
Monitoring Virtual Networks with Lattice
Stuart Clayman

Dept of Electronic Engineering
University College London
London WC1E 7JE, U.K.

Email: sclayman@ee.ucl.ac.uk

Alex Galis
Dept of Electronic Engineering

University College London
London WC1E 7JE, U.K.

Email: a.galis@ee.ucl.ac.uk

Lefteris Mamatas
Dept of Electronic Engineering

University College London
London WC1E 7JE, U.K.

Email: l.mamatas@ee.ucl.ac.uk

Abstract—The use of the Lattice monitoring framework as a
fundamental part of a overlay management system for virtual
networks is presented. Lattice has been specially designed for
monitoring resources and services in virtualized environments,
including virtual networks. Monitoring of virtualized resources
and services has many criteria which are not relevant for
monitoring systems that are used for traditional fixed resources.
We present the main aspects of the framework together with
details of measurement transmission and meta-data encoding.
Finally, the use of the Lattice framework for monitoring virtual
machines executing under hypervisor control is presented.

I. INTRODUCTION

The Future Internet will have many of its core features and
functions based on virtualized resources. The virtualization of
resources has been in use for some time now, and there are
several projects and initiatives working towards the virtualiza-
tion of networks in the Future Internet, such as [1] [2] [3] [4].
The virtual resources which will be part of the Future Internet
offerings include virtual machines which execute either virtual
routers or virtual service elements. These will be combined to
create the virtual networks. In order to manage these virtual
resources, there needs to be a monitoring system which can
collect and report on the behaviour of the resources.

In this paper we present the design characteristics and use of
the Lattice monitoring framework as a fundamental part of an
overlay management system for monitoring resources and ser-
vices in virtualized environments, including virtual networks.
Monitoring of virtualized resources and services has many
features, requirements, and criteria which are not relevant for
monitoring systems that are used for traditional xed resources.
As an example, such a monitoring framework should be able
to support new functions like virtual machine migration. We
present the main aspects of the Lattice framework, which
has been designed for monitoring resources and services in
virtualized environments, together with details of measurement
transmission and meta-data encoding. We show the use of the
Lattice framework for monitoring virtual machines executing
under hypervisor control.

Virtualization is a mechanism which abstracts away from the
underlying hardware, allowing more control and management
of the virtualized resources without having to deal with the
physical hardware. Virtualization is a technique which emu-
lates some hardware or software on top of some real hardware.
Network virtualization provides an abstraction that hides the
complexity of the underlying network resources and enables

isolation-based protection, encouraging resource sharing by
multiple network and application services. Host virtualization
provides an abstraction which also hides the complexity of
the underlying host. It too allows resource sharing, but also
allows new hosts to be started and shutdown at a much faster
rate than a real machine can be deployed.

Virtualization on its own is quite a useful mechanism,
but to gain the greatest benefit it better to have a managed
virtualization environment. Such management allows better
control, monitoring, and analysis of the virtualized environ-
ments. For virtual networks, it is allowing functions such as
quality of service, analysis of traffic flow, and network load
balancing. By having management coupled with high-level
decision making and universal control mechanisms (namely,
orchestration), it allows us to build facilities which can har-
monize and reconfigure networks on the fly in order to meet
common goals. The deployment of monitoring probes which
can return real-time data regarding the attributes of the real and
the virtual networks allows these reconfigurations to adapt to
the real world in real time.

In the work presented in this paper we use the Lattice
monitoring framework as a real-time feed for a management
interface to virtual network resources. We first present the
issues relating to the management of virtualized network
resources, discussing the key design requirements and how
these are addressed in the AutoI project [5]. Then, in section
III we present the Lattice monitoring framework, discussing
its main features and also giving and overview of its design
and implementation. This is followed, in section IV, by an
evaluation of Lattice in the context of a monitoring system
for virtual network elements. Finally, we state our conclusions
and suggest further work.

II. MANAGEMENT OF VIRTUALIZED NETWORK
RESOURCES

Virtual networks are aiming at better utilization of the
underlying infrastructure in terms of (i) reusing a single phys-
ical or logical resource for multiple other network instances,
or (ii) to aggregate multiples of these resources, in order
to obtain more functionality, such as providing a pool of
resources that can be utilized on demand. These resources can
be network components such as routers, switches, hosts, or
virtual machines. As stated these virtual machines can execute
virtual routers or virtual service elements, but can also execute

network services such as name mapping systems. In virtual
networks, a resource can be re-used for multiple networks
or multiple resources can be aggregated for virtual resource.
However, to manage these virtual resources effectively there
needs to be a management system [6] [7].

