
Icarus: a Caching Simulator

for Information Centric Networking (ICN)

Lorenzo Saino, Ioannis Psaras and George Pavlou

Communications and Information Systems Group

Department of Electronic and Electrical Engineering

University College London

http://icarus-sim.github.io

Outline

• Background and motivation

– Information Centric Networking (ICN)

– Evaluating caching performance

• Icarus simulator

– Architecture and design

– Modelling tools

– Performance evaluation

• Summary and conclusions

Information Centric Networking (ICN)

Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the

main network abstraction from node identifiers to location-agnostic

content identifiers.

Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the

main network abstraction from node identifiers to location-agnostic

content identifiers.

Several implementations proposed so far: CCN/NDN, NetInf,

PSIRP/PURSUIT, COMET, MobilityFirst

Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the

main network abstraction from node identifiers to location-agnostic

content identifiers.

Several implementations proposed so far: CCN/NDN, NetInf,

PSIRP/PURSUIT, COMET, MobilityFirst

Main principles:

• Request-response model

• Location-agnostic content addressing

• Secure the content, not the channel

• In-network caching

Overlay vs. In-Network Caching

Important to understand:

“What are the differences between overlay and in-network caching?”

Overlay vs. In-Network Caching

Important to understand:

“What are the differences between overlay and in-network caching?”

• Caching at the chunk-level not at the file-level (probably not at the packet

level either)

– As contents pass through router-caches they replace existing “old” contents

– Caching can happen transparently into the network at random or predefined

(rendezvous) points

Overlay vs. In-Network Caching

Important to understand:

“What are the differences between overlay and in-network caching?”

• Caching at the chunk-level not at the file-level (probably not at the packet

level either)

– As contents pass through router-caches they replace existing “old” contents

– Caching can happen transparently into the network at random or predefined

(rendezvous) points

• Replacement happens at line-speed – what does this imply?

– Overlay caching depends on centralised (control-plane) co-ordination and

management of caches (or de-centralised among very few nodes) – In-network

caching does not.

Overlay vs. In-Network Caching

Important to understand:

“What are the differences between overlay and in-network caching?”

• Caching at the chunk-level not at the file-level (probably not at the packet

level either)

– As contents pass through router-caches they replace existing “old” contents

– Caching can happen transparently into the network at random or predefined

(rendezvous) points

• Replacement happens at line-speed – what does this imply?

– Overlay caching depends on centralised (control-plane) co-ordination and

management of caches (or de-centralised among very few nodes) – In-network

caching does not.

• Hence: no book-keeping possible

– Impossible to co-ordinate with other caches, or the control plane – the exact

location of contents cannot be known

– Caching operations happen transparently inside the network

– Decentralized distribution and replacement of contents in caches

Evaluating Caching Performance

Evaluating Caching Performance

Requirements:

Evaluating Caching Performance

Requirements:

• Large realistic topologies

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

• Trace-driven simulations if possible

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

• Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN

designs but none are suitable for caching:

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

• Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN

designs but none are suitable for caching:

• Bound to a specific architecture

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

• Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN

designs but none are suitable for caching:

• Bound to a specific architecture

• Poor scalability

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

• Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN

designs but none are suitable for caching:

• Bound to a specific architecture

• Poor scalability

• Inability to run trace-driven simulations

Evaluating Caching Performance

Requirements:

• Large realistic topologies

• Many content requests to allow caches to reach steady-state

• Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN

designs but none are suitable for caching:

• Bound to a specific architecture

• Poor scalability

• Inability to run trace-driven simulations

Scarce availability of open-source implementations of modelling tools for

network caching research.

Icarus simulator

Icarus simulator

Python-based discrete-event simulator designed for

evaluating the performance of:

• Caching and routing strategies

• Cache replacement policies

Icarus simulator

Python-based discrete-event simulator designed for

evaluating the performance of:

• Caching and routing strategies

• Cache replacement policies

Non-functional requirements:

• Extensibility

• Scalability

Achieving extensibility

Achieving extensibility

• Plug-in registration system and extensive use of bridge

pattern to provide loose-coupling

@register_cache_policy('FOO')

class FooCache(Cache)

 def get(self, k):

 ...

 def put(self, k):

 ...

config

 .

 .

POLICIES = [‘LRU‘, 'FOO‘]

 .

 .

 .

Achieving extensibility

• Plug-in registration system and extensive use of bridge

pattern to provide loose-coupling

• Support for fnss and networkx tools

@register_cache_policy('FOO')

class FooCache(Cache)

 def get(self, k):

 ...

 def put(self, k):

 ...

config

 .

 .

POLICIES = [‘LRU‘, 'FOO‘]

 .

 .

 .

