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Abstract—The heterogeneous nature of the applications, tech-
nologies and equipment that today’s networks have to support
has made the management of such infrastructures a complex task.
The Software-Defined Networking (SDN) paradigm has emerged
as a promising solution to reduce this complexity through
the creation of a unified control plane independent of specific
vendor equipment. However, designing a SDN-based solution
for network resource management raises several challenges as
it should exhibit flexibility, scalability and adaptability. In this
paper, we present a new SDN-based management and control
framework for fixed backbone networks, which provides support
for both static and dynamic resource management applications.
The framework consists of three layers which interact with
each other through a set of interfaces. We develop a placement
algorithm to determine the allocation of managers and controllers
in the proposed distributed management and control layer. We
then show how this layer can satisfy the requirements of two
specific applications for adaptive load-balancing and energy
management purposes.

Index Terms—Software Defined Networking, Adaptive Re-
source Management, Decentralized Network Configuration.

I. INTRODUCTION

The evolution of information and communication technol-
ogy (ICT) over the past thirty years has heavily influenced
the life of the modern consumer. The crucial role played by
ICT today has catered for a persistent demand in terms of
new services and applications with strict requirements in terms
of availability, service quality, dependability, resilience and
protection. This has resulted in increasingly complex networks
and software systems that need to support heterogeneous ap-
plications, technologies and multi-vendor equipment, making
the management of network infrastructures a key challenge.

The vision of Software-Defined Networking (SDN) as a key
enabler for simplifying management processes has led to keen
interest from both the industry and the research community,
who have been investing significant efforts in the development
of SDN-based solutions. SDN enables the control of networks
via a unified plane which is agnostic to vendor equipment
and operates on an abstract view of the resources. Among
its advantages, flexibility and programmability are usually
highlighted, in addition to simplification of management tasks
and application deployment through a centralized network
view [1] [2] [3].

Centralized management and control solutions have, how-
ever, limitations. In addition to resilience, scalability is an
important issue, especially when dealing with operations that
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require dynamic reconfiguration of network resources. Cen-
tralized approaches are generally well-suited for implementing
the logic of applications for which the time between each
execution is significantly greater than the time to collect,
compute and disseminate results. As a consequence, adaptive
management operations with short timescales call for both
distributed management and control approaches, which are
essential enablers of online resource reconfigurations.

In this paper, we present a novel SDN-based management
and control framework for fixed backbone networks. The
proposed framework, based on SDN principles, follows a
layered architecture where the communication between layers
is achieved through a set of interfaces. Although different
approaches have been proposed in the literature, these have
either mainly focused on the control plane (e.g [4] [5]) or
considered centralized management solutions (e.g. [6] [7]). In
contrast, the framework presented in this paper relies on a
distributed management and control layer, which consists of
a set of local managers (LMs) and controllers (LCs) forming
separate management and control planes. The modular struc-
ture of this layer is a salient feature of our approach. This not
only simplifies the integration of management applications, but
also offers significant deployment benefits, allowing control
and management functionality to evolve independently. For
example, management and control components from different
vendors can be used together, but also the functionality of
management applications can be updated without disrupting
active network services. The degree of distribution in each
plane (number of elements) depends both on the physical
infrastructure as well as the type of management applications
to consider. The exchange of information between distributed
elements in each plane is supported by the management
substrate developed in our previous work [8] [9].

We investigate how the proposed framework can be used
to support adaptive resource management operations which
involves short timescale reconfiguration of network resources,
and we discuss the main research issues/challenges associ-
ated with the deployment of such a distributed solution. In
particular, we show how the requirements of the adaptive
load-balancing and energy management applications proposed
in our previous work [10] [11] [12] can be satisfied by the
functionality and interfaces of the framework. In addition, we
develop a placement algorithm to determine the allocation
of LMs and LCs (both in number and mapping to network
equipment) according to topological characteristics of the
physical infrastructure. Based on real network topologies, we
show how the parameters of the algorithm can be tuned
to control the allocation. We also evaluate the performance
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TABLE I
MAIN ACRONYMS.

ARMA Adaptive Resource Management Application
EM Energy Management
FW Forwarding
LB Load-Balancing
LC Local Controller
LCO Local Controller Orchestrator
LM Local Manager
LMO Local Manager Orchestrator
MTR Multi-Topology Routing
RLC Router Line Card
RMA Routing Management Application
TE Traffic Engineering

of the load-balancing and energy management applications
in terms of resource utilization based on real traffic traces
and compare their performance to different schemes. The
results demonstrate that a significant reduction in terms of
link utilization and energy consumption can be achieved in a
scalable manner.

The remainder of this paper is organized as follows. Section
II provides background information. Section III describes the
main components and interfaces of the proposed framework
and highlights the operations performed by each component.
Section IV presents the placement algorithm. An overview of
the adaptive resource management applications is provided in
Section V. Section VI describes in detail how the requirements
of these applications are supported by the proposed frame-
work. The results of the evaluation are presented in Section VII
and Section VIII discusses related work. Finally, conclusions
and future directions are provided in Section IX.

II. DEFINITIONS AND BACKGROUND

In this section, we first define some of the basic terms and
notations used in this paper and give background information
on SDN. We also present the network management substrate,
which forms the communication basis of the proposed ar-
chitecture. In the last sub-section, we provide information
about Multi-Topology Routing which serves as the routing
mechanism for achieving path diversity in the context of the
two management applications considered in this work. For
clarification purposes, the main acronyms used in this paper
are summarized in Table I.

A. Definitions
We consider network topologies represented by the sets of

network links L and nodes N . We refer to network edge nodes
as the set of nodes generating and absorbing traffic and we
represent this set by NE. We refer to all other nodes as core
nodes. For any pair of edge nodes (i, j) ∈ NE, sdij represents
the source-destination pair of source node i and destination
node j. Each sdij is associated with a volume of traffic v(sdij)
that represents the traffic demand between source node i and
destination node j. We define the traffic flow F (sdij) as the
2-tuple (sdij, v(sdij)) and the set of traffic flows φi locally
originating at edge node i ∈ NE as follows:

∀i ∈ NE, φi = { F (sdij), j ∈ NE } (1)

B. Software-Defined Networking

The main principle of SDN lies in the decoupling of
network control from forwarding hardware [13]. In the SDN
architecture, physical network devices are represented as basic
forwarding elements (usually referred to as switches), forming
a data plane, and are supervised by a network-wide control
platform consisting of a set of software components (the
controllers) [5]. The control platform can be seen as a logically
centralized control plane which operates on a global network
view and which implements a range of control functions.
The controllers interact with the switches via a standardized
interface which is used to collect network state information
and distribute control commands to be enforced in the network.
The existence of a standard interface enables the separation of
the control and forwarding logic and, as such, supports the
independent evolution of both planes.

Although there is no formal requirement for the choice of
the interface to use, OpenFlow [14] has progressively imposed
itself as the de facto standard given the massive support from
both academia and industry [3]. As stated in its specifications,
it provides an open protocol to define the basic primitives for
programing the forwarding plane of network devices [13]. In
the OpenFlow model, the network traffic is identified as a set
of flows which are defined according to a set of pre-defined
match rules instantiated by the controller in the flow tables of
the switches. Each flow is associated with a set of instructions
used to control how traffic should be routed and treated in the
network.

Recently, the Open Networking Foundation (ONF) has pre-
sented an architecture for SDN in a technical report [15]. The
proposed architecture consists of the following three planes:
(i) a data plane, comprising the set of network elements, (ii)
a controller plane, with a set of SDN controllers which have
exclusive control over a set of network resources and (iii) an
application plane, implementing a set of network/management
applications which are executed through the control plane. The
communication between the planes is realized in a hierarchical
manner through a set of interfaces.

