Towards Transport Networks Based on 40 Gbit/s Transmission: Results from the IST ATLAS Project

(1) Fondazione Ugo Bordoni, via B. Castiglione 59, 00142 Rome Italy, mail@fub.it
(2) Pirelli Labs, Viale Sarca 222, 20126 Milano, Italy, alessandro.schiuffin@pirelli.com
(3) United Monolithic Semiconductors SAS, Route Départementale 128, Orsay France,
(4) Opto Speed AG, Mönstrasse 2, CH-8803 Rorschlikon, Switzerland mgaspar@optospeed.com
(5) THALES Research & Technology – France, reynald.boula-picard@thalesgroup.com
(6) University of Ljubljana, Faculty of Electrical Engineering, TRZASKA 25, Ljubljana, SLOVENIA
(7) Instituto de Telecomunicações, Campus Universitário - 3810-193 AVEIRO, PORTUGAL
(8) Universität Paderborn, Fachbereich 6, Warburger Strasse 100, D-33098 Paderborn Germany
(9) Padova Ricerche Sepe, Corso Spagna, 12, 35127, Padova, ITALY andreana.galarossa@unipd.it
(10) University College London, Torrington Place, London, WC1E 7JE, England
(11) Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione, viale America 203, 00144 Roma Italy, michelc.nitplielniucci@istupcti.it
(12) Opto Speed Italia s.r.l., via C. Colombo 149, 00147 Roma, Italy, fmartelli@optospeed.com

ABSTRACT

We report the main results from the IST ATLAS project on the transmission techniques for new network infrastructures. We report results on the transmission performance on 4x40 Gb/s systems over a 500 km link, including the wavelength conversion. We show that the wavelength conversion based on the PPLN device and the systems based Nx40 Gb/s are now fundamental elements for future transport networks.

1. INTRODUCTION

Future telecommunication networks operating on wide areas will have to support a total traffic of order of some Tbit/s. Such a huge capacity will be transmitted by means of the Wavelength Division Multiplexing (WDM) technique, or better with Dense WDM (DWDM) [5-6] and processed at the nodes by means of devices as Optical Cross Connects (OXC) [1] and Optical Add Drop Multiplexers (OADM) [1]. Due to the traffic increasing and to the fact that transmission at 40 Gbit/s seems to be close to field testing, we believe that future telecommunication transport networks, especially if operating on wide geographical areas, will be based on the Nx40 Gb/s transmission systems [6], even though the network design in this environment requires many ingenious contrivances [7-8]. Furthermore it is well known that the All Optical Wavelength Conversion (AOWC) is a fundamental requirement for future networks [1] and in the current literature many works consider such a process as already commercially available; this scenario is particularly evident in papers dealing with novel operation, the wavelength conversion could strongly improve the network performance. Two are the main advantages of the wavelength conversion: the dynamic allocation of the resources and the restoration. As far as the first advantage is concerned we can simply say that the wavelength conversion permits to carry the information using suitable regions of the fibre bandwidth according to the evolution of the traffic requirements along the time. Wavelength conversion can be considered as a fundamental recipe for networks based on the bandwidth-on-demand.

In this paper we report the experience of the IST ATLAS project in the field of the advanced infrastructure of transport networks. In particular we show the high performance of the nx40 Gbit/s transmission also in links encompassing G.652 fibres and in the presence of AOWC based on Periodical Polled Lithium Niobate (PPLN) devices. We also show how to implement future transport networks based on the nx40 Gbit/s transmission.

2. AN OVERVIEW OF IST ATLAS PROJECT

The aim of the ATLAS (All-optical Terabit per second LaMamba Switched transmission) project was to investigate transmission techniques at very high capacity over long distances (500-1000 km), taking into account the behaviour of some fundamental devices that will be used in future Terabit/s networks, such as the optical wavelength converters that should perform routing operations in the network nodes.

In the ATLAS project fibre-optic WDM transmission over 500-1000 km with an aggregate capacity of 1 Tbit/s was pursued by adopting return-to-zero signal format and the dispersion management technique. 40 Gbit/s and
80 Gbit/s in-line optical wavelength converters were experimented to investigate the role of the wavelength converters in optical transport networks.

The main experiment of the ATLAS project was the field demonstration of the transmission of four channels at 40 Gbit/s in a link 500 km long with an amplifier spacing of 100 km by adopting both G.652 and G.655 fibres. One of the channels was also converted in frequency along the line, simulating in this way the signal behaviour in a future transport network. Theoretical studies showed how to extend such performance to a Tbit/s transmission over distances of the order of a few thousands of kilometres.

In table 1 we report the list of the ATLAS participants. More details can be found in www.fub.it/atlas/.

