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Abstract: The System Identification (SI) problem is addressed from the viewpoint of the 
Generalised Structural Subband Decomposition (GSSD). We present a System Identification 
Structure (SIS) for the identification of the Generalised Polyphase Components (GPC’s) of the 
unknown system. Sparsity constraints are imposed on the input for the identification of PC’s to be 
feasible. Significant computational savings, improved tracking capability and a substantial 
increase in the convergence rate (CR) in coloured input environments, are the main 
characteristics/features of the proposed approach.  

1. Introduction 
       Adaptive identification of linear time invariant (LTI) systems has been studied extensively and a number of 
efficient structures and algorithms have been developed for this purpose. Among the various approaches is that 
of the application of GSSD [3]. This decomposition, although a special case of the generalised sampling theorem 
and the related Perfect Reconstruction (PR) Filter Banks (FB’s), was developed within its own independent 
context [1]. In [3] it is applied to the input of the unknown system, with the interpolators been chosen a-priori 
and the sparse subfilters been adapted for the purpose of identification. SSD is a general representation and so 
the method [3] can be used to identify an arbitrary system S . In that, the adaptation of the coefficients was 
performed at the initial data rate and the adaptive algorithm was controlled by the composite estimation error; in 
effect the GPC’s of S  were identified jointly. The algorithm provided an increased CR for coloured input 
processes –compared with the Full-band LMS– at the expense of an increase in the computational complexity. 
Quite recently [4], the Polyphase Decomposition (PD) was incorporated in the classical Subband Adaptive 
Filtering (SAF) scheme [2], providing an elegant solution that eliminated the need of adaptive cross-terms and 
the problems associated with them [2]. In this later approach [4], the adaptation was performed at M1  the 
initial data rate, M being the number of filters used to subband split the input of S  and the desired signal. The 
computational complexity resulted is slightly higher than that of the Full-band LMS. The polyphase components 
of S  were identified jointly. 
       The present work comes to contribute to a new way that GSSD can be used for the purpose of identification. 
For S , a particular type of SSD is considered associated with a T  matrix of interpolators. The DCT matrix can 
be a choice, the Identity would yield to the trivial solution of the PC’s and the Hadamard would provide a 
computationally efficient implementation. The output of S  is then analysed using an orthogonal FB 
corresponding to the particular T  choice. Sparsity constraints are imposed to the input so as the thi  FB path to 
behave like the thi  GPC of S . For the identification of each polyphase component an adaptive filter of length 

MN  is used and is driven by the decimated version of the input. 
 

2. Development of the new System Identification Structure (SIS)
 

       For the structure of Fig.1 let )(zX  be the input to the 
unknown system )( zS . Consider the M  flow-gram 
paths, starting at point A  and terminating at their 
corresponding points iC  with Mi <≤0 . These will be 
referred as Sub-System Paths (SSP’s). The term 
Identification Paths (IP’s) is used to denote the M  flow-
gram paths between points A and iE .  The significance 
of this terminology will become apparent shortly. For 

[ ]nδ  as the input to the system, the response of the thi  
SSP at point iB  is the sequence  
              [ ] [ ] [ ] [ ] [ ]{ }K,,,,...,,  1110 +− MMM sssssT

i0         (1) 
where T

i0 denotes the row vector comprised of iM −  
zeros. The decimation of (1) by M  results in { }][,0 nri  
which is obtained at iC ; ][nri  is  
               [ ] [ ] [ ]{ },...2,,][ iMsiMsisnri ++=                  (2) 
namely the sequence of the polyphase coefficients that 
correspond to the thi  polyphase component of S . In 

Fig.1. The proposed System Identification Structure 
(SIS) 
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Section 3, SIS will be re-established within the context of GSSD; until then the term polyphase when used, will 
simply denote the sequences ir  of (2) or their Z  transforms. 
       Returning now to the SSP’s, we should stress that due to the presence of the decimators, even though linear, 
they no longer comprise time invariant (TI) networks. By restricting however the input to take non-zero values 
only at time instants which are integer multiples of M , the TI property is maintained in the sense that a time 
translation of the input by kM , Zk ∈  samples, results a corresponding translation of the outputs by k . This 
suggests that as long as the input ][nx  of S  is sparse in the sense [ ]{ }ZkkMnx n ∈∉= ,:0 , the identification of 
S  can be accomplished by the simpler task of identifying independently each one of the M  ][nri  sequences of 
(2). This is because each one of the SSP’s behaves as an LTI network ][nri  to the class of inputs )( MzX . Since 
it is so, the effect of the thi  SSP can be compensated be the thi  IP; in that, the term Mz −  accounts for the 
presence of the leading zero vector in (1). Setting all [ ]niŝ  to ][nri  would result in the error vector 

