
Adaptive Security Management In Application Level Active Networks
Temitope O. Olukemi, Lionel Sacks and Ognjen Prnjat
Department of Electronic and Electrical Engineering, University College London

Abstract: As research continues in active networks, the need for security cannot be over
emphasised. To successfully maintain an active network it is essential that node operators
be able to protect their node and code running on their node. However with the dynamic
nature of these networks, a system based on static security would severely limit that
dynamism. This paper looks at an approach to providing flexible security management in
application level networks (ALAN) in the context of the EU/IST project ANDROID
(Active Network Distributed Open Infrastructure Development). We also look at a way of
making the system adaptive based on immunological modelling.

1. Introduction
An active network [1] gives users the ability to load software components dynamically without
explicit reference to any third party. There are two types of active network:
1. Discrete - In this approach there is a separation between the mechanism for injecting programs

into a programmable node and the actual processing of the packets as they flow through the node.
Users send a program to a node and this program would then be stored at the node. When a packet
arrives at the node, its header is examined and a program is used to process the packet.

2. Capsule - The capsule approach leads to a more dynamic form of active network. Each packet
(capsule) in such a network contains both data and a program fragment that may include
embedded data. When a capsule arrives at an active node, its data content is processed using the
program in the capsule.

Much of the work so far in active networking has concentrated on the capsule approach. In the
ANDROID project, we’re adopting the discreet approach to active networking for two major reasons:

1. Loading of programs can be more easily controlled.
2. Functionality can be more sophisticated without the size restriction imposed by the size of the

capsule.

The activeness in the active network can be provided at different layers of the OSI protocol stack.
When the active capabilities are provided at the lower layers we regard this as the pure form of active
networking. However when the active capabilities are provided at the higher layers (such as the
application layer) we regard this as the provision of active services. The advantage of the active
service approach is that operation at the lower levels is not affected and deployment can be
incremental and thus faster. ANDROID is focusing on the second approach.

This paper is divided into six sections. In the first section we present an introduction to the work we
are doing. In section two we describe the ANDROID architecture, in the third section we go on to
describe our security management system. In section four we discuss the runtime monitoring issues in
our system, in the fifth section we describe the basis of our immunological modelling, while in section
six we present our conclusions and future work.

2. ANDROID Architecture

Normal Router

Normal RouterPC

PC

Active
Router

Active
Router

Active Server

smart
cache

active
email

Active Server

active
firewall

trans-
coder

Code Server

Figure 1 – ANDROID Architecture

Figure 1 shows the active architecture we’re proposing in ANDROID. In addition to the usual network
infrastructure we’re proposing two additional devices – the active router and the active server.

Both are a form of active node. They possess the capability of running application level active
services. However the services run on the active router are restricted and are chosen from a set of
trusted services designated by the owner of the active router. The active server is more open and as
such the security issues associated with it are greater.

Active Server

Operating System

Execution
Environment 1

Proxylet
A

Management Agent Policy Store

Proxylet
B

Execution
Environment 2

Proxylet
A

Proxylet
B

Figure 2 – Schematic of the Active Server Design

Figure 2 shows a schematic of the active server design. Each active node possesses an execution
environment for proxylets (EEP). It is within these EEPs that our active code (proxylets) is run. The
active server also possesses a number of management agents that handle issues such as security and
resource management on that active server.

3. Security Management

SLA

Policy
handler

Security
envelope

Policy
composition
object

AS

Proxylet

policies

notifications

Management
interface

User/service
security

Platform
security

Management
security

AS

active services

SMSM

SM
Security
manager

Figure 3 – ANDROID Security Architecture

The security architecture being developed for ANDROID is shown in Figure 3. Security is divided
into three levels: user/service security, platform security and management security.

User/service security focuses on the end-to-end security of the active services. It involves issues such
as user authentication to a service and securing inter-proxylet communications. Platform security
refers to the security provided by the security manager and policies in action on the active servers.
This aspect encompasses proxylet deployer authentication and access control, proxylet authentication
and access control and runtime monitoring of the proxylet. The third aspect of security focuses on
securing the flows of management information.

Figure 3 provides an overview of security in the ANDROID context. Service level agreements (SLAs),
negotiated between service providers and active server operators are broken down into policies by the
policy composition objects. There could be many layers of policy composition objects, with initially
high level policies being composed and then at the lower levels, XML policies that will drive the
management system being composed. The policies are fed into the active server at the management
interfaces. At this point two sets of policies are fed into the system. One set of policies are associated
with the deployer of the proxylet, while the second set of policies are associated with the proxylet
itself. The security manager interprets the information from both sets of policies and the information
they contain is used to create a security envelope within which the proxylet is run. Essentially this
envelope is a Java policy file (Java is the platform programming language), which contains the access

control information pertaining to the proxylet. The security manager also performs a number of other
security functions. It authenticates the proxylet deployer based on role/ID matching and it
authenticates proxylets using the JAR signing (since the proxylets are Java archive – JAR files). The
final task of the security manager is runtime resource usage monitoring of the proxylet.