C. Network Management Substrate

In our previous work [8] [9], we developed an in-network
management approach for fixed backbone networks, in which
an intelligent substrate is used to enable the dynamic re-
configuration of network resources. Compared to traditional
management solutions, where reconfigurations are decided
offline by a centralized management system that has a global
view of the network, reconfiguration decisions are directly
taken in a decentralized and adaptive fashion by the decision-
making entities distributed across network edge nodes, based
on periodic feedback from the network. The decision-making
entities are organized into a management substrate (MS),
which is a logical structure used to facilitate the exchange of
information. In particular, it is used for coordination purposes
since it provides a means through which decision-making
points can communicate.

Any node in the substrate can directly communicate only
with its neighbors, which are defined by the topological
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structure used. The choice of this structure can be driven by
different parameters related to the physical network, such as its
topology, the number of edge nodes, but also by the constraints
of the coordination mechanism between the nodes and the
associated communication protocol. The overhead incurred by
the communication protocol in terms of delay and number of
messages exchanged, for example, is a key factor that can
influence the choice of the structure [9].

D. Multi-Topology Routing

To achieve their objectives, most resource management
approaches employ routing protocols that can support path
diversity. Multi-Topology Routing (MTR) [16] [17] is a stan-
dardized extension to the common Interior Gateway routing
Protocols, i.e. OSPF and IS-IS, which can provide a set of
multiple routes between any source-destination (S-D) pair in
the network by enabling the virtualization of a single physical
network topology into several independent virtual IP planes.

In order to determine to which topology packets need to be
routed, these are marked at network ingresses with the Multi-
Topology Identifier (MT-ID) of the routing topology to which
the corresponding traffic flows have been assigned. A separate
routing table needs to be implemented for each topology (i.e.
routing scheme) in each router, so that upon receiving a traffic
flow, the router analyzes the MT-ID marked in the packets and
forwards the packets to the next-hop according to the relevant
routing table [18]. The configuration of the different virtual
planes is part of an offline process which computes a set
of desired IP virtual topologies given the physical network
topology.

Splitting ratios, enforced at network ingresses, can subse-
quently control the portion of an incoming traffic flow to be
routed over each of the virtual planes.

III. MANAGEMENT AND CONTROL FRAMEWORK

Resource management in fixed networks is usually per-
formed by external offline centralized systems, which opti-
mize network performance over long timescales. Typically,
the central manager operates on a global view of the net-
work, which facilitates the implementation of management
applications. However, while centralized/offline solutions are
adequate for network operations that do not require frequent
reconfigurations (e.g. computation of MTR planes), they are
not appropriate for applications that adapt to traffic and
network dynamics (e.g. online traffic engineering). In addition
to the single point of failure, these approaches have limitations
especially in terms of scalability (i.e. communication overhead
between the central manager and devices at runtime) and lag
in the central manager reactions, which may result in sub-
optimal performance. To overcome these limitations, dynamic
management applications and control should rely on a dis-
tributed framework. In this section, we present a hierarchical
resource management and control framework for fixed back-
bone infrastructures in the context of SDN environments.
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Fig. 1. Proposed framework.

A. Architecture

In the proposed framework, the network environment is
conceptually divided into three layers as shown in Fig. 1.
The bottom layer represents the physical infrastructure, which
consists of network switches1 and links, and can be defined
as the data or forwarding plane. The second layer consists of
a set of local controllers (LCs) and managers (LMs), forming
the distributed control and management planes, respectively.
Finally, the third layer represents the centralized management
system.

A key characteristic of the proposed framework is its
modular nature, which enables the separation between the
management application logic (represented by LMs) and the
control logic (represented by LCs). As a result, this allows the
two to evolve independently, offering increased design choices
and flexibility for the system vendors, as well as simplified
integration of network applications, while maintaining inter-
operability.

More specifically, the LCs and LMs are software compo-
nents which are in charge of controlling and managing the net-
work resources (i.e. switches and links), respectively. Each LC
is responsible for a set of network switches, which define its
scope of control, so that a network switch is controlled by one
LC only. In addition, each LC is logically associated with one
or more LMs. The LMs implement the logic of management
applications (e.g. traffic engineering) and are responsible for
making decisions regarding the settings of network parameters
- for example to compute new configurations that optimize
resource utilization - to be applied in the switches under their
responsibility. In order to take management decisions, the LMs
communicate through the management substrate, as described
in Section II-C and shown in Fig. 1. The substrate, which
was proposed in our previous work [8], is implemented as an
integral part of the framework and is used by LMs to exchange
information about the network state and the configurations to
apply. Configuration decisions taken by LMs are provided to

1In this paper, we assume that each network node is represented by an
OpenFlow switch.
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peering LCs, which define and plan the sequence of actions
to be enforced for updating the network parameters. These
actions are then mapped to OpenFlow instructions sent-to
and executed-by the switches. It is not the intention of this
paper to propose a specific planning mechanism and mapping
functions. These are implementation choices that depend on
the type of inputs from the management applications. The sep-
aration of concerns between LMs and LCs provides significant
deployment benefits since changes can be applied to LMs in
an operational environment independently of the LCs and vice
versa. In particular, replacing or updating the management
logic can be achieved without stopping the network as LCs
can rely on existing rules.

The number of LMs and LCs to deploy, as well as the
association between the two, can depend on different factors
such as the size and topology of the physical network, or the
type of management applications to support. In this paper, we
adopt a configuration similar to the one depicted in Fig. 1. We
consider an equal number of LCs and LMs and a one-to-one
mapping between them. In addition, LCs and LMs interact
with the same set of switches, i.e. there is a perfect overlap
between their zones of responsibility. As shown in Section
VI, such a model is well suited to the resource management
application scenarios investigated in this paper.

The centralized management system consists of two com-
ponents, namely, the Local Controller Orchestrator (LCO),
which supervises all LCs, and the Local Manager Orchestrator
(LMO), which supervises all LMs. These are responsible for
longer term operations, for example those that pertain to
the life cycle of LMs and LCs. In particular, they are used
to determine the number of LMs and LCs to deploy, their
location, as well as their zone of responsibility.

It should be noted that the proposed architecture is com-
patible with the generic ONF SDN model [15]. However,
while the report does not elaborate on the specifics of each
layer, we go a step further in this paper by investigating
the issues that arise from the requirements and realization
of the functionality of such an architecture. In particular, we
investigate how the distributed management and control planes
can support dynamic operations.

B. System Design and Interfaces
The three layers of the proposed architecture are realized

with a set of functional components and interfaces that
facilitate the interaction/communication between the various
components. These are depicted in Fig. 2 and elaborated
below.

1) Functional Components: From an architectural view-
point, the system can be decomposed into four main com-
ponents.

Central Management System The functionality of the
central management system pertains to long term management
operations. The LM Substrate Orchestrator module imple-
ments methods to compute the structure of the management
substrate. The Application Orchestrator module is responsible
for performing a high-level control of the management appli-
cations which are instantiated in the network. In particular,
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Fig. 2. Overview of system components and interfaces.

this module decides how the logic of each application should
be distributed across the different LMs (i.e. to select the LMs
which need to be involved in the decision-making process of
a given application). The LC Substrate Orchestrator module is
concerned with the supervision of LCs. The decisions taken by
the central management system rely on information obtained
from the Global Network View, which maintains a global
knowledge about the environment, such as the physical net-
work topology. It should be noted that, in this work, we do not
elaborate on issues associated with gathering such information
and generating a global network view. This component is
included in Fig. 2 for completeness purposes to illustrate how
this view can be used by other components of the framework.