( ) T
M nenenen  

11 ][],...,[],[][ =e  to be equal to zero for all n . Using the well-known Noble identities [5], we can 
relocate the decimators in front of the delay elements of the IP’s (Fig. 2). In Fig.1, a MM ×  transformation 

matrix 1−T  has been included the significance of which 
will be explained later. For the present we assume that T  
is the identity. The part between the points F  and iD  of 
Fig.1 appears in Fig.2 as a M  branch filter bank. This 
equivalent representation is obtained from Fig.1 by 
moving the decimators at the right of 1−T  and replacing 
what is between the points F  and iD  by the orthogonal 
FB of Fig.2. In that the thi  impulse response is the thi  
row of 1−T .  The significance of the notation of Fig.2 for 
the FB filters will become apparent in the next section. 
The diagram of Fig.2 and the analysis presented so far 
suggest now the following way to perform the system 
identification task. This is to use an adaptive algorithm to 
adjust the weights of iŝ  based on the corresponding 
errors ie . We suggest the use of M  FIR adaptive filters, 
of length iL  each equal to the length of ir . Each one of 
them is adapted based on the error ie  and its role is to 
compensate for the effects of it’s corresponding ir . Due 
to the architecture of the proposed SIS, the effects of any 

kr  for ik ≠ , are masked at point iD  and so ie  depends 
only on the coefficient error iii sre ˆ−= . Thus a non-zero 

ie  implies that iŝ  is not the proper estimate, which will 
be consequently updated at the next iteration. For our simulations we have chosen the LMS algorithm. The 
following characteristics make the proposed structure particularly attractive for the purpose of identification: 
       C1. The problem of identifying the N  coefficients of the system is  recast into that of identifying its M  
polyphase components of length MN /  each, on an independent basis. Although the total number of coefficients 
to estimate remains N , the adaptive filter’s length is decreased by a factor of M . By this way the convergence 
rate (CR) expressed in terms of the number (#) of update cycles increases. The presence of the decimators at the 
front end of the IP’s raises the question whether CR expressed in terms of the # of input samples would increase 
or decrease. Experimental results for the Full-band LMS, indicate that for large values of N  ( 256>N ), CR is 
inversely proportional to N  with 21  being the proportionality factor. In other words, by halving N  one would 
need half the # of update cycles to obtain the same error performance. This suggests that the proposed SIS for 
large values of N  can attain the same error performance this being expressed in terms of the # of input samples. 
       C2. The adaptation of the coefficients is performed at M1  the input data rate. Since the # of adaptive 
coefficients remains N , the # of operations per unit time or per input sample is reduced by a factor of M . In the 
experimental results section we will further discuss the computational complexity of the proposed structure.  
       C3. The decoupling of the identification of the polyphase components of S , implies that any error in the 
estimation or any change of one particular of them –due for example to a time variation of the system– will be 
masked and will not affect the other valid estimates. The proposed structure is thus expected to have improved 
tracking performance, which is particularly important in situations where S  is time varying. 
       C4. The decimators of the IP’s decorrelate the process that appears as input to the adaptive filters –when this 
is correlated. By this way the convergence rate of the adaptive algorithm is substantially increased.  
       We now come to the T  matrix of Fig.1. This is an arbitrary non-singular MM ×  real coefficient 
transformation matrix. Its effect is to modify the response of the thi  SSP from { }][,0 nri  to RT ⋅−1 , R  being the 
matrix whose thi )1( +  row is the sequence { }][,0 nri . This means that at time 0≥n , instead of obtaining the 

Fig.2. An equivalent representation of the SIS of 
Fig.1 with the decimators relocated and the matrix 
replaced by a FB.  
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thn )1( +  column of R  as the response at points iD , the transformation of this column is obtained instead. This 
in turn suggests that in order for the zero error condition to hold, iŝ  should be set not to the actual values of ir  
but to their transformed values under 1−T . Thus for the zero error condition we require 

                                                   ]|...||[]ˆ|...|ˆ|ˆ[ 110
1

110
T
M

TTT
M

TT
−

−
=− ⋅ rrrTsss                                                         (3) 

In the above |  denotes change of row within the matrices. The elements in between the |  signs are row vectors. 
It is clear that the introduction of MM IT ≠−1  in the structure of Fig.1 still permits the application of the method 
that we described for the identification of S  in exactly the same way. In that, the only effect of 1−T  is to change 
the optimum weights (3) of the adaptive coefficients in the way just described.  

3. From the GSSD to the proposed SIS

       We now come to review GSSD and re-derive the 
proposed SIS within its context. Consider an FIR filter of 
length N  with impulse response ][nh  and system function 

n
n znhzH −∑= ][)( . Decomposing ][nh  into the M  sub-

sequences ][][ rMnhnhr +=  with Mr p≤0 , Zn∈  and 
2≥M , we obtain the following representation of H  in 

algebraic and matrix form  
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)( zH r  are the Z  transforms corresponding to ][nhr  and 

MI  is the MM ×  identity matrix. The vector-matrix representation allows for the following generalisation. 
Replacing MI  with an arbitrary non-singular matrix T  and the vector of the Z  transforms )( zH  by some 

)( zG , one can readily solve for the later to obtain )()( 1 zz HTG ⋅= − , or more explicitly 
T