A key issue in the management of virtual networks is the
development of a common control space, which has autonomic
characteristics [8] and enables heterogeneous network tech-
nologies, applications, and network elements to interoperate
efficiently [9]. Management applications need to be adaptive
to a rapidly changing environment with respect to specific
network properties, and service or user requirements, as exam-
ples. This implies that management applications and network
entities should be supported by a platform that collects,
processes, and disseminates information characterizing the
underlying network. An increased awareness regarding the
properties and state of the network can bridge the gap be-
tween high-level management goals and the configuration that
achieves them. In this respect, we consider an infrastructure
that manages both information flow and processing within the
network as an important stepping-stone towards this objective.

Key design requirements of an information management
infrastructure are: (i) information collection from the sources
(e.g., network devices), (ii) information processing that pro-
duces different information abstractions, and (iii) information
dissemination to the entities that exploit that information. It is
common that such design approaches aggregate information
using aggregate functions. Consequently, real-time monitoring
of network parameters may introduce significant communi-
cation overhead, especially for the root-level nodes of the
aggregation trees. Information flow should adapt to both the
information management requirements and the constraints of
the network environment, one example being: changes in the
information collection configuration.

Such a management system has been devised in the AutoI
project [5] [6]. The AutoI project has developed a management
overlay which is a self-managing resource overlay that spans
across heterogeneous networks and supports service mobility,
security, and quality of service. This overlay consists of a
number of distributed management systems, which are devised
with the help of five abstractions. Each abstraction has its
own core functionality and is represented as a plane within
the whole overlay system. These planes interact with each
other using well defined interfaces. The planes for the AutoI
management overlay are called (i) the Orchestration Plane, (ii)
the Service Enablers Plane, (iii) the Knowledge Plane, (iv) the
Management Plane, and (v) the Virtualization Plane. Together
these distributed systems form a software-based control net-
work infrastructure that runs on top of physical networks. It
uses ideas proposed in [10] which has a unified solution that
includes cognitive techniques and knowledge management.
AutoI decouples information management from other network
management functionalities. The latter are considered to be
part of either the Management plane or the Orchestration
plane.

In summary, the AutoI management overlay is a manage-

ment infrastructure that collects, processes, and disseminates
information from and to the network entities and management
applications, acting as an enabler for self-management func-
tionality. For example, the management overlay can regulate
the information flow based on specific characteristics of the
network environment (such as the network topology) and
performance requirements (such as low data rate).

To feed all the required and relevant information into the
management overlay there needs to be a monitoring system
that can collect such data from probes or sensors in the
network environment and in the virtual resources. It can then
report that data into the management overlay.

For full operation of a virtual network, we need to remember
that monitoring is a vital part of the full control loop that
goes from the network management, through a control path,
to the probes/sensors which collect and send data, back to the
network management which makes various decisions based
on the data. Consequently, the monitoring is a small but
fundamental part of network management as it allows the
integration of components in all of the layers. The process
of monitoring virtual resources is similar to the process of
monitoring traditional network resources, as seen in [11]
[12] [13] [14] [15], however, due to the high elasticity and
migration capability of virtual resources, a different design is
needed. This paper presents such a new design.

III. THE LATTICE MONITORING FRAMEWORK

A management system for the Future Internet such as the
management overlay just discussed, requires a monitoring
system that can collect all the relevant data in an effective
way. The monitoring system has to have a minimal runtime
footprint and not be intrusive, so as not to adversely affect
the performance of the network itself or the running service
applications. As a consequence, we need to ensure that the
management components only receive data that is of relevance.
In a large distributed system there may be hundreds or
thousands of measurement probes which can generate data.
It would not be effective to have all of these probes sending
data all of the time, so a mechanism is needed that controls
and manages the relevant probes.

Existing monitoring systems such as Ganglia [16], Nagios
[17], MonaLisa [18], and GridICE [19] have addressed moni-
toring of large distributed systems. They are designed for the
fixed, and relatively slowly changing physical infrastructure
that includes servers, services on those servers, routers and
switches. However, they have not addressed or assumed a
rapidly changing and dynamic infrastructure as seen in virtual
environments. In the physical world, new machines do not
appear or disappear very often. Sometimes some new servers
are purchased and added to a rack, or a server or two may
fail. Also, it is rare that a server will move from one location
to another. In the virtual world, the opposite is the case. Many
new hosts can appear and disappear rapidly, often within a
few minutes. Furthermore, the virtual hosts, can be migrated
from one network to another, still retaining their capabilities.

It is these characteristics that provide a focus for Lattice.
We have determined that the main features for monitoring in
a virtualized network environment which need to be taken
account of are:

• scalability - to ensure that the monitoring can cope with
a large numbers of probes

• elasticity - so that virtual resources created and destroyed
by expanding and contracting networks are monitored
correctly

• migration - so that any virtual resource which moves from
one physical host to another is monitored correctly

• adaptability - so that the monitoring framework can adapt
to varying computational and network loads in order to
not be invasive

• autonomic - so that the monitoring framework can keep
running without intervention and reconfiguration

• federation - so that any virtual resource which reside on
another domain is monitored correctly

To establish such features in a monitoring framework re-
quires careful architecture and design.

