

line rises steadily as cells are allocated and after 10 seconds of execution time fluctuates

from the 800 cells level. For bothtable1 and table2 there is a rise as cells are

allocated, then their usage of cells reduces slowly.
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In Fr om Noof Calls Time in seconds

main 1 0.02

showtable main 1 28.74

join main 1 24.78

table1 main 1 0.66

table2 main 1 0.94

shared code main 0 31.22

Garbage collection time 22.06

Table 5.5: Call-count and timing results for database program

The timing data for the database program is displayed in table 5.5. Notice that one

third of the program execution time was spent in shared code.This indicates to the

programmer that much of the execution time was spent in functions that were not

profiled explicitly. In order to gather more detailed information, the program should be

compiled withmore functions being profiled. It is beneficial for the compiler to warn

the user when a function is being shared and by which functions it is being shared.The

compiler used in this PhD does this.In appendix A, there is an example of the call-

count and time data for this program which was gathered by profilingevery function in

the database program.

By analysing the space and time data for this program, one can see that the

showtable function hangs onto the space it uses until the end of the program run.

Therefore, there needs to be a further investigation of this function in order to determine

the cause of the observed behaviour. The code forshowtable is:
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showtable::Table->[Char]

showtable table

= disp_title ++ "\n" ++ disp_colhdr ++ "\n" ++ disp_row el

where

disp_title = concat ["Table name: " , name ,

"\tPrimary key: " , pk ,

"\tForeign key: " ,fk]

disp_colhdr = concat (map ((ljustify 10).fst) colhdr)

disp_row [] = []

disp_row (r:rs) = concat (map (ljustify 10) r) ++

"\n" ++ disp_row rs

Table name pk fk colhdr el = table

showtable makes use ofconcat and++ to generate output when given a table.A

test profile of bothconcat and++ is undertaken.To focus the test,showtable is

applied to just one table. The space usage for this test is displayed in figure 5.10 and the

timing data is displayed in table 5.6.
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Figure 5.10: Heap usage results forshowtable
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In Fr om Noof Calls Time in seconds

main 1 0.00

showtable main 1 14.88

table2 main 1 1.10

concat showtable 7 0.24

concat 24 0.46

++ showtable 14 6.56

concat 24 7.06

Garbage collection time in seconds 7.01

Table 5.6: Call-count and timing results forshowtable

It can be seen that the append function++ is actually the cause of the problem. It hangs

onto cells until the end of the program run.Further tests were run to try to eliminate

this problem, and many definitions of++ were tried without success.

5.6.2. Verifying Program Behaviour

In this section the profiler is used to verify the behaviour of two programs.The first

case-study uses the profiler to verify whether or not the functionfoldr is tail strict

and the second case-study uses the profiler to verify if a hand-coded function performs

better than a pipeline which does the same job.

foldr

In an example from Runciman and Wakeling’s heap profiling paper[Runciman92],

they observe that "certain functions can causefoldr to betail strict ". To verify this

belief, a case-study was constructed which passes a simple function tofoldr. One

version of the simple function forcesfoldr to become strict and another version uses
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foldr lazily. In this case-study, a cons function is passed tofoldr and then the

head of the resulting list is taken. The first version of cons does pattern matching on its

second argument. Thecode used in this example is:

pmCons :: a -> [a] -> [a]

pmCons v [] = v : []

pmCons v (h:t) = v : h : t

list :: [Int]

list = foldr pmCons [] [1..100]

main :: Int

main = head list

By profiling this program it can be seen thatfoldr has become strict. There are 100

calls to pmCons when only 1 is expected, and the heap usage is large when it is

expected to be small. The call-count and timing data for this example is displayed in

table 5.7 and the heap usage is displayed in figure 5.11.

In Fr om Noof Calls Time in seconds

main 1 0.08

list main 1 7.66

pmCons list 100 1.20

foldr list 1 0.02

foldr 100 2.14

Garbage collection time in seconds 2.76

Table 5.7: Call-count and timing results forpmCons
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Figure 5.11: Heap usage results forpmConsprogram

Thecons function can be rewritten without pattern matching:

gdcons :: a -> [a] -> [a]

gdcons v l = v : l

list :: [Int]

list = foldr gdcons [] [1..100]

main :: Int

main = head list

As can be seen in table 5.8, the program goes much faster and the number of calls to the

cons function is the expected number, i.e. 1. Clearly, the pattern matching is a problem

when combined withfoldr .
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In Fr om Noof Calls Time in seconds

main 1 0.02

list main 1 0.10

gdcons list 1 0.00

foldr list 1 0.00

Garbage collection time in seconds 0.06

Table 5.8: Call-count and timing results forgdcons

sum of squares

The second example is a program to sum the squares of a list of numbers.In

[Ferguson88], Ferguson suggests that the pipelining style of programming (through the

use of function composition), which is common in functional languages, is inefficient as

there is a need to build and immediately destroy intermediate list elements.A more

efficient version can be written which has the same semantics and operational behaviour

as the pipelining version.However, this efficient version has the disadvantage that it is

considerably less clear than the pipelining version.In this section, the profiler is used to

verify Ferguson’s statment. Ferguson defines the sum of the squares to be:

(sum . map square . upto 1) n

A program to evaluate this expression is:
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sumSquares :: Int -> Int

sumSquares n = (sum . map square . upto 1) n

upto :: Int -> Int -> [Int]

upto n m = if n > m then []

else n : upto (n+1) m

square :: Int -> Int

square x = x*x

main = sumSquares 400

By profiling this program, the results obtained for call-count and function times are

displayed in table 5.9 and the heap usage results are displayed in figure 5.12.

In Fr om Noof Calls Time in seconds

main 1 0.00

sumSquares main 1 0.04

sum sumSquares 1 8.34

map sumSquares 1 0.02

map 400 8.64

upto sumSquares 1 0.00

upto 400 9.52

square sumSquares 400 2.04

Garbage collection time in seconds 7.30

Table 5.9: Call-count and timing results forsumSquares
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Figure 5.12: Heap usage results forsumSquares program

A second version of the sum of squares program, which Ferguson says is more

efficient, is:

sumNsquares n = sumNsquares’ 0 1 n

sumNsquares’ res m n = if m > n then res

else sumNsquares’ (res + square m) (m+1) n

main = sumNsquares 400

The results of profiling this program are displayed in table 5.10 and figure 5.13.
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In Fr om Noof Calls Time in seconds

main 1 0.00

sumNsquares main 1 0.00

sumNsquares’ sumNsquares 1 0.04

sumNsquares’ 400 9.18

square sumNsquares’ 400 1.94

Garbage collection time in seconds 2.98

Table 5.10: Call-count and timing results forsumNsquares
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Figure 5.13: Heap usage results forsumNsquares program
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Therefore, Ferguson is correct in stating that the second version of sum of the squares is

faster, because the second version executes in 14 seconds whereas the first version took

36 seconds.However, in the second version, the space usage has a larger peak than the

first version.

5.6.3. Achievementsof Lexical Profiling

The achievements of the lexical profiling technique for lazy, higher-order functional

languages are reviewed with respect to suggestions made by Runciman and Wakeling

regarding problems that profilers for functional languages might have.In

[Runciman90], Runciman and Wakeling suggest that profiling tools such asgprof are of

limited use for profiling functional programs. The reasons they give are:

1. The semantic gap: they comment that functional programs do not map

directly into a machine representation and require much transformation.

They claim that measurements of a run-time profiler may be difficult to

associate with structural units of source code.

This is one of the motivations for lexical profiling. The structural unit is

the function definition and is independent of any later transformations.

Results are associated directly with the textual function definition, which

the programmer understands, and do not depend on the run-time

representation.

2. Hidden routines: they claim that routines in the functional run-time system

may carry out a significant proportion of the computational work.For

example, the full cost of garbage collection would go to the function that

needed some memory and induced the garbage collection.

During garbage collection, a lexical profiler can stop measuring execution

time and start measuring garbage collection time.When returning to the

evaluation, the profiler can continue measuring for the correct function

according to its profile colour.
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3. Global laziness: they maintain that lazy evaluation makes it difficult to

assess the cost of isolated program parts and claim that changing a program

may change the point of evaluation.

The lexical profiler counteracts this dilemma because profiling information

is always reported with respect to the lexical scoping of the source.

Therefore, the results are insulated from the effects of laziness. It is

possible to differentiate between real function calls and changes of context

due to delayed evaluation.

4. Space leaks: they observe that having laziness means expressions may be

held unevaluated for later use and that the lazy evaluation strategy can

cause large demands on memory usage.

In the lexical profiler, space usage can be observed and measured. As every

cell is tagged, it is possible to measure cell usage separately for every

function.

5. Recursion and cycles: they observe thatgprof is poor at handling the

recursive functions which functional programs rely on.

In a lexical profiler the root of every profiled function is tagged.Therefore,

recursive functions can be handled correctly.

This PhD concludes that lexical profiling overcomes apparent obstacles in building an

effective profiler for lazy, higher-order functional languages.

5.7. Summary

One of the major problems in developing applications in lazy, functional languages

is the lack of tools which aid the programmer in debugging and analysing the run-time

behaviour of the application. This chapter addressed this issue and presented the design

and implementation of a profiler which measures call-count, time, and heap space usage

of lazy, higher-order functional languages using a technique calledlexical profiling .

This is of benefit to the applications programmer because results can be directly related

to the source code and no knowledge of the underlying run-time system is required.
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Furthermore, neither profiling annotations nor primitives need to be learned as lexical

profiling allows the program to be executed unchanged.The lexical profiling technique

is the only one that can present results for all 3 types of data, namely call-count, space,

and time.

The programmer can run his program with both statistical and inheritance profiling

in separate runs and compare the output to determine how his program behaves.When

the programmer is comparing the graph from the inheritance profile with the graph from

the statistical profile, he can determine whether an inherited function is causing a lot of

resource usage.

The use of lexical profiling was demonstratedby examining example Haskell

programs. Fromthese examples, it was shown how the profiler presents data on the

execution of the program and allows problem areas in the code to be identified.A

lexical profiler allows the programmer to observe the execution of functional programs

by observingwhereevents occur andwhat they signify.

The task of profiling functional languages relies on two tenets:

(i) usinglexical function definitions rather than a run-time representation.

(ii) ensuring that the compiler preserves the lexical affinities irrespective of

program transformations.

Existing approaches have had limited success in profiling lazy, higher-order functional

languages. Inorder to overcome these limitations, one can use the lexical profiling

technique to build a working profiler for functional languages.

One of the benefits of lexical profiling over the annotation style of profiling is that

the programmer does not have to change any code to do lexical profiling.The compiler

and the run-time system will do all the work.With cost annotations, the programmer

has to decide where to place the annotations and which expressions will give

meaningful results. There are many problems with this technique, and they are

discussed in[Sansom92]. Sansomalso reviews the paper [Clayman91] which is an

early description of the current work. He comments that:
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• unprofiled functions cannot be shared by more than one profiled function

As stated sharing unprofiled functions is undesirable because when a

profiled function shares unprofiled functions the results produced will be

incorrect. Section"Unprofiled Functions" these arguments in more detail.

• separate module compilation is not possible

In the current, experimental version there is no separate module

compilation. However, in a  production version this limitation can be

overcome. Itis possible to design a system which allows modules to be

compiled separately by keeping the colours of all profiled functions in a

special profiling symbol table. At link time, the profiling symbol tables can

be combined by a phase of the linker to produce the full colouring of the

program.

Recently Sansom has adapted his work to encapsulate techniques from lexical profiling

in his cost centers [31].

Therefore, lexical profiling is a fundamental development in run-time analysis tools

for lazy, functional languages. Its results are reported with respect to the source code,

which every programmer understands.

A conclusion is that the profiler produces data which has not been seen before, and

therefore work needs to be done to understand the graphs that are produced.One

obvious result is that a higher line on a space usage graph indicates that more space is

being used by a function.However, more exposure to the results of lexical profiling are

needed in order to provide more comprehensive knowledge of the meaning of profiling

results. Thefurther work required is:

i) theanalysis of space usage graphs

ii) definition of what peaks and troughs mean in space usage graphs

[31] Personalcommunication.
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iii) to provide the programmer with a list of changesthat he can make to

programs when presented with certain patterns of data from the profiler.