4. Runtime Security Monitoring

Service
Metadata

Access
Control
Hints

Watch-
dog
Hints

Test
Data

 Hint s

Compatibility,
Policies and
Decisions

Customer
SLA

Runtime:
Security

Hints,
System,
User,......

Operations

High Level
Security Warnings

Contingency

Actions

Integration Single proxylet

Systems

Multi-proxylet

Feedback

Feedback

Figure 4 – Runtime Monitoring System

While Figure 3 shows how we provide the essentially static aspect of security, Figure 4 shows how the
more dynamic runtime security is provided. Essentially with runtime monitoring, we want to profile
the behaviour of proxylets and services. The profile of a proxylet’s behaviour is built up from the
integration level. At this level metadata is created for the individual proxylets. The metadata consists
of hints related to the access control needs of the proxylet, and test data hints – resource utilisation
information gathered from observing the proxylet running in a test environment. The information is
integrated for a number of different proxylets providing a service to form the service metadata. At the
systems level the metadata for the individual proxylets and the service metadata is composed into
policies. At the operations level, these policies along with those created from customer SLAs are fed
into the runtime security system. Warnings are generated and contingency actions are taken when
anomalous behaviour is observed.

The system possesses two control loops. The first control loop feeds back information collected from
the runtime system back to the policy composition phase. This particular control loop could lead to the
redefinition of policies feeding into the runtime security system. A typical case would be one where
the behaviour noticed was actually normal behaviour, which was previously unaccounted for in the
initial policy set and so this resulted in a perfectly legitimate service or proxylet being killed.

The information feedback could continue to a lower level where the service and individual metadata
for the proxylet is modified, so that future services which make use of a particular proxylet or service
instance will take into account the newly noted behaviour.

In the next section we go on to describe the approach that we’re taking into closing these control loops
and thus make the security management system adaptive.

5. Immunological Modelling
Over the last few years there has been a great increase in interest in studying biologically inspired
systems, such as neural networks and evolutionary computation. Recently there has been a growing
interest in another area – immune systems. This has led to a new field of research called Artificial
Immune Systems [2] [3] [4].

The immune systems itself is a complex of cells, molecules and organs which has proven to be capable
of several tasks such as pattern recognition, learning, memory acquisition, generation of diversity,
noise tolerance, generalisation, distributed detection and optimisation. Many of these are tasks, which
we would want to map into our security management system. We are not trying to replicate the

immune system, what we are trying to do is develop computational techniques based on what we can
learn from the immune system and apply them to our work.

Human Immune System ANDROID Network Immune System

Antigen Malicious Proxylet

Antibody Best Solution Vector

Recognition of Antigen Identification of anomalous behaviour

Production of antibodies from memory cells Recalling a past successful solution

Lymphocyte differentiation Maintenance of good solutions (memory) in database

T-cell suppression Elimination of surplus candidate solutions

Proliferation of antibodies Use of genetic operators to create new antibodies

Table 1 – Mapping between the Human Immune System and the ANDROID network immune system

Table 1 shows a mapping we have developed between the ANDROID network and the human
immune system. A number of classical techniques already exist in the field of artificial immune
systems such as self, non-self discrimination, the immune network [5], and clonal selection [6]. We
are developing an extended model bringing in new ideas such as the innate and adaptive immune
system and the intercellular signalling between cells in the immune system.

6. Conclusions and Future Work

In this paper we have considered the importance of security in an active network scenario where a
network operator may have little or no knowledge of the state of his network at a particular instant in
time. We have also presented an initial approach to tackle this issue in the context of the ANDROID
project. The key area we have identified in developing an adaptive management system how to close
the control loops depicted in Figure 4. For this we are using a biologically inspired approach based on
immunological modelling.

We are continuing the development of the immunological models for the security system. We plan to
start developing computational models of our system and carry out simulations using Swarm [7], an
agent-based modelling tool.

References
[1] D. Tennenhouse and D. Wetherall, “Towards as Active Network Architecture”, Computer
Communications Review, Vol. 26, No. 2, 1996.
[2] J.E Hunt and D.E. Cooke, “Learning Using an Artificial Immune System”, Journal of Network and
Computer Applications, 19, pp 189-212, 1996.
[3] D. Dasgupta, “Artificial Neural Networks and Artificial Immune Systems: Similarities and
Differences”, Proceedings of the IEEE SMC, 1, pp. 873-878, 1997.
[4] S.A. Hoffmeyr, “An Interpretative Introduction to the Immune System”, In Design Principles for
the Immune System and Other Distributed Autonomous Systems, (Eds.) I. Cohen and L.A. Segel,
Oxford University Press, 2000
[5] N.K. Jerne, “The Immune System”, Scientific American, 229(1), pp 52-60, 1973.
[6] F.M. Burnet, “Clonal Selection and After”, In Theoretical Immunology, (Eds.) G.I. Bell, A.S.
Perelson and G.H. Pimbley Jr., Marcel Dekker Inc., pp 63-85, 1978.
[7] The Swarm Development Group, Swarm, http://www.swarm.org

