iy

lcarus: a Caching Simulator
for Information Centric Networking (ICN)

Lorenzo Saino, loannis Psaras and George Paviou
Communications and Information Systems Group
Department of Electronic and Electrical Engineering

University College London

http://icarus-sim.github.io

Outline

« Background and motivation
— Information Centric Networking (ICN)
— Evaluating caching performance

 |carus simulator
— Architecture and design
— Modelling tools
— Performance evaluation

 Summary and conclusions

Information Centric Networking (ICN)

Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the
main network abstraction from node identifiers to location-agnostic
content identifiers.

Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the
main network abstraction from node identifiers to location-agnostic

content identifiers.

Several implementations proposed so far. CCN/NDN, Netinf,
PSIRP/PURSUIT, COMET, MobilityFirst

Information Centric Networking (ICN)

ICN is a recently proposed networking paradigm proposing a shift of the
main network abstraction from node identifiers to location-agnostic
content identifiers.

Several implementations proposed so far. CCN/NDN, Netinf,
PSIRP/PURSUIT, COMET, MobilityFirst

Main principles:

« Request-response model

« Location-agnostic content addressing
« Secure the content, not the channel

* In-network caching

Overlay vs. In-Network Caching

Important to understand:
“What are the differences between overlay and in-network caching?”

Overlay vs. In-Network Caching

Important to understand:
“What are the differences between overlay and in-network caching?”

« Caching at the chunk-level not at the file-level (probably not at the packet
level either)

— As contents pass through router-caches they replace existing “old” contents

— Caching can happen transparently into the network at random or predefined
(rendezvous) points

Overlay vs. In-Network Caching

Important to understand:
“What are the differences between overlay and in-network caching?”

« Caching at the chunk-level not at the file-level (probably not at the packet
level either)
— As contents pass through router-caches they replace existing “old” contents
— Caching can happen transparently into the network at random or predefined
(rendezvous) points
» Replacement happens at line-speed — what does this imply?

— Overlay caching depends on centralised (control-plane) co-ordination and
management of caches (or de-centralised among very few nodes) — In-network
caching does not.

Overlay vs. In-Network Caching

Important to understand:
“What are the differences between overlay and in-network caching?”

« Caching at the chunk-level not at the file-level (probably not at the packet
level either)
— As contents pass through router-caches they replace existing “old” contents
— Caching can happen transparently into the network at random or predefined
(rendezvous) points
» Replacement happens at line-speed — what does this imply?

— Overlay caching depends on centralised (control-plane) co-ordination and
management of caches (or de-centralised among very few nodes) — In-network
caching does not.

» Hence: no book-keeping possible

— Impossible to co-ordinate with other caches, or the control plane — the exact
location of contents cannot be known

— Caching operations happen transparently inside the network
— Decentralized distribution and replacement of contents in caches

Evaluating Caching Performance

Evaluating Caching Performance

Requirements:

Evaluating Caching Performance

Requirements:
Large realistic topologies

Evaluating Caching Performance

Requirements:

Large realistic topologies
Many content requests to allow caches to reach steady-state

Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture

Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture
« Poor scalability

Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture
« Poor scalability
 Inability to run trace-driven simulations

Evaluating Caching Performance

Requirements:

« Large realistic topologies

« Many content requests to allow caches to reach steady-state
« Trace-driven simulations if possible

Many simulators and prototypes are available today for evaluating ICN
designs but none are suitable for caching:

« Bound to a specific architecture
« Poor scalability
 Inability to run trace-driven simulations

Scarce availability of open-source implementations of modelling tools for
network caching research.

lcarus simulator

lcarus simulator

Python-based discrete-event simulator designed for
evaluating the performance of:

« Caching and routing strategies

« Cache replacement policies

lcarus simulator

Python-based discrete-event simulator designed for
evaluating the performance of:

« Caching and routing strategies

« Cache replacement policies

Non-functional requirements:
« Extensibility
« Scalability

Achieving extensibility

Achieving extensibility

* Plug-in registration system and extensive use of bridge
pattern to provide loose-coupling

@register cache policy ('FOO") # config

class FooCache (Cache)

def get(self, k): POLICIES = [‘LRU', "FOO"]

def put(self, k):

Achieving extensibility

* Plug-in registration system and extensive use of bridge
pattern to provide loose-coupling

e Support for fnss and networkx tools

@register cache policy ('FOO") # config

class FooCache (Cache)

def get(self, k): POLICIES = [‘LRU', "FOO"]

def put(self, k):

Achieving scalability

Achieving scalability

 Flow-level abstraction

Achieving scalability

* Flow-level abstraction
« Parallel execution of experiments

Achieving scalability

* Flow-level abstraction
« Parallel execution of experiments
« Minimized disk access during experiment execution

Architecture and design

Architecture and design

Code organized in four loosely-coupled subsystems:

Architecture and design

Code organized in four loosely-coupled subsystems:
« Orchestration

Architecture and design

Code organized in four loosely-coupled subsystems:
« Orchestration

« Scenario generation

Architecture and design

Code organized in four loosely-coupled subsystems:
« Orchestration

« Scenario generation
« Execution

Architecture and design

Code organized in four loosely-coupled subsystems:
« Orchestration

« Scenario generation
« Execution
* Results collection and analysis

Orchestration

conf
settings
. . 1t
scenario orchestration teSuZtS S results

topology
events

topology

events results

settings

\

execution

Scenario generation

conf
4
settings
. . 1t
scenario orchestration teSuZtS S results
topology
events
/
topology
events results
settings
\

execution

Scenario generation

data

settings
content || _
y
placement topology topology
factory [
cache
placement
topology
|
trace > parser | \
event events
: generator |
Zipft
Distr settings

