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Abstract: I am investigating a form of adaptive IP routing, which uses a Quality of Service (QoS) 
metric in order to compute routes. The algorithm for performing this routing is implemented in the 
Network Simulator-2 simulation engine. Using this simulation engine, results from experiments per-
formed on a simple network topology are analysed and possible conclusions are drawn. The algorithm 
described in this paper uses link delay as its QoS cost metric, and the routing algorithm uses thresholds 
and incremental factors in order to determine the relevant cost metric to return to the routing computa-
tion algorithm. It will be shown that the threshold and incremental factor can be tuned to improve the 
stability of a single multiplexed flow of traffic with an ‘acceptable’ trade off in delay. 

1 Introduction 
Routing in the Internet even up to today is very much an issue, judging from the research still being performed. 

However, there has been more interest in Quality of Service (QoS) based routing in recent years, [1,2,3] is but to 
name a few research and publications. QoS based routing is, in its basic form, route selection based on some QoS 
constraints e.g. bandwidth availability or delay requirements. The problem that QoS routing is trying to solve is the 
provision of an improved user service level in order to support new multimedia requirements of the Internet today 
[4]. However, the routing algorithm that I am considering takes into account that the routing protocol, OSPF (Open 
Shortest Path First), is currently the routing protocol deployed in the Internet. OSPF is a form of Link State routing 
protocol.  

In the Network Simulator-2 (NS-2), there is already an implementation of the OSPF protocol called Link State 
Routing. By extending the capability of the Link State (or more accurately, OSPF protocol) protocol in NS-2, an al-
gorithm that takes into account the link delay as its cost metric together with a triggering process that can reduce the 
number of routing computation is implemented. Reducing route computation satisfies the criterion of stability for a 
routing algorithm that takes this dynamic cost metric. By tunin g the threshold and incremental factors, the QoS crite-
rion  can be achieved. 
2 OSPF protocol and Link States 

The main feature of OSPF is the link states [5]. Link states (literally, state of the links) are the building blocks to 
creating a complete ‘map’ of the topology that is kept by each of the node in the network. This ‘map’ is represented 
by the Link State Database. To populate this Link State database, each node essentially ‘measures’ the cost of each 
of its links and sends this information to all its neighbours. The cost metric that the OSPF protocol specifies can be 
of any value, but usually it is the weight given to a particular link administratively reflecting the monetary cost etc. 
More importantly, it is usually a static value. Conversely, an adaptive, say delay based, routing algorithm would use 
the delay of the link as its cost metric.  

The sending of this information to its neighbours is via Link State Advertisement (LSA) packets and it uses the 
flooding protocol. The receiving node for each LSA will replicate the LSA packet and sent it out on its every output 
link except the one that it had received the LSA from. Currently the LSAs are sent periodically (usually a long pe-
riod) or if there is change in topology i.e. a link going down (instantaneous ).  

The OSPF protocol also specifies that the Dijkstra [5] be used as to compute the routes or shortest path tree 
based on the Link State Database that each node has. Therefore, every node is essentially the sink for a spanning tree 
joining all the other n odes in the network, after the route computation.  
3 Delay based routing algorithm 

The delay-based algorithm extends the OSPF protocol, keeping in mind that route computation still uses the 
Dijkstra algorithm. Dijkstra algorithm has the property of minimising the cost the routes that it has computed, and 
since cost of the routes of a delay-based algorithm is the sum of individual links’ delay  along the routes, this Dijkstra 
property is advantageous. Take note that the link delay here is the sum of the link propagation delay and its mean 
queuing delay over the sampling interval of the link. 

Since link state protocol supports very precise metrics, there is no difficulty in keeping precise delay values in 
the Link State Database [5]. Given the precision of the link delay measured, there is a small possibility of finding 
alternative routes that have the same individual link delays, except at initialisation.  

The delay-based algorithm, if implemented in its most primitive form, has the inherent problem of route flutter-
ing . Given the precision of the link delay sampled values, it is essentially trivial to find another lower cost route, as 
opposed to the current route to a destination. Elaboration of this fact is that, by using a particular route, the traffic 



being routed there will increase the links’ delays, and hence not the shortest (cheapest) cost route anymore. In order 
to de-sensitise this precision, the delay-based algorithm uses 2 heuristics in order to change the returned delay value 
to the routing protocol as opposed to the measured delay value . One heuristic is a threshold based triggering mecha-
nism:  
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-------------------- equation 1  

Equation 1: Threshold-delay based algorithm: abs stands for absolute values, d(m) is the delay measured, d(s)  is the 
delay saved, t is the current sampling interval (0 ≤ t ≤ simulation time), thr is the threshold.  
 
Using algorithm defined in equation 1, a new measured delay value is sent back to the routing protocol only if it ex-
ceeds the previous value by a percentage set by thr (threshold). Notice that values are still being returned to the rout-
ing protocol for updating the Link State Database, but paths are not recomputed unless there is a change in the Link 
State Database since its last update. 

Using an incremental factor to introduce damping into return of the measured delay value can extend the 
threshold delay-based algorithm even further. The algorithm looks like this: 
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------------------equation 2 

Equation 2: Incremental-threshold-delay based algorithm: Essentially the same as equation 1, except for the incrf 
which is the incremental factor. 
 
The incremental factor is essentially restricting the amount to which the returned delay value can change. This in 
turn allows areas of the network to actually ‘catch up’ with each other since link delay can vary and fluctuate widely 
among different areas of the network. Note that both thr and incrf (incremental factor) are set a priori as percentages. 
For thr, 0% is the ‘normal’ OSPF protocol for getting cost measurement from the links; whilst 100% is double the 
previous measured cost (delay or otherwise) of the link and not an upper limit. For incrf, 100% is a ceiling since it 
will then be the same  as the threshold-delay based algorithm. 