In the current version of the profiler statistical profiling has not been implemented.If

statistical profiling data is required it can be generated by post-processing the run-time

results of the existing profiler. No extra changes need to be made to the compiler or the

run-time system of the functional language.The post-processor can collect the function

call counts and the time spent in functions in order to generate the percentage of time

spent in each profiled function.

The extensions to be made to the profiler are:

i) to add constructor profiling. Runciman and Wakeling do this in their

profiler. With constructor profiling, the space used by each function is not

presented as one homogeneous amount but is presented per constructor

allocated by that function. The space results will have a report for each

constructor. This will give the programmer both more information and

clearer details as to how a function is allocating space.

At present the lexical profiler does not do constructor profiling. It uses

FLIC as its input language and any indication of the names of constructors

have been stripped by the Haskell compiler. In the FLIC source, only

PACK’s are seen.

ii) to allow copying of the body of shared functions. At present, shared

functions can be profiled either individually ortogether using theshared

profile colour. The desire is to make a copy of each shared function, thus

making the copy local to each function that needs it.
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Chapter 6

6. Parallelismand Functional Programs

This chapter reports the discoveries from attempts to find the best technique to

parallelize a large functional application and considers the advantages and

disadvantages of annotations, skeletons, and compiler detected parallelism when

parallelizing a large application.The work is reported from the view of the programmer

trying to evaluate the available tools and techniques; the views of parallel system

implementors may be very different.

Parallelism in functional programming is appealing because expressions within a

program are independent and the lack of data dependencies within a program permits

the concurrent evaluation of these expressions. The functional program which executes

on a sequential machine can just as easily execute on a parallel machine.In

[Peyton-Jones89a], Peyton-Jones indicates that parallel functional languages have

advantages over parallel imperative languages. These advantages are:

• no new language constructs are required to express parallelism, nor are

there any sychronization or inter-task communication constructs. This is

because all parallelism can be implicit.

• no special techniques are needed to protect shared data from concurrent

tasks. Thisis because there is no updatable store and no side-effects.

• it is no more complicated to reason about the correctness of a parallel

functional program than a sequential program. This is because no new

constructs have been added, so all the same techniques still work.
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• the results of a program are determinate. This is because the model of

computation has not changed for the parallel environment, therefore, any

variance in processing and communication speeds is irrelevant.

Although functional programs use implicit parallelism to achieve a reasonable

speed-up, functional algorithms must be designed with parallelism in mind. For

example, the functionsum, which generates the sum of the numbers 1 to n, can be

written as:

sum 1 = 1

sum n = n + sum (n-1)

However, this function can only be executed sequentially because the data dependencies

for the additions occur one after another. Peyton-Jones shows how a parallel version of

sum may be written:

sum = psum 1 n

psum lo hi = hi, hi == lo

= psum lo mid + psum (mid+1) hi, otherwise

where

mid = (lo + hi) / 2

This version ofsum decomposes the workload into two separate parts, (i) the sum from

1 to a mid-point and, (ii) the sum from the mid-point to n.The workload is recursively

decomposed, witheach task evaluating its part of the sum.

Many techniques for identifying and extracting parallelism in functional programs

have been devised; they are annotations, skeletons, and compiler detected parallelism.

Once the program has been parallelized, the individual tasks have to be mapped onto

processors to make effective use of the machine.To do this requires some management

of theparallel environment.Techniques for task management include load balancing,

scheduling, and partitioning.

This chapter discusses three ways to harness parallelism in functional programming,

namely the use of annotations, the use of skeletons, and the of compiler detected
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parallelism. Theinvestigation into techniques currently available for parallelizing the

functional rule-based system led to the use of the GRIP parallel processor[Clack85a] as

it was the only one available during this research.An experiment was devised to test

the suitability of running a program in parallel on GRIP, and the results obtained from

this experiment are presented. Then follows a discussion on the use of annotations,

skeletons, and compiler detected parallelism in other parallel systems. This leads into a

review of parallelism in functional programming, and in particular the advantages and

disadvantages of these three techniques. There is a brief section on current parallel

applications and, finally, conclusions are presented concerning the best method for

harnessing parallelism in a functional program.

The requirements for parallelizing small programs are often different from large

programs and thus the arguments presented in this chapter may not be relevant for small

programs.

6.1. Parallelismin Functional Programming

This section discusses currently available technology for identifying parallelism in

functional programs and for managing that parallelism in a parallel environment.There

are currently three ways to identify parallelism in functional programs – compiler

detected techniques, skeletons, and annotations.

6.1.1. CompilerDetected Parallelism

Compiler detected parallelism is a technique in which a phase of a compiler

analyses the source code to determine which parts of the program may run in parallel.

This is most commonly done through the use of strictness analysis[Clack85].

Strictness analysis determines if the value of expressions will be needed at some time in

the future. If they are needed, then the expressions may become new parallel tasks.To

enhance compile-time strictness analysis, Burn has proposedevaluation transformers

which allow the strictness data to be modified at run-time when more information

becomes available [Burn87].
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6.1.2. Skeletons

Skeletons embody general structures of computation within a functional framework

[Cole90] [Darlington91].Skeletons are higher-order functions which provide building

blocks for the specification of parallel algorithms. The programmer uses a skeleton

function within a program to denote the kind of structure an algorithm has, but the

skeletons do not change the meaning of the code.The algorithm can then be run

efficiently on a parallel machine.

Consider an example where the programmer knows that a set of functions are to be

combined into a pipeline.Pipelines are commonly written as compositions, so the

programmer may write code such as:

(f1 . f2 . f3 . ... fn) data

Yet this forces the functions to be composed and, as a consequence, little parallelism

may occur. However, by using skeletons, the programmer may express the pipeline as:

pipeline [f1, f2, f3, ... fn] data

With this construct, the parallelism may be generated in different ways on different

parallel machines depending on which is the most efficient. Theskeleton allows the

programmer to express his knowledge of how the functions are to be combined in an

abstract way.

6.1.3. Annotations

Annotations are declarations which the programmer hand-places into programs in

order to specify where the parallelism should occur[Hudak85] [Hammond91b].The

annotations do not change the semantics of the program and, therefore, the program will

give the same results when annotations are not used.Annotations are used because it is

sometimes difficult for a compiler to determine where all the parallelism is.Reconsider

the psum example. If the programmer uses annotations to harness parallelism, then the

code for the parallel sum could be written as:
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sum = psum 1 n

psum lo hi = hi, hi == lo

= PAR (psum lo mid) + PAR (psum (mid+1) lo), otherwise

where

mid = (lo + hi) / 2

Here the annotationPAR indicates that both arguments to the addition operator are to be

executed in parallel.

6.1.4. ManagingParallelism

The management of the parallel environment aims to ensure that the machine is

being used effectively. Load balancing is a mechanism which tries to give every

processor of a parallel machine an equal amount of work to perform[Hudak84]. This

may involve moving tasks from busy processors to idle processors in order to attain the

balanced load. Partitioning is a mechanism which splits programs into tasks and then

splits these tasks into smaller sub-tasks[Hudak85a] [Goldberg88]. Eachtask can be

executed concurrently with other tasks.Once new tasks have been created, it is the

scheduling mechanism which decides which ones to execute[Goldberg88]

[Hammond91a]. Ifno tasks are available to schedule on the current processor, then

some load balancing is required to migrate tasks to that processor. If there are no tasks

available anywhere in the parallel environment, then some existing tasks need to be

partitioned in order to create new tasks.

These three mechanisms (partitioning, scheduling, and load balancing) are closely

related and each can be done either staticallyat compile-time or dynamically at run-

time.
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6.2. Useof parallel systems

In this section there is a discussion on the use of functional programming systems

which have parallelism.Many of the earlier systems which have been reported, such as

Hudak’s early work (see [Hudak84], [Hudak85],and [Hudak85a]) or ALICE

[Cripps87], no longer seem to exist.Recent systems, such as the FAST project which

aims to build an implementation of Haskell on a machine consisting of Transputers

[Glaser90], are still under development and are not available. Some of the reported

systems, which at first seemed promising, only ran on sequential machines or on

simulators of parallel machines [Eekelen89].

Attempts to use other systems that have been reported have varied.Access to both

the ALICE parallel machine and the FLAGSHIP parallel machine was unavailable

during this research. Access to the GRIP parallel machine was encouraged by its

administrator and he supplied many documents on how to access and use the system

[Hammond91]. Thefollowing section describes the use of the GRIP parallel machine

in order to investigate its suitability for executing a parallel version of the functional

rule-based system written for this thesis.

6.2.1. Useof GRIP

The GRIP parallel machine is now publicly accessible over the Internet as a mail

server. Either Lazy ML [Augustsson89] or Haskell[Hudak88] programs can be sent to

GRIP for execution in a parallel environment.The document [Hammond91] describes

how this is done. The GRIP environment provides a subset of the Haskell prelude plus

support for some annotations to harness parallelism. Programs are executed on GRIP

and results are mailed back to the originator for analysis. Having GRIP set up as a mail

server allows wider access to the machine. As the GRIP machine is accessible over the

Internet, it allows some experiments to be undertaken in parallel functional

programming. Without access to GRIP, no parallel functional programming could have

been done for this PhD.This section discusses how the parallelism is harnessed and

describes some of the results obtained back from GRIP.
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An experiment was devised to evaluate the strictness analysis technique used on

GRIP by defining a small program to calculate a fibonacci number. The fibonacci

program is used because it is a simple program that is a well understood and often used

test case in functional programming circles. Its use here is to highlight the parallelism

available in GRIP and it is not meant to be a representative functional application.

Once the feasibility of executing a parallel program on GRIP has been established, then

larger examples can be used for further evaluation of the parallel machine.

In [Clack85], the strictness analysis technique was proposed as a mechanism for

determining where parallelism is available in a program. Run-time task management is

used to manipulate that parallelism in the GRIP machine.The following program,

which is a standard fibonacci function, was sent to GRIP to evaluate the use of strictness

analysis in the compiler:

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = fib (n-2) + fib (n-1)

main _ = show (fib 15)

The results from GRIP can be seen in figure 6.1.This activity report shows that the

processor called "14.1" was 100% busy most of the time, as indicated by the solid line.
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Figure 6.1: GRIP activity chart forfib program
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The activity report for the other GRIP processors is the same as that seen in figure 6.2

and shows that these processors were idle.

0

50

100

0 200 400 600 800

A
ct

iv
ity

 (
%

)

Time (Ticks -- 1 tick = 1ms)

Reduction Time - 15.0

Reduction
Read/Flush

Idle

Figure 6.2: GRIP activity chart forfib program

To confirm that only one processor was busy and that no parallel tasks were being

created, the task creation report for processor "14.1" was analysed and the results seen

in figure 6.3. This confirms that no parallel tasks were being created by GRIP.
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Figure 6.3: GRIP activity chart forfib program

Finally, the aggregated report for all processor activity in GRIP is analysed and seen in

figure 6.4. Figure 6.4 shows that GRIP was 5% busy and 95% idle during the execution

of this program.
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Figure 6.4: GRIP activity chart forfib program

The results of this experiment show that the current GRIP environment does not use

the strictness analysis technique, butonly uses annotations embedded in the program to

create new parallel tasks.The program sent to GRIP executed on a single processor

only, rather than on many processors as would be expected when strictness analysis is

used. Therehave been no reports that the strictness analysis technique does not work,

so it is suprising that the method for harnessing parallelism seems to have changed since

GRIP was first envisaged. Peyton-Jones considers that strictness analysis is still the

best way forward but, in the short term, annotations are an easier way to harness

parallelism [32]

For a second experiment, another version of fibonacci was created using GRIP

annotations in order to harness some parallelism.In [Hammond91b],Hammond and

Peyton-Jones describe some of their early work using GRIP for executing parallel

programs and show the results of some simple experimental programs such as a parallel

fibonacci program and a parallel 8-queens program.The results are somewhat erratic

and they conclude that "some kind of dynamic thread control is necessary to control

excess parallelism in the fine-grained case".In [Hammond91a],Hammond and Peyton-

Jones address some of the issues raised in their early work.Neither [Hammond91b]

nor [Hammond91a]suggest how the annotations are used or how tasks should be

created at the source program level.

[32] Personalcommunication from Peyton-Jones
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To harness parallelism on GRIP, the annotationpar must be used, such that:

par new expression = expression

Thepar annotation causes the expressionnew to become a new parallel task which is

then sent to a task pool. The expressionexpression is evaluated on the current

processor. The returned value isexpression ; the annotationpar is only used to

create new parallel tasks. For example:

par small big

would send a small task to the task pool and evaluate a big task on the current processor.

