
LIRA: A Location Independent Routing Layer
based on Source-Provided Ephemeral Names

Ioannis Psaras, Konstantinos V. Katsaros, Lorenzo Saino, George Pavlou
Dept. of Electrical & Electronic Engineering, University College London

WC1E 7JE, Torrington Place, London, UK
{i.psaras, k.katsaros, l.saino, g.pavlou}@ucl.ac.uk

ABSTRACT
We identify the obstacles hindering the deployment of In-
formation Centric Networking (ICN) and the shift from the
current IP architecture. In particular, we argue that scala-
bility of name resolution and the lack of control of content
access from content providers are two important barriers
that keep ICN away from deployment. We design solutions
to incentivise ICN deployment and present a new network
architecture that incorporates an extra layer in the proto-
col stack (the Location Independent Routing Layer, LIRA)
to integrate location-independent content delivery. Accord-
ing to our design, content names need not (and should not)
be permanent, but rather should be ephemeral. Resolution
of non-permanent names requires the involvement of con-
tent providers, enabling desirable features such as request
logging and cache purging, while avoiding the need for the
deployment of a new name resolution infrastructure. Our
results show that with half of the network’s nodes operating
under the LIRA framework, we can get the full gain of the
ICN mode of operation.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks

Keywords
Location independence, Name-based routing, ICN

1. INTRODUCTION
Network routing based on content identifiers has recently

become a topic of extensive discussion, due to the benefits
that could be provided by a location-independent data dis-
tribution network [43], more commonly referred to as an
Information-Centric Network (ICN). For instance, the ICN
request-response mode of operation alleviates client mobility
issues [41] and natively supports interdomain multicast [36].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Furthermore, content security (as opposed to channel secu-
rity) is inherently supported by transmitting signed copies
of content [17]. This in turn allows for in-network caching,
which can transform the Internet into a native content dis-
tribution network [44]. Finally, as shown recently [32], the
ICN paradigm can bring benefits also at the transport layer,
where caches can be exploited to alleviate congestion.

On the other hand, enormous effort has been spent to
de-ossify the end-to-end Internet transmission model to en-
able new functionalities. Examples include IP Multicast and
Anycast and supporting IP mobility at the network layer
[15], [4], [18]. However, the difficulties of deploying those
solutions at large scale led to the design of application-
layer solutions such as overlay caching instead of native,
in-network caching, overlay indirection techniques [39], [30],
[20], DNSSEC and IPSEC to enhance security, just to name
a few. Even though these solutions have the potential to en-
able new services (or applications), they appear inferior com-
pared to an ICN mode of operation, as they cannot natively
support security, mobility, in-network caching and multicast:
in all cases the in-network forwarding entities are forced
to operate on the five-tuple <sourceIP, destinationIP,

sourcePort, destinationPort, protocol> being, therefore,
completely content-agnostic.

Arguably, the ICN paradigm has the potential to deal with
the Internet’s most daunting problems in a native manner.
To reach this point, however, a new architecture based on
core ICN principles will have to be deployed over the current
IP Internet architecture, clearly, a rather challenging task.

In this paper, we identify two main obstacles that hin-
der the deployment of ICN on top of the current Internet.
These are: i) scalability of name resolution, a core network-
ing problem [28] and ii) content provider-controlled access to
content, a business model problem, which however, is deeply
integrated into the core networking principles of today’s In-
ternet and therefore, affects the design of any new architec-
ture. Content access control here is linked to content access
logging and the transmission of content transparently to the
content provider from in-network caches. We discuss each
of these two challenges in more detail next. Based on these
considerations, in this paper, we propose a fully backward-
compatible and incrementally-deployable ICN-oriented ar-
chitecture that meets scalability concerns, but at the same
time takes into account the business requirements of the
main Internet market players.

1.1 Name resolution scalability
Two main schools of thought have emerged in the ICN-

related literature regarding name resolution and name-to-



location mapping. The first one, mainly adopted by the
original CCN/NDN proposal [17], advocates the hop-by-hop
resolution of requests or Interests at the data plane. Ef-
fectively, name resolution is coupled with name-based for-
warding with each Interest packet being locally resolved to
the next (router) hop. This approach has the advantage of
locally making forwarding decisions, but on the downside,
huge volumes of state need to be maintained in (manually-
set) FIB tables [29]. CCN/NDN routers effectively have to
keep state per packet, an issue traditionally considered as an
implementation challenge [40].1 To deal with the scalabil-
ity problems [22] of the original proposal and the huge state
that needs to be kept at all routers, recent developments
in the NDN space have proposed an NDN-based DNS sys-
tem, dubbed NDNS [1], as well as the involvement of content
providers to help in the name-resolution process [2].

The second school of thought decouples name-resolution
from name-based routing by using a separate name-resolution
system, similar in nature to DNS (e.g., [11], [5], [42], [21]).
Although this approach avoids pushing excessive state to
router forwarding tables, it requires the deployment of new
infrastructure by operators. For instance, as shown in [22],
the support of the DONA [23] architecture at tier-1 Au-
tonomous Systems (ASes) requires the deployment of small-
to-medium size data centres to support name resolution.
Such, extra infrastructure built in from scratch has the ob-
vious downsides of huge investment requirements, as well as
the shift challenge to this new mode of operation.

Moreover, focusing on the practical deployment of ICN,
the full cycle of the name resolution process still remains
unclear. Name resolution and data delivery mechanisms of-
ten build on the implicit assumption that content names or
identifiers are already available to the end users, prior the
aforementioned coupled or decoupled resolution steps. Obvi-
ously, developing a mechanism for the retrieval and delivery
of content names to the end users raises concerns regarding
both scalability aspects related to the enormous size of the
namespace, and compatibility issues with respect to both
application and network layer interfaces.

We also note that the requirements of today’s dynamic
and interactive applications would not be served adequately
by fully transparent in-network caching driven solely from
search engine content name results. We discuss and evaluate
these concerns later.

1.2 Content access control
Content Providers (CPs) and CDNs require, for commer-

cial and regulatory reasons, full control over the content re-
quested and transferred. This has been largely overlooked by
research efforts in the ICN area, which have mainly focused
on naming schemes and name resolution systems to address
scalability issues. For instance, the consensus around opaque
and permanent content names ignores the fact that content
can be served from ISP-operated in-network caches, trans-
parently to the CP or CDN. “Pay per click” business models,
however, would face significant limitations from this design
choice in an ICN setting, that would practically prevent CPs
and CDNs from billing their customers. Alternative ap-
proaches based on ISP-CDN collaborations to log content
requests cannot but be unrealistic: DNSs can keep track of
requested content and could possibly report back to the rel-

1See also [27] for an elaborate discussion on issues related to
web transfers where the current NDN model is not sufficient.

evant CPs/CDNs. This, however, would mean that SLAs
should be in place between all ISPs and all CPs/CDNs at a
global scale, a rather unrealistic assumption.

At the same time, transparent in-network caching mech-
anisms would typically allow only limited control over the
content delivered to clients. That is, coarse grained TTL-
based mechanisms would be the only means for CPs/CDNs
to manipulate updated content, leading either to the deliv-
ery of stale content, or the unnecessary delivery from the
CP. That said, active cache purging is another requirement
that calls for control of content from CPs and CDNs.

