

Icarus: a Caching Simulator for Information Centric Networking (ICN)

Lorenzo Saino, Ioannis Psaras and George Pavlou

Communications and Information Systems Group Department of Electronic and Electrical Engineering University College London

http://icarus-sim.github.io

Outline

- Background and motivation
 - Information Centric Networking (ICN)
 - Evaluating caching performance
- Icarus simulator
 - Architecture and design
 - Modelling tools
 - Performance evaluation
- Summary and conclusions

ICN is a recently proposed networking paradigm proposing a shift of the main network abstraction from node identifiers to location-agnostic content identifiers.

ICN is a recently proposed networking paradigm proposing a shift of the main network abstraction from node identifiers to location-agnostic content identifiers.

Several implementations proposed so far: CCN/NDN, NetInf, PSIRP/PURSUIT, COMET, MobilityFirst

ICN is a recently proposed networking paradigm proposing a shift of the main network abstraction from node identifiers to location-agnostic content identifiers.

Several implementations proposed so far: CCN/NDN, NetInf, PSIRP/PURSUIT, COMET, MobilityFirst

Main principles:

- Request-response model
- Location-agnostic content addressing
- Secure the content, not the channel
- In-network caching

Important to understand:

Important to understand:

- Caching at the chunk-level <u>not</u> at the file-level (probably <u>not</u> at the packet level either)
 - As contents pass through router-caches they replace existing "old" contents
 - Caching can happen transparently into the network at random or predefined (rendezvous) points

Important to understand:

- Caching at the chunk-level <u>not</u> at the file-level (probably <u>not</u> at the packet level either)
 - As contents pass through router-caches they replace existing "old" contents
 - Caching can happen transparently into the network at random or predefined (rendezvous) points
- Replacement happens at line-speed what does this imply?
 - Overlay caching depends on centralised (control-plane) co-ordination and management of caches (or de-centralised among very few nodes) – In-network caching does not.

Important to understand:

- Caching at the chunk-level <u>not</u> at the file-level (probably <u>not</u> at the packet level either)
 - As contents pass through router-caches they replace existing "old" contents
 - Caching can happen transparently into the network at random or predefined (rendezvous) points
- Replacement happens at line-speed what does this imply?
 - Overlay caching depends on centralised (control-plane) co-ordination and management of caches (or de-centralised among very few nodes) – In-network caching does not.
- Hence: no book-keeping possible
 - Impossible to co-ordinate with other caches, or the control plane the exact location of contents cannot be known
 - Caching operations happen transparently inside the network
 - Decentralized distribution and replacement of contents in caches

Requirements:

Requirements:

• Large realistic topologies

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state
- Trace-driven simulations if possible

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state
- Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN designs but none are suitable for caching:

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state
- Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN designs but none are suitable for caching:

• Bound to a specific architecture

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state
- Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN designs but none are suitable for caching:

- Bound to a specific architecture
- Poor scalability

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state
- Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN designs but none are suitable for caching:

- Bound to a specific architecture
- Poor scalability
- Inability to run trace-driven simulations

Requirements:

- Large realistic topologies
- Many content requests to allow caches to reach steady-state
- Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN designs but none are suitable for caching:

- Bound to a specific architecture
- Poor scalability
- Inability to run trace-driven simulations

Scarce availability of open-source implementations of modelling tools for network caching research.

Icarus simulator

Icarus simulator

Python-based discrete-event simulator designed for evaluating the performance of:

- Caching and routing strategies
- Cache replacement policies

Icarus simulator

Python-based discrete-event simulator designed for evaluating the performance of:

- Caching and routing strategies
- Cache replacement policies

Non-functional requirements:

- Extensibility
- Scalability

Achieving extensibility

Achieving extensibility

 Plug-in registration system and extensive use of bridge pattern to provide loose-coupling

Achieving extensibility

- Plug-in registration system and extensive use of bridge pattern to provide loose-coupling
- Support for fnss and networkx tools

• Flow-level abstraction

- Flow-level abstraction
- Parallel execution of experiments

- Flow-level abstraction
- Parallel execution of experiments
- Minimized disk access during experiment execution

Code organized in four loosely-coupled subsystems:

• Orchestration

- Orchestration
- Scenario generation

- Orchestration
- Scenario generation
- Execution

- Orchestration
- Scenario generation
- Execution
- Results collection and analysis

Scenario generation

Scenario generation

results	\rightarrow	ResultSet

Cache performance

Workloads

Cache performance

Che's approximation

Workloads

Cache performance

- Che's approximation
- Laoutaris' approximation

Workloads

>>> import icarus as ics
>>> ics.laoutaris_cache_hit_ratio(0.7, 1000, 100)
0.359348209359255

Cache performance

- Che's approximation
- Laoutaris' approximation
- Optimal hit ratio

Workloads

Cache performance

- Che's approximation
- Laoutaris' approximation
- Optimal hit ratio
- Numeric hit ratio

Workloads

Cache performance

- Che's approximation
- Laoutaris' approximation
- Optimal hit ratio
- Numerical hit ratio

Workloads

• Zipf fit

>>> import icarus as ics
>>> ics.zipf_fit(ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf)
(0.79999999571759, 1.0)

Cache performance

- Che's approximation
- Laoutaris' approximation
- Optimal hit ratio
- Numerical hit ratio

>>> import icarus as ics

>>> ics.parse_wikibench('wikibench.txt')

Workloads

- Zipf fit
- Trace parsers

Evaluating scalability

Evaluating scalability

Scenario:

- Tree topology
- Zipf-distributed content popularity ($\alpha = 0.7$)
- Constant cache/catalogue ratio: 10%
- 500K requests per experiment

Evaluating scalability

Scenario:

- Tree topology
- Zipf-distributed content popularity ($\alpha = 0.7$)
- Constant cache/catalogue ratio: 10%
- 500K requests per experiment

Metrics:

• CPU load and memory utilization vs. content catalogue size

Processing load vs content catalogue size

Memory utilization vs content catalogue size

Summary and conclusions

Summary and conclusions

• We presented Icarus, a caching simulator for Information Centric Networking (ICN)

Summary and conclusions

- We presented Icarus, a caching simulator for Information Centric Networking (ICN)
- Designed for extensibility and scalability

Summary and conclusions

- We presented Icarus, a caching simulator for Information Centric Networking (ICN)
- Designed for extensibility and scalability
- Comprises a set of modelling tools for cache performance and workloads analysis

http://icarus-sim.github.io