A. Producers and Consumers

The monitoring system itself is designed around the concept
of producers and consumers. That is there are producers of
monitoring data, which collect data from probes in the system,
and there are consumers of monitoring data, which read the
monitoring data. The producers and the consumers are con-
nected via a network which can distribute the measurements
collected.

The collection of the data and the distribution of data are
dealt with by different elements of the monitoring system so
that it is possible to change the distribution framework without
changing all the producers and consumers. For example, the
distribution framework can change over time, say from IP
multicast, to an event bus, or a publish / subscribe framework.
This should not affect too many other parts of the system.

B. Data Sources and Probes

In many systems probes are used to collect data for system
management [16] [20]. In this regard, Lattice will follow
suit. However, to increase the power and flexibility of the
monitoring we introduce the concept of a data source. A data
source represents an interaction and control point within the
system that encapsulates one or more probes. A probe sends
a well defined set of attributes and values to the consumers.
This can be done by transmitting the data out at a predefined
interval, or transmitting when some change has occured.

The measurement data itself is sent via a distribution
framework. These measurements are encoded to be a small
as possible in order to maximise the network utilization.
Consequently, the measurement meta-data is not transmitted
each time, but is kept separately in an information model. This
information model can be updated at key points in the lifecycle
of a probe and can be accessed as required by consumers.

First Snapshot of Monitoring Framework

This note gives a brief overview of the first snapshot of the monitoring framework.

This release implements the basics of the framework as described in the previous
documents and discussions we have had. It is written in Java, as agreed, and is available
for anyone to evaluate and modify.

There are implementations of the elements presented in the following model. A
DataSource acts as a control point and a container for one or more Probes. Each Probe
defines the attributes that it can send in a set of ProbeAttribute objects, that specify the
name, the type, and the units of each value that can be sent.

When a Probe sends a Measurement, the values sent are directly related to the Probe
Attributes.

The Probe sends each Measurement to the Data Source for transmission. The Data
Source passes these measurements onto a distribution delegate, where they are encoded
into an on-the-wire format, and then sent over the distribution network. The receiver of the
monitoring data decodes the data and passes reconstructed Measurements to the
monitoring consumer.

Data Source

Probe

Probe Attribute

Measurement

Probe Value

Monitoring
Consumer

Probe

Probe sends

Measurements

to Data Source

Distribution
Delegate

Data Source

Monitoring
Receiver

Distribution

mechanism,

currently IP

multicast.

Measurements

passed to

Consumer

Fig. 1. Relationship Model

C. Distribution Framework

In order to distribute the measurements collected by the
monitoring system, it is necessary to use a mechanism that
fits well into a distributed architecture such as the manage-
ment overlay. We need a mechanism that allows for multiple
submitters and multiple receivers of data without having vast
numbers of network connections. For example, having many
TCP connections from each producer to all of the consumers
of the data for that producer would create a combinatorial ex-
plosion of connections. Solutions to this include IP multicast,
Event Service Bus, or publish/subscribe mechanism. In each
of these, a producer of data only needs to send one copy of
a measurement onto the network, and each of the consumers
will be able to collect the same packet of data concurrently
from the network.

D. Design and Implementation Overview

Within Lattice there are implementations of the elements
presented in the relationship model shown in figure 1. In this
model we see, a DataSource which acts as the control point
and a container for one or more Probes. Each Probe defines
the attributes that it can send. These are set in a collection of
ProbeAttribute objects, that specify the name, the type, and
the units of each value that can be sent within a measurement.

When a Probe sends a Measurement, the Measurement has
a set of values called ProbeValues. The ProbeValues that are
sent are directly related to the Probe Attributes defined within
the Probe.

When the system is operating, each Probe reports the
collected measurement to the Data Source. The Data Source
passes these measurements to a networking layer, where they
are encoded into an on-the-wire format, and then sent over
the distribution network. The receiver of the monitoring data
decodes the data and passes reconstructed Measurements to
the monitoring consumer. Encoding measurement data is a
common function of monitoring systems [16] as it increases
speed and decreases network utilization.

In Lattice, the measurement encoding is made as small as
possible by only sending the values for a measurement on the
data distribution framework. The definitions for the ProbeAt-
tributes, such as the name and the units are not transmitted
with each measurement, but are held in the information model
and are accessed as required.

Field Type
sequence No long
Probe ID long
Type string
Timestamp long
Delta Time long
Service ID long
Group ID long
No of Probe Values (N) integer
Probe Values (× N) Probe Value Structure

TABLE I
PACKET STRUCTURE OF A MEASUREMENT

Field Type
Field No integer
Type Code byte
Value depends

TABLE II
PACKET STRUCTURE OF A PROBE VALUE

The encoding for these measurements is presented in more
detail here.

1) Measurement Encoding: This section presents the struc-
ture of a Measurement for its transmission over a network.

First we see the main data structure for an encoded Mea-
surement, as seen in table I.