If the big task needed to be split into smaller tasks, then it would need morepar

annotations to create the new tasks.

The aim of the second experiment was to devise some annotations that would create

many new tasks in the task pool. This approach was taken in order to maximise the

amount of parallelism available in the fibonacci program. Using annotations, the

following function was devised:

twopar f a b = par a (par b (f a b))

The twopar function creates two tasks,a andb , to run in parallel and appliesf to

the results on the local processor. Using thetwopar function, the new version of

fibonacci is:

fibTP :: Int -> Int

fibTP 0 = 1

fibTP 1 = 1

fibTP n = (fibTP (n-1)) ‘padd‘ (fibTP (n-2))

padd = twopar (+)

main _ = show (fibTP 30)

The results of processor activity from GRIP are seen in figure 6.5.
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Figure 6.5: GRIP activity chart forfibTP program

Figure 6.5 shows that out of the 120 seconds of execution time, 43% was spent

evaluating, 49% was spent idling, and the rest spent in system management (doing tasks

such as garbage collection). The results of the parallel task creation are seen in figure

6.6.
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Figure 6.6: GRIP task creation chart forfibTP program

The reports from GRIP show that thousands of new parallel tasks were created.

Although the number of new tasks and the time spent creating these tasks was very

high, the percentage of time evaluating the tasks was relatively low. Therefore, having

too many small parallel tasks caused GRIP to spend a disproportionate amount of time

in task creation thus leaving less time for task evaluation.

These results led to the next experiment, in which two functions were devised to

create fewer parallel tasks. First:
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onepar’ f a b = par a (f a b)

which spawns a parallel taska and returnsf a b as a result. Second:

onepar’’ f a b = par b (f a b)

which spawnsb as a parallel task and returnsf a b as a result.Using just the

onepar’ function, a new version of fibonacci was written:

fibOP :: Int -> Int

fibOP 0 = 1

fibOP 1 = 1

fibOP n = onepar’ + n2 (fibOP (n-1))

where

n2 = fibOP (n-2)

main _ = show (fibOP 30)

The aggregated results for the processor activity from GRIP are seen in figure 6.7.
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Figure 6.7: GRIP activity chart forfibOP program

Figure 6.7 shows that the execution time was 73 seconds.Of this, 72% was spent

evaluating, 14% was spent idling, and the rest spent in system management.The results

of the parallel task creation are seen in figure 6.8.
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Figure 6.8: GRIP task creation chart forfibOP program

The results of the experiment using thefibOP definitions showed that less tasks

were being created. The effect of this is that thefibOP program executed faster as a

larger percentage of time was spent evaluating rather than creating tasks.A comparison

of the results of the last two experiments can be seen in table 6.1.

Evaluation time Idle time Other timeTotal time

seconds %age seconds %age seconds %age seconds
Program

fibTP 120 43 51.60 49 58.80 8 9.60

fibOP 73 72 52.56 14 10.22 14 10.22

Table 6.1: Comparison of speed betweenfibTP and fibOP

In table 6.1, attention is drawn to the number of seconds spent evaluating. The program

that created more parallel tasks took 120 seconds to complete but spent only 51.60

seconds evaluating.However, the program that created less parallel tasks took 73

seconds to complete and spent 52.56 seconds evaluating. This shows what a large

overhead creating tasks can be.

Once it was established that the parallel annotations had to be used with care, it was

then possible to write some parallel versions of well known functions. For example, a

parallel version ofmap can be written as:
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pcons = onepar’’ (:)

pmap f [] = [ ]

pmap f (h:t) = (f h) ‘pcons‘ (pmap f t)

Using this definition,(f h) executes on the current processor withpmap f t being

sent to the task pool for further parallel evaluation.This parallel version of map was put

into a bigger test program. The results of this experiment were that the GRIP run-time

system failed. The assumption was that the annotations had been used incorrectly. The

actual problem (according to Kevin Hammond, the GRIP system administrator) was due

to some bugs in the GRIP system garbage collector which were being tracked down at

that time. According to Clack, one of the original designers of GRIP, this version of

pmap causesspeculativeparallelism because every new task with a call topmap

causes yet another new task to be created. Any task placed in the task pool is a

guarantee to the GRIP system that the task needs to be evaluated. Therefore, the

concept of lazy evaluation does not apply to tasks, even though one may expect laziness

in a system that evaluates lazy, functional languages. Clack states that the expression:

head (pmap id [1..])

will cause an infinite computation.

Although the fibonacci experiment highlights the pitfalls of annotations, it does not

reveal much about the behaviour of large applications.Further medium-sized test

programs were sent to GRIP, but these too failed to execute. During this research, the

GRIP run-time system was being developed to use annotations and to utilize a different

abstract machine from the one originally documented.This meant that GRIP was

unstable at times.

6.3. OtherReported Experience

This section summarises other reported use of parallel identification techniques.
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6.3.1. Useof Compiler Detetected Parallelism

Some early work on using compiler detetected parallelism through strictness

analysis was presented by Goldberg in [Goldberg88]. This paper describes the

Buckwheat system, which is a working implementation of a functional language on a

commercially available multi-processor machine.By using strictness analysis at

compile-time and various scheduling strategies at run-time, Goldberg showed

impressive speed-ups as extra processors were added to the system.

A recent system that uses compiler detected parallelism is the DIGRESS system

[Clack92]. DIGRESSis an architecture for executing parallel functional programs on a

network of workstations. Each workstation has one (or more[33]) processing element,

which communicates via a purpose built communications sub-system[Ghosh91].

DIGRESS is intended for coarse-grained parallelism and its expected use is for large

functional applications. Because the load on workstations can vary dramatically and

because DIGRESS does not expect sole use of the workstation, various strategies for

run-time scheduling, load balancing, task size evaluation, and task partitioning have

been devised. No results have been reported for DIGRESS, but a workload synthesizer

and simulator have successfully utilized the communications sub-system.

Boyle and Harmer recently presented work which uses a functional language to

harness parallelism on a CRAY X-MP vector processor[Boyle92]. Theprogram was

used to solve some problems using partial differential equations. The language they

used for the program was pure LISP. The LISP program was automatically transformed

into CRAY Fortran using the TAMPR transformation system. The TAMPR system used

domain dependent, domain independent, and hardware dependent phases to produce the

Fortran. TheFortran that was generated was not intended to be human readable, but

was produced as a notation to inform the hardware how to perform.This is because the

Fortran compiler produces very efficient vectorizing code on the CRAY. The results of

Boyle and Harmer’s work show that their functional program was faster than a hand

coded Fortran program written to solve the same problem. This highlights how

[33] Thereasons for running more than one processing element on a single processor worksta-
tion are discussed in Parrott’s thesis [Parrott93].
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compiler detected techniques can be beneficial for data parallelism.

6.3.2. Useof skeletons

Skeletons address the issue of mapping common algorithmic structures onto an

underlying machine without the programmer having to know the details of that

machine. Theprogrammer may imagine that a set of composed functions, such as:

(f . g . h . i . j) data

could execute on a parallel machine, with each function on a separate processor creating

a pipeline of functions with data flowing from one processor to another. In reality this

depends on the complexity of the functions and the type of the data, but it does not stop

the programmer thinking about the composition as a pipeline.Therefore, the

programmer may imagine that each of the composed functions is placed on a different

processor. This is seen in figure 6.9.

f g h i jresults data

cpu cpu cpu cpu cpu

Figure 6.9: A pipeline of functions

Skeletons can address the expression of pipelines in an abstract way. The composed

functions may need to be expressed as:

pipeline [f, g, h, i, j] data

to get the desired behaviour on a particular machine.In this way, the programmer can

express the ideas in an abstract notation without relying on low-level annotations.

For each environment, the skeleton forpipeline may create code that is

amenable to compiler detected parallelism or the skeleton may be written using the

annotations for that environment. Therefore, the programmer is insulated from using

the annotations. It may be that the compiler makes decisions about which actual

skeleton code to use depending on the size of the functions and the type of the data.
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This is possible even when the programmer uses the same skeleton in the same

program. Inthe paper "Structured Parallel Functional Programming"[Darlington91],

Darlington et. al. suggest that other common structures for programs (such as divide and

conquer, meshes, lattices, and farms) are useful. They state that one of the advantages

of using skeletons is that they may be transformed using standard functional

programming transformation techniques.Using this mechanism, they demonstrate how

to transform a program which uses one skeleton into an equivalent program which uses

a dif ferent skeleton. The example shown converts a mergesort which uses a divide and

conquer skeleton into a mergesort which uses a pipeline skeleton. This technique

further enhances the power of parallel functional programming as using skeletons frees

the programmer from the burden of understanding the underlying machine.These

transformations can be done silently by the compiler and improve the performance of

the program.

In [Cole90],Cole presents a skeleton for divide and conquer. He also defines the

iterative combination skeleton, which combines elements in a set of objects if the

elements are considered to be good partners. Each iteration over the set reduces the

number of set members until there is just one member. Cole shows how this can be

used to describe a minimum spanning tree algorithm. Cole also defines the cluster

skeleton which, by his own admission, is a solution in search of a problem. This arose

because it was designed from the hardware up. Once the cluster skeleton was designed,

there were no obvious algorithms in which to use it.

In [Darlington91], skeletons are presented in which the aspects of process

granularity, inter-connectivity of processes, and process placement are made explicit.

These skeletons are low-level specifications of parallelism but are still more abstract

than annotations because they can still express whole parallel structures.Darlington et

al. state that a low-level skeleton may assume that each function supplied as an

argument corresponds to a distinct process, and that each process may be allocated to

adjacent processors with a single communication link between each stage. These low-

level skeletons are an attempt at efficiency on certain machine architectures.However,

they lose the flexibility of the more abstract skeletons, which just address structures of

computation, and leave the choice of efficient execution techniques to the compiler. If
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the programmer does not fully understand the underlying machine, he may use the low-

level skeletons ineffectively.

Darlington et al. also present more abstract skeletons which can create as many

processes as required. They observe that for many algorithms neither the inter-

connection between the processes nor the placement of tasks can be determined at

compile-time. They, too, present a set of skeletons including divide and conquer. Some

skeletons, such as Kelly’s Caliban notation [Kelly90], are used to express process

networks which can then be parallelized. However ZAPP, which uses a divide and

conquer strategy for parallelism, only has a divide and conquer skeleton

[McBurnley90].

Most skeletons have been devised for creating process parallelism; that is, separate

tasks execute concurrently to solve a problem.However, Jouret has suggested skeletons

for data parallelism [Jouret91] which express parallel computation over large data sets,

such that one operation is applied to every data item at once.Jouret shows the benefits

of functional programming for data parallel computation and how his skeletons allow an

abstract expression of this kind of parallelism.

If a system needs parallelism to be indicated by the programmer, then skeletons

seem very suitable.They express abstract structures of computation which the

programmer may already have in mind. Another benefit of skeletons is the ability to

transform from one skeleton to another in order to achieve the most efficient

implementation. However, as skeletons have only been produced for a few well known

sets of solution strategies, when a new solution to a problem is found, there may be no

suitable skeleton and, consequently, no parallelism may be harnessed.

6.3.3. Useof Annotations

In this section there is a discussion of the results from parallel functional systems

that use annotations to harness parallelism.

Some of the earliest uses of annotations in parallel functional languages were seen

in [Hudak85]. His paper addresses the issue of explicitly stating the mapping from

program to machine using annotations that indicate on which processor to place a task.
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This static mapping was considered uninteresting, so a function was devised which

returned the current processor id and allowed the id to be manipulated in order to create

new processor id’s. This function could then be used in other functions in order to

determine on which processor to place a newly created task and to create programs that

could execute on machines where the processors were either tree structured or in a

mesh. Theannotations were used to create parallel versions of factorial and a matrix

multiplication. However, the programmer has the burden of stating on which processor

a task must execute.

Using annotations for more than just task creation is considered by Roe in[Roe89].