Execution

conf
V
settings
: : 1t
scenario orchestration teSuZtS S results
topology
events
/
topology
events results
settings

execution

Execution

Execution

settings
topology
events

V

Engine

Execution

settings
topology | |
events

V

Engine Strategy

Execution

settings
topology |
events |
| Engine Strategy |
Network Network
View Controller
Network

Model

Execution

settings
topology | |
events
> . events
Engine > Strategy |
Network Network
View Controller

Network
Model

Execution

settings
topology | |
events

events

Engine > Strategy

V

Network Network
View Controller

Network
Model

Execution

settings
topology | |
events

events

Engine > Strategy

V

Network Network
View Controller

Network
Model

Execution

settings
topology | |
events

events

Engine > Strategy

V

Network Network
View Controller

Network
Model

Execution

settings
topology | |
events

events

Engine > Strategy

V

Network Network
View Controller

Network
Model

Execution

settings
topology | |
events

events

Engine > Strategy

V

Network Network
View Controller
Network
Model
________________ A

DataCollectorProxy

Execution
settings
topology |
events |
> . events
Engine > Strategy |

Network Network
View Controller
Network
Model
________________ A
DataCollectorProxy
A\
CacheHits Latency o Test
Collector Collector Collector

Execution
settings
topology |
events l
> . events
Engine > Strategy |
/
Network Network
View Controller
results
Network
Model
________________ e A
DataCollectorProxy
A\
CacheHits Latency o Test
Collector Collector Collector

Execution

settings
topology |
events l
> . events
Engine > Strategy |
results 7
Network Network
View Controller
results
Network
Model
________________ e A
DataCollectorProxy
A\
CacheHits Latency o Test
Collector Collector Collector

Results collection and analysis

conf
V
settings
' . 1t
scenario orchestration tESu-S results
topology
events
/
topology
events results
settings
\

execution

Results collection and analysis

results

> ResultSet

Results collection and analysis

results

> ResultSet

N\

N\
I N

writer

/- k//////////

Results collection and analysis

results

> ResultSet

N

[N\
N

|
[) |

reader writer

N

Results collection and analysis

results o pesultSet plot —> H
e \\\\\\

[N\
N

|
[) |

reader writer

N

Modelling tools

Cache performance Workloads

Modelling tools

Cache performance Workloads
« Che's approximation

>>> import icarus as 1cs

>>> ics.che cache hit ratio(
ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf,
100)

0.36482948293429832

Modelling tools

Cache performance Workloads

« Che's approximation
« Laoutaris’ approximation

>>> import 1carus as 1icCs
>>> ics.laoutaris cache hit ratio(0.7, 1000, 100)

0.359348209359255

Modelling tools

Cache performance Workloads
« Che's approximation

« Laoutaris’ approximation

« Optimal hit ratio

>>> import icarus as 1cs

>>> ics.optimal cache hit ratio(
ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf,
100)

0.52582651157679017

Modelling tools

Cache performance Workloads
« Che's approximation

« Laoutaris’ approximation

« Optimal hit ratio

* Numeric hit ratio

>>> import 1carus as 1icCs

>>> ics.numeric cache hit ratio(
ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf,
ics.LruCache (100))

0.37861264056574684

Modelling tools

Cache performance Workloads
« Che’s approximation o Zipf fit

« Laoutaris’ approximation

« Optimal hit ratio

* Numerical hit ratio

>>> import 1carus as 1icCs
>>> ics.zipf fit(ics.TruncatedZipfDist (alpha=0.8, n=1000) .pdf)
(0.799999999571759, 1.0)

Modelling tools

Cache performance Workloads
« Che’s approximation o Zipf fit
« Laoutaris’ approximation « Trace parsers

« Optimal hit ratio
« Numerical hit ratio

>>> import 1carus as 1icCs
>>> ics.parse wikibench (‘'wikibench.txt’”)

Evaluating scalability

Evaluating scalability

Scenario:

« Tree topology

« Zipf-distributed content popularity (o =0.7)
« Constant cache/catalogue ratio: 10%

« 500K requests per experiment

Evaluating scalability

Scenario:

« Tree topology

« Zipf-distributed content popularity (o =0.7)
« Constant cache/catalogue ratio: 10%

« 500K requests per experiment

Metrics:
« CPU load and memory utilization vs. content catalogue size

Processing load vs content catalogue size

—
o
w

Wall clock time (s)
2

17
o
bt

108 10% 10° 1.06 107
Catalogue size

Peak RAM utilization (MB)

Memory utilization vs content catalo

gue size

103 —
| e—e LRU
| B—8 RAND
A—4 FIFO
»—x LFU
v ¥ NULL
102
- — &
101 | | L L
103 10% 10° 109 107

Catalogue size

Summary and conclusions

Summary and conclusions

* We presented Icarus, a caching simulator for
Information Centric Networking (ICN)

Summary and conclusions

* We presented Icarus, a caching simulator for
Information Centric Networking (ICN)

* Designed for extensibility and scalability

Summary and conclusions

* We presented Icarus, a caching simulator for
Information Centric Networking (ICN)

* Designed for extensibility and scalability

« Comprises a set of modelling tools for cache
performance and workloads analysis

http://icarus-sim.github.io