Other ‘static’ constraints of the delay-based algorithm (generically), are the sampling interval, time to propagate 
LSAs, size of network topology, and the randomisation of LSAs. Sampling interval affects the number of route 
changes for a given period of time since for a delay based algorithm (without thr or incrf), would likely to change 
route every sampling interval. Size of network and therefore time to propagate the LSAs to other nodes in the net-
work affects the convergence time of routes computed by different nodes in the network. Randomisation of the LSAs 
is part of the OSPF protocol to avoid the problem of all the nodes in the network, at every sampling interval, flooding 
its output links with LSAs. This mechanism affects the number of route changes and the convergence period. 
4 Simulation setup 

NS-2 uses a combination of Tcl scripting language and C++ language to implement and configure its simulation 
engine.  The implementation of the incremental-threshold -delay based algorithm is entirely in Tcl code.  
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Figure 1: Network topology for simulation in NS-2. Note that the sources are not shown here. 
The network topology used for all simulations are shown in Figure 1. 



The important static settings for the simulations are:  
(a) sampling interval for measuring a new link cost = 1 second, (b) randomisation = uniform  0.1 - 1.0 seconds  
(c)   link bandwidth in network (not including sources) 1.0Mb/s, link bandwidth for sources 2.0Mbit/s  
 
5 Results  

Measurements for analysing the traffic in the network are sampled from all the nodes in the network topology 
shown in Figure 1. Traffic is always sent from Node 2 to Node 7.  It is measured that, using a script in Tcl, that all 4 
possible routes are used by the routing computation algorithm to route traffic. Each simulation is run for 200 seconds 
with a sampling rate (for producing results) of 0.5 seconds. Simulations will vary either one or both thr and incrf. 
Only selected results are shown. 

 
Traffic sources used in simulations:  
NeX (negative exponential) sources setting: 4 NeX sources each set to a peak rate of 0.35 Mbit/s  
CBR (constant bit rate) setting: 1 CBR source sent at 1Mbit/s  
Pareto setting: 4 Pareto sources, each set to a peak rate of 0.35 Mbit/s, with parameter ∝ = 1.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Plot of the number of route changes every 
10s over 200s for one possible route. thr = 10%, incrf 
=100%. NeX traffic sources used. 

Figure 3: Shows the mean number of route changes 
every 10s averaged over 200s, with thr varying from 
10% to 100%, and incrf at 100%. Plots for NeX, CBR 
and Pareto traffic sources and only one particular route 
shown. 

Figure 3 : Plot of the delay of the selected route at 
sampling time. thr= 10%, incrf= 100%. NeX traffic 
sources used. 

Figure 4 : Shows the mean delay of selected route at 
each sampling  (for results) time, with thr varying 
from 10% to 100%, and incrf at 100%. Plots for 
NeX, CBR and Pareto traffic sources are shown. 
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Figure 2 and 3 are plots of the raw data collected for each simulation. Figure 2  shows the number of changes for one 
possible route, which if divided by half and rounded to nearest integer, would give exactly how many times the par-
ticular route is used every 10 seconds. Figure 3  plots the delay of the route (remember that the route delay here is the 
sum of the individual link delays) used at every sampling (for results) interval. The peaks show the emptying of 
buffers for the previous route, after a new route was computed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
similar to that of Pareto traffic sources. The only difference between Pareto and NeX traffic is that more packets are 
buffered due to statistical variation of the traffic sources leading to higher delays but the general trend between the 
two are similar. The operating region for CBR is lower because of the small statistical variation nature of CBR traffic 
source but the changes are more starkly observed. Point to note is that in a real network with real traffic, we would 
expect the traffic to be a mix of Pareto and Poisson (multiplexing NeX traffic sources approximates Poisson). Since 
their operating regions are similar, this would probably allow the same incremental-threshold-delay based algorithm 
to run on their aggregated traffic flow.  
6 Conclusion 

The operating region of a single traffic flow can be found by just tuning the thr value and setting a constant 
incrf, even though the criterion for stability and QoS requirement are antithesis. For Pareto and negative exponential 
traffic sources, the operating regions are similar for a single multiplexed flow of traffic, but for CBR, it is lower. 
These are however, coarse-grained granularity measurements that approximate the operating region sufficiently well 
to produce an ‘acceptable’ trade off between the criterions. It is hypothesised by tuning the incrf, more fine-grained 
conclusions can be made of the operating region. 
7 Future work  

Future work will be looking at tuning the incrf and also mixing appropriate background traffic in order to evalu-
ate its effect on the operating regions. 
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Figure 5 : Plot of mean delay of selected route at each 
sampling (for results) time, with thr varying from 
10% to 100%, and incrf at 100%. NeX traffic sources 
only. 
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Figure 3 and 4 are summaries of the plots in Figure 1 
and 2 respectively. They also show plots from different 
types of traffic sources. It can be observed from Figure 
3 that the mean number of route changes every 10 sec-
onds averaged over 200 seconds decreases as the thr 
value increases. This show that the stability criterion is 
can be better matched at higher thr. Conversely, for the 
mean delay of the selected routes at each sampling  (for 
results) time, the delay increases as thr increases. As 
the route does not change so frequently as thr in-
creases, the nodes ’ output buffers will start to fill de-
pending on the statistical variation of the traffic 
sources. Observing both Figure 3 and 5 (a zoom-ed 
version of NeX traffic in Figure 4), a trade off between 
increasing delay of routes (QoS criterion) and decreas-
ing the number of route changes (stability criterion) 
can be found at thr from 70% to 90% if NeX tra ffic 
sources are used. This operating region is also 