This paper presents a quicksort program which can be expressed as:

qsort [] = [ ]

qsort (s:rest) = qsort [e | e<-rest, e<s]

++ [s] ++

qsort [e | e<-rest, e>=s]

When successive changes are made to the quicksort program by adding annotations and

rewriting sub-functions, different parallel behaviour is achieved.To achieve task

partitioning, the samepar annotation as the one used in the GRIP system is placed in

the program. This produces parallel version of quicksort:

psort [] = [ ]

psort (s:rest) = (par qlo . par qhi) (qlo ++ [s] ++ qhi)

where

qlo = psort [e | e<-rest, e<s]

qhi = psort [e | e<-rest, e>=s]

This parallel version loses the clarity of the original but is still recognizable as

quicksort.

Roe observes that this version of quicksort will create parallel tasks which attempt

to evaluate the expressionpsort [] . The creation of these tasks causes inefficient

execution. To avoid this, mechanisms to control the size of a task or to delay creating

new tasks are presented. The size of a task is determined by counting the size of the list

passed as an argument. If the list hasenough elements, then tasks are created;
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otherwise, the current task evaluates the list.To delay the creation of a task, some

heuristics are suggested which are attributed to Hughes (but no reference is given).

Using these heuristics, the following version of quicksort is presented:

qsort l = hsort l []

hsort [] l = [ ]

hsort (s:rest) l = seq sl (slo ++ [s] ++ shi), length l < k

where

slo = hsort [e | e<-rest, e<s] (l++[shi])

shi = hsort [e | e<-rest, e>=s] []

= ( par p . seq slo) (slo ++ [s] ++ shi), length l == k

where

(p:ps) = l

slo = hsort [e | e<-rest, e<s] (ps++[shi])

shi = hsort [e | e<-rest, e>=s] []

This version is rather contrived, making the final result a program in which the clarity of

the original and the essence of quicksort is lost[34]. It would be difficult for the

average programmer to write programs in the resulting style on a regular basis.By

writing functions such that their meaning is obscured, there is a good chance that the

maintenance costs will be higher. Furthermore, it may be practical to spend this amount

of time on a 2 line program, but not on a many thousand line program.

In his conclusions, Roe states that in order to achieve speed-up, a parallel program

must make efficient use of a parallel machine and that in order for this efficiency to

occur, parallel programs must explicitly control certain aspects of parallelism, notably

task size and the re-evaluation of expressions. Although this may be true, it is debatable

[34] Thisprogram also uses theseq annotation, which is defined as:
seq a b = b

and evalutesa and then returnsb .
Neither a definition fork nor an expression for the case whenlength l > k was given.
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if programmer intervention and hand-placed annotations are the best method for

achieving such efficiencies. Roedoes observe that the embarrassing lack of empirical

studies using real programs and data prevents one from identifying the real efficiency

issues in parallel functional programming.However, to conduct empirical studies on

these yet-to-be-written programs requires decent measuring tools, of which few exist.

Work done at the University of Nijmegen revolves around a technique called

Communicating Functional Processes and the language Concurrent Clean, which is an

intermediate language between functional languages and parallel machines

[Eekelen89]. In [Eekelen90], the use of annotations is described and there is a

discussion on parallel functional programming which is similar to that in[Roe89].

Eekelen observes that using annotations for parallel partitioning can create tasks which

do little work and he suggests techniques that are similar to Roe’s in order improve the

task’s workload. Amethod similar to Roe’s is also devised for controlling the size of a

task by limiting parallelism if the amount of data passed to a function is small.Eekelen

also proposes a technique called interleaved processes, in which a process spawns a new

task for execution on another processor, evaluates some expressions on the current

processor, and then combines the results.

Eekelen presents two annotations. One is for creating a parallel task, such that:

PAR expr

causesexpr to be evaluated in parallel. The other is for evaluating an expression on

the current processor. This is achieved by:

SELF expr

By combining both annotations, interleaved processes can be created. Eekelen suggests

that a construct, such as:

SELF expr1 ‘op‘ PAR expr2

will do the interleaving.

Although the annotations of Concurrent Clean and GRIP are different, there is an

equivalence between them.Eekelen’s interleaving construct can be written using GRIP
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annotations, such that:

SELF a ‘f‘ PAR b == par b (f a b)

and:

PAR a ‘f‘ SELF b == par a (f a b)

These GRIP definitions may look similar because the first equivalence is the same as the

definition onepar’’ and the second equivalence is the same as the definition

onepar’ .

In both Roe and Eekelen, there is a discussion on how annotations can be used to write

skeletons such as divide and conquer or pipelines.

6.4. Reviewof Parallelism in Functional Programmming

Much of the work in parallel functional programming is experimentation with small

parallel programs and little is being done with large parallel programs.I believe that, in

general, parallelizing should be done on a macroscopic scale rather than on a

microscopic scale.This is because machines are becoming smaller, faster, and cheaper

with larger, faster, and cheaper memory and higher comms bandwidth (no one will

really parallelize a program to sort 50 numbers on new machines; this is a hangover

from the past).

Dif ferent institutions are using different languages which causes fragmentation of

research. Furthermore,each institution has its own specialized hardware which merely

exacerbates the situation. This means that any work done at one institution cannot be

consolidated easily because the programs have to be rewritten either in a different

language or with different annotations / skeletons.Haskell [Hudak88]is an attempt to

address the language issue, but this is happening slowly and high quality compilers are

only just appearing.There seems to be no common ground for the specification of

annotations / skeletons. Having few machines available probably limits the growth of

parallel functional programming. In addition, the consequence of relying on

specializedhardware limits this growth even more (Vranken [Vranken90] reviews

hardware for parallel functional programming).
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Data parallelism through the use of vectorization is being successfully used in the

Fortran world to get data parallelism easily. This has been seized upon by Boyle and

Harmer, who have written functional programs which execute faster on a CRAY vector

processor than hand written Fortran programs which do the same task.Functional

programming for data parallelism has been addressed by Hill in his work on Data

Parallel Haskell[Hill92], and by Jouret in his work on skeletons for data parallelism

[Jouret91].

In this section there is a review of the investigation into parallel functional

programming. Muchof the review regards GRIP because it was on this system that

most exposure was gained to parallel systems.The GRIP system is the only accessible

parallel environment available for experimenting with functional programs, so the

original designers at UCL and the current developers at Glasgow are to be congratulated

for this acheivement.

6.4.1. Reviewof GRIP

The results of using the GRIP machine to experiment with annotations in various

programs shows that:

(i) too many parallel tasks slow down the computation because too much time

is spent managing tasks rather than evaluating tasks. For example:

f p arallel_task parallel_task

does not seem to be an effective use of parallelism, whereas:

f l ocal_task parallel_task

proves better. Therefore, more parallelism does not bring more speed.

(ii) annotationsseem to be an ineffective way to harness parallelism. In the

fibonacci experiment, it was possible to test various placements for

annotations to get the best results, but in a large application this would not

be feasible.Without a thorough understanding of the whole program and

the environment in which parallelism is to be used, it is difficult to decide

where the annotations for parallelism should be placed.As in other areas,
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experience can be gained by building a body of knowledge. But for general

use, a programmer should not need to be an expert in order to get

parallelism.

(iii) without an understanding of the run-time system and how the annotations

work, any annotations that are used to optimise some parallel performance

could be undone by changes to the run-time system.That is, annotations

are very specific to a machine and run-time system; they are not portable to

other systems and may not be effective if a change is made to improve a

feature of the run-time system.Therefore, annotations are only useful on

one machine and one version of its run-time system.

From these simple yet enlightening experiments, the question has to be asked "what

is the result of 6-7 years of research into implicit parallelism?".If annotations can go so

wrong, why should any other technique be rejected without a thorough investigation?

As stated, Peyton-Jones considers that strictness analysis is still the best way forward,

but in the short term annotations are an easier way to harness parallelism.The

conclusions drawn from this investigation are that, in order to use annotations

effectively, one must be restricted to one machine and one run-time system. One must

also learn the peculiarities of the annotations, because annotations are not necessarily

portable to other machines.However, this machine dependence runs counter to one of

the main arguments for using functional programming, namely that functional programs

are independent of any machine architecture.Functions are a declaration of work to be

done rather than a sequence of instructions for a machine.So if there is a machine

independent program, why add machine specific annotations?On the evidence of both

Goldberg’s work on Buckwheat and the use of GRIP, the only way forward is to do

further research into implicit parallelism by finding ways to improve task management

techniques.

Relying on Purpose-Built Hardware

In the paper "Some Early Experiments on GRIP" [Hammond91b], Hammond and

Peyton-Jones present a table of timings for the program nfib:

204



let

nfib n = if (n<2) then 1

else

let n1 = nfib (n-1)

in

par n1 (n1 + nfib (n-2) + 1)

in

show(nfib 30)

In table 6.2, the speed of GRIP with various configurations of processors is compared

with the speed of some Sun workstations.

Configuration Time (in secs) Speedup

Sun 3/50 76.3 1.00

Sun 3/60 59.6 1.28

Sun 3/260 47.9 1.59

GRIP (1 proc) 75.0 1.02

GRIP (3 procs) 27.3 2.79

GRIP (6 procs) 14.3 5.34

Table 6.2: The speed of GRIP compared with the speed of Sun workstations

The GRIP processing elements use the same Motorola MC68020 microprocessor as

a Sun 3/50, which explains why a GRIP with 1 processor is about the same speed as a

Sun 3/50. Hammond and Peyton-Jones observe that there is a near linear speed-up

when using multiple processors on GRIP. They state thatnfib 30 does 2,692,537

function calls, which means a GRIP machine with 6 processors did about 188,000

function calls a second[35]. They also state that, with a hand-tuned version of nfib,

[35] This is evaluated by dividing the number of function calls by the total execution time, i.e.
2,692,537 / 14.3 = 188,289.3
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they managed to speed up from 17 times using 20 processors. It can be calculated that

the program took 4.41 seconds and that GRIP did 610,552 function calls a second.This

may seem impressive for a multi-processor Motorola 68020 machine, but the latest

workstations from Sun, such as the Sun 10 workstation, are 60 times faster than a Sun

3/50. If one were to extrapolate the figures to a Sun 10, one can calculate that the

program would take 1.27 seconds to execute and that there would be 2,120,108 function

calls per second.Therefore, the latest workstations, which cost about 6,000 pounds,

could run programs faster than a 20 processor GRIP.

This highlights the problem of using purpose-built hardware as opposed to "off-the-

shelf" technology. The techniques devised for GRIP are reliant on GRIP being

available and working. If GRIP is not available, or fails to work, the experiments and

investigation are seriously held up until a new machine arrives.This may take years if

the machine is purpose-built.If the investigation into GRIP had used "off-the-shelf"

technology, then the techniques could be moved over easily when newer and faster

machines arrive.

The gestation period of GRIP has been so long that it has been superseded by a

single workstation.This leads us to question whether the techniques discovered (and

those yet to be discovered) are suitable for:

i) only GRIP

ii) singlebus machines with multiple processors

iii) any multi-processor system

In the past, special purpose machines, for example Lisp machines, have been

superseded by general purpose workstations as the workstations became increasingly

faster. The lesson learned is that a number of large hardware manufacturers can build

faster machines more quickly than a few small manufacturers.

In [Hammond91b], Hammond and Peyton-Jones discuss fine control of the

machine. Itseems some of their problems are related to the way the task pool is

managed on GRIP. If a new task is created (sparks in GRIP-speak), then it is forcibly

sent to a global task pool.This clearly has severe overheads if the new tasks are small,

206



and their paper discusses some of the issues regarding small tasks.For example, one

scenario they consider is the evaluation ofE1 + E2. Suppose the parent sparksE1 and

then discovers thatE2 is quick to evaluate or needs no evaluation.The parent then goes

to evaluateE1 but discovers that it is unable to because another processor is currently

evaluating E1 or that, even though no processor is evaluatingE1, there was a

considerable cost in sendingE1 to the global task pool.In other systems, such as

DIGRESS, when tasks are created they are sent to the local task pool, which has less

overhead.

In the scenario ofE1 + E2, if E1 were made into a new task on DIGRESS, it would

be placed in the local task pool at minimal cost.If E2 were evaluated quickly, then E1

would be available from the local task pool.E1 would only be evaluated by another

processor if, at the timeE2 was being evaluated, another processor had requested some

work andE1 happened to be the first task in the local task pool and the local processor

was the heaviest loaded. Parrott observes that DIGRESS can be swamped with new

tasks with little degradation in performance because new tasks go onto a local task pool

[Parrott93].

If there needs to be more control of the machine,as Hammond and Peyton-Jones

suggest, why does GRIP only provide two annotations, namely par and seq?This only

allows the spawning of new processes. Why not devise a declarative framework for

task management?