Local Manager From a functional viewpoint, a LM can be
represented by three main modules. The Monitoring Module is
concerned with functions related to network monitoring, such
as data collection, filtering, aggregation etc., and in particular,
it enables each LM to create its own local network view. Fur-
thermore, it also allows the LM to maintain consistency with
the network view of other LMs. Network information collected
and generated by the Monitoring Module can be stored on the
local memory of the LM. The logic to perform management
operations is realized by Management Application Modules,
which maintain information tables and implement algorithms
to decide on the configurations to apply. A module is defined
for each management application and each LM can implement
a different number of applications. The decision of whether a
module should be instantiated on a given LM is made by the
Application Orchestrator and depends on the application type.
Finally, the Routing Module implements basic methods related
to the routing functionality (e.g. shortest path computation).

Local Controller An instance of a LC is represented
by three main modules. The Storage Module consists of a
set of local storage structures, which are used to maintain
information received from the LMs regarding the configuration
output of management applications. Based on this informa-
tion, the Planning Module determines the actions to take in
order to (re)configure the switches, for example, according to
mapping functions. This also encompasses scheduling methods
to decide on how and when actions should be applied. The
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Execution Module is responsible for translating the planned
actions into a set of configuration commands (e.g. OpenFlow)
to be enforced in the switches.

Switch The basic functionality of the network switches is
forwarding. In the context of OpenFlow, switches perform
packet lookups and forwarding. They are represented by
one or more Flow Tables and an OpenFlow channel to an
external controller [14]. Each table entry is mapped to a
flow and is associated with a set of instructions to apply
to matching packets. The number of tables to configure,
as well as their structure, depends on the nature of the
management applications supported by the system. It should
be noted that different applications may have different
requirements in terms of structures and capabilities to be
embedded in the switches (e.g. support for hashing functions).

2) Interfaces: Some previous research initiatives on SDN
(e.g. [1] [15]) have used the notion of northbound/southbound
to refer to the different interfaces. The relevance of such a
terminology presupposes, however, that the controller(s) can
be regarded as the focal element(s) of an SDN architecture.
In the proposed framework, both LMs and LCs act as the
focal points and, as such, we define the name of the various
interfaces based on the identity of the interacting components
instead.

The interaction between the different components of the
proposed architecture is supported by the interfaces shown in
Fig. 2. The communication between the orchestrator compo-
nents (LMO and LCO) and the LMs and LCs is supported
by the O-M and O-C interfaces, respectively. The exchange
of messages between the LMs and the LCs, for example
regarding new configurations computed by the management
application modules, is supported by the M-C interface. The
M-S interface is defined between the LMs and the switches. It
serves monitoring purposes, so that each LM can build its own
local view of the network by directly collecting information
from the set of switches under its responsibility. Since the
network information is primarily needed by the LM, the M-
S interface bypasses the LC to avoid additional processing
and delay. Finally, the interaction between the LCs and the
switches is supported by the C-S interface. Switches can
report network events to the LCs, which, in turn, instruct
them about configuration updates to apply (e.g modification of
table entries). This interface can be realized by the OpenFlow
protocol, however, extensions will be required to enable the
configuration of more than one table type.

C. Operations

This subsection provides a detailed description of the main
operations performed by each component of the architecture.

Management Operations The main difference between the
management operations performed by the central management
system and the LMs concerns the timescale at which they
are executed. The central management system performs long
term operations, which concern the computation of static
configurations based on a global view of the network (e.g.
connectivity/topology). These rely on a set of algorithms,

which are usually invoked at long timescales (e.g. in the order
of days/weeks) and are executed in an offline manner. The
placement of LMs and LCs, the organization of the manage-
ment substrate and the computation of virtual MTR planes
are examples of such operations. In order to take management
decisions, the central manager uses network-wide information
maintained by the Global Network View component. This
stores information related to the network topology, as well
as to the structure of the distributed management and control
planes. Any changes in the environment (e.g. node failure)
are reported to the central system since these can affect the
current settings and should subsequently trigger appropriate
reconfigurations.

Short to medium term management operations are per-
formed by the LMs in the distributed management plane. Short
term operations are concerned with management decisions
taken in the order of seconds/minutes, with failure recovery
mechanisms and adaptive splitting ratio reconfiguration al-
gorithms being representative examples. In contrast, medium
term operations deal with configurations which need to be
updated less often (e.g. every few hours), such as the route
computation between two nodes. The decisions can be taken
independently by each LM based on local knowledge of the
network, which is acquired from switches under their respon-
sibility. However, in order to avoid configuration inconsisten-
cies, the LMs may also coordinate their decisions through
the management substrate. In particular, they can exchange
information available locally about network statistics.The char-
acteristics of the coordination process are application-specific.

Control Operations Control operations are performed by
the LCs on switches under their scope of control, based on
directives received from the LMs. More specifically, the LCs
are responsible for configuring the entries of the tables imple-
mented in the switches by deciding which entry(ies) should be
installed, removed or updated, and also when possible changes
should be applied. They act as intermediate entities between
LMs and switches, capable of translating the decisions of
the management modules into commands to be executed to
modify table entries in the switches. In addition, LCs can
also control which configurations should be applied and when.
For instance, a LC may decide to instantiate entries for a
subset of the flows in order to satisfy the memory capacity
constraint defined for a table. Configurations that are not
directly enforced are stored in the local Storage Module.

At the network level, each incoming packet is matched
against entries in successive tables implemented in the
switches based on rules. These define whether the packet
satisfies some characteristics (i.e. belonging to a given traffic
flow). In case of a positive match, the actions defined for the
matching entry are added to the action set associated with the
packet. In case the packet does not match any entry, it is sent to
the relevant LC through the C-S interface in order to determine
how it should be processed. Upon receiving a packet request,
the LC defines the set of actions to be applied based on the
configurations stored in the Storage Module and instantiates
the corresponding new table entries in all the switches under
its zone of control.



6

IV. LOCAL MANAGER/CONTROLLER PLACEMENT

A key deployment aspect of the decentralized management
and control planes is the distribution of LCs and LMs. It was
recently argued by Heller et al. in [19] that one of the key
parameters to take into account when designing a SDN-based
architecture for large networks (i.e. WAN) is the propagation
delay between the controller(s) and the network devices. In
the case of the architecture proposed in this paper, a ”good”
configuration can be thought, from a qualitative point of view,
as one that can reduce the communication delay between the
LM/LCs and the network components without significantly
increasing the management overhead (e.g. due to the coordi-
nation between LMs). For instance, while assigning a LM/LC
to each network switch can optimize the communication
delay, this may also significantly affect the complexity of the
coordination mechanism required to harmonize management
decisions (i.e. volume of messages and delay).

In this section, we present an approach to compute the
placement of LCs and LMs in the distributed management and
control planes for the specific case depicted in Fig. 1, where
the mapping of LCs to LMs is one-to-one. Given a network
topology, the approach aims at determining the number of
LM/LCs to deploy, their location, as well as the switches these
are connected to, with the objective of minimizing the distance
(in terms of hop count) between the switches and the LM/LCs.
To avoid overloading the text, we use the term LC to refer to
the pair LM-LC in the rest of this section.