The structure for each probe value is shown in table II.
There is one of these structures for every ProbeValue in a
measurement.

Table III presents each type and its associated code, to-
gether with the encoding strategy for each type. The current
implementation is written in Java, and the output for each type
currently uses XDR [21]. As such each type defined here uses
the same byte layout for each type as defined in the XDR
specification.

All of this type data is used by a measurement decoder in
order to determine the actual type and size of the next piece
of data in a packet.

2) Information Model Encoding: For the implementation of
the Information Model we have the inclusion of a Distributed
Hash Table (DHT) for the distributed information model.
This allows the receivers of Measurement data to lookup the
fields received to determine their names, types, and units. The
information model nodes uses the DHT to interact among one
another.

The DHT implementation used is based on the Kademlia
model [22]. The implementation has a strategy for converting
an object structure into a path-based taxonomy for use as keys
in the DHT. The IDs of the Data Sources and the IDs of the
Probes are important elements of this taxonomy.

For each Data Source, the keys and values shown in table
IV are added to the DHT. For each Probe, the keys and values
shown in table V are added to the DHT.

Using the encoded data from the information model, any
of the consumers of the monitoring data, in particular the
management overlay, can evaluate all the meta-data of the
measurements.

Type Code Encoding Format
boolean Z Writes a boolean as a 1-byte value.
byte B Writes a byte as a 1-byte value.
char C Writes a char as a 2-byte value, high byte first.
short S Writes a short as two bytes, high byte first.
integer I Writes an integer as four bytes, high byte first.
long J Writes a long as eight bytes, high byte first.
float F Creates an integer representation of the specified

floating-point value according to the IEEE 754
floating-point ”single format” bit layout and then
writes that integer value as a 4-byte quantity,
high byte first.

double D Creates a long representation of the specified
floating-point value according to the IEEE 754
floating-point ”double format” bit layout and
then writes that long value as an 8-byte quantity,
high byte first.

string ” Writes a string using a modified UTF-8 encoding
in a machine-independent manner.

byte array] Writes an integer (as 4 bytes), which is the
length of the array, plus all the array bytes to
this output stream.

List L Writes out the number of list items as an inte-
ger (4 bytes), the element type, using the type
code from this table, and then the elements
themselves are written out using the encoding
strategy outlined in this table.

Table T Writes out the no of rows in the table as an
integer (4 bytes), the no of columns in the table
as an integer (4 bytes), then for each column it
writes the column name as a String followed by
the column type, using the type code from this
table. Finally all of the elements of the table are
written out using the encoding strategy outlined
in this table.

TABLE III
CODE FOR EACH TRANSMITTED TYPE

Key Value
/datasource/datasource-id/name datasource name
/probe/probe1-id/datasource datasource-id
/probe/probe2-id/datasource datasource-id
... ...
/probe/probeN-id/datasource datasource-id

TABLE IV
INFORMATION MODEL ENTRIES FOR A DATASOURCE

Key Value
/probe/probe-id/name probe name
/probe/probe-id/datarate probe data rate
/probe/probe-id/on is the probe on or off
/probe/probe-id/active is the probe active or inactive
/schema/probe-id/size no of attributes N
/schema/probe-id/0/name name of probe attribute 0
/schema/probe-id/0/type type of probe attribute 0
/schema/probe-id/0/units units for probe attribute 0
/schema/probe-id/1/name name of probe attribute 1
... ...
/schema/probe-id/N/units units for probe attribute 0

TABLE V
INFORMATION MODEL ENTRIES FOR A DATASOURCE

Summary of the Lattice Monitoring Framework

The Lattice framework provides a platform from which
various monitoring systems can be built. It provides the
building blocks and the glue from which specific monitoring
elements can devised.

We can write probes which collect data for any specific
purpose and then write consumers which process that data
in any way necessary. Lattice itself does not provide a pre-
defined library of probes, data sources, or consumers. Rather,
it allows the probes, data sources, and consumers to be
written and deployed as needed. As we will see in the next
section, we have built a monitoring system for virtual network
management in AutoI, for which we have written probes
for monitoring physical and virtual machines. For different
applications, we can write a completely different monitoring
system that is based on the Lattice monitoring framework. As
an example of this, we have written a monitoring system for
the service cloud project RESERVOIR [23] [24] for which we
have written separate probes for 3 layers if the architecture.

IV. VIRTUAL NETWORK MONITORING EVALUATION

The use of Lattice allowed us to build a management infras-
tructure that collects, processes, and disseminates network and
system information from/to the network entities at real-time,
acting as an enabler for self-management functionality, as
described in [7]. In this section we define how the management
overlay utilizes measurement data from probes monitoring
virtual machines.