M
T

M zHzHzGzG )](),...,([)](),...,([ 10
1

10 −
−

− ⋅= T . This suggests a more general representation of )( zH  which 
now becomes 

                                                  )(      )()(      )(
1

0

MT
M

r

M
rr zzGzIzH GTZ ⋅⋅== ∑

−

=
                                                   (4) 

In (4) )( zIr  is the product of TZ  with the thr )1( +  column of T , with TZ  being the delay row vector 
],...,,1[ )1(1 −−− Mzz . )(zGr  denotes the thr )1( +  element of )( zG  and is known as the thr  generalised polyphase 

component of )( zH . An interpretation of (4) as M  filters )()( zIzG r
M

r  connected in parallel is given in the 
diagram of Fig.3. The thr  branch contributes within the frequency support domain of the )( zIr  interpolator, 
which interpolates the sparse )( M

r zG  polyphase sequence. 
       We now provide the link between the GSSD and the proposed SIS. Consider  T  being Hermitian 
( HTT =−1 ). For such a choice, the filter coefficients of the FB of Fig. 2 are the columns of T  in reverse order 
and effectively the time reversed versions of the interpolators associated with any GSSD using T  as its 
transformation matrix. The notation used in Fig. 2 is now fully justified. For the unknown system S , consider 
the GSSD under the T  transformation representation (4). For the sparse )( MzX  input, the response at one 
particular iD  point of Fig.2 is following the (4) representation 
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with M↓  representing the decimation by M  operation. Applying the relevant multirate identities [5], (5) 
equals  
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The term at the r.h.s. of the multiplicative sign of (6) is the M↓  version of the deterministic cross /auto 
correlation of the interpolators’ coefficients ][, nI ir  which are simply the thr )1( +  and thi )1( +  columns of T .  
This in turn, reduces to ][ ir −δ  due to the orthogonality of T . Effectively, the response to )( MzX  at point iD  
becomes )()(1 zGzXz i

− , which is exactly our initial argument since it suggests that the thi  SSP responses to the 
sparse )( MzX  as an LTI network with response the thi  generalised polyphase component’s coefficients ][nri . 
The link between the GSSD and the proposed SIS is now established. 

 

 

Fig.3. An arbitrary FIR system represented as the parallel 
interconnection of M systems each comprised by an 
interpolator and a sparse sub-filter. 

∑M
)(1

M
M zG −

)(0
MzG

M
( )zIM 1−

( )zI0



4. Experimental results  

       For the experiments, the input x  was obtained by some generating process gx  as ][][ nMxnMx g= , 
0];[ =≠ kMnnx . In the first set of experiments (Fig.5), gx  was white gaussian noise (WGN). In the second 

(Fig.4), the output of the AR system )9.0( −zz  driven by WGN. In all cases )(zN  was AWGN uncorrelated 
with gx . T  was taken to be the Hadamard matrix. All plots were obtained using the optimum for any particular 
case value of the µ  LMS parameter; they represent the normalised coefficient error norm (NCEN) in db namely 

)||||/||ˆ(||log20 2210 optopt www −⋅ , versus the # of input samples. Each estimate was obtained by averaging 
over 50 Monte Carlo simulation results, in each one of which the coefficients of S  were chosen at random. 
Fig.4 demonstrates the decorrelation characteristics of the proposed SIS described before (C4, section 2) and 
manifests its outstanding performance in coloured input cases. Fig. 5 supports the argument C1 of section 2. In 
the noisy case ( db30 SNR ) we noticed a small deterioration in the performance of SIS compared with the Full-
band LMS. This is related to the LMS misadjustment and its dependence on µ ; increasing M  we are allowed 
to increase µ  and this in turn increases the misadjustment that becomes more noticeable as SNR  decreases.  
       We now discuss the computational complexity of the proposed algorithm. In each update cycle the # of 
multiplications needed (to calculate the outputs of the adaptive filters, to update their weights and obtain the FB 
output), is MMMNMNM ⋅++⋅ )//( , i.e. 22 MN + . This per input sample becomes MMN /)2( 2+ , N  
being the length of the S , against N2  for the Full-band LMS case. Thus, for a given # of input samples we 
perform )2/(/1 NMM + 1 times the multiplications that would be needed. The # of additions is slightly 
increased. The proposed SIS is thus computationally very efficient compared with the Full-band LMS. 
Furthermore, it provides better performance (for non-white inputs) as the results indicated and is in effect an 
attractive solution to the SI problem.      

5. Conclusions 

A novel and computationally highly efficient algorithm was presented for the purpose of system identification, 
which significantly outperforms the Full-band LMS when the input process is non-white. The improvement of its 
performance is traded against the limitation of the range of its applicability, as it requires the input to be a thM  
band sequence. Still it consists an attractive solution when the input can be properly modified for the purpose of 
identification. 
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Fig.4 The NCEN for the proposed SIS against that of 
the Full-Band LMS for the AR input case. 0)( =zN  

Fig.5 The NCEN for the proposed SIS against that of the 
Full-Band LMS when the input is a WGN process.  