A. Placement Algorithm

The placement problem can be formulated as an uncapaci-
tated facility location problem, which is known to be NP-hard.
It has been addressed in several application domains, ranging
from the selection of network service gateways (e.g. [20]) to
the deployment of sensor networks (e.g. [21] [22]). In this
work, we develop an approach based on a modified version of
the leader node selection algorithm proposed by Clegg et al.
in [23], which more closely relates to our application scenario.
The algorithm, called Pressure, aims at determining, given a
dynamic network environment, the subset of nodes on which
to install monitoring points in order to minimize the average
distance (in terms of hop count) between the monitoring
entities and the network nodes. While Pressure has a similar
objective to the one considered here, it was originally designed
for dynamic network topologies and cannot be directly applied
to the LC placement problem. To account for the requirements
of a static topology, we modify the logic of Pressure and
extend it to incorporate an initialization step and a terminating
condition, which are essential in this case. The output of the
new algorithm, which we refer to as PressureStatic, provides
the number of LCs to deploy, their location, as well as the
configuration of their mapping to network switches.

More specifically, PressureStatic follows a greedy approach,
where the LCs are iteratively added in the network one-by-one.
The main principle is to select, at each step, the location at
which, if a LC is installed, will lead to the largest reduction
in terms of average distance. To decide on the location, the
algorithm maintains a list of locations at which it is still

possible to install a LC and, at each step, it calculates the
Pressure score of the node i associated with each of these
locations as follows [23]:

P (i) =
∑
j∈N

max(0, lj − di,j) (2)

where for all j in N , lj represents the distance between
node j and the LC to which it is currently connected and for
all i and j in N , di,j is the distance from node i to node j. The
node with the highest score is then selected to attach the next
LC and based on the updated list of selected locations, the
algorithm finally determines to which LC each network node
should be logically connected, so that a node is connected to
its closest available LC.2

B. Algorithm Initialization and Terminating Condition

1) Initialization: Due to the greedy nature of the Pres-
sureStatic algorithm, the order according to which LC loca-
tions are selected can affect the resulting configuration. Given
that this is directly driven by the choice of the first placement
location, the objective of the initialization step is to determine
how to best select this location. In practice, different strategies
can be implemented, ranging from simple random selection
methods to more sophisticated approaches which can take into
account some topological characteristics of the locations. We
analyze and discuss in detail the effects of the initialization
step in Section VII.

2) Terminating Condition: Given that the objective of the
proposed placement algorithm is to minimize the average
distance of LCs to switches, the optimal configuration would
be the direct one-to-one mapping of LCs to network switches.
However, as previously explained, a fully distributed solution
has inherent limitations in terms of scalability. The purpose
of the terminating criterion is to provide a condition under
which no more LC should be added to the network. In order
to derive such a condition, we build upon the observations
formulated by Heller et al. in [19], in which they investigated,
for a wide range of network topologies, the ”ideal” number
of controllers to deploy in order to minimize the controller-
to-switch communication latency. It was shown that, in most
cases, the gain in terms of latency reduction tends to decrease
as the number of controllers increases.

To evaluate the performance of PressureStatic with respect
to the distance reduction improvement with the introduction
of a new LC, we first define the terminating condition as a
constraint on the maximum number of LCs to deploy. As such,
the algorithm stops when the number of selected LCs is equal
to the maximum authorized value. We then apply the algorithm
to the four networks presented in Table II.

For each network, we vary the maximum authorized value
from 1 to the total number of nodes in the topology and
determine, for each case, the resulting average distance. We
note D̄k the average switch-LC distance in case the total
number of LCs is equal to k. To measure the benefit of having

2It should be noted that a network node is connected to one LC only.
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TABLE II
NETWORK CHARACTERISTICS.

Network # Nodes # Bidirectional Links
Abilene [24] 12 15
Geant [25] 23 37

Germany50 [26] 50 88
Deltacom [27] 92 129
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Fig. 3. Evolution of the value of τk+1 with the number of LCs.

multiple LCs, we then define, for all k in [2;N ], the parameter
ωk as follows:

∀k ∈ [2;N ], ωk =
D̄k

D̄1
(3)

ωk represents the gain, in terms of distance reduction, when
using k ≥ 2 LCs compared to the case where only one LC
is used. Based on the ωk values, we then define, for all k in
[2;N ], the parameter τk+1 as follows:

∀k ∈ [2;N − 1], τk+1 =
ωk+1 − ωk

ωk
(4)

The value τk+1 represents the improvement, in terms of
distance gain, when an extra LC is added to the network. Fig. 3
shows the evolution of the τk+1 values for the four considered
topologies. As observed, all networks follow the same trend -
the improvement in terms of distance gain reduction rapidly
decreases until reaching a stage where it slowly converges to
zero. These results corroborate the observations formulated in
[19] and show that when reaching a certain number of LCs,
the addition of an extra LC does not yield significant benefits
in terms of average LC-to-switch distance reduction.

Based on these results, we define the terminating condition
according to a threshold imposed to the gain improvement
τk+1. The algorithm terminates if the value of τk+1 is smaller
than the input threshold. We further investigate the influence
of the threshold value in Section VII. It should be noted that
with the proposed approach, the minimum number of selected
LCs is always equal to 2 and that the introduction of a new
LC always leads to a positive improvement (i.e. reduces the
average distance). The pseudo-code of the PressureStatic algo-
rithm is presented in Fig. 4. Its time complexity is dominated
by the number of nodes in the network, i.e. O(N2).

Pseudo-code PressureStatic Algorithm
Inputs: Set of nodes; Terminating condition.
0. Select initial LC location.
1. Compute Pressure score of all nodes not already selected as a LC
location.
2. Select the node with the highest score.
3. Check if the selection satisfies the terminating condition.
if it is satisfied then

End algorithm.
else

Add selected node to the list of LC locations and go to step 1.
end if
Outputs: Set of LC locations; Switch-LC mapping.

Fig. 4. Pseudo-code of the PressureStatic algorithm

V. ADAPTIVE RESOURCE MANAGEMENT

Initial demonstration of management applications in SDN
environments relied on centralized solutions (e.g. [7] [28]).
While these are well-suited for computing long term network
configurations, they have limitations which make them unable
to efficiently deal with dynamic resource reconfigurations.
Adaptive resource management approaches call for the de-
velopment of distributed solutions. In our previous work, we
investigated a new approach to support dynamic resource
reconfiguration functionality in the context of load-balancing
(LB) [10] [11] and energy efficiency management (EM) [12]
applications. This section describes the main characteristics of
the proposed approach.

A. Management Functionality

The resource management decision process is distributed
across the network edge nodes, which are organized into
a management substrate (Section II-C) and embedded with
dedicated management logic that enables them to perform
reconfigurations based on feedback regarding the state of the
network. More specifically, based on path diversity provided
by MTR, the reconfiguration decisions of both applications
concern the traffic splitting ratios applied at network ingresses
so that individual objectives are met.

In the case of the LB functionality, the objective is to
balance the load in the network by moving some traffic
away from highly utilized links towards less utilized ones in
order to disperse traffic from hot spots. In order to minimize
the maximum utilization in the network, the load-balancing
algorithm iteratively adjusts the splitting ratios of the traffic
flows, so that traffic can be moved away from the link with
the maximum utilization lmax.

Exploiting the fact that many links in core networks are
bundles of multiple physical cables [29], the objective of the
EM approach is to offload as many router line cards (RLCs)
as possible, which can subsequently enter sleep mode. RLCs
can be full if their load is equal to their capacity, utilized
if their load is not zero and less than their capacity, and
non-utilized if they have zero load. One of the key decisions
when adjusting the splitting ratios concerns the bundled link to
consider for (a) removing traffic from, and (b) assigning that
traffic to. This decision is based on a ranked list of all utilized
RLCs in the network according to their load. Traffic load is
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iteratively moved from the least utilized RLC to more utilized
ones that can accommodate this load and thus potentially fill-
up their remaining capacity, without activating new RLCs in
the process.