As the monitoring framework integrates into the manage-
ment overlay, it has the capability to provide information for
the management overlay, with more than the measurements
from the probes. Within the management overlay the Knowl-
edge Plane holds details on all the elements of the the managed
network, for example, data on all of the physical machines
and all of the virtual machines. This Knowledge Plane is
implemented as a distributed storage system as can have data
added or removed from many nodes. This functionality works
well with Lattice, as Lattice holds all of the meta-data for
the probes and the measurement attributes in an information
model. The information model can be held in various ways,
but for complete integration this uses the same system as that
is used by the management overlay for its Knowledge Plane.
That is, all meta-data for monitoring is held by the Knowledge
Plane of the management overlay, and so the management
overlay can easily lookup the attributes of any measurement
as it arrives. The integration and the implementation of these
components has been described in [6].

For the evaluation of Lattice, we have built a testbed and
created some virtual machines that execute on the testbed.
We have developed probes which can collect data from the
physical machines and from the virtual machines. The virtual
machine monitoring approach developed is a key component
of the management overlay for virtual networks as the Lat-
tice monitoring framework collects data about those virtual
machines.

In the next sections we will describe the testbed and the
monitoring of physical and virtual machines in more detail.

A. Testbed

The testbed that has been created for evaluating Lattice
within a management overlay environment and for monitoring
the virtual machines is presented.

There is a collection of six servers in the testbed, 4 of
the servers have 2 Quad-Core AMD Opteron(tm) Processor
2347HE CPUs (giving 8 cores) running at 1.9GHz together
with 32Gbs of RAM. The other 2 servers have a single Intel
Core 2 Quad CPU Q9300 (giving 4 cores) running at 2.50GHz
and 32GB of memory. All of them are connected with shared
storage via NFS. The connectivity is of the servers is shown
in figure 2.

B. Monitoring Physical Machines

To monitor the physical machines in the testbed we created
three probes. The monitor CPU usage, memory usage, and
network usage.

1) CPU Probe: This probe collects data on CPU usage for
each core of a server. It runs regularly in order to collect this
data in real time. The usage data collected includes the number
of jiffies in (i) user space, (ii) being nice, (iii) in system space,
and (iv) idling, since the last time a measurement was taken.
These raw values are then converted into a percentage of used
time for each of the four values. (A jiffie is 1/100 th of a
second).

2) Memory Probe: This probe collects data on memory
usage on the server. It too runs regularly to collect data in real
time. It provides data on (i) the total memory in the server,
(ii) the free memory, (iii) the memory used by the operating
system, (iv) the memory used less the amount of cache and
buffer space, (v) the amount of cache, and (vi) the amount of
buffers. All of these are presented in kilobytes.

3) Network Probe: This probe collects data on the network
interface of a server. By running regularly it can determine the
amount of traffic on the interface for each sampling. It provides
data on (i) the no. of bytes received, (ii) the no. of packets

clayone

128.40.39.161

192.168.103.2

CentOS 5.3

+ Xen 3.4

claytwo

128.40.39.162

192.168.104.2

CentOS 5.3

+ Xen 3.4

claythree

128.40.39.163

192.168.105.2

CentOS 5.3

+ Xen 3.4

clayfour

128.40.39.164

192.168.106.2

CentOS 5.3

+ Xen 3.4

claydesk1

128.40.39.166

192.168.101.2

CentOS 5.3

+ Xen 3.4

claydesk2

128.40.39.167

192.168.102.2

CentOS 5.3

+ Xen 3.4

AutoI testbed configuration at ee.ucl.ac.uk

Router

All the virtual machines are on the
192.168.10X.xxx network. These are
configured with a netmask of
255.255.240.0

The host with interface 192.168.103.2
has all of the VMs with addresses in
the range 192.168.103.101 ->
192.168.103.110.

We can add new VMs with new
addresses if this is needed.

CPU: 2 X Quad Core AMD Opteron 2347H. Mem: 32 Gb

CPU: Intel Core2 Quad Q9300 Mem: 8Gb

Fig. 2. Testbed setup

Attribute
No.

Attribute
Name

Attribute
Type

Attribute
Units

0 in-bytes Integer bytes
1 in-packets Integer packets
2 in-errors Integer packets
3 in-dropped Integer packets
4 out-bytes Integer bytes
5 out-packets Integer packets
6 out-errors Integer packets
7 out-dropped Integer packets

TABLE VI
DEFINITION OF A NETWORK MEASUREMENT

Field
No.

Field Type Value

0 I 5344
1 I 37
2 I 0
3 I 0
4 I 6644
5 I 38
6 I 0
7 I 0

TABLE VII
VALUES OF A NETWORK MEASUREMENT

received, (iii) the no. of packets received with errors, (iv) the
no. of packets received which were dropped, (v) the no. of
bytes transmitted, (vi) the no. of packets transmitted, (vii) the
no. of packets transmitted with errors, (viii) the no. of packets
transmitted which were dropped.