Although content access control might sound as a trivial
implementation or a business model issue, we argue that it
might well hinder the engagement of CPs and CDNs from
the adoption of ICN. Summarising, we argue that these con-
cerns of: i) scalability and incremental deployment support
of a name-oriented architecture, and ii) exclusive content
access control at the CP side with simultaneous support for
transparent in-network caching have been overlooked by the
community so far. As a consequence, the full potential of an
ICN mode of operation has not been exploited in full yet,
making the adoption and deployment of the ICN paradigm
an unrealistic target.

1.3 Contributions
Although clean slate research has revealed many of the

benefits that ICN can bring, we argue that deployability
has to be put at the forefront of any ICN design, rather
than being treated as an afterthought. We address the de-
ployability concerns discussed above by introducing a novel
information-focused network architecture, which overcomes
scalability concerns and is fully backward compatible with
the current IP architecture.

Our proposed architecture first introduces a name reso-
lution process tailored to carefully manage information ex-
posure e.g., enabling content access logging (Section 2.1).
This name resolution process is combined with a new naming
scheme, which builds on the notion of ephemeral names (Sec-
tion 2.2). Name resolution is controlled by content providers
based on a fully backward-compatible mechanism that sup-
ports in-network caching and the direct control of ephemeral
names’ lifetime, thus facilitating content access logging and
active purging of stale cached data. The proposed mecha-
nism completes the full cycle of the name resolution process,
delivering content names to clients, without imposing any
requirement for additional mechanisms.

In-network caching, name-based routing and support for
network-layer multicast are all integrated in the Location-
Independent Routing Layer (LIRA), an extra layer in the
protocol stack placed at “level 3.5” of the protocol stack,
above the IP and below the transport-layer (Section 2.3).
LIRA “absorbs” the location-independence nature of ICN,
leaving the network layer to operate based on IP addresses.
Resolution of content names does not rely on large vol-
umes of FIB table entries, and routing takes place based
on a hybrid of IP addresses (at the IP layer) and location-
independent transient content names (at the LIRA layer)
(Section 3). Our design does not require blanket adoption
in order to realise the benefits of ICN. Instead, ISPs can in-
crementally deploy LIRA nodes with little investment. Fur-
thermore, the fact that routing is (in the worst case) based
on IP addresses guarantees full backward compatibility with
the current Internet architecture. Our results show that



even with a subset of nodes upgraded to support LIRA func-
tionality, our design achieves considerable performance gains
(Section 4).

2. CONCEPTS AND COMPONENTS

2.1 Content provider-assisted name resolution
In order to deal with the scalability concerns raised above,

we design a name resolution scheme which involves the con-
tent provider and does not require extra name-based reso-
lution machinery (e.g., [5], [42], [11], [7]), or manually-set,
bloated FIB tables (e.g., [17], [13]). In particular, any user
will have to consult the CP (or CDN) and “ask” for the
name/contentID before any content transfer can start (see
next section for details on the contentID). Users reach the
content provider based on the standard procedure of the
current Internet, that is, based on URLs, DNS resolution
and IP addresses. This first part of the resolution (i.e.,
reaching the CP to get the contentID) is based on IP ad-
dresses and is location-dependent. We note that users do
not get the whole of the chunk from the CP (but only the
contentID), which can be served from any other cache in
the network. In this way, we realise semi-transparent in-
network content caching, which we argue is in the best in-
terests of both CP/CDNs and ISPs alike. As discussed later
on in this section, the second part of the name resolution,
which also leads to the content transfer itself is location-
independent, according to the philosophy of ICN. Summaris-
ing, the “content provider-controlled name resolution proce-
dure” introduced here is fully backward compatible and does
not require extra investment from ISPs, or CPs/CDNs.

2.2 Ephemeral Names
To provide full content access control to CPs, we intro-

duce the concept of ephemeral names, which are used for
location-independent content delivery. Our primary motiva-
tion behind the introduction of ephemeral names is to avoid
dissemination of the name/cID of a content to other users,
as this could potentially lead to accessing the content from
in-network caches, transparently to the CP/CDN. This sec-
tion explains the structure, usage and design principles of
these names.

2.2.1 Name Structure
The LIRA architecture uses flat names composed of two

parts (see Fig. 1). The main part of the naming structure,
the contentID, or cID reflects the name of the content it-
self and is based on the premise of ephemeral or transient
names. According to this concept, content providers choose
arbitrary strings and assign them to the content they host.
The names are flat, in the sense that they bear no struc-
ture related to routing (e.g., aggregation); however, CPs
may impose structures related to the internal organisation
of their content. Ephemeral names should be unique to
guarantee collision-free name resolution, which can be easily
achieved with the use of arbitrary hashes. The names are
self-certifying and “expire” after some time interval.2 This
transitioning interval should be coarser than the time needed
to support in-network caching and multicast (e.g., names

2A few randomly set padding bits can be used in each named
chunk to preserve both the self-certifying and the ephemeral
character of names, without inflating the chunk size.

should not change on a per-request basis) - see Section 2.2.3
for details.

E.g., Cache privilege︷ ︸︸ ︷
/service_Options︸ ︷︷ ︸
serviceID (sID)

cID obtained by CP︷ ︸︸ ︷
/contentID︸ ︷︷ ︸

cID is ephemeral︸ ︷︷ ︸
Name change granularity coarser than

characteristic time of cache

Figure 1: Ephemeral Names

The second part of the ephemeral name, the serviceOp-

tions, can be used to realise preferential treatment of con-
tent. Although the use of this part of the name is not neces-
sary in our architecture, and is not necessarily of ephemeral
nature, we believe that it can help in the caching and schedul-
ing process. For instance, the serviceOptions part can be
used to flag content that should or should not be cached.
We leave such investigations for future work.

2.2.2 Incentives and Disincentives for Adoption
In case of permanent names, search engines would operate

based on names (similarly to today’s operation based on
URLs). This operation is clearly not in the best interests
of CPs/CDNs given the “pay per click” models in use today
and transparent in-network caches used in ICN.

Transient names dis-incentivise search engines from dis-
seminating cIDs, but at the same time allow for both access
logging at the CP/CDN and transparent in-network caching.
One might claim that search engines would prefer to provide
the cID directly to users, as this would lead to faster content
access (i.e., users would not need the extra RTT to travel to
the CP/CDN to get the cID). However, given (i) the tran-
sient character of names, and (ii) the delivery of bundles of
cIDs by CPs (see Section 2.2.3), this would require search
engines to devise mechanisms for retrieving and disseminat-
ing cIDs each time they change, only to save a single RTT
in each bundle. This limits the incentives of search engines
to provide cIDs without the consent of CPs/CDNs.

Moreover, and most importantly, ephemeral names allow
CPs/CDNs to actively control the cached content served to
their clients e.g., by changing the cIDs of content chunks
existing cached copies get practically invalidated. This is an
important feature of the proposed approach, which cannot
be supported in alternative proposals (e.g., [17, 9, 13]).

2.2.3 Transitioning Interval
The combination of the name resolution at the CP, to-

gether with the ephemeral nature of content names supports
a number of desirable features. First and foremost, name
resolution is under the control of the CP, enabling access
logging. Secondly, versioning of updated content and purg-
ing of old content from in-network caches is also under the
control of the CP.

