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Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the
main network abstraction from node identifiers to location-agnostic
content identifiers.

Several implementations proposed so far. CCN/NDN, Netinf,
PSIRP/PURSUIT, COMET, MobilityFirst

Main principles:

« Request-response model

« Location-agnostic content addressing
« Secure the content, not the channel

* In-network caching
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Overlay vs. In-Network Caching

Important to understand:
“What are the differences between overlay and in-network caching?”

« Caching at the chunk-level not at the file-level (probably not at the packet
level either)
— As contents pass through router-caches they replace existing “old” contents
— Caching can happen transparently into the network at random or predefined
(rendezvous) points
» Replacement happens at line-speed — what does this imply?

— Overlay caching depends on centralised (control-plane) co-ordination and
management of caches (or de-centralised among very few nodes) — In-network
caching does not.

» Hence: no book-keeping possible

— Impossible to co-ordinate with other caches, or the control plane — the exact
location of contents cannot be known

— Caching operations happen transparently inside the network
— Decentralized distribution and replacement of contents in caches



Evaluating Caching Performance



Evaluating Caching Performance

Requirements:



Evaluating Caching Performance

Requirements:
Large realistic topologies



Evaluating Caching Performance

Requirements:

Large realistic topologies
Many content requests to allow caches to reach steady-state



Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible



Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:



Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture



Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture
« Poor scalability



Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture
« Poor scalability
 Inability to run trace-driven simulations



Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture
« Poor scalability
 Inability to run trace-driven simulations

Scarce availability of open-source implementations of modelling tools for
network caching research.
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lcarus simulator

Python-based discrete-event simulator designed for
evaluating the performance of:

« Caching and routing strategies

« Cache replacement policies

Non-functional requirements:
« Extensibility
« Scalability
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Achieving extensibility

* Plug-in registration system and extensive use of bridge
pattern to provide loose-coupling

e Support for fnss and networkx tools

@register cache policy ('FOO") # config

class FooCache (Cache)

def get(self, k): POLICIES = [‘LRU', "FOO"]

def put(self, k):
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Achieving scalability

* Flow-level abstraction
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Achieving scalability

* Flow-level abstraction
« Parallel execution of experiments
« Minimized disk access during experiment execution
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Code organized in four loosely-coupled subsystems:
« Orchestration

« Scenario generation
« Execution
* Results collection and analysis
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Results collection and analysis
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Results collection and analysis
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Cache performance Workloads

« Che's approximation
« Laoutaris’ approximation

>>> import 1carus as 1icCs
>>> ics.laoutaris cache hit ratio(0.7, 1000, 100)

0.359348209359255



Modelling tools

Cache performance Workloads
« Che's approximation

« Laoutaris’ approximation

« Optimal hit ratio

>>> import icarus as 1cs

>>> ics.optimal cache hit ratio(
ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf,
100)

0.52582651157679017



Modelling tools

Cache performance Workloads
« Che's approximation

« Laoutaris’ approximation

« Optimal hit ratio

* Numeric hit ratio

>>> import 1carus as 1icCs

>>> ics.numeric cache hit ratio(
ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf,
ics.LruCache (100))

0.37861264056574684



Modelling tools

Cache performance Workloads
« Che’s approximation o Zipf fit

« Laoutaris’ approximation

« Optimal hit ratio

* Numerical hit ratio

>>> import 1carus as 1icCs
>>> ics.zipf fit(ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf)
(0.799999999571759, 1.0)



Modelling tools

Cache performance Workloads
« Che’s approximation o Zipf fit
« Laoutaris’ approximation « Trace parsers

« Optimal hit ratio
« Numerical hit ratio

>>> import 1carus as 1icCs
>>> ics.parse wikibench (‘'wikibench.txt’”)
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Evaluating scalability

Scenario:

« Tree topology

« Zipf-distributed content popularity (o =0.7)
« Constant cache/catalogue ratio: 10%

« 500K requests per experiment

Metrics:
« CPU load and memory utilization vs. content catalogue size
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Peak RAM utilization (MB)

Memory utilization vs content catalo

gue size
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Summary and conclusions

* We presented Icarus, a caching simulator for
Information Centric Networking (ICN)

* Designed for extensibility and scalability

« Comprises a set of modelling tools for cache
performance and workloads analysis
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