6.4.2. AQuestion of Maintenance

Annotations force the programmer to change his code to indicate where new

parallel tasks should be. Under the UNIX system, the programmer has no say in matters

which were (and still are), in some systems, considered essential for the programmer to

control. Thishas not been detrimental to the effectiveness of UNIX as an operating

system. Some(usually mainframe) systems require the programmer to state how much

memory their program will use, how much I/O it will perform, and how long it will run.

If these limits are exceeded, the program stops.UNIX has clearly demonstrated that it

is not essential to specify these limits, rather, it is desirable from the programmer’s point

207



of view not to specify them. Better systems, not programmer intervention, will solve

the issue of the effective harnessing of parallelism.

One of the biggest issues in the software industry at present is that of maintenance

and debugging. As programs get larger and more complex the cost of maintenance rises

sharply. Functional programming is of benefit here as programs can genuinely be built

as machine independent black boxes, whereby the complexity of the source code can be

reduced and therefore maintenance can be made simpler. If the complexity of a

program is increased by adding parallel annotations, the maintenance task will not

become easier but more difficult and costly. I believe that using a language where there

are no annotations and where the code is more readable is beneficial.

In the long term, I think one should contrast / weigh-up the cost of maintenance

with the cost of absolute speed.That is, if one adds annotations to a program in order to

make it more efficient on a parallel machine, what is the cost of adding these

annotations and what is the cost of the extra maintenance?Will the extra speed-up be

worth the extra incurred costs?Is it cheaper to buy a faster machine? If optimum

performance is not the ultimate goal, then there is not the cost of adding the efficiency

enabling annotations and the maintenance costs are lower. How much slower is a

program compiled with strictness analysis than a program with annotations? Is the

difference worth the extra cost of maintenance?The elegance and correctness of

functional programs could outweigh any run-time difference.

6.4.3. Advantages and Disadvantages of Compiler Detected

Parallelism

The advantages of compiler detected parallelism are:

i) codeis portable as there are no environment specific dependencies

ii) no changes to the code are required and so there is no human intervention

in the parallelizing process.

iii) parallelismis found automatically
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iv) parallelismis dependent neither on the programmer knowing fixed parallel

structures (as in skeletons) nor on the programmer thinking he knows

where the parallelism is (as in annotations)

The disadvantages are:

i) compilerdetected parallelism through strictness analysis can be very slow

ii) the resulting program may not utilize the machine as much as programs

with hand written annotations in which the programmer may know a

significant amount about the parallel properties of the algorithm.With

compiler detected techniques, the programmer is unable to specify where

parallelism should occur

Implicit parallelism using compiler detected techniques and task management can

be beneficial as shown by Goldberg in the Buckwheat experiments.However, it is not

clear if compiler detected techniques alone are sufficient.

6.4.4. Advantagesand Disadvantages of Skeletons

Using skeletons, general structures of computation can be specified which cause

tasks to evaluate in parallel.It has been seen that parallelism has to be designed into a

system because parallelism is not easy to harness in all algorithms due to data

dependencies. Skeletonsallow the programmer to express where parallelism occurs in

an algorithm through abstract ideas such as pipelines, lattices, divide and conquer, etc.

The skeletons are compiled into efficient code depending on the actual type of hardware

used.

Skeletons are amenable to automatic program transformation techniques which can

convert one skeleton type into another. This allows the programmer to specify a

skeleton type and to have the skeleton transformed into one that can be executed

efficiently on a machine. Some skeletons are independent of any machine environment

while others are tied to a machine such that they become non-portable.Some

researchers use skeletons that make explicit the issues of process granularity, inter-

connectivity, and process placement[Darlington91]. Theirtechnique is more abstract
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than annotations but still too low-level for the applications programmer. Presenting the

programmer with high-level skeletons which hide low-level features is required in order

to provide machine independent parallelism. These high-level skeletons are portable

because they can be written in terms of low-level skeletons or annotations on each

different machine. It is important to remember that the programmer may not fully

understand the workings of the underlying machine.If he is to program using low-level

skeletons, then he may make mistakes which cause poor behaviour from the program.

Skeletons exist for only a few well known algorithmic structures. Consider the

graph manipulation functions presented in chapter 4. As there is no standard functional

solution to creating and visiting cyclic graphs, there is no skeleton by which graph

manipulation algorithms can be parallelized.Are we to tell functional programmers

who have large graphs that they cannot have parallelism? Furthermore, as the graph

manipulation techniques are complex and have not yet been fully analysed, the source

of parallelism is not yet obvious.Therefore, implicit techniques for harnessing

parallelism still seem the best way forward for many algorithms.

Skeletons have the disadvantage that changes have to be made to the source code in

order for parallelism to be harnessed, unless they are used from the design stage.

6.4.5. Advantagesand Disadvantages of Annotations

Although the annotations of Nijmegen are different from those on the GRIP system,

both systems use annotations that have basically the same attributes.

The advantages of using hand-coded annotations are:

i) it is possible to get effective parallelism by matching the granularity of the

tasks with the granularity of the machine.

ii) it is possible to acquire a deeper understanding of how an algorithm

parallelizes by experimenting with the placement of annotations and

analysing the run-time behaviour in detail.

The disadvantages of annotations are:

210



i) theyare not portable; each machine/system may have different annotations.

The annotations will be written for only one machine and may have to be

rewritten when porting to a different machine.This is because annotations

are associated with some underlying environment, for example GRIP.

Therefore, a program which has the parallel annotations of GRIP will not

run in a different parallel environment, such as the one suggested by

Nijmegen, and vice-versa, unless all the annotations are changed.

ii) they can cause the program to have poor parallel behaviour; the

programmer may misunderstand how they work or not understand enough

in order to use them correctly. The programmer needs to understand the

underlying machine, the run-time system, and how the program will be

evaluated by that system in order for the annotations to be effective. The

model of functioning programming and the rhetoric behind it generally

discourage this knowledge as it is meant to be unnecessary.

iii) their effectiveness maybe reduced if the abstract machine implementation

changes.

iv) they go against the grain of functional programming because they (a) tie

you to a particular machine and (b) involve changing the source code.

It is assumed that the programmer (a) knows where the parallelism is, and (b)

knows how to add annotations to harness the parallelism. For there to be effective

parallelism using annotations, both (a) and (b) have to be true. There is no evidence

that one follows the other. If the programmer does not know where the parallelism is,

then one must consider how effective he will be at accurately placing annotations in the

program. Forsmall programs it may be easier to have a full understanding of the whole

system, but for large programs where there may be only minimal knowledge of the

system, and placement could be difficult. If a small set of hand placed annotations seem

to harness enough parallelism, why not place them automatically after a small amount

of analysis?

Peyton-Jones has commented that if one uses annotations in a program and then

transforms this program, then the transformer doesn’t know what to do with the
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annotations. Ibelieve the use of annotations together with program transformation is

contradictory. One would only use annotations for explicit speed-up on a certain

machine. If a program transformer could transform away any usefulness of the

annotations, as Peyton-Jones suggests, then the use of annotations and program

transformation together is of no value. Peyton-Jones recent idea is to have special

combinators to affect run-time behaviour[36]. Irrespectiveof the advantages and

disadvantages of annotations, it does not seem beneficial to hand place annotations in a

many-thousand line program. Therefore, annotations may be effective for

understanding the nature of how a certain reduction machine’s run-time system behaves

with small programs, but they are not effective for large programs. Thus, a big gap

exists between the use of annotations for harnessing parallelism and the requirements of

application programmers.

The techniques of compiler detected parallelism, skeletons, and annotations have

the same goal but use different approaches.In the parallel functional programming

world at present just one technique is chosen for harnessing parallelism.It may be that

future systems use combinations of them, and so there seems no need to reject any of

them as unsuitable. Figure 6.10 shows how these three techniques are related.

6.5. ParallelApplications

Parallel computers are now in regular use at Caltech (The California Institute of

Technology) for several major scientific calculations[Fox89]. Thissection contains a

list of the types of applications undertaken at Caltech – first, because they are typical of

the sorts of problems that are run on a parallel machine and second, to contrast with the

programs that have been run and reported on parallel, graph reduction machines.The

types of applications reported at Caltech are:

• lattice monte carlo simulations

[36] Personalcommunication
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nothing in code
compiler detected parallelism

+ task management

high-level skeletons

low-level skeletons

annotations in source language
e.g. GRIP with Haskell

annotations in intermediate
language e.g. Concurrent CLEAN

less machine
specific, i.e. more

portable

more machine
specific, i.e. less

portable

more abstract

less abstract

Figure 6.10: Layers of abstraction in parallel functional code

• subatomic string dynamics

• high Tc superconductivity

• exchange energies inHe3 at a temperature of 0.1mK

• astrophysical partical dynamics

• astronomical data analysis

• quantum chemistry reaction dynamics

• grain dynamics by lattice gas techniques

• computer chess

• ray tracing in computer graphics
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• kalman filters

• plasma physics

Work on adding annotations to aquicksort or fibonacci program will not

impress the people that need high volume parallel machines. It is clear that the

implementors of programs on parallel graph reduction machines are not addressing the

issues that need to be addressed in order to render these machines acceptable in parallel

programming environments.

Boyle and Harmer are unique in reporting a large parallel application written in a

functional language[Boyle92]. Theirapplication to solve partial differential equations

ran faster than a hand-coded version written in Fortran.For parallel functional

programming to advance, more serious parallel applications have to be written.A good

start may be a highTc superconductivity program, which Fox says isembarrassingly

parallel . Surely, parallel functional programming techniques can do well here.

6.6. Summary

There seems to be little evidence that compiler detected parallelism and task

management does not work even though it is accepted that the strictness analysis can be

very slow and that task management may not utilise the machine to its fullest capacity

when compared with handcrafted annotations.However, this approach is appealing for

large applications which may need to be portable because the programmer does not

need to know anything about the underlying machine. Furthermore, it seems

contradictory to have a high level declarative language and then add low-level machine

specific annotations. It has been seen that both Boyle and Harmer and Goldberg

successfully used compiler detected parallelism.

If the programmer needs or wishes to intervene, skeletons seem a better choice than

annotations because skeletons allow the programmer to express structures within a

program without knowing much about the underlying system. Skeletons can be made

portable by writing the code for them on each parallel machine. Skeletons have an

advantage over strictness analysis in that the programmer can say where some
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parallelism occurs, which is not possible with strictness analysis.Annotations seem the

worst approach to harnessing parallelism from the view point of the large applications

programmer. They are specific to each machine and, therefore, not portable. They must

be hand placed and the programmer must understand the specifics of the behaviour of

each placed annotation. The advantages of annotations are that they can be manipulated

to obtain high performance from a parallel machine.As stated, this is fine for short test

programs but unsuitable for large applications.

This thesis proposes that strictness analysis at compile time and task management at

run time is the most appealing solution in general.As machines get faster and cheaper

and memory gets larger and cheaper, the cost of processor time for task management

will become insignificant.Researching strategies for task management seems to be the

way forward [Parrott93]. Furthermore,it is my belief that the programmer should

accept a bit of inefficiency in the system and not try to manipulate the program until it is

perfect. Foxobserves that parallelism is easier to harness when a problem has a regular

decomposition; Boyle and Harmer show that this is even true for functional languages.

However, for problems with an irregular decomposition he notes that the efficiency of

parallel machines is low, with an N-CUBE achieving 50% efficiency and a CRAY only

5% efficiency. He states that, on average, the CRAY X-MP at Caltech achieves an

efficiency of just 12% for all problems. He concludes that there is too high of an

expectation of efficiency on parallel machines.As it is clear that no parallel technology

is achieving near-100% efficiency, the benefits of parallel functional programming can

be evaluated without expecting a linear speed-up for all applications.

Limiting factors in the consolidation of research into parallel functional

programming have been:

i) thereliance on special hardware

ii) the lack of proliferation of the special hardware

iii) the lack of tools for generalized hardware

To overcome these problems, systems such as DIGRESS have been designed.

DIGRESS is an experimental system for running functional programs in parallel on a

network of workstations (although this is not the only architecture).With DIGRESS,
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more exposure to writing and executing parallel functional programs can be obtained.

