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Abstract: General bounds for error probability analysis in digital
communications are examined with particular attention to effecting
tightening of the widely used Chernoff bound. Weighting functions are
studied, leading to tighter integral and series forms for upper bounds and
identification of the forms available for lower bounds.

1. Introduction

In digital communication systems design, the theoretical expression representing the error
probability eP  is often so complicated that it is impractical to use in error probability
analysis. Instead, we often work with a simpler expression, representing an upper bound
for eP  [1]. The general inequality most commonly used to obtain such expressions, is called
the Chernoff bound [2]. It is simple to apply but is not very tight. This paper establishes
new inequalities that tighten the Chernoff bound. Lower bounds, while of secondary
importance, are also considered.

2. Formulation

The problem addressed in this paper may be expressed in the following abstract form:

Given that f(x) is a non-negative valued function of a real variable, that F(z) is a complex
valued function, defined on the complex numbers by
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find bounds for T in terms of F and A, in particular, tighten the Chernoff bound
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Firstly, by defining
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the problem reduces to the form:

Given that g(x) is a non-negative valued function of a real variable, that G(z) is a complex
valued function, defined on the complex numbers by
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and that T has the value
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where U(x) is the unit step function, find bounds for T in terms of G, in particular, tighten
the Chernoff bound
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3. Weighting Functions

Order relations between bounding functions and T, rely on order relations between
weighting functions and U, and the following simple implication, which uses our
assumption that g is non-negative valued:
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The following list of weighting functions, defined for s > 0, have order relations that allow
us to apply (8), and integral or series representations that allow us to express the resulting
integrals in terms of G.
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 where H is the Fourier series of xse−  on the interval [ ]LL,−
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It is easy to show that the above weighting functions satisfy the order relations
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4. Bounding Functions

The corresponding exact expression for T [3] and bounding functions are:
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By (8), (16), and (17), the above bounding functions satisfy the order relations
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The upper bound methods cannot be applied further than our solitary lower bound. This is
because, if h is periodic and sxexUxh −≤ )()( , then 0≤h . Therefore we cannot improve
upon the lower bound zero with a series bound. This forces us to consider weighting
functions of the form )()( xpexw sx=  where p(x) is a polynomial ∑ =
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These differential bounds look less promising and difficult to obtain. Since lower bounds
are less important, they will not be pursued further here, except to note that the difficulty
with lower bounds suggests why approximations to T with error terms are more
complicated than upper bounds.



5. Optimisation of Bounding Functions

It can be shown that by choosing n, L, and s sufficiently large, we can make )(, sB Ln

arbitrarily close to T. A question of more practical importance is this: for a given n, how do
we chose L and s to minimise )(, sB Ln ?. This is a complicated issue. Clearly, the answer
depends upon the specific function G. However, there are some general observations to be
made.

(i) If 0s  minimises the Chernoff bound i.e. { }0:)(min)( 0 >= ssGsG  then the

integrals ∫ ∞−
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a reasonable choice for making )(, sB Ln  small, especially if 0s  is large.

(ii) The following bound provides some information for making a sensible choice of L.

( )
2

2 )1(arctan21
2
3)()(

2
1






 +−≤−∫

− Ls
ndxxHxH

L

L

L
n

π
π

                     (26)

6. Summary

A general method has been developed for finding variants of the Chernoff bound. This has
been used with the general aim of maximising the accuracy of the bound while minimising
the complexity of the bounding function. Bounding functions in integral form )(, sB ∞∞  and
finite series form )(, sB Ln  have been obtained, tighter than the Chernoff bound. Some
general insights have gained about the choice of parameters for )(, sB Ln . A lower bound in
integral form )(, sb ∞∞  has been derived and the forms available for lower bounds have been
noted � integrals or differential series.

The utility of the bounds )(, sB ∞∞  and )(, sB Ln  for error probability analysis in digital
communication systems looks to merit further investigation.
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