Although TTL-like techniques, such as the CCN stale-
ness option, can support content updating, it is not easy to
set such values given today’s interactive applications. Set-
ting TTL values for individual content items (e.g., [3])
would always face the tradeoff of short TTLs resulting in
unnecessary delivery from the content provider, while longer
TTLs would result in delivering outdated content. Using
ephemeral names, cached content can instead be actively
invalidated when needed.



Along the same lines, the transitioning interval of ephemeral
content names is an issue that requires further attention
and is related, among others, to the popularity of the con-
tent as well as the size of content chunks. Frequent change
of the name can result in suboptimal performance, since
each change purges the content in caches. We deal with
this tradeoff by setting the transitioning interval of content
names to a value inversely proportional to the popularity of
the content itself. Popularity is measured by the CP and
can be based on the number of requests for the content in
question, per some time interval. Although more sophisti-
cated settings can be found, with this simple setting for the
transitioning interval we avoid changing the cID of rarely
accessed content too frequently, and we also avoid leaving
the cID of popular content the same for too long.

Finally, to alleviate the need to travel to the CP for every
chunk request, we assume that upon each request for a con-
tent item, the CP sends back to the client the “up-to-date”
ephemeral names of the next few subsequent chunks, that
is, not only the name of the immediately following one. The
number of subsequent cIDs sent by the CP to the client is
left for future investigation.

2.3 LIRA: Location-Independent Routing Layer
Adding extra functionality, or altering completely the op-

eration of existing core network protocols can prove difficult
to be done incrementally (e.g., IPv6) and “flag-days” are
not an option for incorporating new components at a global
scale. For these reasons, we propose addition instead of
replacement of an extra layer to the protocol stack, which
we call Location-Independent Routing Layer (LIRA). LIRA
sits on top of the network (IP) layer and below the trans-
port layer. It operates based on ephemeral names and in-
tegrates all the required functionality to realise location in-
dependence, taking advantage of information centricity and
its well-known gains [43].

Although recent studies have proposed HTTP as the layer
that can integrate information or content centricity [30], here
we argue that in order for in-network caching and multi-
cast to be smoothly incorporated in the new ecosystem, any
information-centric operation needs to be below the transport
layer. Otherwise, the transport protocol can merely con-
nect two specific endpoints cancelling any notion of location-
independent content transfer. Instead, breaking the end-to-
end transmission model below the transport layer allows to
leverage (ICN enabled) in-network caching, both in terms of
native multi-source routing and localised congestion control
[32], going far beyond traditional IP Multicast or Anycast
mechanisms.

LIRA is implemented in just a small subset of nodes (see
Section 2.5), which can be transparently planted in the net-
work, and it manages incoming and outgoing content based
on their names. The main name management functionality
is implemented in a routing table, which we call Content
Forwarding Information Base (C-FIB) (Section 2.4).

A similar notion to the LIRA layer has been proposed in
the past in [8], but in a totally different context, addressing
the exhaustion of IPv4 addresses. The evolution of NAT
boxes (together with the painfully slow incremental deploy-
ment of IPv6) has dealt with this problem and hence, the
related efforts became obsolete.

2.4 Content Forwarding Information Base

The Content Forwarding Information Base (C-FIB) ta-
ble keeps track of recently requested and served content (in
terms of cIDs) and maintains forwarding information used
for the delivery of those content items, providing also sup-
port for in-network caching and multicast. Upon subsequent
request(s) for a content already in the C-FIB table, LIRA
is redirecting requests towards the direction where the con-
tent has been sent, or served from, similarly in principle to
breadcrumbs routing [33].

We note that the C-FIB table essentially acts as a cache
for cIDs served recently through this router (somewhat sim-
ilarly to [26] and [14]). However, C-FIB table entries are
not permanent, as in CCN’s FIB, but rather are assisting
in location-independent content delivery from neighbouring
nodes (see Section 3 for details on the C-FIB structure).

The typical structure of the C-FIB table is illustrated in
Table 1. The table maintains one entry per content chunk.
The following information is maintained for each entry: i)
cID, the content identifier of the chunk, ii) ifI , the incom-
ing interface i.e., the index of the interface from which the
content is received, that is, the content source indicated by
the DNS, iii) ifO, the outgoing interface i.e., the index(es)
of the interface(s) towards which the content is currently
being forwarded, iv) ifTI , the temporary interface, i.e., the
index(es) of the interface(s) where the content has been for-
warded, v) mIP , the multicast IP field that holds IP ad-
dresses of clients participating in a multicast session. Note
that interface entries in the C-FIB table denote real inter-
faces (i.e., directions towards which requests/content should
be forwarded) and not IP addresses of sources/destinations
(apart from the multicast IP field). By doing so we realise
the location independence property of ICN in LIRA.

2.5 LIRA Nodes
The LIRA node structure is the main component of the

proposed architecture, which integrates information centric-
ity. LIRA nodes implement the LIRA layer with its C-FIB
table discussed above in order to realise named content man-
agement and subsequently location independence. LIRA
nodes also include caches that temporarily store named con-
tent chunks (i.e., in-network caching). Although by default
all LIRA nodes include both the C-FIB table and content
caches, we also evaluate (in Section 4) the case of “lighter”
LIRA nodes, where, based on node centrality metrics and
to facilitate incremental deployment, some nodes implement
the C-FIB table and some others implement caches.

Our design does not require all nodes of a domain to be-
come LIRA nodes and it is operational regardless of this.
Being always based on IP, nodes fall back to normal IP oper-
ation and route towards the direction indicated by location-
based addresses. Note that all routers maintain the default
IP-based FIB table. Therefore, incompatibility issues or re-
quirements for simultaneous shift to ICN operation do not
exist. As we show later on in the evaluation section, an
average of 50% of nodes within a domain can provide con-
siderable performance gain. Careful network planning (e.g.,
depending on topological issues) and incremental upgrade
of normal routers to LIRA nodes gives a major advantage
to the proposed architecture in terms of deployability com-
pared to other ICN architectures.

3. OVERVIEW OF MAIN OPERATIONS
We proceed with the description of the name resolution



Client	   Server/CP	  DNS	  

DNS Response(IPCP)  
2 

1 DNS Request (URI)  

HTTP HEAD Request (URI)  
3 

4 HTTP Response (Etag=“sID/cID”) 

ICN Request (IPCP,Name=“sID/cID”)  
5 

ICR	  

6 

Figure 2: Name resolution and content delivery

R1 cID ifI ifO ifTI mIP
t1 x1 1 3 - -
t2 x1 1 - 3 -
t4 x1 1 2 3 -
t5 x1 1 - 2, 3 -

t7 x2 1 3 - -
t9 x2 1 2, 3 - B’s IP
t10 x2 1 - 2, 3 -

Table 1: Routing Table at R1 - Fig. 3

and content delivery process, illustrated in Fig. 2. We then
give details of the entries of the Content Forwarding In-
formation Base (C-FIB) table during the content delivery
process. For this purpose we use the network topology pre-
sented in Fig. 3. Tables 1 and 2 are also used to present the
entries of the C-FIB table(s) for a sequence of important
events taking place in our example scenarios (denoted with
timestamp ti).

3.1 Name Resolution and Content Delivery
The name resolution process is initiated through existing

protocols (i.e., DNS and HTTP) to guarantee backwards
compatibility and facilitate adoption of ICN.