The criticisms in this chapter are based on the usability of parallelism harnessing

techniques from the view point of the applications programmer. The recommendation

for further work is that more effort needs to be expended on skeletons and strictness

analysis, which both retain the high level properties of programs, rather than fiddling

with annotations, and that more real applications be used as test cases when testing the

techniques for parallel functional programming.

It is interesting to note that in[Hudak84], Hudak states that DAPS (Distributed

Applicative Processing System) is aimed at AI systems. Hudak states that AI programs

do not execute efficiently on super-computers and DAPS would be tailored especially

for AI programs. No generally available working system has appeared.It is clear that a

parallel version of OPS5 could not have been executed for this thesis, irrespective of the

kind of matcher used.The only parallel machine available, GRIP, would not

successfully execute much more than a simple test program.Although Stolfo

[Stolfo86] and Rosenthal[Rosenthal85] both concluded that implicit parallelism is

promising for obtaining more parallelism in a rule-based system than the previously

used approaches, obtaining such parallelism in a functional environment is not yet

feasible. Untiltechniques for harnessing parallelism in large, functional programs have

been developed and tested it is not possible to determine how best to parallelize a

functional version of OPS5.

In the report [Johnsson90], John Hughes asked the question: "Implementors, what

analysis would you want from us analysis designers to make your parallel functional

implementation run faster?" After this, Johnsson prints a list of items requested for

analysers. Clearlythe time is right for the implementors to take their turn and ask

application builders: "What features do you want in a language or system in order to

harness parallelism in your application?"
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Chapter 7

7. Conclusions

In this chapter the discoveries of this work are presented together with a review of

the original goals of the research and a summary of the research issues. Suggestions for

continuing this research are contained in the section on further work.

At the start of this research it seemed that the need for parallelism in rule-based

systems could be met by the apparent suitability of functional languages for harnessing

parallelism. However, this research has indicated that this need cannot be met at

present. Theconclusion of the work in this thesis is that:

There are no fundamental limitations that prevent functional programming

from being used for large applications such as rule-based systems.However,

the environment for building and executing functional programs needs to be

improved in order to address the limitations imposed by the immaturity of

current functional programming environments.

The contributions of this thesis are:

• a critical assessment of the suitability of functional programming

techniques for implementing large applications and rule-based systems in

particular.

• a critical assessment of practical state manipulation techniques in functional

programming.

• a large, working, application written in a lazy, higher-order functional

programming language which does large amounts of state manipulation
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• a critical assessment of the functional programming environment, with

suggestions for how the environment can improve.

• the design, implementation and analysis of a tool for profiling lazy, higher-

order functional programs. The tool measures function call count, time

spent in a function, and the heap space used by a function.

• a critical assessment of techniques for parallelizing large functional

programs.

This thesis has discovered that:

i) it is a non-trivial task to design and develop a rule-based system in a

functional language because of the requirements for state manipulation,

input and output, sequencing of operations, and complex data structures

and algorithms.Techniques had to be specially devised for the functional

rule-based system in order to deal with these specific requirements.This

differs from an imperative environment which has some of these techniques

already built-in. The power and flexibility of the functional approach

allows thedesign and implementation of these techniques to be approached

in an organised and modular fashion.

ii) someaspects of functional languages and their associated environments are

not always suited to large applications. Certain aspects are difficult to do in

a functional language, such as representing data structures such as graphs

or doing input and output from deep in an application. Other aspects

require either support from the functional language, such as a vector data

type needed to execute a rule-based system efficiently, or better interaction

with the operating system.

iii) the lack of measurement tools is a hindrance for the developer of large

applications. Without these tools it is impossible to observe or verify the

behaviour of algorithms and programs.Furthermore, the lack of debugging

tools makes it impossible to fix a range of bugs which occur inside large

programs.
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iv) the current facilities for executing functional programs in parallel

environments are not effective for large applications. The use of hand-

coded annotations may be fine for small programs but it is unsuitable for

large programs. Furthermore, there is a lack of parallel functional

machines on which programs can be executed.

7.1. Reviewof the Goals of the Research

In the introduction it was stated that when the 5 original aims have been addressed

it will be possible to determine if functional programming techniques are suitable for

harnessing parallelism in rule-based systems. In this section, these original aims are

reviewed in the light of the discoveries of this research.

Goal (i)

To use functional programming techniques to implement a rule-based system.

In chapter 3 the design and implementation of a rule-based system was discussed,

and it can be concluded that a functional language can be used to implement such an

application. Thepower and expressiveness of functional programming is an aid in the

development of large applications. The ability to build abstractions and to use higher-

order functions is a benefit to the programmer.

A compiler for the OPS5 language was built using a framework of higher-order

functions that closely represents a formal grammar. With this framework, a parser for

any LL(1) grammar can be built and such a parser was built for OPS5 in this research.

The framework has also had extensive use in other applications.

An algorithm which is comprised of a description as an ordered list of statements

can be converted into a functional algorithm by converting each item of the description

into its own function. These functions are given their own data type and then combined

in a pipeline to form an algorithm expressed in a functional style.

The implicit state manipulation in imperative languages has the advantage that it

can be undertaken with relative ease. This is not the case in functional languages.The
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advantage of state in functional languages is thatstate must be represented explicitly

and therefore the code must be designed. As there is explicit control over which parts

of the state are passed and accessed, the negative issues of implicit state manipulation

and generally accessible global store are overcome. The disadvantage of state in

functional languages is thatstate must be represented explicitly and therefore the code

must be designedto accommodate it.As all state is explicit, the program code can look

messy if an inappropriate implementation technique is chosen.Imperative programs

look much the same when state is added because the state manipulation is implicit.

The requirement to store large amounts of state in a functional application can be

achieved by using an abstract data type for the state object. Access and update

functions are defined, which are of typeState → State. These are combined in a

pipeline to facilitate state manipulation throughout the application.A top-level function

can control the application of eachState→ State function to get the desired behaviour

from the application.The misconception that functional languages are unable to deal

with state is held by many imperative programmers; the state manipulation undertaken

in this application is enough to prove them wrong.

The manipulation of both input and output has to be done with care.It is possible

to write programs that hold onto all of the output until the end of a program run.This

behaviour can be perturbing to the user, who would expect output to occur gradually.

However, the semantics of the program remain correct.

Goal (ii)

To analyse the functional rule-based system for inefficiencies and to then implement

efficient new algorithms or to transform old algorithms into more efficient ones.

In chapter 4 it was seen that the tools available for analysing the behaviour of

functional algorithms and programs were non-existent.Most functional environments

report the behaviour of a program as the number of reductions and the number of cells

used. Thistells the programmer very little about the real behaviour of a program[37].

[37] This information is equivalent to driving a car that has no dashboard equipment. At the
end of a journey the car reports that there were 487,000 engine revolutions and that 690 litres of
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Furthermore, the number of reductions and the number of cells used differs on each

abstract machine.

To address the need for a tool to analyse functional programs, a profiler was

designed and built.This profiler measures the number of calls to a function, the amount

of time spent in a function, and the number of cells used by a function. The profiler is

aimed at application programmers rather than abstract machine builders and,

consequently, the results presented are amenable to the programmer. The results are

reported with respect to the lexical scope of the program rather than some run-time

representation. Thisnew technique is calledlexical profiling.

In chapter 5 both the design, implementation, and usefulness of the lexical profiler

were presented. In order for results to be associated with the lexical scope of a

program, it is necessary for both the functional language compiler and the run-time

system to be modified. The compiler colours a representation of the program to

attribute lexical scope and the run-time system collects data continuously throughout

execution. Thecollected data can be reported to the programmer as execution occurs.

The benefits of tools that allow program behaviour to be monitored was also shown

in chapter 5. The lexical profiler makes it possible to ascertain (i) if functions are

inefficient, as seen in the nqueens program; (ii) if functions have space behaviour

problems, as seen in the database program; (iii) if functions have strictness problems, as

seen in the foldr program; and (iv) if one function is more efficient than another, as seen

in the sum of squares programs.

Due to the limits of the functional compilers available during this research, it was

not possible to profile the functional rule-based system. The Haskell compiler used in

this research, which was the original Glasgow Haskell compiler, was not able to

compile such a large application. It was too slow, used too much heap space, and had

quite a few bugs[38]. TheUCL experimental reducer uses FLIC as its input language,

exhaust fumes were expelled. As most people are aware, the behaviour of the car needs to be fed
to the driver in units the driver understands and at continuous intervals in order for the driver to
gain a useful assessment of the car’s current performance.

[38] Theoriginal Glasgow Haskell compiler sometimes had degenerate behaviour. For exam-
ple, it once took 45 minutes to compile a 243 character program on a Sun 3.
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however newer, more robust, Haskell compilers cannot be used with this reducer. The

new Glasgow Haskell compiler does not produce FLIC, and the Chalmers Haskell B

compiler produces illegal FLIC.

An investigation into program transformation tools for use by application

programmers was never undertaken as the need never arose.

Goal (iii)

To create a version of the functional rule-based system that is amenable to execution on

a parallel machine.

In chapter 2 an analysis of matching algorithms in rule-based systems was

presented. Thisshowed how Rete is a good algorithm for both sequential and parallel

rule-based systems. It was clear that matching algorithms that saved state were far more

efficient than those that did not.However, the functional rule-based system was

implemented using a non state-saving algorithm because it was necessary to determine

if a large, functional application could manipulate the large amounts of state required

irrespective of the extra state required in the Rete matcher. As was shown in chapter 3,

the functional rule-based system was a success.

To write a version of Rete requires the manipulation of graphs that have state saving

nodes. InRete, each production is converted into a graph representation, with attribute

pairs in each condition being converted to nodes having different behaviour. Some

nodes do simple tests, some do variable instantiation tests, but most significantly for this

thesis, some nodes are state-saving.Chapter 4 showed that it is possible to create and

visit graphs in a functional language.However, this was a non-trivial problem to solve.

Although it is possible to create and visit graphs and to manipulate state in a functional

language, the ability to have graphs with state-saving nodes is a requirement of the Rete

matcher. The non-existence of such generally available algorithms limits the

development of a functional Rete.The development of graphs with state-saving nodes

is still outstanding and is, therefore, an area for further research.

The use of state-saving algorithms and data structures is an issue that has not been

addressed within a state manipulation framework. The research in this thesis found
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effective ways to manipulate state.However, this was only used as a framework for

State → State functions. A functional Rete would require a mechanism where

individual state-saving nodes could be updated.Although the current framework does

not allow this, the use of linear types[Wadler90a] may be of benefit. When using linear

types the programmer specifies which values have single-threaded access through a

program. Thisallows the run-time system to do in-place updates because a value is

guaranteed not to be needed by other functions. The use of linear types can be

investigated as further research, however, as most functional environments do not have

linear types their applicability may be limited.

Once the required data structures for a functional Rete can be built, it will be

possible to determine if a state-saving algorithm in a functional language is effective.

Although the functional version may not have the efficiency of updatable store as in the

imperative version, it will be possible to observe the algorithmic improvements of state-

saving over non state-saving algorithms.Even if it were possible to build a version of

Rete today, the facilities and techniques available for running it in parallel are not

suitable. Inchapter 6, the facilities and techniques presented were more suitable for

small programs rather than large applications.

It can be concluded that parallel functional programming environments are not quite

ready to execute applications such as a rule-based system.This research has

highlighted this and shown issues that need to be addressed in order for functional

programming to be usable on a day-to-day basis for parallel applications.

Goal (iv)

To analyse the functional parallel environment to gather data on the performance of the

parallel functional rule-based system in order to remove any inefficiencies.

As no parallel version of the functional rule-based system was created and

executed, it was not possible to analyse one.To do such an analysis requires suitable

tools. Inchapter 6, the results presented by GRIP were shown. These results indicate to

the programmer the effect of his program on the machine.The amount of cpu busy /

idle time is presented, together with the number of new tasks created.However, there is
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no information on either which functions were executed or which functions created the

tasks.

The results presented by GRIP are more useful to the programmer who understands

what the underlying machine is doing.However, functional languages are independent

of any execution environment, therefore it is reasonable for a programmer not to have

such an understanding. It is beneficial to have reports that the programmer can

understand. Havinglexical profiling on a parallel machine would be an additional aid

for the programmer. To address this need, the DIGRESS project has implemented

lexical profiling on its parallel environment, but reports from executing programs are

unavailable at present.

It is clear that the reports from a parallel environment need to present more facets

of execution than for programs on a sequential machine, but they still need to direct the

programmer to the cause of the observed behaviour.