The adaptation of the splitting ratios for both applications is
performed in short timescales, for instance, every 15 minutes.

B. Adaptation Process

In order to adjust the splitting ratios of network traffic
flows, both applications rely on an adaptation process, which
is an iterative process triggered periodically by the nodes in
the substrate (i.e. managers). It consists of a sequence of
reconfiguration actions decided in a coordinated fashion.

To prevent inconsistencies between concurrent traffic split-
ting adjustments, these are made in a collaborative manner
between nodes involved in the process, so that only one node
is permitted to take reconfiguration decisions at a time. The
node selected at each iteration, which we refer to as the
decision-making point, is responsible for executing locally a
reconfiguration algorithm, which tries to adapt the splitting
ratios of local traffic flows (i.e. originating at the corresponding
edge node) so that the resource optimization objective can be
met.

To select a unique decision-making point, each node in the
substrate is associated with an unique identifier. This can be
defined based on the actual network identifier of the node (e.g.
address) or determined according to some of the characteristics
of the node, for example with respect to its local traffic flows.
The identifiers are used to compute a ranked list of nodes,
which is made available at each node in the substrate using
the communication protocol defined in [9]. The node with the
highest identifier is initially chosen to be the decision-making
point. Upon completing the reconfiguration locally, it sends
a message to the next node in the list (i.e. node with the
second highest identifier), which then becomes the decision-
making point for the next reconfiguration interval, and so on.
The adaptation process terminates if no further adjustments
can be performed or if the algorithm reaches the maximum
number of permitted iterations, which is a parameter of the
system.

C. Reconfiguration Algorithm

The reconfiguration algorithm is executed by the decision-
making point at each iteration of the adaptation process. It
follows a greedy process that successively recomputes the
splitting ratios of the local traffic flows of the decision-making
point. Based on information available locally and received
from other nodes in the substrate, the algorithm determines the
link lrem from which traffic should be removed. In case of the
LB approach, this is the link with the maximum utilization,
while for the EM approach, this is the link with the least
utilized RLC. The algorithm then tries to adjust the splitting
ratios of the flows which contribute to the load on lrem in
order to move traffic away from the link. The outcome of the
algorithm at each iteration is either positive, which means that
part of a local flows can be diverted from lrem, or negative if
this is not possible.

Pseudo-code Reconfiguration Algorithm
Inputs: Link statistics; Splitting ratios.
while adjustments are possible do

Determine the link lrem and Lflows list of flows traversing lrem.
if Lflows is empty then

End algorithm.
else

f ← first flow in Lflows

while canContinue and nbTested ≤ size list Lflows do
Adjust ratios of f.
if valid configuration then

canContinue = false
else

f ← Lflows.next()
Increment nbTested.

end if
end while
Update link statistics.

end if
end while
Output: Updated splitting ratios.

Fig. 5. Pseudo-code of the reconfiguration algorithm

The algorithm first identifies the local traffic flows that can
be diverted from lrem. In particular, a flow qualifies if it is
routed over lrem in at least one virtual topology but not all
topologies, i.e. there exists at least one alternative topology
in which the traffic flow is not routed over lrem. Those flows
are then considered iteratively until the first one that can lead
to an acceptable configuration is determined. In this case, the
splitting ratios of the set of topologies in which a flow is
routed over lrem are decreased by a factor δ− while others
are increased by a factor δ+. The process terminates when
no further local adjustments can be performed. The pseudo-
code of the reconfiguration algorithm is presented in Fig. 5.
Its time complexity is theoretically defined by the number of
local traffic flows to reconfigure and is in the order of O(N2)
in the case of a PoP-level topology with N nodes.

VI. MANAGEMENT APPLICATION REQUIREMENTS

In this section, we show how the requirements of the two
adaptive resource management applications described in the
previous section can be satisfied by the functionalities and
interfaces of the proposed SDN architecture.

A. Local Manager Substrate

As described in Section III-C, short to mid term man-
agement decisions are taken by the LMs organized into a
management substrate. In practice, the range of operations that
a LM can perform depends on the Management Application
modules which the LM implements. Whether a LM should be
involved in the decision-making process of a given application
is driven by the characteristics of the switches (e.g. edge/core
switch) under its responsibility.

To enable the proposed adaptive resource management
approach, two functions need to be supported by a LM.
The first one concerns routing decisions, which are taken
by a Route Management Application (RMA) module and
the second concerns the reconfiguration of splitting ratios,
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which is implemented by an Adaptive Resource Management
Application (ARMA) module (one instance of RMA and
ARMA per application). The configuration used in this paper
assumes that the allocation of LMs is driven by the placement
of LCs, in which case each LM is responsible for the set of
switches attached to its peer LC. As such, two scenarios can
be considered:
• the switches under the responsibility of a LM are core

switches only. In this case, the LM implements the RMA
module only.

• there is at least one edge switch under the LM respon-
sibility. In this case, the LM implements both the RMA
and ARMA modules and is responsible for configuring
the splitting ratios of the local traffic flows of all the edge
switches to which it is connected.

To realize the functionality of a given application, the
LMs involved in the decision-making process may need to
communicate through the management substrate. In the case of
multiple applications, a separate management substrate needs
to be computed for each application and implemented in the
relevant ARMA module. Each substrate defines the set of
neighbors of the LMs and their substrate identifier. These
identifiers are used by the ARMA module to compute the
ordered list of nodes in the substrate and to select the decision-
making point at each iteration of the adaptation process (see
Section V-B).

B. Management Application Functionality Requirements

Long Term Configurations Long term configurations are
computed by the centralized management system. In the
context of the resource management scenario considered here,
these concern the computation of the MTR planes and the
structure of the substrate associated with each management
application. The MTR plane computation algorithm is exe-
cuted in an offline fashion by the Application Orchestrator.
Based on information retrieved from the Global Network View
component about the physical network topology, the algorithm
determines the number and structure of the virtual topologies
needed to satisfy the path diversity requirements. The con-
figuration of each plane is then passed to the RMA module
of all LMs through the O-M interface. The structure of each
substrate is computed by an offline algorithm implemented
in the LM Substrate Orchestrator. The resulting structure
information is passed to the RMA and ARMA modules of
associated LMs.

Adaptive Resource Management The logic to execute
the load-balancing and energy management functionality is
implemented by the ARMA module of each involved LM. As
depicted in Fig. 6, the ARMA implements four components.
The Adaptation Process component controls the execution of
the reconfiguration algorithm (see Section V-C), which adjusts
the splitting ratios of the local traffic flows controlled by
the LM. The Management Substrate Information component
maintains information about the structure of the management
substrate, such as the set of neighbor LMs and their ordered
list. The Link & Flow Information component consists of
multiple tables containing information about the network links
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Fig. 6. Adaptive Resource Management Application module

(e.g. capacity, utilization etc.) and characteristics of the local
flows (e.g. splitting ratio configuration, demand etc.). Network
statistics are updated based on information received from other
LMs through the substrate or retrieved from the local LM
monitoring module. Based on the ARMA module, the LMs
associated with at least one edge switch periodically (e.g. every
15 minutes) compute the vectors of splitting ratios for every
source-destination pair in the network. These are then sent to
the LCs to which the LMs are connected and stored for future
enforcement.