Achieving scalability

Achieving scalability

• Flow-level abstraction

Achieving scalability

• Flow-level abstraction

• Parallel execution of experiments

Achieving scalability

• Flow-level abstraction

• Parallel execution of experiments

• Minimized disk access during experiment execution

Architecture and design

Architecture and design

Code organized in four loosely-coupled subsystems:

Architecture and design

Code organized in four loosely-coupled subsystems:

• Orchestration

Architecture and design

Code organized in four loosely-coupled subsystems:

• Orchestration

• Scenario generation

Architecture and design

Code organized in four loosely-coupled subsystems:

• Orchestration

• Scenario generation

• Execution

Architecture and design

Code organized in four loosely-coupled subsystems:

• Orchestration

• Scenario generation

• Execution

• Results collection and analysis

Orchestration

orchestration

settings

conf

scenario results

execution

topology

events

topology

events

settings

results

results

Scenario generation

orchestration

settings

conf

scenario results

execution

topology

events

topology

events

settings

results

results

Scenario generation

content

placement topology

cache

placement

settings

topology

factory

data

parser
events

Zipf

Distr
settings

event

generator

trace

topology

Execution

orchestration

settings

conf

scenario results

execution

topology

events

topology

events

settings

results

results

Execution

Execution

Engine

settings

topology

events

Execution

Engine Strategy

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

events

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

events

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

events

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

events

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

events

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

DataCollectorProxy

events

settings

topology

events

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

DataCollectorProxy

CacheHits

Collector

Latency

Collector

Test

Collector

events

settings

topology

events

. . .

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

DataCollectorProxy

CacheHits

Collector

Latency

Collector

Test

Collector

events

results

settings

topology

events

. . .

Execution

Engine Strategy

Network

Controller

Network

View

Network

Model

DataCollectorProxy

CacheHits

Collector

Latency

Collector

Test

Collector

events

results

settings

topology

events

results

. . .

Results collection and analysis

orchestration

settings

conf

scenario results

execution

topology

events

topology

events

settings

results

results

Results collection and analysis

ResultSet
results

Results collection and analysis

ResultSet
results

writer

file

Results collection and analysis

ResultSet

reader

results

writer

file

Results collection and analysis

ResultSet

reader

results

writer

file

plot

Modelling tools

Cache performance Workloads

Modelling tools

Cache performance

• Che’s approximation

>>> import icarus as ics

>>> ics.che_cache_hit_ratio(

 ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf,

 100)

0.36482948293429832

Workloads

Modelling tools

Cache performance

• Che’s approximation

• Laoutaris’ approximation

>>> import icarus as ics

>>> ics.laoutaris_cache_hit_ratio(0.7, 1000, 100)

0.359348209359255

Workloads

Modelling tools

Cache performance

• Che’s approximation

• Laoutaris’ approximation

• Optimal hit ratio

>>> import icarus as ics

>>> ics.optimal_cache_hit_ratio(

 ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf,

 100)

0.52582651157679017

Workloads

Modelling tools

Cache performance

• Che’s approximation

• Laoutaris’ approximation

• Optimal hit ratio

• Numeric hit ratio

>>> import icarus as ics

>>> ics.numeric_cache_hit_ratio(

 ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf,

 ics.LruCache(100))

0.37861264056574684

Workloads

Modelling tools

Cache performance

• Che’s approximation

• Laoutaris’ approximation

• Optimal hit ratio

• Numerical hit ratio

Workloads

• Zipf fit

>>> import icarus as ics

>>> ics.zipf_fit(ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf)

(0.799999999571759, 1.0)

Modelling tools

Cache performance

• Che’s approximation

• Laoutaris’ approximation

• Optimal hit ratio

• Numerical hit ratio

Workloads

• Zipf fit

• Trace parsers

>>> import icarus as ics

>>> ics.parse_wikibench(‘wikibench.txt’)

Evaluating scalability

Evaluating scalability

Scenario:

• Tree topology

• Zipf-distributed content popularity (α = 0.7)

• Constant cache/catalogue ratio: 10%

• 500K requests per experiment

Evaluating scalability

Scenario:

• Tree topology

• Zipf-distributed content popularity (α = 0.7)

• Constant cache/catalogue ratio: 10%

• 500K requests per experiment

Metrics:

• CPU load and memory utilization vs. content catalogue size

Processing load vs content catalogue size

Memory utilization vs content catalogue size

Summary and conclusions

Summary and conclusions

• We presented Icarus, a caching simulator for

Information Centric Networking (ICN)

Summary and conclusions

• We presented Icarus, a caching simulator for

Information Centric Networking (ICN)

• Designed for extensibility and scalability

Summary and conclusions

• We presented Icarus, a caching simulator for

Information Centric Networking (ICN)

• Designed for extensibility and scalability

• Comprises a set of modelling tools for cache

performance and workloads analysis

http://icarus-sim.github.io