1 As a first step (Fig. 2) and identically to what is hap-
pening today, users resolve URLs through a request to the

DNS. 2 The DNS responds with the IP address of the

content provider. 3 The user generates an HTTP HEAD
request [16] at the application layer. At this stage, routing is
location-dependent and is based on the IP address indicated
by the DNS. At the content layer, the request is asking for

the cID. 4 The CP sends back an HTTP response packet
containing the up-to-date name, i.e., cID, of the requested
content in the ETag field of the HTTP response header [16].3

The destination IP address of that packet is that of the re-
questing client. This packet can be piggybacked with data
to avoid an extra RTT between the client and the CP. In
this case, however, given that requests are sent per chunk,
we cannot take advantage of in-network caching. This op-
tion can be considered in special cases (e.g., when a client
is close to the CP and chances of finding the content cached

are slim). 5 The client issues a request for the first chunk
of the content object (e.g., client A in the example of Fig. 3).
The request includes the IP address of the CP at the IP layer
and the cID of the chunk at the LIRA layer.

3It is noted that the use of the ETag field for name resolution
does not change the semantics of the field as it is intended to
describe the content to be delivered and/or cached. More-
over, no restrictions apply to the format of this field allowing
the realisation of ephemeral names.

Client A 

Server/CP 

R4 

R2 R1 

R3 

Client B 

R1:if 3 

R1:if 2 

R3:if 1 

R3:if 2 

R2:if 2 

R2:if 1 

R4:if 2 

R4:if 1 

R1:if 1 

Client C 

R3:if 3 

Figure 3: Example topology: labels Ri : if j denote
the index j of each router’s (Ri) interface.

R3 cID ifI ifO ifTI mIP
t3 x1 1 2 - -
t6 x1 1 - 2 -

t8 x2 1 2 - -
t10 x2 1 - 2 -

Table 2: Routing Table at R3 - Fig. 3

6 LIRA nodes along the path check the cID included in

the request4 against the entries of their C-FIB table. If an
entry for the cID exists, then they forward according to this
entry. If not, they forward according to the IP address. The
IP address points to the CP, hence, content can always be
resolved according to that in the worst case, e.g., in case of
LIRA-incompatible nodes or domains.

At this point, assuming the content is not locally cached
(see Section 3.2 for details on in-network caching), the re-
quest is forwarded towards the CP. The index of the network
interface used to forward the request is marked as the ifI
for this content chunk (i.e., interface 1 - see time t1 in Ta-
ble 1). At the same time, the index of network interface
from which the request was received is marked as an output
interface (interface 3 in our example). The content chunk
is then sent back from the CP (or any other cache further
down the path). During the data transfer no change is made
in the C-FIB table entries of intermediate LIRA nodes (time
t1). When the chunk transfer completes, which is denoted by
an End of Chunk (EoC) field, the intermediate LIRA nodes
change their C-FIB entries for this cID by marking the in-
terfaces through which they forwarded the data (i.e., ifO)
as ifTI (temporary interface) - interface 3 is moved to ifTI

at t2 in Table 1. This is done since the content can possibly
be delivered from there too (i.e., the content has possibly
been cached towards this direction). When the client sees
the EoC field/bit set, it forwards the next request towards

the original CP (similarly to the initial request - step 3
above) in order to obtain the cID of the next chunk.

3.2 In-Network Caching
LIRA nodes by default support in-network caching. In the

simplest case, on-path in-network caching is supported by
simply performing a lookup of the cID of a request message,
at the local cache index. In case the requested content chunk
is cached locally, the corresponding data is returned through
the network interface the request was received from (ifO).
In our example scenario, client B issues a request for content

4We rely on the Protocol field of the IPv4 header (or the
“Next header” in the IPv6 header) to enable LIRA nodes to
identify those IP packets that can be handled by the LIRA
layer i.e., containing an ICN content name.



x1. Once the request for x1 reaches R3, the C-FIB table of
R3 is updated to include ifI = 1 and ifO = 2 (t3 in Table
2). Then, at time t4, the request for x1 reaches R1. Content
chunk x1 is found cached at R1 whose interface 2 is marked
as ifO and the content is sent towards client B.

By introducing the ifTI field in the C-FIB table we fur-
ther realise off-path in-network caching [26], as well as user-
assisted in-network caching [25], [37]. When a content chuck
is not found in the local cache, the LIRA node sends the
received request towards both the (permanent) incoming in-
terface ifI (as indicated by the name resolution process)
and the temporary interface(s) ifTI . In our example, R1

sends two requests for x1 towards both the (permanent) ifI
1 and the ifTI 3 (t4 in Table 1). Whichever of the two in-
terfaces (1 or 3) starts receiving the requested data first is
marked as the incoming interface for this content and the
remaining (temporary) interfaces are pruned down. Prun-
ing here can be realised through a negative ACK (NACK)
packet which travels towards the source of the content. If
ifI answers first, the ifTI is removed from the correspond-
ing C-FIB table entry. Alternative strategies can be applied
here, by selectively forwarding a request to one or more of
the available interfaces e.g., always forwarding only towards
an off-path cache, since requests are always routable to the
CP at the IP layer.

Finally, at time t5 when x1 transfer completes (from either
the local, or a remote cache), interface 2 is added to the list
of temporary incoming interfaces (ifTI) at R1, since x1 can
now be found this way too (similarly to t2). The C-FIB
table of R3 is also updated to include interface 2 as ifTI

(step t6).
We note that in order to avoid routing loops in case no

other device towards ifTI (client A in our case) has the con-
tent cached, we discard requests (for items in the C-FIB
table) that come in through its marked ifTI . This is done
because any LIRA node towards the ifTI (client A in this
case) will forward the request based on its IP address (car-
ried at the IP layer and always pointing towards the per-
manent content source, hence through R1 in our example)
if it finds no entry in its C-FIB table for the requested con-
tent. In turn, upon receipt of the request, R1 will send the
request back towards the same direction (towards client A
here), since it still has got the related entry in its C-FIB ta-
ble. This will result in the request travelling back and forth
creating an endless routing loop.

3.3 Multicast
Multicast support is enabled through the use of the ifO

and mIP fields of the C-FIB table. As described above, dur-
ing the chunk transfer, the network interface of the LIRA
node where the incoming data is forwarded towards is marked
in the ifO field. This ifO entry enables the LIRA node to
suppress any subsequent request for the same content chunk
by adding an extra outgoing interface to its C-FIB. This is
similar to the PIT functionality in CCN [17].5 Note that
in all above steps the IP address (at the IP layer) of re-
quest packets has been pointing to the CP and of content
chunks to the corresponding clients. However, in order to
realise multicast transmission in this case (i.e., avoid send-
ing a second request for the same chunk towards the same
direction), the LIRA node that suppresses subsequent re-

5Effectively, the C-FIB collapses both the CCN FIB and
PIT in one table.

quests needs to keep the extra IP address of the clients that
generated the requests. We deal with this situation through
the “multicast IP” (mIP ) field in the C-FIB table. When
data arrives at the branching LIRA node, it gets forwarded
to all ifO interfaces. The mIP entries are used at the IP
layer to allow for the delivery of the duplicated data to the
requesting recipients.

Note however that multicast forks further down the path
are handled locally. In our example, if an additional client
C attaches to R3 and requests for x2 during the multicast
session, its request will be suppressed by R3 which will also
store client C’s IP address in the corresponding mIP field.
R1 will not be aware of client C’s existence and R3 is respon-
sible for duplicating data for this client. Thus, the mIP
state load is distributed to the participating LIRA nodes
avoiding the overloading of nodes closer to the root of the
multicast tree.