C. Routing Functionality Requirements

The RMA module interacts with the Routing module which
implements methods to compute routing parameters (e.g.
Dijkstra shortest path). In the scenario considered here, two
routing configurations need to be computed that we refer to
as traffic engineering (TE) and forwarding (FW). The TE
configuration is computed at every LM involved in the splitting
ratio reconfiguration process and represents the full network
path from any source switch controlled by the LM to any
destination switch in every MTR plane. The FW configuration
is computed at every LM and is used to determine the interface
on which packets (received at any network switch) need to be
sent to reach their destination via the shortest path in each
MTR plane. The results are sent by each LM to its attached
LC, which then configures the forwarding policies in all the
switches under its responsibility.

In most network topology cases, the switches along the path
between a S-D pair may not all be under the responsibility of
a single LM. As a result, inconsistencies between the TE and
FW configurations may occur. In particular, this can happen
when multiple equal cost shortest paths exist. To illustrate
this issue, we consider the simple example depicted in Fig.
7. All links have a weight equal to 1. The full path from S1
to S6 is computed at LM 1. There are two equal shortest
paths between S1 and S6: path p11 : {1; 2; 3; 4; 6} and path
p12 : {1; 2; 3; 5; 6}. Assume that path p12 is selected by
LM 1. In order to route packets, forwarding policies need to
be implemented in each of the switches. Due to its scope of
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responsibility, LM 1 can only decide how to forward packets
from S1 and S2; it does not have any control on how the
packets for S6 are routed from S3 onwards. Switches S3, S4,
S5 and S6 are controlled by LM 2. There are two equal cost
shortest paths from S3 to S6: path p21 : {3; 4; 6} and path
p22 : {3; 5; 6}. To ensure the consistency with the TE path
considered by LM 1, LM 2 should choose path p22 when
deriving the forwarding policies to apply for packets from
S1 to S6. To avoid inconsistent decisions, all LMs should
therefore apply a common path selection strategy (for example
based on the identifier of the interfaces). This ensures that the
FW decisions are in accordance with the TE decisions.

D. Switch Configuration

In order to enforce TE decisions at the network level,
incoming packets need to be marked at the network edges
with the identifier of the MTR plane to which they have been
assigned based on the computed splitting ratios. Although
OpenFlow does not currently support MTR, the latest version
of the specifications introduces support for MPLS labeling
and VLAN tagging [14]. In addition, a proposal for multipath
routing [30], which relies on the group option defined in the
OpenFlow protocol, has been released by the ONF. As such,
we believe that the current protocol could be easily extended
to support MTR.

The TE application requires that traffic splitting happens
at network edges only. Packets that belong to the same TCP
flow are always assigned to the same topology and no further
adjustment is permitted along the route. This ensures that all
packets in one TCP flow follow only a single path to the
destination, as such avoiding out-of-order delivery issues that
deteriorate the performance of TCP [31]. As a result, this
has implications on the way incoming packets need to be
processed in the different switches along the path between
a S-D pair. More specifically, switches can act as source or
transit depending on how they process packets. A switch acts
as source switch for incoming packets if a) it is an edge switch,
and b) packets belong to one of the switch’s local traffic flows.
In this case, the switch needs to assign packets to the relevant
MTR plane and execute the following steps:

1) Determine to which local traffic flow the packet belongs.

2) Enforce the relevant splitting ratios to determine the
MTR plane on which to route the packet.

3) Mark the header with the identifier of the selected plane.
4) Forward the packet according to the configuration of the

selected MTR plane.

A switch acts as a transit for incoming packets if a) it is
an edge switch but incoming packets do not belong to one of
the switch’s local traffic flows, or b) it is a core switch. In
this case, packet processing consists mainly in forwarding the
packets according to the configuration of the MTR plane to
which they have been assigned, i.e.

1) Determine to which local traffic flow the packet belongs
and to which MTR plane it is assigned.

2) Forward the packet according to the configuration of the
relevant MTR plane.

Each packet is processed according to the information
retrieved from the packet header (e.g. source IP, destination
IP, MTR ID etc.), which is used to match the packet against
flow entries in the different Flow Tables implemented in each
switch. Table entries are pro-actively configured by the LC to
which each switch is connected based on routing and splitting
ratio configurations information maintained by the Storage
module. In case of a table miss (i.e. no entry for the traffic flow
to which the packet belongs), switches should be configured
to send the packet to their LC, which then decides on the
processing to apply (i.e. to create new table entries).

In order to balance the traffic across the different MTR
planes, a hashing scheme, such as the one proposed by Cao
et al. in [32], could be implemented in each edge switch and
parametrized for each traffic flow (i.e. S-D pair) according
to the values of the splitting ratios. This, however, suggests
the availability of a mechanism to enable the programmability
of the hashing function, which is currently not possible with
OpenFlow. An alternative solution could use a simple hack
based on the available options (e.g. by configuring the bit-
masks associated with some of the flow entry matching fields).
Although this may have the advantage of not requiring any
extension to the protocol, it may not provide the same level
of control as the hashing method.

VII. EVALUATION

The logic of the LM and LC Orchestrator Modules and the
Adaptive Resource Management Application Module has been
implemented in a Java-based simulated environment. This
section presents the results of the performance evaluation of
the LC placement algorithm and the load-balancing and energy
management approaches based on real network topologies and
traffic traces.

A. Placement Algorithm Performance

We evaluate the performance of PressureStatic based on
the four network topologies presented in Table II. Given that
its output is affected by the location on which the first LC
is added, we consider, for all topologies, all possible initial
locations, covering as such the totality of the input space.
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Fig. 8. Number of selected local controllers.

1) Influence of the Initial and Terminating Criteria: As de-
scribed in Section IV-B2, the terminating condition is defined
according to the threshold imposed to the distance reduction
gain improvement. From Fig 3, it can be inferred that setting
the value of the threshold more than 10% will result, for all
topologies, in the selection of 2 LCs only. To investigate how
the threshold influences the number of selected LCs, we apply
the algorithm using improvement values of 2.5%, 5% and
10%. The results are presented as boxplots in Fig. 8.

Several observations can be made from the results. It can
first be noted that, for all topologies, the number of selected
LCs decreases as the value of the threshold increases, which
is consistent with the results depicted in Fig. 3. Larger
threshold values force the algorithm to terminate prematurely.
In addition, it can be observed that the size of the network
(i.e. number of nodes) is not the main factor affecting the
number of selected LCs. On average, a similar number of LCs
are selected in the Geant, Germany50 and Deltacom networks
for all cases. This can be explained by the definition of the
terminating threshold which considers distance reduction gain
in absolute values. Finally, the boxplots depict a variation in
the number of selected LCs, which shows that the choice of
the first LC location influences the output of the algorithm.

To determine how to choose the initial location, we inves-
tigate the existence of a correlation between the number of
selected LCs and the actual topological location of the node
to which the first LC is connected. Given that the objective of
the placement algorithm is to reduce the average LC-switch
distance, we characterize the node location according to its
average distance factor which is defined as follows:

∀i ∈ N , ∆(i) =

∑
j∈N\{i} di,j

|N |2
(5)

The value of ∆ represents the proximity of a node in terms
of average distance to the rest of the network nodes. The
smaller the value is, the closer the node is, on average, to the
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Fig. 9. Number of selected LCs vs. average distance factor

other network nodes3. For each network node i, we calculate
its value ∆(i) and record the number of selected LCs when the
first LC is connected to node i. The correlation between the
values of the average distance factor of the initial LC location
and the number of selected LCs is depicted in Fig. 9 for the
four considered networks with a threshold value of 5%.

