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Information Centric Networking (ICN) 

ICN is a recently proposed networking paradigm proposing a shift of the 

main network abstraction from node identifiers to location-agnostic 

content identifiers. 

Several implementations proposed so far: CCN/NDN, NetInf, 

PSIRP/PURSUIT, COMET, MobilityFirst 

Main principles: 

• Request-response model 

• Location-agnostic content addressing 

• Secure the content, not the channel 

• In-network caching 
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Overlay vs. In-Network Caching 

Important to understand: 

“What are the differences between overlay and in-network caching?” 

 

• Caching at the chunk-level not at the file-level (probably not at the packet 

level either) 

– As contents pass through router-caches they replace existing “old” contents 

– Caching can happen transparently into the network at random or predefined 

(rendezvous) points 

• Replacement happens at line-speed – what does this imply? 

– Overlay caching depends on centralised (control-plane) co-ordination and 

management of caches (or de-centralised among very few nodes) – In-network 

caching does not. 

• Hence: no book-keeping possible 

– Impossible to co-ordinate with other caches, or the control plane – the exact 

location of contents cannot be known 

– Caching operations happen transparently inside the network 

– Decentralized distribution and replacement of contents in caches 
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Evaluating Caching Performance 

Requirements: 

• Large realistic topologies 

• Many content requests to allow caches to reach steady-state 

• Trace-driven simulations if possible  

Many simulators and prototypes are available today for evaluating ICN 

designs but none are suitable for caching: 

• Bound to a specific architecture 

• Poor scalability 

• Inability to run trace-driven simulations 

Scarce availability of open-source implementations of modelling tools for 

network caching research.  
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Icarus simulator 

Python-based discrete-event simulator designed for 

evaluating the performance of: 

• Caching and routing strategies  

• Cache replacement policies 

Non-functional requirements: 

• Extensibility 

• Scalability 
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Achieving extensibility 

• Plug-in registration system and extensive use of bridge 

pattern to provide loose-coupling 

                                     

@register_cache_policy('FOO') 

class FooCache(Cache) 

     

    def get(self, k): 

        ... 

 

    def put(self, k): 

        ... 

# config 

   . 

   . 

POLICIES = [‘LRU‘, 'FOO‘] 

   . 

   . 

   . 



Achieving extensibility 

• Plug-in registration system and extensive use of bridge 

pattern to provide loose-coupling 

• Support for fnss and networkx tools 

 

@register_cache_policy('FOO') 

class FooCache(Cache) 

     

    def get(self, k): 

        ... 

 

    def put(self, k): 

        ... 

# config 

   . 

   . 

POLICIES = [‘LRU‘, 'FOO‘] 

   . 

   . 

   . 
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Achieving scalability 

• Flow-level abstraction 

• Parallel execution of experiments 

• Minimized disk access during experiment execution 
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Architecture and design 

Code organized in four loosely-coupled subsystems: 

• Orchestration 

• Scenario generation 

• Execution 

• Results collection and analysis 
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Cache performance 

• Che’s approximation 

>>> import icarus as ics 
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Modelling tools 

Cache performance 

• Che’s approximation 

• Laoutaris’ approximation 

>>> import icarus as ics 

>>> ics.laoutaris_cache_hit_ratio(0.7, 1000, 100) 

0.359348209359255 

Workloads 



Modelling tools 

Cache performance 

• Che’s approximation 

• Laoutaris’ approximation 

• Optimal hit ratio 

>>> import icarus as ics 

>>> ics.optimal_cache_hit_ratio( 

          ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf, 

          100) 

0.52582651157679017 

Workloads 



Modelling tools 

Cache performance 

• Che’s approximation 

• Laoutaris’ approximation 

• Optimal hit ratio 

• Numeric hit ratio 

>>> import icarus as ics 

>>> ics.numeric_cache_hit_ratio( 

          ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf, 

          ics.LruCache(100)) 

0.37861264056574684 

Workloads 



Modelling tools 

Cache performance 

• Che’s approximation 

• Laoutaris’ approximation 

• Optimal hit ratio 

• Numerical hit ratio 

Workloads 

• Zipf fit 

>>> import icarus as ics 

>>> ics.zipf_fit(ics.TruncatedZipfDist(alpha=0.8, n=1000).pdf) 

(0.799999999571759, 1.0) 



Modelling tools 

Cache performance 

• Che’s approximation 

• Laoutaris’ approximation 

• Optimal hit ratio 

• Numerical hit ratio 

Workloads 

• Zipf fit 

• Trace parsers 

>>> import icarus as ics 

>>> ics.parse_wikibench(‘wikibench.txt’) 



Evaluating scalability 

           

               

                                               

                                     

                              

 

          

                                                            

 



Evaluating scalability 

Scenario: 

• Tree topology 

• Zipf-distributed content popularity (α = 0.7) 

• Constant cache/catalogue ratio: 10% 

• 500K requests per experiment 

 

          

                                                            

 



Evaluating scalability 

Scenario: 

• Tree topology 

• Zipf-distributed content popularity (α = 0.7) 

• Constant cache/catalogue ratio: 10% 

• 500K requests per experiment 

 

Metrics: 

• CPU load and memory utilization vs. content catalogue size 

 



Processing load vs content catalogue size 



Memory utilization vs content catalogue size 
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Summary and conclusions 

• We presented Icarus, a caching simulator for 

Information Centric Networking (ICN) 

• Designed for extensibility and scalability 

• Comprises a set of modelling tools for cache 

performance and workloads analysis 
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