As we described earlier in the paper a Probe has to define
using ProbeAttributes the values that will be transmitted in a
measurement. There will be a value in the measurement for
each defined attribute. For the Network Probe we have defined
the attributes outlined in table VI The values for the attributes
from this measurement are in table VII.

C. Monitoring Virtual Machines

A working implementation of the virtual machine monitor-
ing has been developed. This implementation acts as a foun-
dation for doing distributed monitoring of virtual networked
resources and provides the values for the management overlay.

We have defined and written probes which provide informa-
tion on the many physical hosts that are used as a platform for
running a virtual machine hypervisor, as seen in the previous
section. The hypervisor is the core component of many cloud
computing environments and is used to run multiple virtual
execution environments (VEEs). As well as writing probes to
gather data from physical machines, we have evaluated how
the distributed monitoring framework can interact with the
hypervisor in order to extend the monitoring capabilities to
include virtual machines running within the hypervisor. Our
work in this area has tried to address the flexible and adaptable
requirements of virtual machines and virtual networks and
how these fit in with libvirt [25] (the library that provides
access to various hypervisors through an abstraction layer).
Although the test bed uses the Xen [26] hypervisor, we chose

Hypervisor

Controller

Hypervisor

Probe VEE3

Probe collects measurements

for one VEE.

e.g from VEE3, get CPU and

memory usage

Hypervisor

Data Source

Controller can add a

probe or delete a

probe based on

current VEE list

Controller gets list of

running VEEs from the

hypervisor.

e.g. [VEE1, VEE2, VEE3]

Hypervisor

Probe VEE1

Hypervisor

VEE1 VEE2 VEE3

Hypervisor

Probe VEE2

Measurements

then sent to

Data Source

Single Threaded Access with Locks

Fig. 3. A Probe for Monitoring Virtual Machines using libvirt

to interact with libvirt as it abstracts away any differences in
hypervisors. Therefore, if we changed the actual hypervisor
used, the probes would still continue to function correctly.

The current design and implementation for monitoring vir-
tual machines is dependent on the fact that a virtual machine
can be created, can execute, and can shutdown at run-time
whilst the monitoring is still running. In essence, the hypervi-
sor presents a collection of machines that changes over time.
From the consumers point of view, it is important that the
virtualized machine should look like an individual host, so we
ensure that there is one probe sending data for each virtual
machine. The alternative is to have one probe for the whole
hypervisor, but using this approach then every measurement
will contain data for every virtual machine currently executing
on the hypervisor. The consumers will not see individual hosts,
but a collection of them. Consequently, virtualized hosts will
have to be treated differently from real hosts, which is not a
desirable situation.

To ensure that there is one Probe per virtual host, and to
accommodate the dynamic nature of the hypervisor we have
architected a solution shown in figure 3. In the top part of
figure 3 we can see, in blue, the hypervisor, which is actually
a combination of both libvirt and Xen, together with the
virtualized execution environments (VEEs). To get data from
the hypervisor there is a HypervisorController which gets a list
of running VEEs from the hypervisor, on a regular basis. The
Hypervisor Controller compares the current list of VEEs with
the list retrieved last time. From this it determines (a) if there
is a new VEE, in which case it asks the HypervisorDataSource
to add a new HypervisorProbe for that VEE, or (b) if a VEE
has shutdown, in which case it asks the HypervisorDataSource
to delete the HypervisorProbe for that VEE.

As stated earlier in the paper, a data source represents an
interaction and control point within the system, so it is the data
source that is responsible for adding and deleting the probes
and to also collect any measurement data from the probes and
to pass it onto the network for the consumers. In this case,
the HypervisorProbes each run independently of each other,

in their own thread, and collect data regarding their assigned
VEE at a regular interval. The data collected is structured that
same as data collected from a real physical host, such as CPU
and memory usage.

The final element of the figure 3, is one that provides single
threaded access, via libvirt, to the hypervisor by using locks.
The reason for this is explained in the next section.

D. Issues Arising

This section highlights some issues that have arisen whilst
monitoring virtual execution environments.

After much investigation, we realised that we needed single
threaded access to the hypervisor using locks. This is strictly
necessary as the libvirt implementation is only capable of
doing one request at a time, but has no locking or serialization
mechanisms of its own. In our initial multi-threaded imple-
mentation, interacting with libvirt directly can cause libvirt to
fail, or in extreme case the whole run-time system to crash.
This is obviously not suitable for an autonomic system that is
meant to operate continuously. By adding an extra intermediate
element which is single threaded, locks out concurrent threads,
and provides caching, we were able to build a stable probe for
VEEs.

When collecting data for the network traffic of a VEE,
through libvirt and the hypervisor, the result was always zero.
See the following list from ifconfig.
vif1.0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF

UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:32
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

It was clear from simple observation that this was incorrect.
Our solution to this was to ignore the values returned by
libvirt, and build our own mechanism for determining the right
values for the network traffic. Under Linux, libvirt creates two
special network interfaces for each VEE, one called vif?.? and
the other called tap?.?. We were able to reuse much of the
implementation of the probe used for measuring the physical
network by pointing it at the tap?.? interface in order to
gather the actual network traffic data. This alternate approach,
avoiding libvirt, is used in our management system.