<table>
<thead>
<tr>
<th>Fondazione Ugo Bordoni</th>
<th>ITALY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pirelli LABS</td>
<td>ITALY</td>
</tr>
<tr>
<td>United Monolithic Semiconductors</td>
<td>FRANCE</td>
</tr>
<tr>
<td>Opto Speed SA</td>
<td>SWITZERLAND</td>
</tr>
<tr>
<td>Thales</td>
<td>FRANCE</td>
</tr>
<tr>
<td>University of Ljubljana</td>
<td>SLOVENIA</td>
</tr>
<tr>
<td>Instituto de Telecomunicações</td>
<td>PORTUGAL</td>
</tr>
<tr>
<td>University of Paderborn</td>
<td>GERMANY</td>
</tr>
<tr>
<td>Padova Ricerche Scpa</td>
<td>ITALY</td>
</tr>
<tr>
<td>University College of London</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Istituto Superiore delle Comunicazioni</td>
<td>ITALY</td>
</tr>
<tr>
<td>Optospeed Italia</td>
<td>ITALY</td>
</tr>
</tbody>
</table>

3. TRANSMISSION EXPERIMENTAL RESULTS

In this Section we report some results on the 4x40 Gbit/s transmission performed in the PIRELLI LABS laboratories. Results on the field trial performed in Rome during summer 2002 can be found in the paper presented at OFC2003 [11].

In fig. 1 we report the scheme of our 40 Gbit/s transmitter based on the electrical 4x10 to 1x 40 Gbit/s multiplexing.

![Scheme of the 40 Gbit/s transmitter](image)

Fig. 1: Scheme of the 40 Gbit/s transmitter. By means of the 4 CW laser sources four 40 Gbit/s channels are obtained.

In fig. 2 we report the eye diagrams of the four channels after the transmission over a 500 km link encompassing G.652 fibres with an amplifier spacing of 100 km. The transmission was obtained by compensating the chromatic dispersion at each fibre span output by means of Dispersion Compensating Fibres (DCF).
Fig. 2. Eye diagrams of the four channels after the transmission over G.652 link.

Figure 3. 4 channels 40 Gb/s transmission performance over 5 x 100 km G.652. Channel 2 BER curves with different compensating map: DM and DM with -78 ps/nm pre-chirp (14 dBm/span, 4 dBm/DCF), and HDP (12 dBm/span, 10 dBm/DCF). OSNR is 17 dB for all cases.

In fig. 3 we report the BER measurements on channel 2 considering different dispersion schemes: DMS means periodically compensation of the chromatic dispersion at each amplifier position, DMSw PRECHIP is as DMS but with a prechirp at the link input [7] and HDP (high dispersive pulses) means a scheme in which all the compensation is performed at the end. As shown in figure 3, where BER curves versus received power (10 Gbit/s OTDM tributary analysed) are reported for the same channel with the different schemes, DMSw PRECHIP (the pre-chirp was -78 ps/nm) is confirmed as the best choice: no power penalty is noticeable with respect to back to back at 10^-12 BER, with 14 dBm/span and 4 dBm at DCF. With the same power levels and OSNR (17 dB) but without pre-chirp, the penalty increases and a slope decline is evident too. With HDP scheme we had to slightly decrease the power level per span (12 dBm), increasing the power levels on the DCF modules (10 dBm) instead: the performance is quite similar to straight periodic post-compensation. The results shown in fig. 3 illustrate that the multichannel transmission at 40 Gbit/s can be obtained with negligible degradation (especially by using suitable dispersion management) also in long links with strong impairments as high chromatic dispersion and long amplifier spacing [12-13].

4. ALL OPTICAL WAVELENGTH CONVERSION
One of the objective of IST ATLAS project was the development of all-optical wavelength converters based on three different methods: (i) quasi phasematched (QPM-) cascaded (2): (2)-difference frequency generation (cDFG) in Ti-diffused, periodically poled LiNbO₃ (Ti:PPLN) waveguides, (II) four-wave mixing in semiconductor optical amplifiers, and (III) non-linear switching in semiconductor quantum well structures. These techniques have different advantages, disadvantages and degrees of technological maturity. It was therefore decided to develop the three solutions and then select the most suitable for use in the ATLAS field experiments. After several experiments we have verified that the PPLN device, with polarisation independent scheme, is the one that can be assumed as almost ideal device.

In fig. 4 we report the PPNL AOWC [9].
Fig. 4. The PPLN AOWC.

In fig. 5 we report the eye diagram after the conversion with PPLN (on the left) and after the transmission in a G.655 link 500 km long. Also the 10 Gbit/s demultiplexed signal is reported.

![Eye diagram](image)

Fig. 5. Eye diagram after the conversion with PPLN (on the left) and after the transmission in a G.655 link 500 km long.

As shown by figure 5, and also by BER measurements [9], no relevant penalty was observed after conversion and transmission.

6. CONCLUSIONS

The ATLAS project has demonstrated that future reconfigurable transport telecommunication networks, also in very wide terrestrial applications, can be based on the RZ transmission at 40 Gbit/s by using the DWDM technique in combination with all-optical wavelength conversion to enable blocking free routing in the nodes. The experience made in the fabrication of electronics devices shows that 40 Gbit/s transmitter and receivers will be integrated in small devices with a predicted cost that will be comparable with those for components for 10 Gbit/s WDM networks. The achieved results, together with the recent market research reports on the growth of data traffic, show that the 40 Gbit/s WDM techniques are a correct promising solution for future networks since they can reduce the number of optical components needed in the core switches. In fact, the number and the size of switching matrices and the number of filters is reduced since only a quarter of channels is required.

REFERENCES