In our example network, client A issues a request for con-
tent x2. The C-FIB table at R1 marks ifI = 1 and ifO = 3
for cID x2 (step t7). Before the transfer of x2 towards A
completes through R1 client B issues a request for x2, which
goes through R3 and reaches R1. R3 updates its C-FIB ta-
ble by putting ifI = 1 and ifO = 2 (step t8). R1 does not
forward this request further; instead it adds interface 2 to
the ifO field of x2 and also stores the IP address of client
B (taken from the corresponding IP layer field) in the mIP
field (step t9).

When x2 arrives at R1 (step t9) it is forwarded towards
client A through ifO = 3, but it is also replicated and for-
warded towards client B, through ifO = 2, using mIP as the
destination IP address. When the chunk x2 transfer com-
pletes, router R1 moves interfaces 2 and 3 and R3 moves
interface 2 to the ifTI field (step t10 - Table 1 and 2).

Note that the C-FIB table introduced here, incorporates the
functionality of both the PIT and the FIB tables of CCN.
For as long as the chunk transfer goes on and hence, the
ifO field is filled (and the ifTI field is empty - t1, t7 and t9
in R1’s C-FIB, see Table 1), the C-FIB table represents the
PIT table of CCN/NDN. That is, based on this state, LIRA
nodes are able to collapse/suppress subsequent requests for
content already requested (or under transmission) and re-
alise multicast. When the chunk transfer completes and the
entry in ifO is moved to the ifTI field (t2, t4, t5 and t10
in Table 1), then the C-FIB table reflects the FIB table of
CCN/NDN. As mentioned above, however, the C-FIB table
acts as a cache for recently served content and hence, it does
not need to keep huge amounts of state information in the
FIB part of the C-FIB. We discuss and evaluate both parts
of the C-FIB table later in Section 4.

4. PERFORMANCE EVALUATION
It is generally not common to evaluate a network architec-

ture merely in quantitative terms, given that the contribu-
tion of such studies comes mainly at a conceptual level. In
our case, the contribution of the LIRA architecture comes
mainly in terms of incremental deployment with backward
compatibility guarantees. At the same time, however, LIRA
can achieve all the quantifiable benefits of an ICN mode of
operation.

To provide a thorough performance evaluation, we analyse
conceptual and qualitative gains in Sec. 4.1 as well as quanti-
tative gains in Sec. 4.2. The quantitative evaluation focuses



on the deployment of the LIRA concept from the operators
perspective. In particular, given a fixed monetary budget
that the operator is prepared to spend in order to deploy
LIRA, we assess the best strategies of investing the capital
in terms of extra equipment, which in our case translates
to cache memory and C-FIB tables. We also demonstrate
and quantify the benefits brought by LIRA to CPs, with a
particular focus on cache purging and the control over the
freshness of the cached content.

4.1 Qualitative Evaluation
Name resolution: by handing control of the name res-

olution process to CPs, LIRA avoids the need for either the
deployment of a costly name resolution infrastructure, or
the investment on in-network resources for the support of
line-speed name resolution. The operation of the C-FIB as
a cache for names/cIDs is similar to [14]. However, LIRA
does not necessitate the use of an explicit off-path name res-
olution mechanism, as it rather falls back to IP, in a back-
ward compatible manner. At the same time, by following
a backwards compatible HTTP-supported name resolution
mechanism, LIRA presents a complete interface for the in-
teraction of end-hosts with an information-centric network.
To the best of our knowledge, no exact mechanism has been
proposed for the discovery (i.e., not only resolution) of con-
tent names in alternative ICN architectural proposals.

Control of content access: LIRA enables CPs to di-
rectly monitor and control the access of end users to their
content. Route-by-name approaches such as [17] fail to pro-
vide such support. CPs would be reluctant to accept trans-
parent access to their content, thus dis-incentivising the
adoption of such an approach to ICN by ISPs. Lookup-
by-name approaches, on the other hand, such as [10] and
[21], enable this type of control, by decoupling name reso-
lution from forwarding. However, this comes at the cost of
additional name resolution infrastructure and directly places
the content access information in the hands of ISPs; in turn,
this introduces the burden of new (business and technical)
interfaces between all CPs and all ISPs at a global scale.

Mobility: although the issue of mobility in case of LIRA
requires further investigation and at first sight it might seem
that LIRA cannot deal with mobility efficiently, due to its
dependence on IP, we note the following: upon a content
request, the CP or CDN is sending back to the client the cIDs
of the next few chunks, i.e., not just the next one. That said,
the clients operate based on IP-agnostic cIDs. Therefore,
client mobility can be natively supported, as clients request
for content based on identifiers (in combination to the IP
address at the IP layer). Source mobility, on the other hand,
is an issue that requires further investigation as is the case
with all ICN architectural proposals.

Security: by supporting self-certifying cIDs, LIRA se-
cures the content itself rather than the communication chan-
nel, similarly to other ICN architectures e.g., [17].

Implementation: the proposed LIRA functionalities can
be deployed on nodes with only firmware updates without
the need for hardware replacement or upgrade. In fact,
by relying on IP forwarding as a fallback in case of C-FIB
misses, LIRA will never result in un-routable requests/content
even if deployed on just a few nodes and with minimal mem-
ory. This is in stark contrast with previous ICN proposals
like CCN and NDN which require well-dimensioned FIB and
PIT structures to operate correctly and at line speed. C-FIB

can be loaded in DRAM, which has been shown to be able
to support line-speed per-packet lookups [45], [28], is inex-
pensive and abundant on modern routers based on either
network processors or general purpose processors. It is in
fact common to have at least a few GBs of spare DRAM
on modern routers. Since the binary code implementing
LIRA functionalities is likely to require negligible space, all
available DRAM can be used for C-FIB and caching space.
C-FIB entries in particular have very low memory require-
ments. In fact, even assuming that (i) the C-FIB is imple-
mented using a hash-table with a load factor of 0.5 and with
a circular queue for replacement and (ii) the unfavourable
case that LIRA chunks are named using SHA-512 hashes
and next hops information are coded on 2B, it is still possi-
ble to store over 15 million C-FIB entries per GB of DRAM.
This makes C-FIBs and more generally the LIRA node ar-
chitecture easy to incrementally deploy on today’s routers.

4.2 Quantitative Evaluation
As mentioned earlier, the objective of this section is to

evaluate the best possible way to invest in deploying the
LIRA concept, from the operator’s perspective. That said,
we initially evaluate the main concepts of our proposal with
regard to their projected gains in terms of cache hits. Al-
though LIRA is far from a caching-specific architecture, caching
is: i) the only straightforward quantitatively measurable as-
pect of an ICN architecture, and most importantly, ii) the
main feature that requires investment from network opera-
tors. For these reasons and without by any means under-
estimating the gains from the above-mentioned qualitative
benefits of the LIRA architecture, in this section, we focus
on the evaluation of the main concepts included in LIRA as
seen from an in-network caching perspective.