Summary of Virtual Network Monitoring Evaluation

Our monitoring of virtual execution environments has been
successful. By having a separate probe per VEE we observe
that separate measurement streams are sent for each of the
VEEs on a physical machine. This is particularly useful in
situations where the actual location of the virtual host is not
important, and also ensures that measurement data from one
virtual host is not coupled to a physical machine. The data
streams are independent, and so consumers just see streams
of measurements from virtual hosts and physical hosts in
the same way because the structure of the measurements is
identical in both cases.

This approach addresses the elasticity and migration re-
quirements of the whole monitoring framework. It allows

elasticity as hosts are able to create new VEEs or shutdown
VEEs at will, without being concerned about the monitoring.
It also allows migration because a VEE can migrate from the
hypervisor of one physical host to the hypervisor of another
physical host, again, without there being any concern for the
monitoring.

In summary, the hypervisor monitor we have designed and
built can collect data from the virtual execution environments
in a dynamic and adaptable way. It can collect information
about CPU, memory, and network usage for each of the VEEs,
even though they can be created, executed, and shutdown at
run-time. This is important as each VEE represents a virtual
resource in a virtual network. Therefore, we can monitor
virtual resources displaying elasticity and migration within a
virtual network.

V. CONCLUSIONS

This paper has explored the concept of monitoring virtual
resources and its applicability to virtual network management.
The design of a new monitoring framework applicable to
virtual networks was described. This monitoring framework
supports the new management architectural and system model
for Future Internet, which is under development in the Au-
toI [5] project. The AutoI model consists of a number of
distributed management systems within the network, called
the OSKMV planes: the Virtualisation Plane, the Management
Plane, the Knowledge Plane, the Service Enablers Plane, and
the Orchestration Plane. Together these distributed systems
form a software-driven virtual network control infrastructure
that runs on top of all current network and service infrastruc-
tures.

The use of Lattice allowed us to build a real management
infrastructure that collects, processes, and disseminates net-
work and system information from/to the network entities at
real-time, acting as an enabler for self-management function-
ality. We have seen, from the evaluation on the testbed, that
the virtual machine monitoring approach developed is a key
component of the information management platform.

We have shown that monitoring is a fundamental feature of
any autonomic management system. We have also shown that
Lattice can provide such monitoring for virtual networks in
which the virtualized resources are highly volatile as they can
be started, stopped, or migrated at any time by the management
overlay.

The paper has presented an evaluation and a use case of
the Lattice framework, which has been successfully used in
the AutoI project [5] for monitoring virtual networks. We
can build different monitoring systems using the framework,
where different implementations of probes, data sources, and
consumers are envisaged. Such an approach has been under-
taken within the RESERVOIR project [23] [24] to allow the
monitoring of service clouds.

As the Lattice framework is like a toolbox for building
specific monitoring systems, we intend to issue it as an open
source project in its own right to further its use.

A. Further Work
There is much further work to do in the areas of virtual

network management and monitoring.
The main area of our future work will be to address the main

features for monitoring in a virtualized network environment
within the Lattice framework itself. We stated that monitoring
needs to take account of scalability, elasticity, migration,
adaptability, autonomic, and federation. In this paper we have
presented how we deal with elasticity and migration, and in
further work we will address the other 4 features.

As we have shown, for full operation of a virtual network
the monitoring is a vital part of the control loop. To ensure
that this loop is effective we need to be confident that the
measurements transmitted by probes are accurate. As such,
we intend to investigate and evaluate the accuracy of the
monitoring framework.

The mechanism of defining the measurements that probes
will send using an information model is aligned with mod-
elling approaches in many other areas. Consequently, we will
examine how we can take information models for virtual
networks and the network components, and use this to create
information models for the probes that will monitor these
components. By doing this we could define and create the
probes automatically from the virtual network’s model.

As we have seen, Lattice can successfully monitor virtual
resources. In the future, we wish to adapt Lattice so that it can
also monitor virtual resources that are shared amongst various
overlays. This will require labeling the resources, and passing
this data through the measurements to ensure that the receivers
of the measurement data are able to determine which part of
the shared resource is being used.

A further goal for the Lattice monitoring system is to
have fully dynamic data sources, in which the data source
implementation will have the capability for reprogramming
the probes on-the-fly. In this way, it will be possible to make
probes send new data if it is required. For example, they
can send extra attributes as part of the measurement. Yet
another useful facility for a data source will be the ability
to add new probes to a data source at run-time. By using this
approach we will be able to instrument components of the
virtual network without having to restart them in order to get
this new information.

ACKNOWLEDGMENT

This work is partially supported by the European Union
through the Autonomic Internet (AutoI) project [5] and the
RESERVOIR project [24] of the 7th Framework Program.

