
Application Server Architecture for Open Networks
Christos Solomonides and Mark Searle

University College London
{c.Solomonides, m.Searle}@ee.ucl.ac.uk

Abstract: A key element to API technologies is the gateway. This is a Server
architecture that provides the interface between client requests and the
network services. Whilst it is in the interests of simplicity and ease of
implementation for the client server interface to be as straightforward as
possible, special consideration must be given to the interface to maintain
security, integrity, scalability and general manageability of what is
essentially a fragile access to precious network resources. This paper
presents an initial architecture for an Application Server (API Server).

1. Introduction
The approach taken by advocates of Application Programming Interfaces (API) such as Parlay is
to open up access to the various protected functional entities (FE) of operators to third party
service providers, through the use of carefully defined class libraries. The opening up of FEs such
as switch functions and service control points is of enormous importance to third party software
developers.

Application Programming Interface (API) technologies are being developed to support the
emerging heterogeneous network-of-networks environment. Such networks are being developed
in an environment that is highly chaotic in the sense that the demands placed on networks are
changing rapidly. This also has the effect of denying network and service designers a clear means
of extrapolation to future requirements. It also makes it undesirable or even impossible to plan for
supporting architectures whose standardisation efforts and complexity force lead times that run
into years. It is instead desirable to support key technologies that allow the fast and flexible
deployment of new services. API technologies such as Parlay [1] were initially developed with
telecommunication applications in mind, partly as an attempt to allow the telecommunication
domain to respond to this environment. It is clear though that the API is not limited to the
telecommunications domain. In fact APIs are all the more relevant to the IP domain where the
need for rapid service creation tools is all the more pressing.

The move towards providing open access to the core functionality of the network is likely to lead
to a rapid growth in the number of new services because it provides an open set of programming
libraries that can be viewed as a kind of 'HTML' for control. Through these libraries it is possible
for third parties to develop applications by building software from the blocks provided by multiple
operators. This should allow third-party service providers the means to access core network
functionality in a secure and resilient manner. Another example of an API is that developed
through JAIN (APIs for Integrated Networks) [2]. JAIN aims to provide a lower level of control
aimed at open access for signalling services such as the Intelligent Network Application Part
(INAP) and SS7 user parts. Parlay and JAIN are complementary.

2. The API Server Architecture

The concept of state models and state model behaviour in telecommunications has already proven
essential to management and network intelligence applications of the core network. A specific
area in telecommunications, which makes extensive use of state models, is that of the Intelligent
Network (IN) [3]. In particular the basic call process and its state model, the Basic Call State
Model (BCSM) is possibly the most important state model in telephony, upon which the majority
of IN services are based. The IN Capability Set 2 (CS-2) [4] through Call Party Handling (CPH)
allows the fine-grained manipulation of a call (specifically a call leg) as well as more complex
operations such as the merging and splitting of call segments. Of course this is achieved at the
“expense” of very complex (and well defined) interactions between the switches involved.

The authors believe that the CPH capabilities of IN CS-2 provide a powerful way to describe the
behaviour of complex multi-party and multi-service interactions. They have incorporated these
ideas into defining a similar mechanism in the API Server. One of the main advantages of such a
state model is the resilience and the proven track record of the IN model. Of course a state-
model approach imposes overheads in terms of managing the model, however, it is critical to
maintain a guaranteed level of service for such an API Server. It also makes clear how
distributed applications interact with each other.

Figure 1 depicts the Architecture of the API Server. The server consists of two parts; The
Service Execution Platform (SEP) and the Service Management and Control Platform (SMCP).
Access to the server is made possible through distributed object technologies such as
DCOM/RMI or CORBA. This paper focuses on the architecture of the SEP platform.

Service Execution Platform (SEP)

Service FSM Manager
DCOM
RMI

CORBA

Service Control and Management Platform (SMCP)

DCOM
RMI

CORBA

Server Side State
Machine

Management

Terminating
Services Manager

State
Machine

Client Side State
Machine

Management

State
Machine

To switches, databases, SCPs etc..

in
co

m
in

g
A

P
I r

eq
ue

st
s

ou
tg

oi
ng

 A
P

I r
eq

ue
st

sService Instance
with FSM

B B B

internal

internal

internalAPI API

Figure 1: API Server Architecture

The Service Execution Platform (SEP) contains all the functional elements necessary for the
execution of service logic. There are two state models, one for server requests and one for client
requests. The Server-Side state machine manager (S_SSM) is responsible for handling incoming
requests. These cause instances of services to be created and are managed using the CPH
approach adopted by IN CS-2. Where requests need to be forwarded, a Client-Side state

machine (C_SSM) is created. Both the Server and Client SSMs are based on the IN BCSM.
The Terminating Services Manager handles incoming requests that can be served without having
to forward supplementary service requests.

