Does Software Engineering have a Future?

Anthony Finkelstein
Professor of Software Systems Engineering
University College London
A.Finkelstein@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/A.Finkelstein

Cenftre for Systems Engineering

What is Software Engineering?

Software Engineering is the branch of systems
engineering concerned with the development of large
and complex software intensive systems. It focuses
on: the real-world goals for, services provided by, and
constraints on such systems; the precise specification
of system structure and behaviour, and the
implementation of these specifications; the activities
required in order to develop an assurance that the
specifications and real-world goals have been met;
the evolution of such systems over time and across
system families. It is also concerned with the
processes, methods and tools for the development of
software intensive systems in an economic and timely
manner.

0—1



Observations on a Changing Environment

extension of pre-existing systems and integration with
“legacy” infrastructure;

systems embedded in complex, highly dynamic,
decentralised organisations;

support for business and industrial processes which are
continually reorganised to meet changing consumer
demands;

services that such a system provides must, for the life of
the system, satisfy the requirements of a diverse and
shifting group of stakeholders.

Observations on a Changing Environment

¢ a shift towards client and user centred approaches to
development and an accompanying shift from a
concern with whether a system will work towards how
well it will work;

o fewer “bespoke” software systems are being
constructed, instead, generic components are built to
be sold into markets;

e components are selected and purchased “off the
shelf” with development effort being refocused on
configuration and interoperability.

57

0—2



Software Systems

e composed from autonomous, locally managed,

heterogeneous components,

— these components are required to cooperate to

provide complex services;

— they are, in general, distributed and have
significant non-functional constraints on their

operation;

e changing business models relating to the provision of
software and software-mediated services

Tension

Rapid change
and
reconfiguration
of business
services

Increasing
business
dependence on
reliability of
infrastructure




Grand Challenges

e Compositionality

— When we compose components what effect does
this have on the properties of those components?
Can we reason about, and engineer for, the
emergent properties of systems composed from
components whose behaviour we understand?

e Change

— How can we cope with requirements change? How
can we build systems that are more resilient or
adaptive under change? How can we predict the
effects of such changes?

Grand Challenges

¢ Non-functional Properties

— How can we model non-functional properties of
systems and reason about them, particularly in the
early stages of system development? How can
these models be integrated with other models used
in system development?

e Service-view

— How can we shift from a traditional product-
oriented view of software system development
towards a service view? What effects do new
modes of software service delivery have on
software development?




Grand Challenges

e Perspectives

— How can we devise and support new structuring
schemes and methods for separating concerns?

¢ Non-classical life cycles

— How <can we adapt conventional software
engineering methods and techniques to work in
evolutionary, rapid, extreme and other non-
classical styles of software development?

e Configurability
— How can we allow users, in the broadest sense, to

use components in order to configure, customize
and evolve systems?

Grand Challenges

e Architecture

— How can we represent, reason about and manage
the evolution of software architectures? How can
we relate software architecture to other parts of
the software development process?

e Domain specificity
— How can we exploit the properties of particular

domains (telecommunications, transport) to make
any of these challenges easier to address?




Thematic Concerns

e “Malleable” software
— Software which anticipates likely evolution
scenarios and variations and is robust with respect
to changes
e “Multi-dimensional” engineering
— Ability to separate concerns and engineer products
through any perspective

Research Goals

Metrics - Integrated decision support for risk assessment
and reduction.

Analysis - Making formal analysis useable in real software
engineering projects.

Testing - Testing techniques for component-based
development.

Architecture - Architectural principles for systems that
exhibit the scale and variability of network-centric
applications and the dynamism of pervasive computation.




Research Goals

e Configuration Management - Efficient, scaleable, available
management of information resources integrated with
process support.

e Software Economics - Linking technical parameters with
value to allow management of software development
processes for, and tracking of, value.

e Empirical Studies - “Evidence-based” software engineering
practice.

e Databases - Unbundling and rebundling of database
components and provision of flexible cooperation schemes
on top of these components.

Research Goals

e Education - Ability to impart an engineering attitude to
students. Curricula which give long-term value but are
flexible.

e Reverse engineering - Reverse engineering through all
levels of the software development process.

e Performance - Integration of performance modelling with
software architecture and design modelling.

o Safety - Safety analysis for COTS. Lightweight formal
modelling.

e Requirements Engineering - An integrated “whole product-
life” approach to requirements management.




Research Goals

e Security - Ability to separate the security aspect and
engineer for it. Engineering for secure computation not
secure computers.

¢ Mobility - Improved formal models of mobility and of
context awareness. Middleware for mobility.

A Way Forward

e Real problems

¢ Lightweight solutions

e Raising the validation barrier

e Methodological diversity

¢ Feeding back to systems engineering
e Removing the “bug-centric” view

¢ Positive view of the discipline, pointing out our
achievements.

And perhaps
that’s a good
place to finish