In all cases, the number of LCs tends to decrease as the
value of ∆ increases. In other words, when the initial location
is on average close to every other node, a large number of
LCs tends to be selected by the algorithm. In contrast, if the
initial location is off-centered, a small number of LCs tends
to be selected. As indicated by equation (4), the value of
the improvement factor τk+1 depends on the previous gain
ωk. When the first LC is attached to an off-centered node,
the algorithm tends to select a more ”central” location for
the second LC in order to maximize the distance reduction.
As a result, this leads to a substantial gain improvement. In
comparison, the subsequent additions of LCs produce lower
reduction in terms of distance, and, as such, do not satisfy
the threshold constraint. In contrast, when the initial location
is more ”central”, the rates of distance reduction associated
with each additional LC tend to be on average lower but
comparable between themselves, which leads to the selection
of a larger number of LCs. Similar results were obtained with
the other threshold values but are not reported here due to
space limitations.

The results demonstrate that the number of LCs selected for
a given network can be tuned by controlling the settings of the
terminating condition and the initial LC placement. In practice,
it is expected that the number of LCs should increase with
the size of the network topology in order to minimize both
the LC-switch and LC-LC distances. This can be translated
into the following parameter settings: low threshold value and
central initial LC position for large scale networks, and high
threshold value and off-centered initial position for smaller
scale networks. The settings for the topologies considered in
this paper are presented in Table III.

2) Heuristic Performance: Clegg et al. showed in [23] that
the placement computed by the Pressure algorithm signifi-

3By definition, the ∆ values depend on the size of the network.



12

TABLE III
PLACEMENT ALGORITHM PARAMETER SETTINGS.

Network Number of Average distance Threshold
size nodes factor value

Small less than 30 max(∆) 10%

Medium 30 to 100 min(∆) 5%

Large more than 100 min(∆) 2.5%

cantly outperforms any random configuration in terms of LC-
switch distance. Another factor to consider for evaluating the
performance of the proposed placement heuristic is to compare
its output to the optimal placement of the same number of
LCs (i.e. optimum average switch-LC distance). In order to
derive the optimum value, we formulate the placement of n
LCs as an Integer Linear Programming (ILP) problem with
the followings parameters. Let NLC be the total number of
LCs to deploy. For all i and j in N , let di,j be the distance
between i and j. For all i in N , let xi be the binary variable
equal to 1 if a LC is attached to i, 0 otherwise. In addition,
for all i and j in N , let yi,j be the binary variable equal to 1
if node i is connected to LC attached to node j, 0 otherwise.
Finally, for all i in N , let li be the distance between node i
and the LC to which it is connected.

The objective of the ILP is to determine the values of xi
and yi,j which minimize the average LC-switch distance, i.e.
formally:

minimize
1

|N |
·
∑
i∈N

li (6)

subject to the following constraints:

∀i ∈ N ,
∑
j∈N

di,j · yi,j = li (7)

∀i ∈ N ,
∑
j∈N

yi,j = 1 (8)

∀i ∈ N , j ∈ N , yi,j ≤ xj (9)

∀j ∈ N , xj ≤
∑
i∈N

yi,j (10)∑
j∈N

xj ≤ NLC (11)

Constraint (7) defines the LC-switch distance. Constraint
(8) ensures that each switch is connected to one LC only.
Constraint (9) guarantees that a switch is associated with a
location only if a LC is attached there and constraint (10)
forces the ILP to position a LC on a location only if at least
one switch is associated with this location. Finally, constraint
(11) ensures that the total number of LCs is at most equal to
NLC .

For each network topology in Table II, we apply the ILP
for all values of NLC relevant to that network (derived from
Fig. 9). Based on the algorithm output, we then determine the
optimal LC-switch distance and compare it to the one obtained
with PressureStatic for the same number of selected LCs. The
results are shown in Fig. 10. In the case of PressureStatic,
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Fig. 10. Performance of PressureStatic with threshold 5% vs. optimum
average LC-switch distance.

the best, average and worst distance values recorded for the
considered configuration are reported. It is worth noting that
since switches and LCs can be physically attached to the same
location (distance equal to 0), the average LC-switch distance
can be lower than 1.

As observed, the placement computed by PressureStatic
gives close to optimal performance in terms of average LC-
switch distance. In the case of the Abilene network, the
proposed algorithm is able to compute the optimal placement.
In all other cases, the deviation from the optimum decreases
as the number of LCs increases. The highest deviation (16%)
is obtained with Deltacom and 4 LCs.

3) Placement optimization objective: The algorithm aims
at minimizing the average LC-switch distance. The number of
LM/LCs, however, may also be driven by other parameters. In
the proposed architecture, each LC is logically connected to
a set of switches forming clusters. In practice, the number
of switches attached to an LC can affect the volume of
information which needs to be maintained and processed by
the LC. To investigate the effect of PressureStatic on the
cluster size distribution, we compute the standard deviation of
the size of the clusters attached to each LC for each network
and configuration. To account for the variation incurred by the
choice of the first LC location, we plot the results as boxplots
in Fig. 11. The closer the value of the standard deviation is
to 0, the more uniformly distributed in terms of size are the
clusters.

The results show that PressureStatic can lead to unbalanced
clusters. The heterogeneity in terms of cluster sizes tends to
increase as the number of nodes in the network increases.
The trade-off between latency reduction and homogeneity of
the volume of information to maintain at each LC could
therefore be taken into account in the placement objective to
control the clustering of switches. Increasing the homogeneity
of the cluster size may, however, lead to the selection of a
larger number of LM/LCs, which raises challenges regarding
the choice of the management substrate structure to use to
organize the LMs (Section II-C). In [11], we showed that while



13

0
1

2
3

4
5

Abilene
S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

0
1

2
3

4
5

Geant
0

1
2

3
4

5

Germany50

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

0
1

2
3

4
5

Deltacom

Fig. 11. Standard deviation of the cluster size with a threshold of 5%.

simple structures such as the full-mesh or ring models suit well
the case where a small number of nodes is involved in the
substrate, these have limitations when this number increases.
In this case, the use of a more sophisticated structure such as
the one presented in [9] should be considered. The proposed
structure, which is a hybrid model, offers a trade-off between
the full-mesh and the ring models in terms of communication
cost and volume of information that needs to be maintained
by each substrate node.

B. Adaptive Resource Management Scheme Performance

We evaluate the performance of the load-balancing (LB) and
energy management (EM) approaches, described in Section V,
under the LM plane configuration determined by the placement
algorithm for the Abilene, Geant and Germany50 networks for
which real data traces are available (this is not the case for
Deltacom). In order to take into account a wide range of traffic
conditions, we consider a period of 7 days for both Abilene
[33] and Geant [25]. In the case of Germany50, a period of
one day is considered given the available data [34]. In all
cases, adaptation is performed at a frequency of 15 minutes.
The configurations used in each topology are summarized in
Table IV.

We compare the performance in terms of maximum link
utilization (max-u) and number of active line cards (nbRLCs)
obtained for each traffic matrix (TM) with the five following
schemes:
• Original: the original link weight settings are used in the

original topology and no adaptation is performed.
• Static MTR (MTR-S): static splitting ratios (do not

adaptively change) are set equal to the inverse of the
capacity of the bottleneck bundled link in each virtual
topology.

• Load-Balancing (LB): the considered LB approach.
• Energy Management (EM): the considered EM ap-

proach.
• Optimum Load-Balancing (Opt-LB): the routing prob-

lem is defined as a MultiCommodity Flow problem [35]
and the glpsol GLPK (GNU Linear Programming Kit)
linear programming solver [36] is used to compute the
optimal max-u for each traffic matrix.

TABLE IV
NETWORK BUNDLED LINKS (BLS) CONFIGURATION.