We use Icarus [35] to evaluate the performance of vari-
ous aspects of our proposed framework based on real ISP
topologies from the RocketFuel dataset [38] and synthetic
workloads [19]. Due to space limitations, we omit evaluation
of the multicast functionality offered by LIRA, since the re-
lated performance benefit is straightforward. Moreover, we
only show results for the Telstra and Abovenet topologies,
though we report that we obtain similar results with other
topologies as well. We make the code, documentation and
data required to reproduce our results publicly available.6

4.2.1 Efficiency of C-FIB and Deployment Strategies
LIRA nodes can have a content cache or a C-FIB table,

or both. Given a fixed total cache and C-FIB capacity bud-
get, in this section, we identify the best possible combina-
tion of cache and C-FIB deployment along two dimensions:
i) deployment strategies and ii) caching strategies. We at-
tempt to capture the interaction dynamics between nodes
that cache content and nodes that can route to this content,
in a location-independent manner, i.e., through C-FIB ta-
ble entries. Our first objective is to investigate the effective-
ness of C-FIB table entries in mapping the content cached in
neighbour nodes. Our second objective is to see how C-FIB
table entries eventually translate to cache hits.

Modelling the performance of a network of caches is known
to be complex [34], [12]. As a result, it is extremely difficult
to formulate optimal cache placement algorithms which are
also robust to realistic traffic variations. Arguably, the com-
plexity of the optimal cache placement problem is another

6http://www.ee.ucl.ac.uk/~lsaino/software/lira

http://www.ee.ucl.ac.uk/~lsaino/software/lira


(CH,FA) (CH,FH) (CA,FA) (CA,FH)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
-F

IB
 fr

es
hn

es
s

1 hop, LCE
2 hops, LCE
3 hops, LCE

1 hop, choice
2 hops, choice
3 hops, choice

(a) Telstra

(CH,FA) (CH,FH) (CA,FA) (CA,FH)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
-F

IB
 fr

es
hn

es
s

1 hop, LCE
2 hops, LCE
3 hops, LCE

1 hop, choice
2 hops, choice
3 hops, choice

(b) Abovenet

Figure 4: C-FIB Freshness vs. Deployment Strate-
gies and Caching Strategies, Zipf α = 0.8

(CH,FA) (CH,FH) (CA,FA) (CA,FH)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
ac

he
 h

it 
ra

tio

On-path, LCE
Off-path, LCE

On-path, choice
Off-path, choice

(a) Telstra

(CH,FA) (CH,FH) (CA,FA) (CA,FH)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
ac

he
 h

it 
ra

tio

On-path, LCE
Off-path, LCE

On-path, choice
Off-path, choice

(b) Abovenet

Figure 5: Cache Hit Ratio vs. Deployment Strate-
gies and Caching Strategies, Zipf α = 0.8

obstacle hindering ICN deployments. Therefore, motivated
by practical reasons, we propose four simple content cache
and C-FIB placement algorithms and show that they are
sufficient to provide tangible performance gains even with
partial deployments. To deploy caches and C-FIBs, we rank
nodes according to their betweenness centrality (i.e., the
amount of traffic traversing them following shortest path
routing [6]) and deploy LIRA functionality using the follow-
ing strategies:
(i) Cache in top 50% high centrality nodes, C-FIB table in
all nodes: (CH , FA).
(ii) Cache in top 50% high centrality nodes, C-FIB table in
top 50% high centrality nodes: (CH , FH).
(iii) Cache in all nodes, C-FIB table in all nodes: (CA, FA).
(iv) Cache in all nodes, C-FIB table in top 50% high cen-
trality nodes: (CA, FH).

We run simulations and measure the mean C-FIB fresh-
ness, which we define as the ratio of entries stored in C-
FIB tables which can correctly route to a copy of a content
stored in a nearby cache. This metric captures how well the
entries of the C-FIB tables deployed in the network reflect
the current state of nearby caches. We further characterise
the correct C-FIB entries by the hop distance to the LIRA
node that caches the corresponding content. Note that in all
cases, and regardless of the deployment strategy, the ratio
of C-FIB table to cache entries is fixed (see next subsection
for the evaluation of this ratio). As a result, C-FIB tables
in fewer nodes (than those that deploy caches) keep more
entries to match the number of cache slots (and vice versa).

We also analyse the results under different caching strate-
gies: Leave Copy Everywhere (LCE), according to which a
copy of a content is stored in every cache traversed and ran-
dom choice, according to which a content is stored only in
one randomly selected caching node along the delivery path.
The rationale behind our choice is to evaluate deployment
and caching performance under varying caching redundancy

[31]. Our results are shown in Figs. 4 and 5.

C-FIB Efficiency. First of all, it is important to highlight
the fact that the C-FIB table entries depict precisely the
state of neighbour caches. This is proved by the fact that
the freshness ratio in Fig. 4 directly translates to off-path
cache gain in Fig. 5: for instance, the freshness result in case
of (CH , FA) in Fig. 4a indicates that 5% of entries in the C-
FIB table can correctly route to the content in neighbour
caches. In turn, in Fig. 5a, the gain from off-path caching
(red, top part of bar) is 4.5%. This is an important result
that highlights the effectiveness of the C-FIB table in keep-
ing an accurate record of the state of nearby caches (i.e., up
to 3 hops away in our evaluation).

Deployment Strategy. In terms of C-FIB freshness, de-
ploying smaller caches over more/all nodes, i.e., (CA, F∗),
seems to be more effective in capturing the state of caches
from the C-FIB tables (i.e., higher freshness in Fig. 4). This
is explained by the fact that the “monitoring and mapping”
mechanism provided by the C-FIB table has got a wider view
of the neighbourhood and can therefore, find more content
items locally. This also translates to more off-path cache
hits in Fig. 5 for (CA, F∗).

Out of the four deployment strategies under considera-
tion here, (CH , FH) and (CH , FA) consistently perform best
in terms of cache hits (in Fig. 5). This is irrespective of the
freshness result, which shows that freshness improves when
caches are deployed over all nodes (i.e., (CA, F∗)). In other
words, it is better to have fewer but bigger caches placed
in high centrality nodes (as also shown in [6]), rather than
having smaller caches deployed in all nodes of the network.

Caching Strategy. As expected, in terms of cache hits,
choice always performs best, for all topologies and for all
deployment strategies, as a result of its reduced caching re-
dundancy. Similar results have been reported before in [31].
LCE on the other hand, performs roughly the same across
all deployment strategies. Note that the LCE result in Fig. 5
effectively reveals the performance of the CCN/NDN archi-
tecture. Due to space limitations, we do not present a full-
fledged comparison between the architectures, but Fig. 5 re-
veals very well the cache-related performance of CCN/NDN.

4.2.2 Memory Requirements and Scalability
We next quantify the performance benefit of off-path, C-

FIB-routed, caching for various values of the C-FIB-to-cache
size ratio (expressed in number of entries) and for the (CH , FA)
strategy (Fig. 6).

Considering the overall cache hit ratio (both on- and off-
path), we see a considerable increase when moving from a
ratio value of 0.25 to a ratio value of 16, due to C-FIB routing
redirections. The results are similar for a ratio equal to 32,
but the gain in this case is marginal. Therefore, given that
larger memory is required in order to deploy C-FIB tables
32 times bigger than the entries in the respective caches, we
conclude that a value of 16 is optimal. Although in absolute
values, off-path, C-FIB-based, caching contributes less than
on-path caching, the gain is still far from negligible (i.e.,
it can reach up to 50% in Fig. 6). We report that in our
simulations, the gain from off-path caching can reach 100%,
effectively doubling the gain from on-path caching.

