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Abstract: In this paper we propose a new analytic technique to assess the
performance of radio over fibre based wireless networks employing OFDM
signalling. With this technique, which is based on the Volterra series, the
impact of optical system non-linearities on the error probability of OFDM
signals can be evaluated.

1. Introduction
Orthogonal frequency division multiplexing (OFDM) modulation schemes have

recently been considered for high data rate transmission in wireless environments [1,2] and
the extension of these modulation schemes to mm-wave frequencies allows very high
capacity wireless networks to be deployed. Radio over fibre technology is appropriate to
support the generation and remote delivery of these signals [3]. However, optical system
non-linearities caused by the laser diode, the external modulator and the fibre infrastructure
may significantly degrade the performance of these signals.

Optical system non-linearities can be divided in two broad classes, frequency dependent
non-linearities (laser diodes belong to this class) and frequency independent non-linearities
(external modulators belong to this class). Accordingly, a powerful analytic technique is
required to assess the impact of these non-linearities on the performance of the mm-wave
OFDM signals.

Elsewhere, we have described an analytic technique to determine the impact of optical
system non-linearities on the statistics of OFDM signals [4]. Here, we describe an analytic
technique to determine the impact of optical system non-linearities on the error probability
of OFDM signals. These techniques are based on the Volterra series and can be used to
evaluate the performance of radio over fibre based wireless networks employing OFDM
signalling.

2. Volterra series representation of non-linearities
A non-linearity may, under certain general conditions, be represented by a Volterra

series. The input-output relationship is given by [5]
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where hn(τ1,…,τn) is the nth-order kernel of the non-linearity. The n-dimensional Fourier
transform of the nth-order kernel hn(τ1,…,τn) yields the nth-order transfer function
Hn(f1,…,fn) and, conversely, the n-dimensional inverse Fourier transform of the nth-order
transfer function yields the nth-order kernel.



A band-pass non-linearity may also be represented by a Volterra series. The input-
output relationship is still given by eqn. 1 and eqn. 2 but in this case the even-order kernels
are zero. For a band-pass non-linearity it is also possible to establish a relationship between
the complex envelope of the input signal and the complex envelope of the output signal.
This relationship is given by [5]
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where h(2n-1)l(τ1,…,τ2n-1) is the equivalent low-pass (2n-1)th-order kernel of the non-
linearity. The (2n-1)-dimensional Fourier transform of the equivalent low-pass (2n-1)th-
order kernel h(2n-1)l(τ1,…,τn) yields the (2n-1)th-order equivalent low-pass transfer function
H(2n-1)l(f1,…,fn) and, conversely, the (2n-1)-dimensional inverse Fourier transform of the
(2n-1)th-order equivalent low-pass transfer function yields the (2n-1)th-order equivalent
low-pass kernel. The equivalent low-pass kernels and the equivalent low-pass transfer
functions can be obtained from the kernels and the transfer functions of the bandpass non-
linearity [5].

This representation of a non-linearity will be used in the subsequent section to develop
an analytic technique to determine the impact of non-linearities on the error probability of
OFDM signals.

3. Impact of non-linearities on the error probability of OFDM
In figure 1 we show the model used to determine the impact of non-linearities on the

error probability of OFDM signals. In figure 1, sl(t) is the complex envelope of the
transmitted OFDM signal, rl(t) is the complex envelope of the received OFDM signal, nl(t)
is the additive white complex Gaussian noise (with power spectral density N0) and the
band-pass non-linearity is represented by its equivalent low-pass kernels h(2n-1)l(τ1,…,τ2n-1)
or by its equivalent low-pass transfer functions H(2n-1)l(f1,…,f2n-1). Smn is the complex
transmitted symbol in time slot m and sub-channel n, Rmn is the complex received symbol
in time slot m and sub-channel n, gn(t-mT) denotes the complex waveform transmitted in
time slot m and sub-channel n and g∗

n(t-mT) denotes its complex conjugate, T is the OFDM
symbol duration and TCP is the OFDM cyclic prefix duration.
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Figure 1 � Model used to determine the impact of non-linearities on the error probability of
OFDM signals.

The complex envelope of the transmitted OFDM signal is
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and the complex envelope of the received OFDM signal is
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The complex received symbol is given by
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and assuming that the first-order low-pass equivalent kernel is restricted to τ1 ∈ [0,TCP];
the third-order low-pass equivalent kernel is restricted to τ1,τ2,τ3 ∈ [0,TCP];�(note that
these conditions are often met for optical system non-linearities) then eqn. 8 reduces to
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Nmn is a complex Gaussian random variable with mean µ=0 and variance σ2=N0.
In the following sub-section we deal with error probability evaluation of OFDM/BPSK

signals. It is straightforward to extend the methods presented to OFDM/M-PSK signals and
OFDM/M-QAM signals.

1.1 OFDM/BPSK signals
We will present two methods to evaluate the error probability of OFDM/BPSK signals:

the exhaustive method (a rather inefficient method) and the moment based method (a more
efficient method). We assume that the complex transmitted symbols Smn are independent
and take any value belonging to the set  {Aejπ/2, Aej3π/2} with equal probability.

1.1.1 Exhaustive method
The overall error probability is given by
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and we exhaustively compute the error probability in sub-channels n as follows
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In order to calculate the conditional error probabilities appearing in eqn. 12, we write
eqn. 9 as

mnmnmn NSR += ' (13) 
where
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Note that S′mn is a quantity that depends not only on the complex transmitted symbol
conveyed in sub-channel n but also on the complex transmitted symbols conveyed in other
sub-channels.

Assuming maximum likelihood detection we have that
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1.1.2 Moment based method
The overall error probability is also given by
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and, in this case,  we compute the error probability in each sub-channel as follows
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In order to calculate the conditional error probabilities appearing in eqn. 18, we now
write eqn. 9 as

mnmnmnmn NSSR ++= ''' (19) 
where
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Note that S′mn is a quantity that depends only on the complex transmitted symbol
conveyed in sub-channel n and S″mn is a random quantity that depends also on the complex
transmitted symbols conveyed in other sub-channels.

Assuming maximum likelihood detection then
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The statistical averages appearing in eqn. 22 and eqn. 23 can be evaluated by either of
the following techniques:
1. By expanding the complementary error function in a Taylor series and using a

sufficient number of moments of Im{S″mn} to approximate either eqn. 22 or eqn. 23
[6].

2. By using a sufficient number of moments of Im{S″mn} to compute a Gaussian
quadrature rule that approximates either eqn. 22 or eqn. 23 [7].

A method to compute a sufficient number of moments of Im{S″mn} is described in [5].

4. Conclusions

In this paper we have proposed a new analytic technique to assess the performance of
radio over fibre based wireless networks employing OFDM signalling. With this
technique, which is based on the Volterra series, the impact of optical system non-
linearities on the error probability of OFDM signals can be evaluated.
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