REFERENCES

[1] “GENI design principles,” Computer, vol. 39, pp. 102–105, 2006.
[2] “Future Internet Design (FIND) program,” http://www.nets-find.net/.
[3] “Future Internet Assembly (FIA),” http://www.future-internet.eu/.
[4] A. Galis, H. Abramowicz, M. Brunner, D. Raz, P. Chemouil, J. Butler,

C. Polychronopoulos, S. Clayman, H. de Meer, T. Coupaye, A. Pras,
K. Sabnani, P. Massonet, and S. Naqvi, “Management and service-
aware networking architectures for future internet position paper: Sys-
tem functions, capabilities and requirements,” in IEEE 2009 Fourth
International Conference on Communications and Networking in China
(ChinaCom09), August 2009, invited paper.

[5] “Autonomic Internet (AutoI) Project,” http://www.ist-autoi.eu/, 2008-
2010.

[6] A. Galis, S. Denazis, A. Bassi, P. Giacomin et al., Management
Architecture and Systems for Future Internet Networks. IOS Press,
http://www.iospress.nl, ISBN 978-1-60750-007-0, April 2009.

[7] L. Mamatas, S. Clayman, M. Charalambides, A. Galis, and G. Pavlou,
“Towards an information management overlay for emerging networks,”
in NOMS 2010, 2010.

[8] X. Dong, S. Hariri, L. Xue, H. Chen et al., “Autonomia: An
autonomic computing environment,” in Performance, Computing, and
Communications Conference, 2003. Conference Proceedings of the
2003 IEEE International, 2003, pp. 61–68. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1203684

[9] L. Cheng, A. Galis, B. Mathieu, K. Jean, R. Ocampo, L. Mamatas,
J. Rubio-Loyola, J. Serrat, A. Berl, H. Meer, S. Davy, Z. Movahedi, and
L. Lefevre, “Self-organising management overlays for future internet ser-
vices,” in MACE 2008: Proceedings of the 3rd IEEE international work-
shop on Modelling Autonomic Communications Environments. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 74–89.

[10] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A
knowledge plane for the internet,” in SIGCOMM ’03: Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM,
2003, pp. 3–10.

[11] R. A. Gonzalez Prieto, “A-GAP: An adaptive protocol for continuous
network monitoring with accuracy objectives,” IEEE Transactions on
Network and Service Management (TNSM), vol. 4, no. 1, pp. 2–12,
June 2007.

[12] Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous queries
over distributed data streams,” in ACM SIGMOD 2003, June 2003.

[13] Olston and J. Widom, “Efficient monitoring and querying of distributed,
dynamic data via approximate replication,” in IEEE Data Engineering
Bulletin, March 2005.

[14] A. Deligiannakis, Y. Kotidis, , and N. Roussopoulos, “Hierarchical
in-network data aggregation with quality guarantees,” in EDBT 2004,
March 2004.

[15] J. Strassner, S. V. der Meer, and J. W.-K. Hong, “The applicability
of self-awareness for network management operations,” in Fourth
IEEE International Workshop MACE 2009, October 2009. [Online].
Available: http://www.manweek.org/2009/mace/programme.php

[16] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation and experience,” Parallel
Computing, vol. 30, p. 2004, 2003.

[17] “Nagios,” http://www.nagios.org/.
[18] H. Newman, I. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu, “Mon-

ALISA : A distributed monitoring service architecture,” in Proceedings
of CHEP03, La Jolla, California, 2003.

[19] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. L. Rubini,
G. Tortone, and M. C. Vistoli, “GridICE: A monitoring service for grid
systems,” Future Gener. Comput. Syst., vol. 21, no. 4, pp. 559–571,
2005.

[20] A. Cooke, A. J. G. Gray, L. Ma, W. Nutt et al., “R-GMA: An information
integration system for grid monitoring,” in Proceedings of the 11th
International Conference on Cooperative Information Systems, 2003,
pp. 462–481.

[21] R. Srinivasan, “XDR: eXternal Data Representation standard,” 1995.
[22] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer infor-

mation system based on the XOR metric,” in IPTPS ’01: Revised
Papers from the First International Workshop on Peer-to-Peer Systems.
London, UK: Springer-Verlag, 2002, pp. 53–65.

[23] B. Rochwerger, D. Breitgand, E. Levy, A. Galis et al., “The RESER-
VOIR model and architecture for open federated cloud computing,” IBM
Journal of Research and Development, vol. 53, no. 4, 2009. [Online].
Available: http://www.research.ibm.com/journal/rd/534/rochwerger.pdf

[24] “RESERVOIR Project,” http://www.reservoir-fp7.eu/, 2008-2011.
[25] “libvirt: The virtualization API,” http://libvirt.org/.
[26] P. Barham, B. Dragovic, K. Fraser, S. Hand et al., “Xen and the art of

virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177,
2003.