Goal (v)

To compare the performance of the parallel functional rule-based system with an

existing parallel rule-based system.

The research never came this far. However, to determine relative performance

requires comparison of like with like. The behavioral indicators for a parallel rule-

based system can be collated from the work reported for these applications. It is not

clear which of these indicators can be retrieved from a functional rule-based system in

order for the comparison to occur.

7.2. Summaryof the Research Issues

This section reviews the main research areas investigated for this thesis.
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Developing Functional Applications

The majority of research in the functional programming arena is aimed at the

theoretical aspects of functional programming and the implementation of abstract

machines rather than developing applications. Although the theoretical research is not

misplaced, this thesis proposes that by focusing on the practical issues of functional

programming and attempting to proliferate the technology via general purpose

programming, the required development and, hence, maturity will be forthcoming.

Functional programming has been around for a shorter time than imperative

programming and the difference in the number of man-hours devoted to providing /

discovering well known solutions in each is apparent. In functional programming there

are few well known solutions to problems that are considered non-difficult for

imperative programmers. For example, the algorithms for creating and visiting graphs

need to be interpreted in a more abstract way than the traditional, imperative

description.

It has been seen that there are some efficiency issues that need to be addressed in

functional languages. The efficiencies ofhaving O(1) access to data structures in a

rule-based system can not be overcome by using parallelism. This thesis proposes that

vectors can be added to functional languages without compromising the integrity of the

functional model.

Recent work in functional programming has addressed the issues of high quality

compilers, such as the Haskell B compiler from Chalmers[Augustsson92a] and the

Glasgow Haskell compiler written in Haskell[Hall92]. It is promising that work is

being undertaken in the areas of state manipulation [Hudak93], input and output

[Achten92], and sequencing [Hall92].

Functional Programming Environments

These need to be improved.There are too few interactions with the operating

system. Thismeans that functional languages cannot be effectively used for general

purpose programming because the speed of the current interactions are too slow.
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Measurement

By implementing a large application in a functional language it has become

apparent that the support tools needed for such large undertakings are not available. In

order to overcome this, a technique called lexical profiling was designed and

implemented so that higher-order, lazy functional languages could be measured.A tool

has been built that presents the number of calls to a function, the time spent in a

function, and the heap space used by a function.This technique not only gives more

information but also is more accurate than the traditional, well known imperative

profiler "gprof". Other approaches to profiling have appeared recently, and they too

address the lack of tools for programmers. The availability of measurement tools will

allow functional programmers to observe and verify the behaviour of their programs.

Parallelism and Functional Programming

Much of the research in this area uses small test programs, such as nqueens and

factorial, as reference cases rather than large applications, which is where parallelism is

really needed.Fox [Fox89]has shown the types of applications being parallelized at

Caltech and has dubbed these applications "grand challenge" problems. Research into

parallel functional programming must be directed at these "grand challenge" problems

in order to prove its effectiveness. Boyleand Harmer have successfully shown that

functional languages are capable of addressing the real needs of parallel systems, as

their functional version of a partial differential equation program executed faster than a

hand-coded Fortran program to do the same job [Boyle92].

Current arguments that functional programs execute too slowly is only relative to

today’s hardware and compilation techniques.The fate of specializedLISP machines

was sealed when general workstations outperformed them in terms of cost and

performance within the space of a few years. This raises the question of the benefit of

building specialized hardware for executing functional programs in parallel.In chapter

6, it was seen that a Sun 10 workstation is faster than GRIP with 20 processors.

Furthermore, the bandwidth of current networking technology for workstations is

100Mb/s when using FDDI. The combination of new workstations and new networking
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technology can provide an environment with computing power many times greater than

GRIP. Future hardware will make an even bigger difference to execution times, even

for functional programs. [Article91] reports that AT&T scientists managed to get a

laser chip to pulse at a rate of600 femtoseconds. Future networking technology is

aimed at gigabit bandwidths.When machines are built out of devices that are this fast,

the execution speed of functional programs will not be an issue. Therefore, it would be

better to direct effort at executing functional programs efficiently on existing hardware

and in parallel on networks of general purpose machines so that the techniques are

transferable to new machines when these machines become available.

Work in this area has begun with theDIGRESSproject [Clack92],which aims to

make parallel abstract machine technology more generally available without requiring

special purpose hardware but, instead, using networks of workstations.The promise of

this approach has led to the commercial development of the technologies required.

The observation that parallel functional programs are unable to use a parallel

machine efficiently now seems to be an irrelevant diversion.Fox observes that a Cray

at Caltech only achieves 5% efficiency on irregular problems, and 12% efficiency on

average. Havingcollated data from many experiences of parallel systems in 12

application domains, he states that, in general, there is too high an expectation of

efficiency in parallel programs. In light of this, parallel functional programming may

yet flourish.

Parallel Rule-Based Systems

Although Rete is considered a good matching algorithm for both sequential and

parallel rule-based systems, it may be difficult to attain its efficiencies in a functional

language because Rete has many pragmatic design decisions. It might be more suitable

to implement a matcher with a more theoretical basis in a functional language than the

Rete matcher.
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7.3. Further Work

There needs to be a large body of solutions to well known algorithms written in

functional languages. This can only come about by implementing the algorithms and it

is pertinent to suggest that this work starts soon. This thesis found both problems and

solutions in data structures and algorithms that were specifically suited to rule-based

systems. Furtherwork will reveal solutions to problems that are more general in nature.

For example, there was a need for graphs with state saving nodes. Although these are

needed for the Rete algorithm, they may also be of use in many other algorithms.

State manipulation, input and output, and sequencing need to be addressed in the

future. Theyare essential for large applications, and this has been recognized.This

research presented mechanisms for doing these three issues, however further work can

extend these ideas.

Further work needs to be done to improve functional language interaction with the

operating system in order for functional programming to be of use for a wider range of

applications. Atpresent there is just simple input and output to file streams.An

operating system supports much more than file I/O, however it could be difficult to

integrate all of the operating system functions into a functional environment.Those

functions that are selected for inclusion into the functional environment need to be

implemented as efficiently as possible.

By addressing all of these areas, functional languages could then be realisticly used

for general purpose programming.To aid functional programmers, I look forward to the

day when someone writes a book, using a higher-order, lazy functional language, as an

equivalent of Knuth’s "The Fundamentals of Computer Algorithms" [Knuth68] or

Kernighan and Plauger’s "The Elements of Programming Style" [Kernighan78], or

when someone writes "Numerical Recipes in Haskell" to join "Numerical Recipes in C"

[Press88].

The lexical profiler designed and implemented for this thesis executed on an

experimental reducer which uses the FLIC language as its input. Runciman and

Wakeling make changes to the Chalmers Lazy ML compiler to accommodate their heap

profiler. For more general use and usability, the lexical profiler needs to be included in a
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Haskell compiler and into various run-time systems. Furthermore, the space usage

results need to be extended in order to report in as much detail as the Runciman and

Wakeling heap profiler; that is, to report each constructor separately. This is impossible

in the current FLIC implementation where this information has been lost, but in a

Haskell implementation this information can be collected.The reports given by the

lexical profiler are based on the inheritance profiling style. For statistical profiling, the

results have to be post-processed. Further work is to design and implement this post-

processor.

Debugging tools are still lacking in the functional programming world, although

some suggestions for their implementation are now being made[Nilsson92].

Functional programs tend to be more bug free than their imperative counterparts

because the computations are expressed at a higher level and because the strong type

system forces programs to be type correct.However, bugs do still occur and further

work can provide the required debugging tools.

Further work in the area of parallelism and functional programming needs to be

directed at techniques for harnessing parallelism that are amenable to the builder of

large applications. Parallel functional environments need to have greater availability,

and this can be achieved through implementing such environments on networks of

general purpose machines. Once these parallel environments are available, they need to

produce reports of activity that allow the programmer to analyse the parallel behaviour.

Further work in this area is to design reporting and analysis tools that are independent of

the underlying machine yet reflect some common parallel environment.

Once all this further work has been done, it will be possible to design and build a

parallel rule-based system. Further work in this area is to investigate the new Match

Box algorithm [Perlin89]. Match Box, which has been specifically designed for

matching in a parallel environment and has a formal basis, could be implemented in a

functional language easier than other more pragmatic matching algorithms such as Rete

because functional programming is amenable to implementing formal algorithms.
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Appendix A

Database Profiling Data

This appendix shows call-count and time data gathered from a run of the functional

database program whereevery function in the program was profiled.As every function

is profiled, no function is inherited by another.

In Fr om Noof Calls Time in seconds

main 1 0.00

showtable main 1 0.42

join main 1 0.04

table1 main 1 0.32

table2 main 1 0.48

space ljustify 35 0.04

copy space 35 1.50

take copy 35 1.98

take 206 10.92

length ljustify 35 0.42

strict foldl’ 144 0.20

foldl’ length 35 0.46

foldl’ 144 1.42

createEquiJoin join 1 1.66

equiJoinRow createEquiJoin 29 1.48
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In Fr om Noof Calls Time in seconds

getEntityFromBindingList equiJoinRow 58 6.42

typeForeignKey join 1 0.06

typePrimaryKey join 1 0.06

== join 1 0.00

equiJoinRow 29 0.02

getEntityFromBindingList 116 0.26

typeForeignKey 3 0.00

typePrimaryKey 1 0.00

/= createEquiJoin 25 0.06

getEntityFromBindingList 116 0.04

foldr foldr 46 0.42

flatten 7 0.10

flatten showtable 7 0.04

filter getEntityFromBindingList 58 1.48

typeForeignKey 1 0.04

typePrimaryKey 1 0.02

filter 60 1.60

getEntityFromBinding getEntityFromBindingList 116 1.02

snd typeForeignKey 1 0.00

typePrimaryKey 1 0.00

bindingSetToTable 28 0.04

head getEntityFromBindingList 58 0.22

typeForeignKey 1 0.00

typePrimaryKey 1 0.00
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In Fr om Noof Calls Time in seconds

bindingSetToTable 1 0.00

tableToBindingSet join 2 0.10

colhdrToBinding tableToBindingSet 29 0.16

multi tableToBindingSet 10 0.40

multi 26 0.82

fst showtable 7 0.00

typeForeignKey 3 0.00

typePrimaryKey 1 0.00

bindingSetToTable 7 0.00

ljustify showtable 35 0.26

. showtable 7 0.02

typeForeignKey 3 0.02

typePrimaryKey 1 0.00

bindingSetToTable 1 0.00

map showtable 6 0.06

getEntityFromBindingList 58 0.72

bindingSetToTable 14 0.20

tableToBindingSet 4 0.08

map 190 2.36

++ showtable 7 0.06

createEquiJoin 2 0.02

equiJoinRow 8 0.06

ljustify 35 0.22

++ 1396 14.18

flatten 46 0.54
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In Fr om Noof Calls Time in seconds

nullEntity getEntityFromBindingList 116 0.30

getEntityFromBinding 58 0.06
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Appendix B

Introduction to Haskell

In this appendix a brief introduction to the lazy, higher-order functional language

Haskell [Hudak88]is given in order to clarify the features used in the functional rule-

based system. Many of the features presented here will are used in examples in this

PhD. Asthis introduction will be brief, further details on functional programming can

be found in the many tutorial guides to programming in functional languages.For lazy

languages see Bird and Wadler [Bird88]or Glaser, Hankin, and Till [Glaser84]. For

strict functional languages see Henderson [Henderson80] or Ableson and Sussman

[Ableson85].

As with most languages Haskell has values and types. In the numeric domain there

areInt ’s for integers andFloat ’s for floating point numbers.In Haskell the symbol

:: can be read asis of type, where:

1 :: I nt

3.14 :: Float

There are characters and strings:

’a’ :: Char

"hello" :: String

and lists:

[1,2,3,4] :: [Int]

When a type value is in square brackets it is read aslist of type. ThetypeString is the

same as[Char] such that"hello" is shorthand for [’h’, ’e’, ’l’, ’l’,

’o’] . The use of[Char] is so common that the shorthand for it is deemed essential.

Lists in Haskell are polymorphic and therefore may be ofany type, but not of

mixed types.If more than one object needs to be mixed, Haskell provides tuples.They

can contain similar or mixed polymorphic types. For example:
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(0, 0) :: (Int, Int)

is a 2-tuple with the same type, and

(1, 3.14, ’a’) :: (Int, Float, Char)

is a 3-tuple with mixed types.Tuples can be constructed of anyarity [39].