In addition to the Server and Client SSMs the API Server requires IN-type FSMs in order to
accomplish a CPH-like behaviour. The IN_FSMs contain the Service Segments and Service
Segment Associations. An S_FEAM creates new Service Segments (SS) and Service Segment
Associations (SSA) in a similar manner to the CPH model. An Inter-SSM Interface (ISI)
interface allows the communication between originating and terminating BCSM-type models.

2.1 The Server and Client State Models
When a new service request is received a service instance is created, together with the service
policies. The server-side state machine SSM monitors the activities of the server in the execution
of a service. The state machine goes through the lifecycle of instantiation, message passing and
termination/billing. The state model also implements points in call (PIC) to allow the triggering of
other services. The state machine is thus given some flexibility for manipulation similar to the case
of IN event and trigger detection points, although the supplementary services that this might
facilitate are as yet undefined. The client-side state machine represents the client in the
instantiation and message-passing phase of a service. The client-side is not essential in all cases
(for example, when a service request is a terminating service).

Information held as part of a service policy includes supporting and conflicting services (for
providing information on feature interaction), service order execution (necessary in situations
where services need to be executed in a specific order), and service timeout policies (required in
situations where the reply from a service may be needed for further processing). The service
policies also contain information, which indicates whether the particular service needs to initiate
supplementary services (i.e. dependant services).

3. Interoperability and Standardisation Issues
The authors believe that there is a delicate balance between the needs of standardisation and the
requirement to simplify the technology. The more complex the technology the more complex will
be the standardisation process. The level of Interoperability between API Servers clearly has a
direct impact on the level of inter-working that can be achieved among service providers. It is
clear that unless there is a strong move towards standardising this interface at the Services Layer,
complete interoperability will not be achieved. It does not mean however that there are no in-
between scenarios.

1

API Server

Service Management/Control Platform

Service Execution Platform

Internal Interface

API Server

Service Management/Control Platform

Service Execution Platform

Internal Interface

2

3 3

Figure 2: Potential Levels of Common Interfaces

Figure 2 depicts the different levels of interoperability. Interface 1 identifies the general scenario
where a common interface is achieved between the API Servers. Under this scenario, the internal
interface (3) is clearly proprietary. The second scenario tries to define a common interface among
the Service Management/Control Platforms, through which peer API Servers have limited access
to the Service Execution Platform. However, important aspects such as remote service
management, on-the-fly subscription to new services as well as allowing remote control of the
service execution environment can be provided. For example a SP could request the termination
of an executing service in a remote API Server. This would only be allowed if the party requesting
the termination of the service is the same party who initiated its execution. Of course such a
termination request needs to propagate to lower API Servers. Another service that can be
provided across the same interface is a simulation service. For example a remote API Server
could request that requests, following a simulation request, not be executed on the core network.
A benchmarking service could also be provided which would allow the testing of delay and
performance of links across interconnected API Servers. Of course it is clear that a common
interface across the SMCP, implies that some requirements are imposed on the internal interface
in order to achieve that functionality.

4. Conclusions
Opening up the core network would lead to a rapid growth of new services as well as business
opportunities for Third-party service providers. While a lot of work is currently focused at
protecting the core network (and for very good reasons) it is also important to provide a
framework that would protect the service providers. This paper has identified one possible
approach, which could be adopted by introducing an element at the Services Layer, called the
API Server. Its aim is to provide a structured way for SPs to inter-work. The architecture
presented borrows heavily from IN principles. The reasons for this have already been discussed,
however it is important to re-emphasise the proven track record of state models as means of
controlling concurrency in real time systems. While this work is still in its infancy the authors
believe the current approach could provide part of the solution for controlling interactions among
Service Providers.

5. References
[1] The Parlay Group, www.parlay.org
[2] JAIN – “APIs for Integrated Networks”,

http://java.sun.com/products/jain/index.html
[3] ITU-T Recommendation Q.121x Series on Intelligent Networks for CS-1, Geneva

1995.
[4] ITU-T Recommendation Q.122x Series on Intelligent Networks for CS-2.