Finally, it is interesting to note the slight decrease of on-
path cache hit ratio as the C-FIB-to-cache size ratio in-



creases. This is attributed to cases where a content request
encounters a C-FIB table entry and gets diverted to an off-
path cache, before it actually hits an existing on-path cache.
In this case, and given that the C-FIB table entry is found
earlier in the path, we report that the delay to deliver the
content back to the user is even shorter than finding the re-
quested item in an on-path cache. This is especially so in
case of LCE caching, where due to increased caching redun-
dancy, a copy of a content has good chances of being found
along the shortest path.

0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0
C-FIB/cache size ratio

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
ac

he
hi

tr
at

io

On path
Off path

(a) LCE

0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0
C-FIB/cache size ratio

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
C

ac
he

hi
tr

at
io

On path
Off path

(b) Random Choice

Figure 6: Cache hit ratio vs C-FIB size, Abovenet

4.2.3 Control of content to CPs
One of the departing points in the design of the LIRA ar-

chitecture is the direct control of content by the CPs/CDNs,
as discussed earlier. We identify two main features that give
direct control of the content to the CP or CDN. The first
one is the control of access logging. In LIRA this is accom-
plished by the content provider-controlled name resolution,
where clients need to get the up-to-date cID from the con-
tent provider. This requires an extra RTT to get to the CP
or CDN. We remind that according to our discussion in Sec-
tion 2.2.3, CPs/CDNs send more than one cID to the client,
therefore, the journey to the CP/CDN happens rarely dur-
ing the data transfer, or even only once in case of small files
(e.g., web). We assume this extra RTT to incur only a tiny
performance penalty compared to alternative proposals that
do not necessarily require this extra roundtrip.

The second feature that provides control of published con-
tent to CPs is the ability to actively perform cache purging.
As described in Section 2.2, when CPs change the cID of
a content item, previously cached items no longer get hits
from new requests and eventually get evicted (denoted as
LIRA w/o replacement). Taking a step further, we consider
an extended version of this mechanism, where data packets
explicitly indicate the cID values of the content items that
should be immediately evicted from encountered caches (de-
noted as LIRA w/ replacement).

Figure 7 shows the cache hit ratio of the above mecha-
nisms along with that of a simple TTL-based mechanism,
where any cache hit returns the content to the client, even if
this content is stale (TTL-based (all hits)) for various TTL
values. In Fig. 7, we see that the cache hit ratio in the
(TTL-based (all hits)) case increases with the value of TTL,
since content remains longer in the cache. However, this
also means that the corresponding cache hits result in the
reception of stale content. Fig. 7 also shows the cache hit
ratio for fresh only content (TTL-based (fresh only)), which
initially increases, but then steadily drops as a result of high
TTL values that increase stale cached content.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TTL (minutes)

0.170

0.175

0.180

0.185

0.190

0.195

0.200

0.205

0.210

C
ac

he
 h

it 
ra

tio

LIRA w/ replacement
LIRA w/o replacement

TTL-based (all hits)
TTL-based (fresh only)

Figure 7: Delivery of Stale Content

The LIRA w/ replacement mechanism performs consider-
ably better than LIRA w/o replacement, as it immediately
frees the caching space from unnecessary stale content, and
better than its TTL-based (fresh only) counterpart.

It must be noted that the TTL-based (fresh only) ratio is
only provided as a benchmark, as TTL-based mechanisms
cannot avoid serving stale content. On the other hand, LIRA
provides a precise mechanism to avoid serving stale cached
content altogether.

4.2.4 Incremental Deployment
We proceed to evaluate the last of the design targets be-

hind LIRA, that of incremental deployability. To assess the
performance gain of incrementally deploying the LIRA ar-
chitecture, we begin by progressively adding C-FIB tables
starting from the highest centrality nodes. We evaluate the
performance in terms of cache hits in case of caches deployed
in 25%, 50%, 75% and 100% of the nodes, starting from the
highest centrality ones.

We observe in Fig. 8 that performance stabilises with the
C-FIB table present in 20-30% of the nodes. C-FIB in less
than 20% results in suboptimal performance, but perfor-
mance does not increase considerably if we continue adding
C-FIB to more nodes. In terms of caches, a 25% deployment
rate results in poor performance, while the performance does
not improve considerably when caches are deployed in more
than 50% of nodes. The difference in performance between
the 50% and 100% of nodes is in the area of 1% improvement
in terms of cache hit ratio for the two topologies shown here
(Telstra and Abovenet).

We conclude that adding C-FIB to the top 20-30% highest
centrality nodes and caches to 50%-75% of highest centrality
nodes achieves the full performance gain of the LIRA archi-
tecture. Although here we present results for Telstra and
Abovenet topologies, our results are consistent along all six
evaluated topologies of the RocketFuel dataset.

0.2 0.4 0.6 0.8 1.0
C-FIB nodes ratio

0.09

0.10

0.11

0.12

0.13

0.14

C
ac

he
hi

tr
at

io

0.25 0.5 0.75 1.0

(a) Telstra (108 nodes)

0.2 0.4 0.6 0.8 1.0
C-FIB nodes ratio

0.08

0.09

0.10

0.11

0.12

0.13

0.14

C
ac

he
hi

tr
at

io

0.25 0.5 0.75 1.0

(b) Abovenet (141 nodes)

Figure 8: Incemental Deployment

5. CONCLUSIONS



There is a constant trend towards extra “flexibility” in
communication networks, which started with the shift from
(rigid) circuit-switching to (queuing-based) packet-switching
[24]. We see location-independent, information-centric net-
working as the natural next step towards “content switch-
ing”. To move towards this direction, however, the research
community needs to take into account the interests of the
main Internet market players, as well as those of users.

We argue that ICN research so far has focused on de-
signing conceptually sound and scalable name-based routing
architectures, but largely ignored any incentives (provided
through those architectures) to adopt the ICN technology.
The interests of content providers and CDNs are largely dif-
ferent to those of ISPs and the shift to an ICN environment
environment makes this difference even more pronounced.
That said, unless a shift to an ICN environment takes into
account the interests of both CPs/CDNs and ISPs, the in-
centives to adopt this technology will be limited.

In this paper we have taken these concerns into consider-
ation and have designed an incrementally-deployable ICN
architecture. The proposed architecture is based on the
Location-Independent Routing Layer (LIRA) and directly
involves the content provider in the name resolution pro-
cess. Furthermore, ephemeral names give more power to the
CPs/CDNs over the content they publish. Our evaluation
shows that even with a limited number of nodes implement-
ing the LIRA architecture, ISPs achieve a clear performance
gain, while at the same time CPs/CDNs have full control of
their content.

6. REFERENCES[1] A. Afanasyev. ?addressing operational challenges in named
data networking through ndns distributed database, ph.d.
dissertation, ucla. Sept. 2013.

[2] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang.
SNAMP: Secure Namespace Mapping to Scale NDN
Forwarding. In IEEE GI Symposium 2015.

[3] B. Ahlgren and B. Ohlman. NetInf Protocol Extensions for
Cache Control. IETF Internet-Draft
draft-ahlgren-icnrg-netinf-cache-control-00.txt, Feb. 2014.