Functional programs are made up ofexpressions. Some examples are:

take 2 [1,2,3,4]

returns

[1,2] :: [Int]

or

filter even [1,2,3,4]

returns

[2,4] :: [Int]

or

map add1 [1,2,3,4]

returns

[2,3,4,5] :: [Int]

Expressions can be arbitrarily complex and can be combined easily with one another. In

imperative languages there are commands and expressions which cannot be easily

combined because expressions return values and commands do operations.Functional

languages present a uniformity to the programmer.

One of the features of modern functional programming languages is laziness.This

is a technique whereby values are evaluated when they are needed. This allows the

programmer to create very general algorithms without worrying about the resources that

[39] 1-tuplesare not allowed because they are syntactically the same as bracketed expressions.
0-tuples, which contain no value, are written as ().
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are consumed. In the following example, the expression[1..] reads as 1 to infinity.

In a strict language[1..] would be evaluated before any other computation is started.

Therefore, such a program would never terminate. In a lazy language, the amount of

computation is dependent on the context, so:

take 10 [1..]

returns

[1,2,3,4,5,6,7,8,9,10] :: [Int]

without entering a non-terminating condition.

In Haskell, new names are introduced with function definitions. The programmer is

encouraged to state the type of the definition, even though this is not essential as

Haskell can derive the type for any expression.Consider a function definition to add 1

to an integer:

add1 :: Int -> Int

add1 x = x + 1

The first line is called thetype signature. It states thatadd1 takes anInt as an

argument and returns anInt as a result. The type signature for+ is [40]:

(+) :: Int -> Int -> Int

It takes 2Int ’s as arguments and returns anInt .

Another feature of modern functional programming languages is higher-order

functions. Functionswhich manipulate other functions, either by taking functions as

arguments or by returning functions as results, are said to be higher-order. Functions

are treated in the same way as values such asInt and Char. Higher-order functions

encourage the use of the building blocks approach to software development.In

particular, named arguments to functions can be dropped so thatadd1 can be defined

as:

[40] Any function with a non-alphabetic name is surrounded by parentheses. Full details are
in the Haskell report.
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add1 = (+ 1)

Expressions, laziness, and higher-order functions can be combined, such as:

map add1 (take 10 [1..])

which returns:

[2,3,4,5,6,7,8,9,10,11]

In fact the name of the functionadd1 is not needed, and the expression can be written

as:

map (+1) (take 10 [1..])

The functionmap is one of those that is polymorphic.It can be used on many

types of objects, so there is no need for a mapping function for each type. The type

signature formap is:

map :: (a -> b) -> [a] -> [b]

The lettersa and b represent arbitrary and potentially different types.map has 2

arguments, the first is a function of type(a -> b) , the second is a list ofa ’s. map

applies the function to every element of the argument list, and returns a list ofb ’s. In

the previous function the first argument was the function(+1) which is of typeInt ->

Int . Both the input list and returned list were of type[Int] . Consider another example

using map, in which the functioneven is passed as an argument. even returns

whether or not theargument passed to it is an even integer. The functioneven has

type signature:

even :: Int -> Bool

We can useeven in:

map even (take 8 [1..])

which has the result:

[False, True, False, True, False, True, False, True] :: [Bool]

238



The theoretical basis for functional languages is lambda calculus, and many

programmers wish to manipulate lambda expressions in their programs.Consider an

example function which doubles an integer:

double :: Int -> Int

double x = x + x

This can be used as follows:

map double [1..5]

which returns:

[2,4,6,8,10]

However, the functiondouble can be replaced with a Haskell lambda expression.

The lambda calculus termλ x . x + x can be written in Haskell as\x -> x+x . This

can be used in the following way:

map (\\x -> x+x) [1..5]

which returns:

[2,4,6,8,10]

This leads into two more features of modern functional programming languages,

sharing and referential transparency. When sharing occurs, in the expression:

double (complicated 10)

the term (complicated 10) only gets evaluatedonce. In languages without

sharing, given a similar definition of double,complicated would be evaluated

twice. With referential transparency, the expression:

double (complicated 10) == complicated 10 + complicated 10

is always true. Oneof these terms can be replaced by the other term at any time

without altering the meaning and value of the program.
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Data Types In Haskell

Haskell allows the definition of new data types to complement the set of built-in

types. Forexample:

data Temperature = Farenheight Float |

Celcius Float

defines a new typeTemperaturewhich is a union of two type constructors.Celcius and

Farenheightare the type constructors, and they both have typeFloat -> Temperature.

The new types then can be used in function definitions.Haskell allows the new type to

be pattern matched in the definition of a function.Consider a function that takes an

arbitrary value of typeTemperatureand returns aTemperaturewhich always uses the

Celciusconstructor:

t_to_c :: Temperature -> Temperature

t_to_c (Farenheight f) = Celcius ((f-32)*9/5)

t_to_c (Celcius c) = Celcius c

This new functiont_to_c can be used anywhere thatTemperature’s are needed.This

can be seen in the following function which returns the number of degrees to absolute

zero (0 Kelvin):

degrees_to_abs_zero :: Temperature -> Float

degrees_to_abs_zero t = temp - abs_zero

where

abs_zero = -273.05

Celcius temp = t_to_c t

Another feature of Haskell is the ability to have local definitions which are only in

the scope of the lexically containing function.Modern functional languages, including

Haskell, determine if an expression is local by using what is called theoffside rule.

Any definitions indented to the right of, or equal to, the first symbol after thewhere

symbol are considered to be onside and local to the current definition. Expressions with

less indentation are considered to be offside of thewhere symbol and therefore not a
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local definition. The where symbol has to be to the right of the first character of the

function definition. The Haskell manual gives a full description of its treatment of

layout control and indentation.

Haskell also allows the definition of types which are parameterized and

polymorphic. Considerthe typeFinder in:

data Finder a = Found a |

Fail

Finder may be instantiated over arbitrary types because it is polymorphic. There may

be instances ofFinder Int, Finder Float, Finder Temperature, and so on.

The following function,is_in , checks to to see if a value is in a list. The returned

value is of typeFinder a. In languages such as C [Kernighan78a], an error value

returned by a function can be:

a) partof the domain, e.g. functions returning integers often return-1 to

mean failure even though-1 is part of the integer domain

b) set in a global variable, which has to be checked after the function has

returned.

Because new types can be easily created and manipulated in Haskell, these

programmingstyles can be avoided and more correct functions written.The is_in

function can be written as:

is_in :: a -> [a] -> Finder a

is_in value [] = Fail

is_in value (h:t) = Found value, value == h

= i s_in value t, otherwise

Within is_in there is more pattern matching, with the list structure which is the

second argument represented by(h:t) . Hereh is the head of the list andt is the

tail. We also see the equational style of programming, with the symbol comma (i.e. a

, ) separating the returned expression on its left from the guard on the right, such that

expr, guard can be read as "if guard then expr". This style is similar to
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mathematical notation and is popular in the functional programming community. The

function is_in can be used thus:

is_in 3 [1,2,3,4]

which returns:

Found 3 :: Finder Int

Haskell allows functions to be put in an infix position by surrounding the function name

in backquotes̀` . This makes expressions more readable, so:

5 ` is_in` [1,2,3,4]

returns:

Fail :: Finder Int

or:

1.5 `is_in` [0.5, 1.0, 1.5, 2.0]

returns:

Found 1.5 :: Finder Float

This brief introduction highlights the main features of the modern functional

programming language Haskell, many of which will be used in this PhD.Full details of

Haskell can be found in the Haskell defintion report [Hudak88].
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Appendix C

An OPS5 test program

In this appendix, the source of an example program for testing OPS5 is presented.

This program solves the "Monkey and Bananas Problem" in which there is a monkey in

a room and some bananas attached to the ceiling.The example program uses a set of

goals which enables the monkey to reach the bananas.A full description of the design

and implementation of this program can be found in [Brownston85].

(p mb1

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon ceiling)

-->

(make goal ˆstatus active ˆtype move ˆobject ladder ˆto <p>))

(p mb2

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon ceiling)

(object ˆname ladder ˆat <p>)

-->

(make goal ˆstatus active ˆtype on ˆobject ladder))

(p mb3

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon ceiling)

(object ˆname ladder ˆat <p>)

(monkey ˆon ladder)

-->

(make goal ˆstatus active ˆtype holds ˆobject nil))
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(p mb4

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon ceiling)

(object ˆname ladder ˆat <p>)

(monkey ˆon ladder ˆholds nil)

-->

(write (crlf) grab <w>)

(modify 4 ˆholds <w>)

(modify 1 ˆstatus satisfied))

(p mb5

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon floor)

-->

(make goal ˆstatus active ˆtype walk-to ˆobject <p>))

(p mb6

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon floor)

(monkey ˆat <p>)

-->

(make goal ˆstatus active ˆtype holds ˆobject nil))

(p mb7

(goal ˆstatus active ˆtype holds ˆobject <w>)

(object ˆname <w> ˆat <p> ˆon floor)

(monkey ˆat <p> ˆholds nil)

-->

(write (crlf) grab <w>)

(modify 3 ˆholds <w>)

(modify 1 ˆstatus satisfied))
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(p mb8

(goal ˆstatus active ˆtype move ˆobject <o> ˆto <p>)

(object ˆname <o> ˆweight light ˆat <> <p>)

-->

(make goal ˆstatus active ˆtype holds ˆobject <o>))

(p mb9

(goal ˆstatus active ˆtype move ˆobject <o> ˆto <p>)

(object ˆname <o> ˆweight light ˆat <> <p>)

(monkey ˆholds <o>)

-->

(make goal ˆstatus active ˆtype walk-to ˆobject <p>))

(p mb10

(goal ˆstatus active ˆtype move ˆobject <o> ˆto <p>)

(object ˆname <o> ˆweight light ˆat <p>)

-->

(modify 1 ˆstatus satisfied))

(p mb11

(goal ˆstatus active ˆtype walk-to ˆobject <p>)

-->

(make goal ˆstatus active ˆtype on ˆobject floor))

(p mb12

(goal ˆstatus active ˆtype walk-to ˆobject <p>)

(monkey ˆon floor ˆat { <c> <> <p> } ˆholds nil)

-->

(write (crlf) walk to <p>)

(modify 2 ˆat <p>)

(modify 1 ˆstatus satisfied))
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(p mb13

(goal ˆstatus active ˆtype walk-to ˆobject <p>)

(monkey ˆon floor ˆat { <c> <> <p> } ˆholds <w> <> nil)

(object ˆname <w>)

-->

(write (crlf) walk to <p>)

(modify 2 ˆat <p>)

(modify 3 ˆat <p>)

(modify 1 ˆstatus satisfied))

(p mb14

(goal ˆstatus active ˆtype on ˆobject floor)

(monkey ˆon { <x> <> floor } )

-->

(write (crlf) jump onto the floor)

(modify 2 ˆon floor)

(modify 1 ˆstatus satisfied))

(p mb15

(goal ˆstatus active ˆtype on ˆobject <o>)

(object ˆname <o> ˆat <p>)

-->

(make goal ˆstatus active ˆtype walk-to ˆobject <p>))

(p mb16

(goal ˆstatus active ˆtype on ˆobject <o>)

(object ˆname <o> ˆat <p>)

(monkey ˆat <p>)

-->

(make goal ˆstatus active ˆtype holds ˆobject nil))

246



(p mb17

(goal ˆstatus active ˆtype on ˆobject <o>)

(object ˆname <o> ˆat <p>)

(monkey ˆat <p> ˆholds nil)

-->

(write (crlf) climb onto <o>)

(modify 3 ˆon <o>)

(modify 1 ˆstatus satisfied))

(p mb18

(goal ˆstatus active ˆtype holds ˆobject nil)

(monkey ˆholds { <x> <> nil } )

-->

(write (crlf) drop <x>)

(modify 2 ˆholds nil)

(modify 1 ˆstatus satisfied))

(p t1

(start)

-->

(make monkey ˆat _5_7 ˆon couch)

(make object ˆname couch ˆat _5_7 ˆweight heavy)

(make object ˆname bananas ˆon ceiling ˆat _2_2)

(make object ˆname ladder ˆon floor ˆat _9_5 ˆweight light)

(make goal ˆstatus active ˆtype holds ˆobject bananas)

(remove 1))
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