Network Abilene Geant Germany50
# MTR planes 4 4 4

# LCs 4 3 7
# Switches per LC 3;3;3;3 10;8;5 5;10;7;7;7;8;6

Type (T) T1 T2 T1 T2 T3 T1
BL capacity (Gbps) 10 2 10 2 1 10

BL size 4 4 4 2 2 4
RLC capacity (Gbps) 2.5 0.5 2.5 1 0.5 2.5

# BLs 28 2 37 17 20 176
# RLCs 112 8 148 34 40 704

The evolution of the max-u at 15 minute intervals obtained
with the five schemes over the time period considered in
each network is shown in Fig. 12. As can be observed, LB
outperforms the Original, MTR-S and EM schemes in all cases
and obtains close to optimal performance. The deviation from
the optimum max-u is equal to 8.78%, 5.6% and 10.1% in
the Abilene, Geant and Germany50 networks, respectively. In
addition, a deviation of less than 10% is obtained for 96.42%
of the TMs in the case of Abilene, and 98.25% and 92.8%
for Geant and Germany50, which indicates that the proposed
scheme performs uniformly well.

To analyze the performance of the EM approach in terms of
energy gain, we determine the deviation between the number
of active line cards used by EM and the one obtained with the
other schemes. The results are shown as cumulative frequency
graphs in Fig. 13. It can first be observed that a positive
gain is obtained in all cases, which shows that EM always
uses the lowest number of RLCs to route the traffic. The best
performance is achieved when compared to the schemes that
balance the traffic (Opt-LB, LB and MTR-S), which can be
explained by the antagonistic nature of the two objectives. The
gain compared to LB is on average equal to 20.90%, 44.82%
and 30.47% for the Abilene, Geant and Germany50 networks,
respectively. In addition, EM performs better than the Original
scheme by concentrating the traffic on a smaller number of
links. In this case, the gain is equal to 19.21%, 21.05% and
10.08% for the three networks, respectively.

The results demonstrate that a significant reduction in
terms of resource utilization can be achieved by the proposed
schemes under the configuration of the distributed manage-
ment plane computed by the placement algorithm.

VIII. RELATED WORK

In contrast to traditional network architectures, local control
functions are moved away from network elements to remote
controllers in SDN. As a result, this can lead to the creation
of new bottlenecks and potentially significant overhead, de-
pending on the type of management applications to consider
[2]. While using a centralized controller with a network-wide
view has the benefit of facilitating the implementation of the
control logic, it also presents limitations, especially in terms of
scalability as the size and dynamics of the network increase.
Different approaches have been proposed in the literature to
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Fig. 12. Evolution of max-u in the Abilene, Geant and Germany50 networks.
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Fig. 13. Cumulative frequency graphs of the gain in terms of active line
cards obtained by EM compared to the other schemes.

overcome the limitations of the single centralized controller
model, e.g. [5] [37] [4] [6].

The approach presented in [4] by Yeganeh et al. is based
on two levels of controllers. Distributed controllers in the
lower level operate on locally-scoped information, while de-
cisions which require network-wide knowledge are taken by
a logically centralized root controller. A hierarchical solution
for Wide Area Networks (WAN) has also been proposed by
Ahmed et al. in [6]. In their architecture, the network is divided
into multiple zones of control, on top of which a centralized
management layer implements management operation func-
tionality and services. In contrast to hierarchical solutions,
fully distributed designs have been proposed in [5] and [37].
The platform presented in [5] aims at facilitating the imple-
mentation of distributed control planes by abstracting network
resources as data objects stored in a Network Information
Base. In [37], the authors introduce HyperFlow, a physically
distributed but logically centralized event-based OpenFlow
control plane. Due to its centralized control logic, HyperFlow

requires state synchronization mechanisms and targets pro-
active management operations. The impact of control state
consistency on the performance of a load-balancing application
has been investigated by Levin et al. in [38]. While most of the
previous approaches have focused on the interface between the
data and control planes, the policy-based framework developed
by Kim et al. targets the interface between the control platform
and the network management logic [1]. Jain et al. report
their experience in deploying a SDN-based WAN to connect
Google datacenters [7]. Each datacenter site is controlled by
a set of OpenFlow-based network control servers connected
to a centralized SDN gateway which implements a logically
centralized traffic engineering (TE) application.

The approaches described above realize distributed control
planes. Most of them, however, consider a centralized solution
to implement network applications, which is not adequate for
reactive and adaptive functionalities. The framework proposed
in this paper advances the state-of the art by enabling adap-
tive resource management through a distributed management
plane (LMs), while relying on the support of a centralized
management system for long term operations. In addition,
it is interesting to note that most of the SDN approaches
emanating from outside the network management community
do not make a clear separation between control and manage-
ment functionalities (e.g. [4] [5]) and usually disregard the
implications of management operations (especially dynamic
ones). In this paper, we advocate a model that separates control
and management logic. This distinction was also taken into
account in the approach presented in [6]. However, in contrast
to our framework, this relies on a centralized management
plane.

A key issue when deploying a distributed control plane
concerns the controller placement problem. In [39], Bari et al.
proposed an approach to dynamically determine the number
and location of controllers based on the network conditions.
In practice, the allocation of controllers should also be driven
by the requirements of the network applications to implement.
In our algorithm, this is taken into account through the initial
and terminating conditions. A dynamic approach is thus more
geared towards applications sensitive to traffic fluctuations. A
different objective has been considered by Hu et al. in [40]
where the goal is to maximize the reliability in terms control
paths. Their approach assumes that the number of controllers
to deploy is given, which may not be easy to determine a priori
and is considered as a variable in our work.
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Another line of research related to the work presented in
this paper concerns network resource management for load-
balancing purposes and energy savings. To overcome the lim-
itations of current offline TE functionality, online approaches
that are able to react to current conditions in short timescales
have been developed [41]. The objective is to dynamically
adapt the settings based on real-time information received from
the network in order to better utilize network resources. Most
of the previous approaches rely on a centralized manager to
compute new configurations (e.g. [42] [43]). While distributed
solutions have been proposed in [44], [45] and [46], these
target MPLS-based networks. In contrast, this paper presents
an adaptive and decentralized approach for IP networks. A
decentralized IP-based TE mechanism has also been proposed
in [47]. Compared to our approach, however, decisions are
made by each node in the network and as such, may be
associated with a non negligible signalling overhead. Finally,
in the context of SDN, Agarwal et.al proposed an approach
to perform TE in SDN environments [28] in the case where
not all switches are embedded with SDN capabilities. In this
case, SDN-compliant switches are controlled by a centralized
SDN controller while others implement traditional hop-by-hop
routing functions.

IX. CONCLUSION

This paper presents a new SDN-based management and con-
trol framework for fixed backbone networks, which provides
support for both static and dynamic resource management ap-
plications. Its architecture is compatible with the generic ONF
SDN model and consists of three layers which interact with
each other through a set of interfaces. Based on its modular
structure, the framework makes a clear distinction between
the management and control logic which are implemented by
different planes, offering as such improved deployment advan-
tages. To demonstrate the benefits of the proposed framework,
we show how its functionality and interfaces can be used to
support the requirements of two distributed adaptive resource
management applications whose performance is evaluated in
terms of resource utilization reduction. We also present a
new placement algorithm to compute the configuration of the
distributed management and control planes and investigate
how the degree of distribution can be controlled based on
different parameters.

In future extensions of this research, we plan to enhance
the proposed placement algorithm by considering other costs
and constraints (e.g. maintaining the homogeneity of cluster
size, applying constraint on the volume of information stored
at each LC etc.). We also plan to develop a mechanism to
enable unequal cost splitting in OpenFlow. Finally, future work
will investigate how the proposed framework can be used to
realize other types of management applications (e.g. cache
management).
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