[4] H. Ballani and P. Francis. Towards a Global IP Anycast

Service. In ACM SIGCOMM âĂŹ05, 2005.

[5] W. K. Chai and et al. . Curling: Content-ubiquitous resolution
and delivery infrastructure for next-generation services. IEEE
Communications Magazine, 49(3):112 –120, march 2011.

[6] W. K. Chai, D. He, I. Psaras, and G. Pavlou. Cache ”less for
more” in information-centric networks (extended version).
Computer Communications, 36(7):758–770, 2013.

[7] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K.
Ramakrishnan. COPSS: An Efficient Content Oriented
Publish/Subscribe System. In ACM/IEEE ANCS âĂŹ11.

[8] D. R. Cheriton and M. Gritter. TRIAD: A New
Next-Generation Internet Architecture, July 2000.

[9] C. Dannewitz. NetInf: An Information-Centric Design for the
Future Internet. In Proc. 3rd GI/ITG KuVS, 2009.

[10] C. Dannewitz, M. D’Ambrosio, and V. Vercellone. Hierarchical
DHT-based name resolution for information-centric networks.
Computer Communications, 36(7):736–749, Apr. 2013.

[11] C. Dannewitz and et al. . Network of Information (NetInf) -
An Information-centric Networking Architecture. Comput.
Commun., 36(7):721–735, Apr.

[12] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis,
J. Kurose, D. Towsley, and R. Sitaraman. On the complexity of
optimal routing and content caching in heterogeneous networks.
In INFOCOM, 2015 Proceedings IEEE, April 2015.

[13] A. Detti, N. Blefari Melazzi, S. Salsano, and M. Pomposini.
CONET: A Content Centric Inter-networking Architecture. In
ACM SIGCOMM ICN Workshop, ICN ’11, pages 50–55, 2011.

[14] A. Detti, M. Pomposini, N. Blefari-Melazzi, and S. Salsano.
Supporting the Web with an Information Centric Network That
Routes by Name. Comput. Netw., 56(17):3705–3722, Nov. 2012.

[15] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen.
Deployment issues for the IP multicast service and architecture.
Network, IEEE, 14(1):78–88, 2000.

[16] R. Fielding and et al. . Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999.

[17] V. Jacobson and et al. . Networking named content. In ACM
CoNEXT 2009, pages 1–12, New York, NY, USA.

[18] D. Johnson, C. Perkins, and J. Arkko. Mobility support in
IPv6. RFC 3775, June 2004.

[19] K. Katsaros, G. Xylomenos, and G. Polyzos. GlobeTraff: A
Traffic Workload Generator for the Performance Evaluation of
Future Internet Architectures. In NTMS 2012, pages 1–5, May.

[20] K. Katsaros, G. Xylomenos, and G. C. Polyzos. Multicache: An
overlay architecture for information-centric networking.
Computer Networks, Elsevier, 55:936–947, March 2011.

[21] K. V. Katsaros and et al. . On inter-domain name resolution
for information-centric networks. In IFIP Networking 2012.

[22] K. V. Katsaros and et al. . On the Inter-domain Scalability of
Route-by-Name Information-Centric Network Architectures. In
IFIP Networking ’15.

[23] T. Koponen and et al. . A data-oriented (and beyond) network
architecture. In ACM SIGCOMM 2007, pages 181–192.

[24] J. Kurose. Information-centric networking: The evolution from
circuits to packets to content. Computer Networks, 2014.

[25] H. Lee and A. Nakao. User-assisted In-network Caching in
Information-centric Networking. Comput. Netw.,
57(16):3142–3153, Nov. 2013.

[26] M. Lee, K. Cho, K. Park, T. Kwon, and Y. Choi. SCAN:
Scalable Content Routing for Content-Aware Networking. In
IEEE ICC 2011, pages 1–5, June.

[27] I. Moiseenko, M. Stapp, and D. Oran. Communication Patterns
for Web Interaction in Named Data Networking. In ACM ICN
’14.

[28] D. Perino and et al. . Caesar: A content router for high-speed
forwarding on content names. In ANCS ’14, pages 137–148.

[29] D. Perino and M. Varvello. A reality check for content centric
networking. In ACM SIGCOMM ICN Workshop.

[30] L. Popa, A. Ghodsi, and I. Stoica. HTTP As the Narrow Waist
of the Future Internet. In ACM Hotnets-IX, 2010.

[31] I. Psaras, W. K. Chai, and G. Pavlou. In-Network Cache
Management and Resource Allocation for Information-Centric
Networks. IEEE TPDS, 25(11):2920–2931, 2014.

[32] I. Psaras, L. Saino, and G. Pavlou. Revisiting Resource
Pooling: The Case for In-Network Resource Sharing. In ACM
HotNets-XIII, 2014.

[33] E. Rosensweig and J. Kurose. Breadcrumbs: Efficient,
Best-Effort Content Location in Cache Networks. In
INFOCOM 2009, IEEE, pages 2631–2635, April 2009.

[34] E. Rosensweig and J. Kurose. A network calculus for cache
networks. In INFOCOM, 2013 Proceedings IEEE, pages
85–89, April 2013.

[35] L. Saino, I. Psaras, and G. Pavlou. Icarus: a Caching Simulator
for Information Centric Networking. In SIMUTOOLS 2014.

[36] M. Sarela and et al. . Forwarding anomalies in Bloom
filter-based multicast. In INFOCOM, 2011 IEEE.

[37] V. Sourlas, L. Tassiulas, I. Psaras, and G. Pavlou. Information
resilience through user-assisted caching in disruptive
content-centric networks. In IFIP Networking’15.

[38] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp
topologies with rocketfuel. In SIGCOMM ’02, pages 133–145.

[39] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.

Internet indirection infrastructure. In ACM SIGCOMM ’ĂŹ02.

[40] C. Tsilopoulos, G. Xylomenos, and Y. Thomas. Reducing
Forwarding State in Content-Centric Networks with
Semi-Stateless Forwarding. In IEEE INFOCOM, April 2014.

[41] G. Tyson and et al. . A survey of mobility in
information-centric networks: Challenges and research
directions. In NoM ’12.

[42] G. Tyson and et al. . Juno: A Middleware Platform for
Supporting Delivery-Centric Applications. ACM Trans.
Internet Technol., 12(2):4:1–4:28, Dec. 2012.

[43] G. Xylomenos and et al. . A Survey of Information-Centric
Networking Research. Communications Surveys Tutorials,
IEEE, 16(2):1024–1049, Second 2014.

[44] G. Zhang, Y. Li, and T. Lin. Caching in information centric
networking: A survey. Computer Networks, 57(16), 2013.

[45] D. Zhou and et al. . Scalable, high performance ethernet
forwarding with cuckooswitch. In CoNEXT ’13, pages 97–108.


	Introduction
	Name resolution scalability
	Content access control
	Contributions

	Concepts and Components
	Content provider-assisted name resolution
	Ephemeral Names
	Name Structure
	Incentives and Disincentives for Adoption
	Transitioning Interval

	LIRA: Location-Independent Routing Layer
	Content Forwarding Information Base
	LIRA Nodes

	Overview of Main Operations
	Name Resolution and Content Delivery
	In-Network Caching
	Multicast

	Performance evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Efficiency of C-FIB and Deployment Strategies
	Memory Requirements and Scalability
	Control of content to CPs
	Incremental Deployment


	Conclusions
	References

